JP6846253B2 - ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム - Google Patents

ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム Download PDF

Info

Publication number
JP6846253B2
JP6846253B2 JP2017063449A JP2017063449A JP6846253B2 JP 6846253 B2 JP6846253 B2 JP 6846253B2 JP 2017063449 A JP2017063449 A JP 2017063449A JP 2017063449 A JP2017063449 A JP 2017063449A JP 6846253 B2 JP6846253 B2 JP 6846253B2
Authority
JP
Japan
Prior art keywords
drone
information
flight
route
response instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063449A
Other languages
English (en)
Other versions
JP2018165115A (ja
Inventor
辰彦 清水
辰彦 清水
光昭 小関
光昭 小関
藤原 昇
昇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenrin Datacom Co Ltd
Original Assignee
Zenrin Datacom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenrin Datacom Co Ltd filed Critical Zenrin Datacom Co Ltd
Priority to JP2017063449A priority Critical patent/JP6846253B2/ja
Publication of JP2018165115A publication Critical patent/JP2018165115A/ja
Application granted granted Critical
Publication of JP6846253B2 publication Critical patent/JP6846253B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

この発明は、ドローンやUAV(Unmanned aerial vehicle)などと呼ばれる無人航空機の飛行中の緊急時に対応できるようにする装置、方法及びプログラムに関する。
種々の無人航空機(以下、ドローンと記載する。)が様々な分野で利用されるようになってきている。現状では、操作者が遠隔操作装置を用いて目視可能な範囲内で、ドローンを飛行させる場合が多い。このため、ドローンに不具合が生じても、地上の人や物に被害を与えないように、ドローンをコントロールして安全な場所に不時着させることができる。しかし、遠隔操作であっても操作者が目視できないほど遠方にドローンを飛行させたり、自律航行によりドローンを遠方まで飛行させたりする利用態様が増えてくると考えられる。この場合、飛行中のドローンに不具合が発生したときの対応として、地上の人や物に影響を及ぼすことがないようにドローンを地上に戻す技術が重要になる。
後に記す特許文献1には、無人航空機の飛行方法に関し、飛行の継続に支障をきたす不具合が発生した場合に、当該無人航空機に搭載されている緊急対応モジュールが機能して、当該無人航空機が自律的に安全な場所に着陸するようにする発明が開示されている。当該発明の緊急対応モジュールは、エンジンの不具合、電源の不具合、航続距離限界、通信の不具合の1つ以上が発生したことを検知した場合に、予め登録されている基地の中から到達可能な基地を特定し、そこへの飛行計画を立てて飛行するというものである。また、特許文献1には、基地が存在しない場合に、例えば住宅地域から離れた場所を目的地とすることが記載されている。
特開2014−181034号公報
上述した特許文献1に開示された発明のように、ドローン(無人航空機)自体が緊急対応機能を備えることは重要である。しかしながら、今後は種々の分野で数多くのドローンが利用されるようになると考えられる。このため、飛行中のドローンのそれぞれが、独自の機能に基づいて緊急時対応を行うのではなく、詳細な地図情報に基づくと共に、共通の基準を適用して、信頼性の固い緊急時対応を行うようにしたいとする要求がある。
以上のことに鑑み、この発明は、自律航法、遠隔操作を問わず、飛行中のドローンのそれぞれが、リアルタイムで、一様に信頼性及び安全性の高い緊急時対応をとることができるようにすることを目的とする。
上記課題を解決するため、この発明のドローン用緊急事態対応指示装置は、
3次元地図を形成する3次元地図情報を記憶する地図情報記憶手段と、
無人航空機であるドローンからの信号であって、当該ドローンの状態を示す状態情報と当該ドローンの現在位置を示す情報とを含む状態等通知信号を受信する受信手段と、
前記受信手段を通じて前記状態等通知信号を受信した場合に、前記状態等通知信号に含まれる前記状態情報に基づいて、前記ドローンの状態を判別する判別手段と、
前記判別手段での前記ドローンの状態が、緊急事態であり、飛行不能ではないと判別した場合に、前記地図情報記憶手段の前記3次元地図情報を参照し、前記現在位置から到達可能な着陸地点を特定して、前記現在位置から前記着陸地点までの飛行ルートを指示するデータであって、緯度、経度、高さを含んだ座標点列である経路指示データを含む対応指示情報を形成する形成手段と、
前記形成手段で形成した前記対応指示情報を、前記状態等通知信号を送信してきた前記ドローン、及び、前記ドローンを遠隔操作するための装置の何れかを送信先に選択して送信する送信手段と
を備えることを特徴とする。
この発明によれば、飛行中のドローンに異常が生じた場合に、当該ドローンの状態に応じて、適切な対応をとることができる。これにより、自律航法、遠隔操作を問わず、飛行中のドローンのそれぞれが、リアルタイムで、一様に信頼性及び安全性の高い緊急時対応をとることができる。
実施の形態のドローン用緊急事態対応指示システムの構成例を説明するためのブロック図である。 ドローン用緊急事態対応指示装置が形成する飛行指示データによる飛行ルートの指示方法について説明するための図である。 ドローン用緊急事態対応指示装置が形成する飛行指示データによる飛行ルートの指示方法について説明するための図である。 ドローン用航空地図DBの格納データの概要を説明するための図である。 固定飛行障害情報の一例を説明するための図である。 変動飛行障害情報の一例を説明するための図である。 回避施設地域情報の一例を説明するための図である。 ドローンポートについて説明するための図である。 ドローン充電スポットについて説明するための図である。 ドローン用航空地図DBの格納データにより定義されたドローン用航空地図の一例を示す図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン飛行ゾーンの定義について説明するための図である。 ドローン用航空ネットワークデータの構造概念を説明するための図である。 ドローン用航空ネットワークデータのノードの定義について説明するための図である。 ノードとリンクの構成例について説明するための図である。 ドローン用航空NWDBに形成されるノードデータとリンクデータとの例を説明するための図である。 利用が想定される既存管制情報、運行情報の例を示す図である。 既存の航空管制の内容を示す図である。 固定リンクコストが低くなる湖水上空を中心に形成されるドローン用航空ネットワークの例を説明するための図である。 固定リンクコストが低くなる河川周辺上空を中心に形成されるドローン用航空ネットワークの例を説明するための図である。 ドローン用航空ネットワークデータを作成する場合の処理を説明するためのフローチャートである。 ドローン別飛行ルートデータファイル140の格納データの例を説明するための図である。 ドローンに対する交通規制の例を示す図である。 ドローンに対する交通規制標識の例について示す図である。 ドローンに対する交通規制標識の例について示す図である。 ドローンに対する交通指示標識の例について示す図である。 ドローンに対する交通警戒標識の例について示す図である。 ドローンに対する交通案内標識の例について示す図である。 図1に示したドローン用緊急事態対応指示装置の情報処理部の構成例について説明するためのブロック図である。 実施形態のドローン用緊急事態対応指示システムで用いられるドローンの構成例を説明するための図である。 実施形態のドローンの駆動制御ユニット内に設けられる駆動制御装置部の構成例を示すブロック図である。 ドローン用緊急事態対応指示装置が行う変動リンクコストの更新処理について説明するためのフローチャートである。 ドローン用緊急事態対応指示装置が行うルート探索処理について説明するためのフローチャートである。 ドローン用緊急事態対応指示装置が行うリルート処理1について説明するためのフローチャートである。 ドローン用緊急事態対応指示装置が行うリルート処理2について説明するためのフローチャートである。 ドローン用緊急事態対応指示装置が行う緊急時対応処理についいて説明するためのフローチャートである。 緊急時対応の具体例について示す図である。 不時着場所として望ましい場所の条件の例について示す図である。 不時着場所として望ましい場所の具体例について示す図である。 緊急時対応後の事後対応の具体例について示す図である。
以下、図を参照しながら、この発明の装置、方法、プログラムの一実施の形態について説明する。
[ドローン用緊急事態対応指示システムの構成例]
図1は、この実施の形態のドローン用緊急事態対応指示システムの構成例を説明するためのブロック図である。当該ドローン用緊急事態対応指示システムは、ドローン用緊急事態対応指示装置1と、ドローン2(1)、2(2)、2(3)、…と、情報提供装置4a、4b、4c、…と、ドローン運用管理装置5とが、IoT(Internet of Things)プラットホーム3に接続されて構成される。なお、以下においては、ドローン用緊急事態対応指示装置1を対応指示装置1と記載する。
対応指示装置1は、ドローンに対するナビゲーション機能と緊急事態対応指示機能とを実現するものであり、クラウドシステムとして構成されている。近年、ソフトウェアやハードウェアの利用権などをネットワーク越しにサービスとして利用者に提供するクラウドコンピューティング方式が広く利用されている。このようなクラウドコンピューティング方式を実現するためにインターネット上に設けられている種々のデータセンターやサーバー装置群のことをクラウドと呼んでいる。クラウドは、使用者にリアルなサーバー装置を意識させることなく、目的とするソフトウェアやハードウェアなどを使用者に提供するものである。
そして、対応指示装置1において、ドローン用航空地図DB120、ドローン用航空NWDB130、ドローン別飛行ルートデータファイル140、ドローン用航空規制DB150のそれぞれは、クラウド上のデータセンターやサーバー装置群に設けられている。同様に、対応指示装置1の情報処理部100もまたクラウド上のサーバー装置群に設けられている。このようにして、対応指示装置1は、クラウド上のデータセンターやサーバー装置群を利用してその機能を実現するようにしているものである。なお、ドローン用航空地図DB120などにおける文字「DB」は、「Data Base(データベース)」の略称である。
ドローン2(1)、2(2)、2(3)、…は、無人航空機である。無人航空機には、マルチコプター、固定翼機、小型ヘリコプターなどの種々のものが存在する。この実施の形態のドローン2(1)、2(2)、2(3)、…は、マルチコプターのうち、クアッドローター式のものを例に説明する。IoTプラットホーム3は、インターネット、携帯電話網、一般公衆電話網、無線LAN(Local Area Network)などを含み、これに接続された機器が、相互に通信を行うことができる環境を提供する。
また、IoTプラットホーム3には、気象情報提供装置4a、交通情報提供装置4b、混雑度情報提供装置4cなどの各種の情報を提供する種々の情報提供装置も接続されている。これにより、対応指示装置1は、これら種々の情報提供装置4a、4b、4c、…などから必要な情報の提供を受けて利用できる。ドローン運用管理装置5は、ドローンの運用者によって用いられ、ドローンに関する必要な情報を対応指示装置1に提供したり、対応指示装置1からドローンに関する情報の提供を受けて、これを利用できるようにしたりする。
[対応指示装置1の特徴]
[飛行指示データの利用]
図1に示したように構成されるドローン用緊急事態対応指示システムの対応指示装置1は、ドローンに対する飛行ルートの案内の仕方が、従来のものとは大きく異なる。この実施の形態の対応指示装置1は、ドローン運用管理装置5から提供される情報に基づいてドローンの飛行ルートを特定し、その飛行ルートを飛行できるようにする飛行指示データを形成して、ドローンに対して、あるいは、ドローンを遠隔操作するための装置に対して提供する。この場合の飛行指示データは、緯度、経度、高さを含んだ座標点列となる。
図2、図3は、対応指示装置1が形成する飛行指示データによる飛行ルートの指示方法について説明するための図である。対応指示装置1は3次元地図を提供できるものである。ドローン運用管理装置5は、対応指示装置1から提供を受けた3次元地図をタッチパネルに表示し(マッピングし)、タッチパネルを通じて飛行ルートの指示入力を受け付ける。ドローン運用管理装置5の使用者は、タッチパネルに表示された3次元地図上を指や電子ペンでなぞるようにして、その軌跡(3次元の自由曲線)により飛行ルートを指示する。当該3次元の自由曲線の情報は、ドローン運用管理装置5から対応指示装置1に送信される。
なお、ここでは、単にタッチパネルとして説明したが、ドローン運用管理装置5は、3次元CAD(computer-aided design)システムの技術やVR(virtual reality)空間での描画技術などを用いて、3次元空間内に3次元の自由曲線が描画可能である。要は、3次元空間内に3次元の自由曲線が描画できる種々の技術を用いることができる。
対応指示装置1は、ドローン運用管理装置5からの3次元の自由曲線の情報に基づいて、図2(A)に示すように、出発地(始点)Sから目的地(終点)Eまでの自由曲線に対応し、緯度、経度、高さを含む多数の座標RDn(nは1以上の整数)の点列からなる飛行指示データを形成する。このように、緯度、経度、高さを含む多数の座標RDn(nは1以上の整数)の点列によって飛行指示データを構成することにより、例えば複雑に蛇行した飛行ルートをその通りに飛行するように指示(案内)できる。
すなわち、飛行指示データを構成する座標点列により、1本のポリラインとなる飛行ルートを案内できる。この場合、各座標点間の距離は、例えば、数十センチから数メートルの単位で設定可能である。従って、出発地と中継地と目的地とを結ぶ線などよりも、実際に飛行する経路をそのまま細かく指示することが可能になる。
この場合、各座標間を接続することにより、飛行ルートが構成されるが、各座標間を接続するポリラインは、ベクトル情報(方向と距離)を付加することなく正確に定義できる。図2(B)に示すように、飛行指示データを構成する座標点列の一部である座標RDnと座標RDn+1とを結ぶポリラインを定義する場合を考える。この場合、座標RDnの位置は、図2(B)の(1)に示したように、緯度と経度と地表(水面)からの高さとによって特定される。
すなわち、「地表(水面)からの高さ」は、地上の上空をドローンが飛行する場合には、地表からの高さとなり、河川、湖沼、海などの上空をドローンが飛行する場合には、水面からの高さとなる。したがって、以下において、「地表からの高さ」は、「地表または水面からの高さ」を意味している。
そして、座標RDnと座標RDn+1とを結ぶポリラインは、座標RDnを始点として考えると、図2(B)の(2)に示すように時系列としての次の座標RDn+1を終点としたものとなる。このように、座標点列を構成する各座標と、各座標を始点、終点とするポリラインよって、飛行ルートを適切に指示できる。
更に、飛行指示データを構成する座標点列に対して、種々の要素情報として種々の属性(プロパティ)を付加することによって、飛行ルートを3次元領域として案内できる。図2(B)を用いて説明したように、座標点列を構成する各座標は、緯度、経度、地表からの高さによって、その位置が特定される。したがって、図3の(1)に示すように、座標点列を構成する座標RDnの位置は、緯度、経度、地表からの高さによってその位置が特定できる。そして、座標点列を構成する各座標に対して、属性情報として、横幅、縦幅を付加する。すなわち、図3の(2)に示すように、座標RDnに対して、属性として、横幅、縦幅を付加する。
ここで、横幅は、図3において、その座標を中心として水平方向の右側と左側のそれぞれの長さである。縦幅は、図3において、その座標を中心として垂直方向の上側と下側のそれぞれの長さである。具体的に、横幅、縦幅のそれぞれを1mとした場合を考える。この場合、図3に示したように、座標RDnを基準として設定される横幅2m、縦幅2mのエリアが、次の座標RDn+1まで続く管状の3次元空間を飛行ルートとして指示できる。このように、飛行ルートは、座標点列の各点にアローワンス(余裕)を持たせた範囲の連続として指示することができる。
また、図3には示さなかったが、座標RDnの次の座標である座標RDn+1についても、横幅、縦幅を指定しておけば、座標RDn+1の先の飛行ルートも3次元領域として飛行ルートを指示できる。このように、座標点列を構成する各座標に対して、属性として、横幅、縦幅を指定した飛行指示データを形成することにより、飛行ルートを3次元領域として案内でき、当該3次元領域内をドローンが飛行するように案内できる。なお、各座標に対しては、その座標への到達時刻やその座標で維持しなければならない速度などの情報を付加して、飛行ルートを指示することもできる。
なお、ここでは、飛行ルートを指示するための座標点列である飛行指示データの各座標に対して、属性情報として、例えば、横幅、縦幅を指定しておくことにより、飛行ルートを3次元領域として案内するようにした。しかし、これに限るもではない。座標点列を構成する各座標の位置を特定する緯度、経度、高さを表す精度を30cmから3mや30mにすることで飛行ルートにアローワンスを持たせて、各座標を3次元領域として定義することもできる。
すなわち、緯度、経度は、例えば「北緯35度37分19秒27、東経139度44分34秒59」などのよう表現される。この場合、緯度、経度の1秒はおおよそ30mであり、秒以下の数字は1桁目でおおよそ3m、2桁目まで用いると30cmである。そこで、飛行指示データを構成する座標データの緯度、経度は、秒以下1桁目まで用いて表現し、地表からの高さは、例えば60.2mのように単位はm(メートル)で少数第1位まで用いて表現する。さらに、形成する3次元領域の縦幅を例えば3mとする。
この場合、緯度、経度は、秒以下1桁目までを用いて表現しているので横幅と飛行可能な範囲は共に3mとなり、縦幅は上述したように3mであるので、地上から60.2m上空にあって、緯度、経度により特定された位置に、直径が3mの円形の領域を形成できる。このように、緯度、経度の精度を秒以下1桁まで用い、形成する領域の縦幅を指定することで、各座標を基準にした円形領域を定義することができる。各座標に対応して定義された領域を順番に接続する管状のルートを、ドローンが飛行する飛行ルートとして指示できる。
ここでは、飛行指示データとなる座標点列の各座標を基準にして、例えば円形の領域を形成し、これらを接続する管状の3次元領域によって、飛行ルートを指示できる場合を説明したが、これに限るものではない。飛行指示データを構成する座標点列の各座標を中心とする方形を各座標に対応した領域とし、これらを接続する管状のルートを、飛行ルートとして指示するようにすることもできる。
このように、飛行指示データを構成する座標点列の各座標を特定する緯度、経度、地表からの高さに加えて、ドローンが飛行すべきルートを3次元の空間として特定するために必要となる種々の属性情報などを、各座標について付与することができる。
このような要素情報は、例えば、ドローン運用管理装置5を通じてドローンの運用者が入力し、対応指示装置1に提供することができる。対応指示装置1は、提供を受けた要素情報を、通信I/F101を通じて受信し、これを制御部102が記憶装置103の所定の記憶領域に記録し、必要に応じて読みだして利用できるようにする。
もちろん、上述もしたように、飛行指示データを構成する緯度、経度、高さにより特定される3次元空間内の座標点列によって、1本の線となる飛行ルートを指示することができる。このため、座標点列により特定される飛行ルートを基準にして、上下左右方向に許容範囲を持たせるようにして、ドローンが飛行すべきルートを3次元の空間として特定するようにしてもよい。この場合の情報も、ドローン運用管理装置5を通じてドローンの運用者が入力し、対応指示装置1に提供することができる。
また、ここでは、飛行指示データは、緯度、経度、高さを含んだ座標点列として説明したが、これに限るものではない。例えば、ポリラインによって飛行指示データを形成してもよい。ポリラインは、直線や円弧を組み合わせて構成されるオブジェクトで、接続点の座標と当該接続点間を接続する直線や円弧を特定する情報などからなる。このようなポリラインを構成する情報に加えて、高さを示す情報を持たせることにより、飛行指示データを構成できる。
換言すれば、ポリラインは、座標点列を簡略化して表現するようにしたものであり、直線的に飛行可能な部分では直線により、また、カーブするように飛行する部分では曲線により表現し、それらの始点、終点が座標点で示されることになる。すなわち、出発地、中継地、目的地といった指示方法とはことなり、細かく設定させる点と線(直線、曲線)により飛行ルートを指示できる。さらに、ポリラインによって飛行指示データを形成する場合にも、上下左右方向に許容範囲を示す情報を持たせることにより、ドローンが飛行すべきルートを3次元の空間として指示できる。
また、飛行指示データを緯度、経度、高さを含んだ座標点列として形成する場合であっても、また、ポリラインを用いて形成する場合であっても、必要となる都度、ドローンの飛行速度を指示する情報を当該飛行指示データに含めてもよい。
[ドローン用航空地図、ドローン用航空ネットワークの利用]
ところで、上述したように、ドローン運用管理装置5のタッチパネルに表示される3次元地図上で3次元の自由曲線を描画することにより、ドローンごとに飛行ルートを指示するのは面倒な場合もある。宅配業者などのように、複数のドローンを活用する場合には、できるだけ手間を掛けずに飛行ルートを作成したい。そこで、この実施の形態の対応指示装置1は、飛行ルートの探索を行って、飛行ルートを特定し、この飛行ルートを辿るように飛行できるようにするための飛行指示データを形成することができるようにしている。この飛行指示データがドローンに対する飛行ルートの案内情報である。
このため、この実施の形態の対応指示装置1は、図1に示すように、ドローン用航空地図データベース120、ドローン用航空ネットワークデータベース130、ドローン別飛行ルートデータファイル140を備えている。以下においては、ドローン用航空地図データベース120は、ドローン用航空地図DB120と記載し、ドローン用航空ネットワークデータベース130は、ドローン用航空NWDB130と記載する。
[ドローン用航空地図DB120の構成]
まず、ドローン用航空地図DB120について説明する。ドローン用航空地図DB120は、ドローン用の3次元の航空(空域)地図を構成するためのテクスチャ画像やポリゴンデータなどからなる3次元データ(3次元オブジェクトデータ)、ベクトルデータ、ラスターデータ、記号、文字データなどの種々の地図データを緯度経度情報に対応付けて記憶する。図4は、ドローン用航空地図DB120の格納データの概要を説明するための図である。
図4に示すように、ドローン用航空地図DB120には、固定飛行障害情報、変動飛行障害情報、回避施設地域情報、地形情報等、その他の情報などが記憶されている。図5は固定飛行障害情報の一例を、図6は変動飛行障害情報の一例を、図7は回避施設地域情報の一例を、それぞれ説明するための図である。
固定飛行障害情報は、ドローンが飛行する場合に、固定的に障害になる地物や障害が発生する場所を示すための情報であって、固定的に障害になる地物や障害が発生する場所を空間に定義するための3次元データなどが、緯度経度と高さに紐づけられたものである。具体的に固定飛行障害情報は、図5に示した地物や場所を特定するための情報である。例えば「建物、建造物」などの地物の固定飛行障害情報は、その建物や建造物の所在位置と立体形状とを正確に示すものである。また、「電線」の場合の固定飛行障害情報は、電線が架けられた電柱や電信柱などの位置と、当該電線が架けられた高さとによって、その所在位置と高さとを正確に示すものとなる。
また、例えば、「グライダー場」の固定飛行障害情報は、そのグライダー場の所在位置と面積範囲及びそのグライダー場についてグライダーの離着陸などの安全のためにドローンの飛行が制限される上空範囲を正確に示すものである。したがって、「グライダー場」の固定飛行障害情報は、グライダー場の所在位置を基準として特定される範囲であって、ドローンの飛行が制限される立体形状となる範囲を正確に把握できるものとなる。
同様に、「ゴルフ場」の固定飛行障害情報は、ゴルフ場の所在位置と面積範囲及び当該ゴルフ場からゴルフボールが飛んでくる可能性のある上空範囲を正確に示すものである。したがって、「ゴルフ場」の固定飛行障害情報は、ゴルフ場の所在位置を基準として特定される範囲であって、ドローンの飛行が制限される立体形状となる範囲を正確に把握できるものとなる。なお、図4に示した固定飛行障害情報は一例であり、ドローンの飛行に対して固定的に障害となる種々の地物や場所についての情報が含まれる。
変動飛行障害情報は、ドローンが飛行する場合に、季節、時期、時間などに応じて変動的に障害が発生する場所を示すための情報であって、季節、時期、時間などに応じて変動的に障害が発生する場所を空間に定義するための3次元データなどが、緯度経度と高さに紐づけられた情報と、当該障害が発生する季節、時期、時間を示す情報とからなる。具体的に変動飛行障害情報は、図6に示した情報によって特定される場所を描画するための情報と、当該障害が発生する季節、時期、時間を示す情報とからなる。
例えば、「イナゴやバッタ、蝶、蛾、ウンカ、メイチュウなどの発生時期の生息域、活動域情報(虫類)」に応じた変動飛行障害情報について考える。この場合の変動飛行障害情報は、当該虫類の生息域、活動域の所在位置と面積範囲及び当該生息域、活動域から当該虫類の飛行する可能性のある上空範囲を正確に示すものである。したがって、この場合の変動飛行障害情報は、当該虫類の生息域、活動域の所在位置を基準として、特定される範囲であって、ドローンの飛行が制限される立体形状となる範囲を正確に把握できるものとなる。また当該変動飛行障害情報には、当該虫類の活動時期(期間)を示す情報も付加され、当該期間においてのみ、飛行障害となる範囲を把握できるようにする。なお、図5に示した変動飛行障害情報は一例であり、ドローンの飛行に対して変動的に障害となる種々の場所についての情報が含まれる。
回避施設地域情報は、上空の飛行を回避すべき施設や地域を示すための情報であって、上空の飛行を回避すべき施設や地域を空間に定義するための3次元データなどが、緯度経度と高さに紐づけられたものである。具体的に回避施設地域情報は、図7に示した施設や地域を描画するための情報である。例えば「火山」の回避施設地域情報は、その火山の所在位置と面積範囲とが正確に把握できると共に、その面積範囲は例えば飛行回避フラグを付与するなどして、その上空はいずれの高度でも飛行できないことを把握できるようにしたものとなる。
また、「通学時間帯の通学路」の回避施設地域情報の場合には、通学路の所在位置と面積範囲とが正確に把握できると共に、その上空の飛行が禁止される時間帯を示す情報も付加されたものである。なお、図6に示した回避施設地域情報は一例であり、ドローンによる上空の飛行を回避すべき種々の施設や種々の地域についての情報が含まれる。
そして、図4に示した「地形情報等」は、例えば、道路、河川、湖沼、海岸、砂丘、農地などの種々の地形を定義するための情報、ドローンポートを定義するための情報、ドローン充電スポットを定義するための情報であって、緯度、経度に紐づけられたものである。図8はドローンポートについて説明するための図であり、図9はドローン充電スポットについて説明するための図である。
ドローンポートは、ドローンの待機場所(駐機場所)であり、充電(エネルギー補給)が可能で、最低1機の離着陸が可能で、例えば化学工場などの危険地帯に隣接していない場所が選ばれる。具体的には、図8に示すように、配送(流通センター)、物流倉庫、郵便局などの種々の場所がドローンポートとして整えられ、これがドローン用航空地図DB120の地図情報により把握可能となる。
ドローン充電スポットは、ドローンポートとは異なり待機場所(駐機場所)としての役割は小さく、ドローンが充電だけを行い、完了後にはすぐに飛び立つことを想定して設けられる施設である。ドローン充電スポットの場合も、当然に充電(エネルギー補給)が可能で、最低1機の離着陸が可能で、危険地帯に隣接していない場所が選ばれる。具体的には、図9に示すように、屋外自動販売機、電照付き屋外看板、電話BOXのルーフなどの種々の場所がドローン充電スポットとして整えられ、これがドローン用航空地図DB120の地図情報により把握可能となる。
また、その他の情報には、種々の図形、記号、文字情報などが含まれる。そして、ドローン用航空地図DB120の格納データにより、実世界の状況に正確に対応すると共に、固定飛行障害情報や変動飛行障害情報や回避施設地域情報をも示すことができるようにされた3次元地図(3D地図)が形成できる。
図10は、ドローン用航空地図DB120の格納データにより定義されたドローン用航空地図の一例を示す図である。図10に示すように、ドローン用航空地図は、例えば、道路の位置やビルなどの建物の位置とその立体形状を正確に示すことができるものである。すなわち、ドローン用航空地図DB120の格納データにより定義されたドローン用航空地図は、ドローンの飛行の障害になる地物などや障害となる場所や地域、また、回避すべき施設や地域が正確に特定できる。したがって、このようなドローン用航空地図により、ドローンが飛行可能な空域を適切に把握できる。
[ドローン飛行ゾーンの定義]
次に、ドローン飛行ゾーンの定義について説明する。ドローンの利用者が制限なく自由にドローンの利用が可能であると、人が乗っている航空機や地上の人、建物、車両の安全が害される恐れがある。このため、ドローンを安全に利用するために航空法などの整備が行われている。
具体的には、(A)地表又は水面の標高+150m以上の空域、(B)空港周辺の空域、(C)人口集中地区の上空は、安全を確保し、許可を受けなければ、ドローンの飛行はできない。なお、上記(A)、(B)、(C)以外の空域は、許可を受けなくてもドローンの飛行は可能である。また、許可を受けることにより、あるいは、上記(A)、(B)、(C)以外の空域であるために、ドローンの飛行が可能であっても、ドローンは建物の屋上や側面から30mの間隔を保持して飛行しなければならない。
このため、ドローンは、上空を通過する真下の建物との間隔が十分でも、横にある高い建物との側面の間隔を30m以上確保した空域を飛行しなければならず、3次元のドローン用航空地図がなければ下限高度の取得は困難である。また、ドローンが回避すべきオブジェクトの中には小型無人機等飛行禁止法等により300mの距離を確保しなければならないものもあり、実質上空を飛行できないために地形との見合いで行き止まりになる場合もあるが、これも3次元のドローン用航空地図がなければ把握は困難である。
この実施の形態の対応指示装置1は、上述したように、3次元のドローン用航空地図を形成するデータを記憶するドローン用航空地図DB120を備えている。このため、ドローン用航空地図DB120の固定飛行障害情報、変動飛行障害情報、回避施設地域情報といった障害情報と、地形情報と、上述のような飛行規制情報とに基づいて、ドローンが飛行可能な空域を正確に特定できる。
しかし、このようにドローンが飛行可能な空域が特定できてもドローンの飛行ルートは得られない。この段階で特定されるドローンが飛行可能な空域は、上下左右のでこぼこを含んでおり、いびつな空域となってしまうためである。このため、障害情報と地形情報と飛行規制情報から得られるドローンが飛行可能な空域の中に、より直進性の高い、通信電波及びセンサの見通しの良い形状を持つドローン飛行ゾーンを定義する必要が生じる。換言すれば、当該ベースからでこぼこを除去したなだらかな形状のゾーンを定義することが望ましい。
図11〜図15は、ドローン飛行ゾーンの定義について説明するための図である。上述したように、地表又は水面の標高+150m以上の空域は、地上がどのような場所であってもドローンの飛行には許可が必要である。また、安全性も考慮し、地表又は水面の標高+150mより低い空間でドローンを飛行させる場合を考える。例えば、ビルなどが多い人口集中地区の上空であっても、安全を確保し、許可を受ければ、ドローンの飛行は可能である。この場合、地表又は水面の標高+150mより低く、ビルなどの建築物の周囲30mを除く部分であれば、ドローンの飛行は可能である。
したがって、図11に示すように、地表から150mの位置を示す点線の下側であって、各ビルの周囲30mの範囲を示す点線の外側(各ビルより離れる方向の外側)であれば、ドローンの飛行は可能である。しかし、図11に示すように、ビルの高さはまちまちであるので、ドローンの飛行可能空域は凹凸の激しい空間となってしまう。そこで、図11において斜線を付して示したように、ドローンの飛行可能空域であって、直進線の高い、通信電波及びセンサの見通しの良い形状を持つドローン飛行ゾーンを設定する。図11に示した例の場合には、地表又は水面の標高+150mより低く、一番高さのあるビル(90m)+30m上空の範囲、すなわち、地表又は水面の標高+150mより低く、地表又は水面の標高+120m以上の空域をドローン飛行ゾーンとしている。
そして、ドローン飛行ゾーンにも、例えば種々の種類の飛行ゾーンの設定が可能である。図12に示すように、高層ビルエリアの一番高いビルの外側上端(てっぺん)から30m以上離れた上空であって、かつ、地表又は水面の標高+150mより低い空域は、通信電波及びセンサの見通しが極めて良いため、高速にドローンの飛行が可能である。このため、地表又は水面の標高+150mより低く、地表又は水面の標高+120m以上の空域を高速飛行ゾーンとする。
そして、高層ビルエリア以外では、例えば、地表又は水面の標高+120mより低く、地表又は水面の標高+60m以上の空域を通常飛行ゾーンとする。そして、地表又は水面の標高+60mより低く、一般住宅の外側上端から30m以上離れた、例えば地表又は水面の標高+40m以上の空域を一時退避ゾーン、出発地、中継地、目的地、ドローンポート等へのアクセスゾーン等とする。このように、ドローン用航空地図DB120の地図情報により形成される3次元のドローン用航空地図に基づいて、ドローンの飛行可能空域(ベース)を特定し、そのベース内に直進性の高い、通信電波及びセンサの見通しの良い形状を持つドローン飛行ゾーンを定義する。
なお、図11、図12では、ドローン飛行ゾーンを定義する場合の概要を説明したが、実際には3次元のドローン用航空地図に基づいて、更に詳細にドローン飛行ゾーンを定義できる。例えば、図13に示すように、ビル間の領域であっても、大きく間隔があいており、地表にドローンから保護すべきものがなければ、通常飛行ゾーンを定義できる。
また、図14に示すように、ビル間に河川及び河川敷が存在する場合には、その河川及び河川敷の上空は、安全飛行ゾーンを定義できる。ドローンが落下しても影響が少ないためである。また、図15に示すように、ビル間にごく狭いドローンの飛行可能空域が存在していた場合に、当該飛行可能空域もドローン飛行ゾーンとすることは可能である。しかし、通信電波及びセンサの見通しの点で難点があるため、よほどのことがない限りドローンを飛行させない抑制飛行ゾーンを定義する。
この他にも、3次元のドローン用航空地図に基づいて、細かく用途などを限定したドローン飛行ゾーンを定義できる。例えば、図16に示すように、地表や水面からの高度に応じて、低速道リンク、一般道リンク、専用道リンク、高速道リンク、幹線道リンクを定義し、更に、それらの各リンクを行き来できるようにする連絡道リンクを定義することもできる。
[ドローン用航空NWDB130の構成]
そして、この実施の形態では、上述したように、3次元のドローン用航空地図に基づいて、ドローン飛行ゾーンを定義し、この定義したドローン飛行ゾーンに、ドローンの飛行ルート探索用のネットワークを構成する。具体的には、複数のドローンが速度を維持し、十分な間隔をもって飛行が可能なように、ドローンの通信電波及びセンサの見通しが効きやすいチューブ状のリンクと、複数のドローン同士の交差が確実に行えるキューブ状のノードとでドローン経路探索用の航空ネットワークを構築する。このようにして構築した航空ネットワークを表現するネットワークデータを、ドローン用航空NWDB130が記憶する。
このように構築される航空ネットワークの中に、図2を用いて説明した飛行ルートが設定されることになる。なお、「チューブ状のリンク」の「チューブ状」とは、単なる円筒という意味ではなく、長手方向と交差する方向に切断した場合の断面形状が種々の形状となる中が空洞の管状のものを意味する。また、「キューブ状のノード」の「キューブ状」とは、単なる立方体という意味ではなく、種々の3次元立体を意味する。
図17は、ドローン用航空ネットワークデータの構造概念を説明するための図である。図17において、多数の小さな黒丸N1、N2、N3、…がノードを示し、このノード間を接続する線L1、L2、L3、…がリンクを示している。このように、地表または水面の上空に、複数のノードN1、N2、N3、…が設けられると共に、それらノード間を接続するリンクL1、L2、L3、…が設けられることにより、ドローンの飛行ルートを探索するためのドローン用航空ネットワークが形成される。そして、このようなドローン用航空ネットワークを表現するデータが、ドローン用航空ネットワークデータである。
図18は、ドローン用航空ネットワークデータのノードNn(nは1以上の整数)の定義について説明するための図である。図18(A)に示すように、ノードNnは基本的には、緯度、経度、地表からの高さの3つの値によって、3次元空間におけるその位置を特定できる。しかし、ドローン用航空ネットワークにおけるノードNnは、上述もしたように、複数のドローン同士の交差が確実に行えなければならないため、ある程度の余裕を備えていなければならない。
そこで、図18(B)に示すように、緯度、経度、地表からの高さに加え、各ノードNnの属性として、横幅、奥行き、縦幅を設ける。横幅は、図18(B)において、緯度、経度、地表からの高さによってその位置が特定されるノードNnの位置を中心として水平方向の右側と左側のそれぞれの長さである。奥行きは、図18(B)において、ノードNnの位置を中心として前方(図の奥側)と後方(図の手前側)のそれぞれの長さである。
縦幅は、図18(B)において、ノードNnの位置を中心として垂直方向の上側と下側のそれぞれの長さである。そして、横幅、奥行、縦幅のそれぞれを2mとした場合にについて考える。この場合、図18(B)に示したように、ノードNnの周囲に実線で示したように、ノードNnを中心にして、1辺が4mの立方体を定義できる。このノードNnの周囲に定義した1辺が4mの立方体を、ドローン用航空ネットワークのノードとして定義できる。この例の場合、ノードNnはまさしくキューブ状のものとなる。
図19は、ノードとリンクの構成例について説明するための図である。上述したように、ドローン用航空ネットワークデータは、キューブ状のノードとチューブ状のリンクとによって構成される。ここでは、説明を簡単にするため、種々の3次元立体の形状とされるキューブ状のノードとして、図18(B)に示したように、四角形の6つの面を有する6面体の形状(キューブ状)のものとなる場合を例にして説明する。また、長手方向と交差する方向に切断した場合の断面形状が種々の形状となる中が空洞の管状のものとされるチューブ状のリンクは、この例のノードの形状に対応して、管状のものである場合を例にして説明する。
図19(A)は、ドローン用航空ネットワークデータの構造概念を説明した図17のノードN2部分を抜き出して拡大するようにしたものである。当該ノードN2は、図18(B)を用いて説明しように、緯度、経度、地表からの高さに加えて、属性として、横幅、奥行き、縦幅を有することにより、図19(A)において、太い実線で示したように、キューブ状となる3次元領域として定義できる。
このようなキューブ状のノード間を接続するこの例のリンクは、管状のものとなり、両端のノードの位置によって、3次元空間内におけるリンクの位置が特定される。したがって、図19(A)に示した例の場合には、ノードN2に対して、ノードN1に接続されたリンクL1と、ノードN3に接続されたリンクL2と、ノードN5に接続されたリンクL7と、ノードN8に接続されたリンクL22とが接続されている。さらに、ノードN2に対しては、接続されるノードを図17には示さなかったが、図の手前側に延びたリンクLaと、図の下側に延びたリンクLbとが接続されている。
このように、ドローン用航空ネットワークは、3次元空間内のドローンの飛行可能空域に作成されたドローン飛行ゾーン内に、ドローンの飛行が可能な3次元の空間ネットワークとして定義される。
なお、ここでは、ノードを四角形の6つの面を有する6面体の形状(キューブ状)のものとして定義した場合を説明したが、これに限るものではない。例えば、図19(B)に示すように、各ノードについて、3次元空間における位置を特定する緯度、経度、地表からの高さに加えて、属性として半径を付加する。これにより、三次元空間において、緯度、経度、地表からの高さによって特定される一定点からの距離が等しい点の軌跡で囲まれた部分として、球状のノードを定義できる。この他にも、緯度、経度、地表からの高さに加えて、種々の属性を付加することによって、様々な形状の3次元領域として、ノードを定義できる。
図20は、ドローン用航空NWDB130に形成されるノードデータとリンクデータとの例を説明するための図である。すなわち、図20は、図17、図19を用いて説明したドローン用航空ネットワークを表現するノードデータとリンクデータとからなるネットワークデータの例を示している。
図20(A)に示すように、ノードデータは、「ノードID」、「緯度、経度、高さ」、「横幅、奥行き、縦幅」、「ノード種別」、「その他」の各情報からなる。「ノードID」は、各ノードを一意に特定可能なノードの識別情報である。「緯度、経度、高さ」は、上述もしたように、3次元空間内のノードの位置を特定するための緯度、経度、地表からの高さである。「横幅、奥行き、縦幅」は、上述もしたように、ノードの形状及び大きさを特定する情報である。「ノード種別」は、各ノードがどのようなノードなのかを示す情報であり、具体的には、始点、終点、分岐点などの別を示す情報である。「その他」は、必要になる情報が必要に応じて入力される。
図20(B)に示すように、リンクデータは、「リンクID」、「ノード」、「固定リンクコスト」、「変動リンクコスト」、「リンク種別」、「その他」の各情報からなる。「リンクID」は、各リンクを一意に特定可能なリンクの識別情報である。「ノード」は、そのリンクの両端のノードを特定する情報であり、これによりリンクの位置も特定できる。
「固定リンクコスト」は、リンクの長さと、当該リンクの下側に位置する建造物ごと、施設ごと、地域ごとに設定される安全度に応じて決まり、リンクごとに予め設定されるものである。すなわち、安全度を高く保たなければならない場所の上空に長い距離に渡って設定されたリンクの固定リンクコストは高くなる。
例えば、公的な施設、歴史的建造物などの重要な建造物、子供、高齢者、病人などの弱者が利用する施設、人口密度の高い地域などは安全度を高く保たなければいけない場所である。逆に、河川や河川敷、湖沼、海上、農地、牧草地などは、人が集中することも少ないため、安全度はある程度低くてよい場所である。
このため、安全度を高く保たなければならない場所の上空に設定されたリンクの固定リンクコストは高く設定されるが、その場合の安全度を高く保たなければならない場所の上空に設定されるリンクの距離も考慮され、固定リンクが設定される。逆に、安全度が低い場所の上空に設定されたリンクの固定リンクコストは低く設定されるが、その場合の安全度が低い場所の上空に設定されるリンクの距離も考慮され、固定リンクが設定される。
なお、安全度を高く保たなければならない場所の上空と安全度が低い場所の上空の両方に跨って設定されるリンクの場合には、その両方が考慮され、設定される。また、リンクが設定された真下の場所が安全度を高く保つ場所か、安全度が低い場所かだけでなく、リンクが設定された真下の場所から左右にある程度の幅を持ったエリアが安全度を高く保つ場所か安全度が低い場所かが考慮される。
すなわち、当該リンクを飛行中のドローンが、何らかの原因によって落下した場合に、影響を受けるエリアが、当該リンクの考慮すべき下側のエリアとなり、このエリアが安全度を高く保つエリアか、安全度が低いエリアかに応じて、固定リンクコストが設定される。この固定リンクコストの設定は、設定管理者、すなわち「人」によって行われるか、あるいは、AI(人工知能)によって行われるか、あるいは、その両方によって行われることになる。
「変動リンクコスト」は、リンクの長さと、統計情報、気象情報、渋滞情報、混雑度情報、航空管制情報、交通機関の運行情報などの変動情報に応じて決まり、また、変動情報に応じて変化するものである。例えば、携帯電話会社では、各基地局で受信する携帯電話端末からの電波の受信状況に応じて、携帯電話端末の使用者が多い(混雑している)地域と、それほど多くない(混雑していない)地域とを特定できる。このような統計情報である混雑度情報に基づいて、混雑している地域上空のリンクについては、その変動リンクコストを高くし、混雑していない地域上空のリンクについては、その変動リンクコストを低くする。また、混雑度情報に基づいて、夏場の海水浴場は人が多いため、その上空のリンクコストは高くし、冬場の海水浴場は人がほとんどいないため、そのリンクコストは低くするといったことも可能である。
また、気象情報に基づいて、雨が降っている地域上空のリンクについては、その変動リンクコストを高くし、雨が上がればその地域の変動リンクコストを低くする。また、雷雲が近づいてきている地域上空のリンクについては、その変動リンクコストを高くし、雷雲が通過してしまえば、その地域上空のリンクの変動リンクコストを低くする。同様に、交通情報に基づいて、交通渋滞が発生している道路がある地域上空のリンクについては、その変動リンクコストを高くし、交通渋滞が解消すれば、当該地域上空のリンクの変動リンクコストを低くする。
また、既存の航空管制情報に基づいて、人が乗っている航空機などの運行に影響をあたえる可能性のある空域が発生したことが分かった場合には、その空域に設定されているリンクの変動リンクコストを高くする。この場合、航空管制情報に基づいて、人が乗っている航空機などの運行に影響をあたえる可能性のある空域が解消したことが分かった場合には、当該空域に設定されているリンクの変動リンクコストを低くする。また、例えば、客船、貨物船運行情報に基づいて、客船、貨物船が航行している時間帯の客船、貨物船が航行している海域上空のリンクについては、その変動リンクコストは高くし、客船、貨物線が航行しなくなった海域上空のリンクについては、その変動リンクコストは低くする。
なお、図21は、利用が想定される既存管制情報、運行情報の例を示す図である。また、図22は、既存の航空管制の内容を示す図である。図21に示した情報と、図22に示した管制内容を考慮して、変動リンクコストを変更すべき地域を特定し、その地域の上空に設定された各リンクのリンクコストを変更できる。
そして、リンク種別は、そのリンクの種類を示す情報である。例えば、一般用、配送用、緊急搬送用などのように、用途に応じたリンクを設けることができるが、このように、用途に応じたリンクを設けた場合に、そのいずれのリンクであるのかを示すのがリンク種別である。また、別の例としては、例えば、自動車ナビゲーションに用いられている道路ネットワークと同様に、私道、市道、県道、国道、有料道路、高速道路などに相当するドローン用のリンクを設け、その種別をリンク種別で特定するようにしてもよい。「その他」は、その都度必要になる情報が必要に応じて入力される。
なお、リンクについての他の属性として、例えば道路における車線数、上り車線や下り車線、追い越し車線に相当する飛行レーンを定義するようにしたり、また、高速ドローン専用レーン、大型ドローン規制レーンなどを設定したりすることもできる。もちろん、上り飛行レーン、下り飛行レーン、追い越し飛行レーン、高速ドローン専用レーン、大型ドローン規制レーンなどを、個々のリンクとして定義することもできる。
また、上述したように、3次元のドローン用航空地図に基づいて、ドローン飛行ゾーンを定義し、このドローン飛行ゾーン内にリンクやノードを設定するが、1機のドローンしか通れないゾーンが定義された場合には、そのゾーン自体を一方通行のリンクとしたり、道路でいうところの細道路に対応するリンクとして、飛行可能なドローンを制限したりすることもできる。
すなわち、3次元のドローン用航空地図に基づいて、ドローン飛行ゾーンを定義し、このドローン飛行ゾーン内に、複数のリンクやノードを持たせてもよく、また、人口密度の低い地域でドローンがほぼ単体で飛行できるエリアではゾーンそのものを1つのリンクとしてもよい。また、緊急ドローン用の専用リンクを設けることも可能である。また、航空機は万国共通で右側通行であり、これがドローンを飛行させる場合にも適用されるものと考えられる。このため、上り通行用レーンと下り通行用レーンのそれぞれをリンクとすることもできる。
また、図8、図9を用いて説明したように、この実施の形態の対応指示装置1は、ドローン用航空地図DB120において、ドローンポートやドローン充電スポットの位置や態様を管理している。このため、例えば、固定のドローンポートからのアクセス経路は、固定のリンクとノードとしてよい。つまり、ドローンポートの場合は、離発着可能エリアまでドローンを誘導し、そこから最寄りのリンクへのアクセス経路は、固定の専用リンクとして定義することができる。
次に、図20を用いて説明したドローン用航空NWDB130に記憶されるドローン用航空ネットワークデータにより形成されるドローン用航空ネットワークの具体例について説明する。図23は、固定リンクコストが低くなる湖水上空を中心に形成されるドローン用航空ネットワークの例を説明するための図である。図23において、丸印Na〜Nkがノードを示し、ノード間を接続する直線がリンクを示している。ノードである丸印の下側の棒(直線)は地表または水面からの高さを示している。したがって、各ノードNa〜Nkは、地表または水面の上空に設けられていることが分かる。
そして、ノードNa、Nf、Niは、地表上空に設けられたノードであり、他地域からのドローンの流入ノードになっている。また、ノードNa、Nf、Niは、他地域へのドローンの流出ノードにもなる。これらノードNa、Nf、Niは、地表上空に位置するものであるため、人や建造物の存在も考慮し、地表(地上)から50m〜60m上空に設けられている。
ノードNb、Nc、Nd、Ne、Ng、Nh、Nj、Nkのそれぞれは、この例では山中湖の湖水(水面)上空に設けられたノードである。これらのノードは、通常、人や建造物が存在しないか、少ないために、リンクを設けたならば固定リンクコストが低くなる湖水上空にリンクを適切に設定するために適した主要地域(主要ポイント)に設けられている。特に、ノードNj、Nfは、この例では山中湖の形状に鑑み、リンクを湖水上空に引き込むために設けたものであり、ノードNj、Nfの間は水面引込地域となっている。そして、ノードNb、Nc、Nd、Ne、Ng、Nh、Nj、Nkのそれぞれは、湖水上空に位置しており、人や建造物がほとんど存在していなので、湖水(水面)から30m〜40m上空に設けられている。
このように、固定リンクコストが低くなる湖水上空を有効に活用するように、ノード及びリンクを設定することにより、ドローンの飛行ルートを探索するのに好適なドローン用航空ネットワークが構成できる。なお、図23のドローン用航空ネットワークは一例であり、ノードNbとノードNgとの間を接続するリンクを設けたり、湖面上空の他の場所にノードを設けたりすることももちろん可能である。
また、図24は、固定リンクコストが低くなる河川周辺上空を中心に形成されるドローン用航空ネットワークの例を説明するための図である。図24に示した地図では、地図の右上側から左下側に向かって比較的に川幅の広い河川が位置し、この河川と交差するように、地図の左上側から右下側に鉄道の高架線路が位置している。そして、河川の左上側には高さが50m〜100mのマンション群が存在し、河川の右下側には、ゴミ処理場や高さが10m以下の低層住宅域が存在している。また、高架線路の右上側の地域も高さが10m以下の低層住宅域である。
そして、図24においても、丸印がノードを示し、ノード間を接続する直線がリンクを示している。ノードである丸印の下側の棒(直線)は地表または水面からの高さを示している。そして、図24に示したように、各ノードは河川または河川敷に設けられている。河川や河川敷は、通常、人が少なく、また、建造物なども少ないために、固定リンクコストが低いリンクを設定できるためである。
図24に示した例の場合、図の左下端側の河川の河口付近には、比較的に規模の大きな橋梁が存在している。このため、当該橋梁付近に設けられている3つのノードは、地表または水面から100m上空に設けられている。また、河川と高架線路が交差する部分に設けられている4つのノードは、高架線路から30m以上の距離を確保するため、地表または水面から100m上空に設けられている。
これ以外の部分であって、図24の河川の右下側の低層住宅域と高架線路の右上側の低層住宅域とに設けられる複数のノードは、地面または水面から40m上空に設けられている。低層住宅域では、最大でも高さが10m以下の住宅などの建物しかないため、このような建物から30m以上離れればよいためである。
これに対して、図24の河川の左上側のマンション群側に設けられる複数のノードは、地表または水面から40m上空に設けられたものと、60m上空に設けられたものと、140m上空に設けられたものがある。地表または水面から40m上空または60m上空に設けられたノードは、図24の河川の右下側の低層住宅域に設けられたノードとの間にリンクを接続するためのものである。
地表または水面から140m上空に設けられたノードは、例えば、マンション群側のエリアにリンクを伸ばすために設けられるものである。この地表または水面から140m上空に設けられたノードにより、高さが100mのマンションに対して30m以上の間隔を取ってドローンの飛行が可能なリンクを設定することができる。
なお、図24において、河口側の地表または水面から140m上空に設けられたノードは、その直下に、すなわち、同じ緯度経度となる位置に地表または水面から100m上空に設けられたノードが存在するようになっている。同様に、図24において、河川の中央近傍の地表または水面から140m上空に設けられたノードは、その直下に、すなわち、同じ緯度経度となる位置に地表または水面から40m上空に設けられたノードが存在するようになっている。
このように、ノードが上下に多重の構造を備えることにより、垂直方向のリンクが形成され、ドローンの垂直方向の移動についても、ドローン用航空ネットワークにしたがって、ルートを特定できる。つまり、どのノードにおいて、より上方のリンクに移動したり、より下方のリンクに移動したりすればよいかについても特定できる。
このように、ドローン用航空NWDB130に記憶されるドローン用航空ネットワークデータは、実世界の地物の状況や地形の状況などに応じて、3次元空間内にノードとリンクを設定するものである。このドローン用航空ネットワークデータを用いることによって、ドローンの適切な飛行ルートを簡単に探索することができる。
[ドローン用航空ネットワークデータの作成処理の例]
次に、上述したドローン用航空ネットワークデータを作成する場合の処理の一例について説明する。図25は、対応指示装置1の情報処理部100が実現するAI(artificial intelligence)機能を用いて、ドローン用航空ネットワークデータを作成する場合の処理を説明するためのフローチャートである。
情報処理部100は、ドローン用航空地図DB120の地図情報を参照し、図11〜図15を用いて説明したように、直進性の高い、ドローンの通信電波及びセンサの見通しの良い形状を持つドローン飛行ゾーンを3次元空間に定義する(ステップS1)。次に、情報処理部100は、定義するリンクに関する情報を設定する(ステップS2)。ここで、リンクに関する情報は、リンクの規格、種別、用途などであり、地域ごとにドローン用航空ネットワークデータを作成する場合には、リンクを定義する地域の設定やリンクの始点となる座標位置の設定などもステップS2において行われる。
リンクの規格は、例えば、リンクの垂直方向に交差する方向の断面形状や大きさなどであり、リンクの種別は、例えば、高速飛行リンク、通常飛行リンク、一時退避リンクなどである。また、リンクの用途は、緊急輸送、宅配用、写真撮影用など種々のものがある。これらのうち、必要な情報が設定される。なお、設定されるリンクに関する情報は、使用者によって例えば通信機能を介して情報処理部に入力されているものである。
次に、情報処理部100は、設定されたリンクに関する情報に応じて、リンクを定義するドローン飛行ゾーンを、ステップS1において定義したドローン飛行ゾーンから選択する(ステップS3)。例えば、リンクの種別として、高速飛行リンクを定義する場合には、図12を用いて説明した主に高速飛行ゾーンが選択される。
そして、情報処理部100は、ドローン用航空地図DB120の固定飛行障害情報、変動飛行障害情報、回避施設地域情報などを参照しながら、選択したドローン飛行ゾーンにリンク及びノードを定義する(ステップS4)。ノードは、簡単には、リンクの始点、終点、分岐点となる位置に定義される。
そして、情報処理部100は、ステップS4において定義するようにしたリンクとノードからなるドローン用航空ネットワークを、図20を用いて説明したドローン用航空ネットワークデータの形式に変換する(ステップS5)。すなわち、ステップS5において情報処理部100は、ステップS4において定義したドローン用航空ネットワークを、ノードデータとリンクデータの形式に変換する。このようにして定義されたネットワークデータが、ドローン用航空NWDB130に記録され、飛行ルートの探索に利用できる。
なお、ここでは、情報処理部100が実現するAIによってドローン用航空ネットワークデータを作成する場合を説明したが、作成したドローン用航空ネットワークデータについては、作成者(オペレーター)が調整を行うようにすることももちろんできる。また、作成者(オペレーター)が、3次元のドローン用航空地図を参照しながらドローン飛行ゾーンを作成し、そのドローン飛行ゾーンに緯度、経度、高さ、種々の要素情報を入力してノードを定義し、ドローン用航空ネットワークを形成し、これからドローン用航空ネットワークデータを形成することももちろんできる。
[ドローン別飛行ルートデータファイル140の格納データの例]
そして、この実施の形態の対応指示装置1は、ドローン運用管理装置5から飛行ルートの探索条件を含む探索要求を受け付けて、ドローン用航空NWDB130を参照し、ドローンの飛行ルートを探索できる。そして、飛行ルートの探索結果は、ドローン別飛行ルートデータファイル140に格納する。このドローン別飛行ルートデータファイル140に格納された飛行ルートに基づいて、対応指示装置1は、図2を用いて説明した飛行指示データを形成し、これをドローンに提供して飛行ルートを案内する。
図26は、ドローン別飛行ルートデータファイル140の格納データの例を説明するための図である。ドローン別飛行ルートデータファイル140は、ドローン別に「飛行体ID」、「IPアドレス」、「探索条件」、「飛行ルート(探索結果)」、「現在位置」を管理する。「飛行体ID」は、ドローンを一意に特定することが可能な識別情報であり、主にドローンを運用する運用者側において、ドローンの識別のために用いられる。
「IPアドレス」は、IoTプラットホーム3を通じて個別のドローンを特定し、通信を行う場合に用いられる。「探索条件」は、ドローン運用管理装置5から提供されたドローンごとの飛行ルートを探索するための条件情報であり、出発地、経由地、目的地などからなる。「飛行ルート(探索結果)」は、探索条件に基づいて探索された飛行ルートを示す情報であり、例えば、図26に示したように、ノードとリンクとからなるものである。「現在位置」は、飛行中のドローンから所定のタイミングごとに提供される、当該ドローンの現座位置を示す情報であり、緯度(lat)、経度(lon)、高さ(At)からなる。
このようなドローン別飛行ルートデータのうち、「飛行体ID」、「IPアドレス」は、ドローン運用管理装置5を通じて事前に登録される。「探索条件」は、飛行ルートの探索を行う際にドローン運用管理装置5から提供されたものが入力される。「飛行ルート(探索結果)」は、飛行ルートの探索を実行することにより得られた情報(探索結果)が入力される。「現在位置」は、所定のタイミングごとに、飛行中の当該ドローンから送信されて来る緯度、経度、高さを示す情報が入力される。
このようなドローン別飛行ルートデータファイル140の格納データによって、ドローン別に飛行ルートを管理し、ドローン別に飛行指示データを形成してドローンごとに飛行ルートを案内できる。
なお、図26に示したドローン別飛行ルートデータファイル140の格納データの例は一例であり、この他にも種々の情報を管理できる。例えば、ドローンの機能に関する情報(ドローンの属性情報)、ドローンの運用者に関する情報、ドローンの飛行履歴、ドローンの故障履歴、ドローンの修理点検履歴など、種々の情報を管理することも可能である。
また、ドローンの属性情報としては、飛行時間、最高速度、本体重量、荷載重量、大きさ、防塵防滴機能、通信可能距離、耐衝撃、充電時間、オートクルーズ機能、自動追尾、オートパイロット、フライトコントローラーなどの情報からなる。これらのドローンの属性情報は、ドローンの持つ機能に応じて適切な飛行ルートを探索する際の条件情報として用いることができる。
[ドローン用航空規制DB150の格納データ]
図27は、ドローンに対する交通規制の例を示す図であり、図28〜図32は、ドローンに対する交通標識の例について示す図である。多くのドローンが飛行するようになると、ドローンに対しても道路交通法に準じた交通規制が行われると考えられる。計器飛行の航空機は空中での停止ができないが、マルチコプターなどの一般的なドローンはホバリング(空中での停止すること)が可能であるためである。
例えば、図27に示すように、速度規制、仮想信号機の信号遵守、徐行、一時停止、上下左右確認など、ドローンに対して種々の交通規制が行われると考えられる。また、図28、図29に示すようなドローン交通規制標識、図30に示すようなドローン交通指示標識、図31に示すようなドローン交通警戒標識、図32に示すようなドローン交通案内標識が設けられることが考えられる。
そして、どのノードやリンクに対して、どのような交通規制が適用され、どのノードやリンクに対してどの交通標識が適用されるのかを、対応指示装置1のドローン用航空規制DB150において管理する。つまり、ドローン用航空規制DB150では、ノードやリンクに対応付けて、適用される交通規制の内容、適用される交通標識を管理している。
これにより、対応指示装置1は、飛行中のドローンの現在位置とドローン用航空規制DB150の記憶情報に基づいて、飛行中のドローンに対して、交通規制や交通標識に応じた管制制御を行うことができる。この場合、ドローンが遠隔操作されているものであれば、遠隔操作者の遠隔操作装置の表示画面に対してAR(Augmented Reality)技術を用いて規制内容や交通標識を表示したり、テロップを表示したり、また、音声出力したりして通知できる。また、自律航行中のドローンに対しては、交通規制や交通標識に対応して、どのように飛行すべきかの指示信号を送信することにより通知することになる。
[対応指示装置1の情報処理部100の構成例]
図33は、図1に示した対応指示装置1の情報処理部100の構成例について説明するためのブロック図である。図33に示すように、情報処理部100は、通信I/F101、制御部102、記憶装置103、変動情報取得部104、変動リンクコスト更新部105を備える。また、情報処理部100は、探索条件設定部106、ルート探索部107、飛行指示形成部108、飛行情報取得部109、リルート処理部110、ルート変更指示部111を備える。更に情報処理部100は、状態判別部112、緊急対応指示形成部113、事後対応処理部114を備える。
通信I/F101は通信機能を実現する。制御部102は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備えたコンピュータ装置部であり、情報処理部100の各部を制御する。記憶装置103は、例えばハードディスクなどの大容量記録媒体を備え、当該記録媒体へのデータの書き込み/読み出し/記憶保持/削除を行う。変動情報取得部104は、通信I/F101を通じてインターネット上で開示されている種々の統計情報や変動情報を取得し、これを記憶装置103に記録する処理を行う。
変動リンクコスト更新部105は、変動情報取得部104を通じて取得した統計情報や変動情報に基づいて、図20を用いて説明したリンクデータの変動リンクコストを更新する処理を行う。探索条件設定部106は、通信I/F101を通じて受信するドローン運用管理装置5からのドローンごとの探索条件を受け付けて、これをルート探索部107に設定する。
ルート探索部107は、ダイクストラ法またはA*(A-star)アルゴリズムを使用し、探索条件設定部106によって設定されたドローンごとの探索条件に基づいて、通信I/F101を通じてドローン用航空NWDB130を参照し、ドローンごとの飛行ルートを探索する。この場合、ルート探索部107は、ネットワークデータの固定リンクコスト及び変動リンクコストの両方を参照し、両リンクコストの合計値が最も小さくなるようにルート探索を行う。そして、ルート探索部107は、図26を用いて説明したドローン別飛行ルートデータファイル140に対して、探索結果をドローン別に格納する。
飛行指示形成部108は、ドローン別飛行ルートデータファイル140に格納されたドローン別の飛行ルートの探索結果に基づいて、図2を用いて説明した緯度、経度、高さを含む座標点列の飛行指示データを形成する。ここで形成された飛行指示データは、通信I/F101を通じて送信され、対象のドローンが自律航行のドローンである場合には当該ドローンに送信され、また、遠隔操作されているドローンの場合には、遠隔操者が使用する装置に送信されて利用される。
飛行情報取得部109は、飛行中のドローンから例えば所定のタイミングごとに送信されて来る現在位置やドローンの機体の状態情報などを、通信I/F101を通じて受信して取得する。リルート処理部110は、ドローンから送信されてきた現在位置が、強風等の影響を受けるなどして、探索した飛行ルートから外れている場合に、現在位置から目的地までの飛行ルートを、ドローン用航空NWDB130のネットワークを用いて再探索する処理を行う。そして。リルート処理部110は、探索結果をドローン別飛行ルートデータファイル140に格納する。すなわち、飛行ルートを書き換える。
ルート変更指示部111は、リルート処理部110により書き換えられたドローン別飛行ルートデータファイル140の飛行ルートに基づいて、図2を用いて説明した緯度、経度、高さを含む座標点列の飛行指示データを形成する。ここで形成された飛行指示データは、通信I/F101を通じて送信され、対象のドローンが自律航行のドローンである場合には当該ドローンに送信され、また、遠隔操作されているドローンの場合には、遠隔操者が使用する装置に送信されて利用される。
なお、ここでは、対応指示装置1の持つ機能を明確にするため、ルート探索部107、飛行指示形成部108、リルート処理部110、ルート変更指示部111を設けたが、リルート処理部110の機能をルート探索部107が実現し、ルート変更指示部111の機能を飛行指示形成部108が実現するように構成することもできる。
そして、後述もするがドローン2(1)、2(2)、2(3)、…のそれぞれは、何等かの原因により、異常が発生した場合に、自機に異常が発生したことを示す状態情報を含む状態等通知信号を形成し、これを対応指示装置1に送信する。当該状態等通知信号は、ドローンのIPアドレスなどの識別情報、ドローンの損傷箇所(故障個所)及び損傷度合(故障度合)、残燃料(バッテリ残量)などを含むドローンの状態を示す状態情報、ドローンの現在位置を示す情報などを含むものである。
状態判別部112は、通信I/F101を通じて、ドローン2(1)、2(2)、2(3)、…からの異常が発生したことを示す状態情報を含む状態等通知信号を受信した場合に、当該状態等通知信号に含まれるドローンの状態を示す状態情報に基づいて、当該状態等通知信号の送信元のドローンの状態を判別する。また、状態判別部112は、受信した当該状態等通知信号に含まれるドローンのIPアドレスなどの識別情報に基づいて、例えば、ドローン別飛行ルートデータファイル140を通信I/F101を通じて参照し、当該状態等通知信号の送信元のドローンの属性情報を取得できる。また、状態判別部112は、受信した状態等通知信号に含まれる現在位置を示す情報に基づいて、当該状態等通知信号の送信元のドローンの現在位置(緯度、経度、高度)を取得できる。
緊急対応指示形成部113は、状態判別部112で判別されたドローンの状態、属性、現在位置に基づくと共に、必要に応じてドローン用航空地図DB120をも参照して、当該状態等通知信号の送信元のドローンに対して提供する対応指示情報を形成する。対応指示情報は、後述もするが着陸地点とその着陸地点へのルートを指示したり、地上に大きな影響を及ぼすことがないようにして着陸する対応を指示したりするものである。緊急対応指示形成部113で形成された対応指示情報は、通信I/F101を通じて、自律航行中のドローンや遠隔操作されているドローンの遠隔操作装置などに送信される。これにより、緊急事態に陥ったドローンを適切に制御することができるようにしている。
事後対応処理部114は、緊急事態に陥ったドローンなどに対して対応指示信号を送出した後に、実施すべき対応を特定して、その対応を取るべく処理を行う。事後対応処理部114は、具体的には、指示した着陸地点に着陸したはずのドローンの回収を所定の業者に指示したり、指示した着陸地点に着陸したはずのドローンの修理を所定の修理業者に指示したりするなど、種々の対応を取るようにできる。
このような構成を有する情報処理部100は、ドローン用航空NWDB130のリンクデータの変動リンクコストの更新機能を実現する。また、情報処理部100は、ドローン運用管理装置5から飛行ルートの探索要求に基づいてルート探索を行って飛行指示データを形成し、飛行ルートの案内を行うナビゲーション機能を実現する。また、情報処理部100は、飛行ルートの案内対象のドローンについての飛行ルートのリルート機能をも実現する。更に、ドローンに正常な飛行ができなくなるような緊急事態が生じたときに、地上の人や物などに障害を与えることがないように、ドローンを制御する機能である緊急事態対応指示機能を実現する。
[ドローン2の構成例]
次に、この実施の形態のナビゲーションシステムで用いられるドローン2(1)、2(2)、2(3)、…の構成例について説明する。上述もしたように、ドローンには、マルチコプター、固定翼機、小型ヘリコプターなど種々のものがある。この実施の形態のドローンは、マルチコプターのうち、クアッドローター式(クアッドコプター)であるものとして説明する。また、以下においては、ドローン2(1)、2(2)、2(3)、…を総称してドローン2と記載する。
図34は、この実施形態のナビゲーションシステムで用いられるドローン2の構成例を説明するための図であり、図34(A)は、ドローン2を、その上方から見た図であり、また、図34(B)は、ドローン2を、側方から見た図である。ドローン2は、クワッドコプターの構成とされた飛行機構部21と、駆動制御ユニット22とを備える。飛行機構部21は、駆動制御ユニット22により駆動制御される。図34に示すように、飛行機構部21は、駆動制御ユニット22から延びる4本のアーム23A,23B,23C,23Dの先端に、プロペラ機構24A,24B,24C,24Dが取り付けられて構成されている。
プロペラ機構24A,24B,24C,24Dは、エンジン部(駆動部)41A,41B,41C,41Dのそれぞれによりプロペラシャフト(図示は省略)を回転駆動することにより、プロペラ42A,42B,42C,42Dを回転駆動するように構成されている。エンジン部41A,41B,41C,41Dは、駆動制御ユニット22からの駆動制御信号により回転速度及び回転方向が制御される。
この例においては、駆動制御ユニット22からの駆動制御信号によって、エンジン部41A,41B,41C,41Dのそれぞれが独立に制御される。これにより、ドローン2は、離陸、着陸、上昇、下降、右旋回、左旋回、前進、後進、右シフト、左シフトなどの各種移動動作をすることができ、鉛直方向に対する傾き角などの姿勢制御及びホバリング位置の位置制御ができるようにされている。
駆動制御ユニット22の筐体には、さらに、2個の脚部25A,25Bが互いに対向するように取り付けられている。この例では、脚部25A,25Bは、台形形状に成形されたパイプ部材からなり、図34(B)に示すように、着地平面において、安定してドローン2を保持するように形成されている。
また、この実施形態において、ドローン2の駆動制御ユニット22の筐体は、略立方体形状(六面体形状)のものであり、前面、後面、左側面、右側面、上面の例えば中心部分には、カメラC1,C2,C3,C4,C5が設けられている。なお、下面側には例えば荷物収納部が装着される場合もあるためカメラは設置されていない。しかし、前面、後面、左側面、右側面の4つの側面に設けられた4つのカメラC1,C2,C3,C4によって、ドローンの下側(真下も含む)の映像も撮影可能になっている。これにより、駆動制御ユニット22の筐体の前後、左右、上下の6方向の映像を同時に撮影することができる。
駆動制御ユニット22内には、駆動制御装置部が設けられている。図35は、この実施形態のドローン2の駆動制御ユニット22内に設けられる駆動制御装置部の構成例を示すブロック図である。
図35において、送受信アンテナ201A及び無線通信部201は、ドローン2が自律航行のものである場合には対応指示装置1と相互に通信を行うためのものであり、遠隔操作方式のものである場合には、遠隔操作装置と通信を行うものである。なお、ここでは、説明を簡単にするため、ドローン2は自律航行するものであるものとして説明する。
制御部202はドローン2の各部を制御する機能を実現し、記憶装置203は情報記憶保持機能を実現する。記憶装置203には、種々のプログラムや処理に必要になる種々のデータが記憶されると共に、各種の処理の途中結果を一時記憶する作業領域としても用いられる。記憶装置203は、対応指示装置1から提供される飛行指示データなども格納される。
電源供給部204は、バッテリを備え、ドローン2の各部に必要となる電力を供給する。センサ部205は、ジャイロセンサ、気圧センサ、加速度センサ、超音波センサ、地磁気センサなどを備える。ジャイロセンサは姿勢制御に用いられ、気圧センサは高度検出に用いられる。加速度センサは速度検出に用いられ、超音波センサは対物との距離検出に用いられる。また、地磁気センサは方位検出に用いられる。
自律姿勢制御部206は、センサ部205に搭載された各種のセンサからの検出出力とカメラ部209からの撮影映像を利用して、ドローン2が、適切な姿勢で安定して飛行するように、飛行駆動部208を制御する。なお、超音波センサを用いるため、カメラ部209からの画像情報を用いる必要は必ずしもないが、障害物の確認のためにカメラ部209からの画像情報も利用できるようにしている。特に、離着陸時には重要な情報となる。
GPS部207及びGPSアンテナ207Aは、複数の人工衛星からの送信信号(測位情報)を受信して解析することにより、自機の現在位置を正確に検出(測位)する機能を実現する部分である。GPS部207は、緯度、経度、高度の検出が可能である。飛行駆動部208は、自律姿勢制御部206の制御に従って、飛行機構部21のプロペラ機構24A,24B,24C,24Dのエンジン部41A,41B,41C,41Dのそれぞれに、駆動制御信号を供給する。これにより、ドローン2について、各種移動動作、姿勢制御、ホバリングの位置制御ができる。
カメラ部209は、上述もしたように、ドローン2の駆動制御ユニット22の前後左右上の5面の中心部分に設けられた5つのカメラC1,C2,C3,C4,C5からなる。制御部202の制御に応じて動作する。また、カメラ部209は、5つのカメラC1,C2,C3,C4,C5,C6を備えるため、どのカメラを用いて撮影を行うのかを制御することもできるし、また、前後左右の4つのカメラC1,C2,C3,C4を下向きにして撮影した映像を合成することにより、ドローン2の下側の映像も適切に撮影できる。
飛行制御部211は、自律姿勢制御部206と協働し、対応指示装置1から供給を受けて、記憶装置203に記憶保持されている飛行指示データに応じた飛行ルートを飛行するように、飛行駆動部208を制御する。自律姿勢制御部206がドローンの主に姿勢制御を行うに対して、飛行制御部211は、飛行指示データにより指示された緯度、経度、高度を含む座標点列を辿る飛行を行うように、飛行駆動部208を制御する。
位置通知部212は、この実施の形態では飛行指示データの提供を受けて飛行している場合に、GPS部207を通じて取得する現在位置情報(緯度、経度、高度)を無線通信部201及ぶ送受信アンテナ201Aを通じて対応指示装置1に通知する処理を行う。この通知は、所定のタイミングごと(例えば数分ごと)に行うようにされるが、例えば、対応指示装置1からの現在位置の通知要求を受けた場合など、適宜のタイミングで通知処理を行うこともできる。
状態監視部213は、センサ部205の各センサの状態、GPS部207からの緯度、経度、高度の状態を監視する。同時に、状態監視部213は、飛行駆動部208を通じて取得する飛行機構部21の各エンジン部41A、41B、41C、41Dの駆動状態、電源供給部204のバッテリの残量を監視する。また、状態監視部213は、無線通信部201の通信状態を監視する。このように、状態監視部213は、ドローン2の状態を総合的に監視する。
そして、状態監視部213は、監視している情報から自機が異常な状態であることを検知した場合に、制御部202の制御の下、自機の状態を示す状態情報を形成し、これを状態等通知信号形成部214に通知する。この場合の自機の状態を示す状態情報は、自機が異常な状態にあることを示すものである。具体的には、例えば、「エンジン部41A停止、バッテリ残量30%、高度上昇不可、飛行可能時間5分」などのように、損傷箇所(故障個所)、損傷度合(故障度合)、残燃料(バッテリ残量)、機能制限、飛行可能時間などの情報からなる。
状態等通知信号形成部214は、状態監視部213からの自機の状態を示す状態情報の供給を受けた場合に、ドローンのIPアドレスなどの識別情報と、ドローンの状態を示す状態情報と、GPS部207を通じて取得する現在位置を含む状態等通知信号を形成する。そして、状態等通知信号形成部214は、形成した当該状態等通知信号を、無線通信部201及び送受信アンテナ201Aを通じて、対応指示装置1に送信する。
このような構成を有するドローン2が、対応指示装置1からの飛行指示データに応じて、対応指示装置1において探索された飛行ルートを辿るように飛行する。また、ドローン2に緊急事態が発生した時には、自機に緊急事態が発生したこと、すなわち、自機が異常な状態にあることを示す状態情報を含む状態等通知信号を形成し、これを対応指示装置1に送信する。これにより、対応指示装置1の制御の下に制御部202が各部を制御し、適切な対応を取ることができるようになっている。
[対応指示装置1の種々の処理]
次に、この実施の形態の対応指示装置1で行われる主要な処理である、変動リンクコストの更新処理、ルート探索処理、リルート処理について、フローチャートを参照しながら説明する。
[変動リンクコストの更新処理]
図36は、対応指示装置1が行う変動リンクコストの更新処理について説明するためのフローチャートである。上述もしたように、ドローン用航空NWDB130のリンクデータの固定リンクコストは、リンクの長さとリンクの下側の場所の安全度とに基づいて固定的に決まる。しかし、変動リンクコストは、統計情報や変動情報に応じて変動するものである。このため、対応指示装置1の制御部102は、統計情報が示すタイムスパンの変わり目、すなわち、季節、曜日、時間帯が変わるタイミングや変動情報が更新されるタイミングで、変動情報取得部104と変動リンクコスト更新部105を制御し、変動リンクコストの更新処理を行う。
まず、制御部102は、通信I/F101を通じてドローン用航空NWDB130にアクセスし、リンクデータの変動リンクコストをクリアー(初期化)する(ステップS101)。次に、制御部102は、変動情報取得部104を制御し、通信I/F101を通じて、インターネット上に公開されている必要となる統計情報である混雑度情報を取得する。この統計情報は、季節、曜日、時間帯に応じた人や自動車の混雑度を示すものである。具体的には、夏場には海水浴場やプール及びその周辺が混雑し、週末には観光地や大規模商業施設及びその周辺が混雑し、通勤通学時間帯には駅やその周辺、幹線道路やその周辺が混雑するといったように、季節、曜日、時間帯に応じて混雑している場所を特定できるものである。
そして、変動リンクコスト更新部105は、制御部102の制御の下、変動情報取得部104が取得した統計情報に基づいて、影響エリアを特定する(ステップS103)。すなわち、現時点から所定時間の間において、人や自動車が混雑していると考えられる場所やエリアを特定する。そして、変動リンクコスト更新部105は特定した場所やエリア上空のリンクを特定し、その特定したリンクの変動リンクコストを、当該統計情報の混雑度合に応じて求めて、変動リンクコストをドローン用航空NWDB130のリンクデータの変動リンクコストの欄に更新する(ステップS104)。
次に、制御部102は、変動情報取得部104を制御し、通信I/F101を通じて、インターネット上に公開されている気象情報、渋滞情報等の変動情報を取得する(ステップS105)。気象情報は、主に風雨、雪、雷、ヒョウ、みぞれ、竜巻、黄砂、火山灰、晴天乱気流(エアポケット)などのドローンの飛行に影響を及ぼす気象状態の発生状況を示すものである。また、交通情報は、曜日や時間帯に応じた混雑度ではなく、交通事故、故障車の存在、道路工事などの種々の影響により、現時点において発生している交通渋滞が発生している場所を示す情報である。
そして、変動リンクコスト更新部105は、制御部102の制御の下、変動情報取得部104が取得した気象情報や渋滞情報などの変動情報に基づいて、影響エリアを特定する(ステップS106)。すなわち、現時点から所定時間の間において、ドローンの飛行に影響を及ぼすような気象状態となっている場所やエリア、交通渋滞が発生している場所やエリアを特定する。そして、変動リンクコスト更新部105は、特定した場所やエリアの上空のリンクを特定し、その特定したリンクの変動リンクコストを、気象状態や渋滞状態に応じて求めて、これをドローン用航空NWDB130のリンクデータの変動リンクコストの欄に更新する(ステップS107)。そして、この図36に示す処理を終了する。
なお、ここでは、統計情報である混雑度情報に基づく変動リンクコストの更新と変動情報である気象情報や渋滞情報などに基づく変動リンクコストの更新とを同時に行うようにした。このため、統計情報である混雑度情報と変動情報である気象情報や渋滞情報などとの両方の影響を受ける場所も存在する。この場合には、両方の変動リンクコストが考慮されて、変動リンクコストが決められる。
簡単には、統計情報である混雑度情報に基づく変動リンクコストの更新と変動情報である気象情報や渋滞情報などに基づく変動リンクコストとの両方が加算された者が変動リンクコストとなるようにされる。もちろん、統計情報である混雑度情報に基づく変動リンクコストの更新と変動情報である気象情報や渋滞情報などに基づく変動リンクコストのそれぞれに重みづけを付加し、それに応じてリンクコストを決めてもよい。
統計情報である混雑度情報に基づく変動リンクコストの更新と変動情報である気象情報や渋滞情報などに基づく変動リンクコストの更新とを別々に行うようにしてもよい。この場合には、統計情報である混雑度情報に基づく変動リンクコストの更新欄と、変動情報である気象情報や渋滞情報に基づく変動リンクコストの更新欄を別々に設け、そのそれぞれの更新処理を別々に行うようにすればよい。
この場合には、統計情報である混雑度情報に基づく変動リンクコストの更新欄をクリアーし、図36のステップS102からステップS104の処理を行うことにより、統計情報である混雑度情報に基づく変動リンクコストの更新ができる。また、変動情報である気象情報や渋滞情報に基づく変動リンクコストの更新欄をクリアーし、図36のステップS105からステップS107の処理を行うことにより、変動情報である気象情報や渋滞情報に基づく変動リンクコストの更新ができる。
[ルート探索処理]
図37は、対応指示装置1が行うルート探索処理について説明するためのフローチャートである。この実施の形態の対応指示装置1は、ドローン用航空NWDB130のネットワークデータに基づいて、ドローンの飛行ルートの探索処理を行う。
対応指示装置1の制御部102は、通信I/F101を通じてドローン運用管理装置5からのドローンの飛行ルート探索条件を含む飛行ルート探索要求を受け付ける(ステップS201)。受け付けたルート探索要求は、ドローンの識別ID、IPアドレス、出発地、目的地、また、必要に応じて経由地も含まれる。そして、制御部102の制御の下、探索条件設定部106は、受け付けた飛行ルート探索要求に含まれる飛行ルート探索条件をルート探索部107に設定する(ステップS202)。
ルート探索部107は、ドローン用航空NWDB130のネットワークデータを参照し、出発地から目的地に至る飛行ルートであって、固定リンクコストと変動リンクコストからなるリンクコストが、最小となる飛行ルートを探索する(ステップS203)。この場合、固定リンクコストと変動リンクコストとの合算のリンクコストが最小となるようにリンクを選択することにより、飛行ルートの探索を行うこともできるし、固定飛行ルートと変動飛行ルートのそれぞれに重み付けを設定し、その重み付けを考慮したリンクコストを用いるようにしてもよい。
これにより、例えば、河川や河川敷、海上や海岸など固定リンクコストの低いリンクを優先的に用いるようにすると共に、変動リンクコストも考慮して、最適な飛行ルートが探索できる。なお、例えば、リンクコストについて変動要素が少ない場合には、固定リンクコストだけを考慮し、変動リンクコストについても考慮せずに飛行ルートを探索することもできる。
そして、ルート探索部107は、探索結果をドローン別飛行ルートデータファイル140にドローン別のルートデータとして記録する(ステップS204)。この後、制御部102の制御の下、飛行指示形成部108が、ドローン別飛行ルートデータファイル140の飛行データ(探索した飛行ルート)に基づいて、緯度、経度、高さを含む座標点列となる飛行指示データを形成する(ステップS205)。この飛行指示データは、座標点列によって構成されるポリラインによって飛行ルートを示すものであってもよいし、図3を用いて説明したうように3次元の空間として飛行ルートを指示するものであってもよい。
そして、飛行指示形成部108は、形成した飛行指示データを、自律航行するドローンや遠隔操作されるドローンの遠隔操作装置などに、通信I/F101を通じて送信することにより提供する(ステップS206)。このように、対応指示装置1は、ドローン運用管理装置5から飛行ルート探索要求に含まれる飛行ルート探索条件に応じた飛行ルートを探索し、当該探索した飛行ルートを辿るように、ドローンをナビゲーション(案内)することができる。なお、対応指示装置1は、飛行指示データに飛行時の飛行速度を含めるようにし、飛行ルートだけでなく、飛行速度の指示を行うこともできる。
[リルート処理1]
図38は、対応指示装置1が行うリルート処理1について説明するためのフローチャートである。この実施の形態の対応指示装置1は、ドローンが探索された飛行ルートを逸脱した場合に、ドローン用航空NWDB130のネットワークデータに基づいて、ドローンの飛行ルートのリルート処理(リルート処理1)を行うことができる。
対応指示装置1の制御部102は、通信I/F101を通じてルート指示データを提供したドローンから所定のタイミングごとに送信されて来る現在位置を取得する(ステップS301)。そして、制御部102は、通信I/F101を通じて、ドローン別飛行ルートデータファイル140の当該ドローンの飛行ルートを参照し、探索された飛行ルートから外れているか否かを判別する(ステップS302)。ステップS302の判別処理において、探索された飛行ルートを外れていないと判別したときには、現在の飛行ルートを維持するようにする(ステップS303)。すなわち、飛行ルートの変更指示などは行われない。
ステップS302の判別処理において、当該ドローンの現在位置が探索された飛行ルートから外れていると判別したとする。この場合、制御部102は、当該ドローンが目的地まで継続飛行可能か否かを判別する(ステップS304)。すなわち、ステップS301において、ドローンから現在位置だけでなく、ドローンの状態を示す種々の情報、例えば、飛行に影響のある部分の不具合の状態、残受電量、残可能飛行距離などの種々の情報の送信を受けるようにしておく。そして、ステップS304において、制御部102は、受信したドローンからのドローンの状態を示す種々の情報に基づいて、当該ドローンが目的地まで継続飛行可能か否かを判別する。
ステップS304の判別処理において、当該ドローンが目的地まで継続飛行が不能な状態にあると判別した時には、緊急制御回路探索処理を行う(ステップS305)。ステップS305においては、ドローンの現在位置から近隣にある安全に降りられる場所を、ドローン用航空地図DB120を参照して特定し、当該安全に降りられる場所に降りるように、ドローンに対して指示を出す。ドローンが安全に降りられる場所は、ドローンが人や地物に障害を与えることなく降りられる場所を意味し、具体的には、河川や湖沼、空き地、田畑など、通常であれば人が存在しない場所である。あるいは、ドローンポートなどドローンの離発着が可能な広い場所などである。
このような、ドローンが安全に降りられる場所が存在しない場合には、ビルの屋上、大きな建物の屋根など、できるだけ地上にいる人や地物に影響を与えない場所を特定し、その場所に降りるように指示を出す。また、降りた(着水または着陸した)ドローンを回収するように、所定の連絡先に連絡するなどの対応を、ステップS305において行うようにしてもよい。
ステップS304の判別処理において、当該ドローンが目的地まで継続飛行が可能な状態にあると判別したとする。この場合、制御部102は、リルート処理部110を制御して、現在位置から目的地までの飛行ルートを再探索する(ステップS306)。リルート処理部110は、ルート探索部107と同様に、ドローン用航空NWDB130のネットワークデータを参照し、現在位置から目的地に至る飛行ルートであって、固定リンクコストと変動リンクコストからなるリンクコストが、最小となる飛行ルートを再探索する。
そして、リルート処理部110は、再探索結果をドローン別飛行ルートデータファイル140にドローン別のルートデータとして更新する(ステップS307)。この後、制御部102の制御の下、ルート変更指示部111が、ドローン別飛行ルートデータファイル140の飛行データ(探索した飛行ルート)に基づいて、緯度、経度、高さを含む座標点列となる飛行指示データを形成する(ステップS308)。このステップS308の処理は、飛行指示形成部108で行われる処理と同様の処理である。
そして、ルート変更指示部111は、形成した飛行指示データを、自律航行するドローンや遠隔操作されるドローンの遠隔操作装置などに、通信I/F101を通じて送信することにより提供する(ステップS309)。
そして、ステップS303、ステップS305、ステップS309の各処理の後においては、この図38に示す処理を終了し、ドローンから次の現在位置が送信されて来るのを待つことになる。このように、対応指示装置1は、飛行指示データを提供したドローンが、探索した飛行ルートを逸脱した場合に、リルート処理を行って、再探索した飛行ルートを辿って目的地に向かうように、ドローンをナビゲーション(案内)することができる。なお、この場合においても、対応指示装置1は、飛行指示データに飛行時の飛行速度を含めるようにし、飛行ルートだけでなく、飛行速度の指示を行うこともできる。
[リルート処理2]
図39は、対応指示装置1が行うリルート処理2について説明するためのフローチャートである。この実施の形態の対応指示装置1は、ドローン用航空NWDB130のリンクデータの変動リンクコストが更新された場合に、ドローンの飛行ルートのリルート処理(リルート処理2)を行うことができる。
図39の処理は、図36を用いて説明した変動リンクコストの更新処理が行われた場合に実行される。まず、制御部102は、ドローン用航空NWDB130のリンクデータの変動リンクコストが新たなデータに更新されたリンクを特定する(ステップS401)。そして、制御部102は、ドローン別飛行ルートデータファイル140からステップS401で特定されたリンクを含む飛行ルートを抽出する(ステップS402)。
そして、ステップS402で抽出された飛行ルートを用いているドローンに対して、現在位置の通知を要求し、当該ドローンの現在位置を取得する(ステップS403)。この後、制御部102は、リルート処理部110を制御して、現在位置から目的地までの飛行ルートを再探索する(ステップS404)。リルート処理部110は、ルート探索部107と同様に、ドローン用航空NWDB130のネットワークデータを参照し、現在位置から目的地に至る飛行ルートであって、固定リンクコストと変動リンクコストからなるリンクコストが、最小となる飛行ルートを再探索する。
そして、リルート処理部110は、再探索して得られた飛行ルートが現在の飛行ルート(元の飛行ルート)と違っており、ルート変更が必要か否かを判別する(ステップS405)。ステップS405の判別処理において、ルート変更が必要であると判別したときには、リルート処理部110は、再探索結果をドローン別飛行ルートデータファイル140にドローン別のルートデータとして更新する(ステップS406)。この後、制御部102の制御の下、ルート変更指示部111が、ドローン別飛行ルートデータファイル140の飛行データ(探索した飛行ルート)に基づいて、緯度、経度、高さを含む座標点列となる飛行指示データを形成する(ステップS407)。このステップS407の処理は、飛行指示形成部108で行われる処理と同様の処理である。
そして、ルート変更指示部111は、形成した飛行指示データを、自律航行するドローンや遠隔操作されるドローンの遠隔操作装置などに、通信I/F101を通じて送信することにより提供する(ステップS408)。また、ステップS405の判別処理において、再探索して得られた飛行ルートと現在の飛行ルート(元の飛行ルート)が同じであり、ルート変更が不要であると判別したときには、現在の飛行ルートを維持するようにする(ステップS409)。すなわち、飛行ルートの変更指示は行われない。
そして、ステップS408の処理の後、又は、ステップS409の処理の後においては、この図39に示す処理を終了し、次に変動リンクコストが更新されるタイミングを待つことになる。
このように、対応指示装置1は、変動リンクコストが更新された場合には、更新された最新の変動リンクコストを用いて、飛行ルートのリルートを行うことができる。これにより、最新の変動リンクコストを考慮した適切な飛行ルートを辿って目的地に向かうように、ドローンをナビゲーション(案内)することができる。変動的な要素により、飛行するのに適さなくなったリンクを使用する飛行ルートを適切な飛行ルートに変更することができる。この場合においても、対応指示装置1は、飛行指示データに飛行時の飛行速度を含めるようにし、飛行ルートだけでなく、飛行速度の指示を行うこともできる。
[緊急事態発生時の処理]
図40は、ドローン2において緊急事態が発生した場合に、対応指示装置1が行う処理について説明するためのフローチャートである。図40の処理は、制御部102の制御の下、主に、通信I/F101、状態判別部112、緊急対応指示形成部113、事後対応処理部114が機能して実行される。
制御部102は、常時、通信I/F101を通じてドローン2からの信号を受信するようにしており(ステップS501)、ドローン2からの信号を受信したか否かを判別する(ステップS502)。ステップS502の判別処理において、ドローン2からの信号を受信していないと判別した時には、ステップS501からの処理を繰り返す。ステップS502の判別処理において、ドローン2からの信号を受信したと判別した時には、受信した信号に含まれるデータに異常があるか否かを判別する(ステップS503)。ステップS503の判別処理において、データに異常があると判別した時には、ステップS501からの処理を繰り返す。データに異常がある時には、その後の処理が適切に行えなくなる可能性があり、正常なデータを受信する必要があるためである。
ステップS503の判別処理において、受信したデータに異常はないと判別した時には、制御部102は、受信した信号はドローンが異常な状態であることを示す状態情報を含む状態等通知信号か否かを判別する(ステップS504)。ステップS504の判別処理において、異常状態であることを示す状態通知信号を受信したと判別したときには、制御部102の制御の下、状態判別部112が機能し、受信した信号に含まれる状態情報に基づいて送信元のドローン2の状態を判別する(ステップS505)。具体的に、ステップS505では、送信元のドローンの属性、損傷箇所(故障個所)及び損傷度合(故障度合)、残燃料(受電残量)などを判別すると共に、送信元のドローン2の現在位置を把握する。
なお、ドローン2の属性は、ドローン2からの状態等通知信号に含まれるIPアドレスなどのドローン2の識別情報に基づいて、当該ドローン2の属性を取得する。例えば、ドローン別飛行ルートデータファイル140にドローンの属性が登録してあればこれを参照すればよいし、他のデータファイルにドローン別にドローンの属性が登録されて管理されているのであれば、それのデータファイルを参照して取得すればよい。また、損傷箇所(故障個所)及び損傷度合(故障度合)、残燃料(受電残量)や現在位置は、当該ドローン2からの状態等通知信号に含まれる情報により判別可能である。
そして、当該ドローン2の状態から、当該ドローン2が飛行可能な状態か否かを判別する(ステップS506)。飛行可能か否かに応じて緊急時対応が異なるためである。図41は、ドローンの緊急時対応の具体例を説明するための図である。異常状態であることを示す状態等通知信号を送信してきたドローン2が、少なくても数分程度は飛行可能な状態にあるときには、図41の上段に示すように、安全な(墜落損害が少ない)場所を探索して、その場所へ誘導して着陸させるようにする緊急時対応を取ることができる。
また、異常状態であることを示す状態等通知信号を送信してきたドローン2が、少なくても数分程度は飛行可能な状態であっても最寄に安全な場所がない場合、あるいは、少なくても数分程度の飛行も困難な状態にあるときには、図41の中段に示すように、エマージェンシー指示を送ることができる。
図42は、異常状態であることを示す状態等通知信号を送信してきたドローンを降ろす(着陸させる)ために、探索すべき安全な場所として望ましい場所の条件を示す図である。図42の(A)〜(E)の条件を満たす場所が、探索すべき安全な場所となる。図43は、探索すべき安全な場所として望ましいま場所の具体例を示す図である。図43に示す場所を、異常状態であることを示す状態等通知信号を送信してきたドローン2を降ろす場所として探索することになる。
そして、ステップS506の判別処理において、少なくても数分程度は飛行可能な状態にあると判別したとする。この場合には、制御部102の制御の下、緊急対応指示形成部113が機能し、着陸地点を特定し、着陸地点に誘導して着陸するようする対応指示情報を形成して、通信I/F101を通じて送出する(ステップS507)。具体的に、ステップS507において緊急対応指示形成部113は、当該ドローン2の属性、状態、現在位置、季節、曜日、時間帯を考慮し、通信I/F101を通じてドローン用航空地図DB120を参照して着陸地点を特定する。
より具体的には、図43に示した場所を探索して、その場所を着陸地点として特定するが、河川敷でも常に水の流れている場所を特定してその場所を着陸地点とすれば、より安全といえる。もちろん、ドローンの損傷度合、残燃料(充電残量)から飛行可能距離内で、安全に着陸できる場所を探索することになる。
ドローン2の属性を考慮するのは、ドローン2が例えば固定翼機の場合には、ホバリング及び垂直方向への上昇/下降ができないため、滑走可能な比較的に広い平坦な場所を探索する必要があるなど、ドローンの属性に応じて着陸場所が異なるためである。また、季節、曜日、時間帯を考慮するのは、これらに応じて人の集まる場所が変わるためである。例えば、夏季の海水浴場は人が多いが冬季の海水浴場は人が少ない。月曜日〜金曜日の学校は生徒など人が多いが土日の学校は生徒など人少ない。登下校時間帯の通学路は生徒などひとが多いが登下校時間帯以外の時間帯の通学路は生徒などの人が少ない。
ステップS507では、ドローンの属性、季節、曜日、時間帯を考慮し、人が少なく、かつ、ドローンが飛行可能なドローン飛行ゾーンを飛行して、特定した着陸場所への経路を指示する対応指示情報を作成し、通信I/F101を通じて送信する。送信先は、ドローン2が自律航行中のものである場合には、当該ドローン2に直接指示を出すことになる。なお、ドローン2が遠隔操作により飛行しているものである場合には、例えば、遠隔操作装置に送信し、この遠隔操作装置を通じて、ドローンをコントロールすることになる。
また、ステップS505の判別処理において、数分程度の飛行も難しい状態にあると判別したとする。この場合には、制御部102の制御の下、緊急対応指示形成部113は、対応指示情報としてエマージェンシー対応指示を形成し、これを通信I/F101を通じて送出する(ステップS508)。ここで、エマージェンシー対応指示は、図41の中段に示したように、エアバックやパラシュートを開かせたり、機体を自動分解させて単位重量を小さくさせたり、大音量で「ドローンが落下します。」と警告音を放音させたりするものである。このエマージェンシー対応指示もまた、ドローン2が自律航行中のものである場合には、当該ドローン2に送信される。なお、ドローン2が遠隔操作により飛行しているものである場合には、例えば、遠隔操作装置に送信され、この遠隔操作装置を通じて、ドローンがコントロールされる。
また、ステップS508の処理において、異常状態であることを示す状態等通知信号を送信してきたドローン2が、エマージェンシーモードを持っていなかったり、エマージェンシーモードが起動できないほど機体が損傷している状態にあったりすることが判明したとする。なお、エマージェンシーモードは、エアバックやパラシュートや警告音などを利用するモードである。この場合には、図42に示した条件に合致する場所を特定し、不時着するようにする対応指示情報を形成して送出する。
ステップS507またはステップS508の処理の後においては、制御部102の制御の下、事後対応処理部114が機能し、緊急時対応後の事後対応を特定して、関係各所に指示を出す(ステップS509)。図44は、緊急時対応後の事後対応の具体例を示す図であり、緊急時対応を行ったドローンをどのように扱うか、すなわちドローンレスキューの具体例を示す図である。
ステップS507またはステップS508の処理により、異常状態であることを示す状態等通知信号を送信してきたドローンを地上に降ろした後においては、どのドローンをどのように処理するかが問題となる。そこで、図44に示すように、ドローンが着陸等した地点を探索したり、捜査員、捜査業者を派遣したり、必要がある場合には保険業者に連絡したり、修理業者に連絡したりするなど、地上に降ろしたドローンに対する適切な処理を特定して、その処理を実行するように指示を出す。ステップS509の処理の後においては、ステップS501からの処理を繰り返すようにし、他のドローンからの状態等通知信号の到来に備える。
このように、この実施の形態の対応指示装置1は、ドローン2の出発地から目的地までの適切な飛行ルートを探索して、当該飛行ルートを辿るように飛行ルートのナビゲーションを行うことができる。そして、飛行中のドローン2が異常な状態となり、緊急事態が生じた場合に、対応指示装置1からドローン2に対して指示を出し、適切な対応を取ることができる。
なお、飛行中のドローン2に緊急事態が発生する場合は、ドローンの構成部分に予期しない故障が発生したり、鳥や高所障害物との接触や衝突などが発生したりした場合などが考えられる。また、ゲリラ豪雨などの予期しない気象条件の悪化、激震災害や山火事に遭遇するなとした場合の飛行ルートの気流の乱れ、流星や磁気嵐が発生した場合のセンサ類への影響により、正常な飛行ができなくなる場合もある。
このような場合も、センサ出力やエンジン部の駆動状況などにより、正常な飛行ができない緊急事態が発生したと判別することができ、ドローン2は状態等通知信号を対応指示装置1に送信できる。したがって、上記の種々の場合にも、状態等通知信号を送信してきたドローン2に対して、図40の処理により、地上の人や物に影響を与えないようにして、ドローンを地上に着陸させる(降ろす)ことができる。
[実施の形態の効果]
上述した実施の形態の対応指示装置1によれば、ドローンが落下した場合を考慮し、より安全な場所を探索して、その探索した場所に着陸するように指示することができる。これにより、ドローンの墜落による被害とドローン自身の損傷を最小限に抑えられる。
また、ドローンの機体の損傷度合、残燃料からの飛行可能距離内の最寄りの安全な場所を探索して、その探索した場所に着陸するように指示することができる。これにより、ドローンの墜落による被害とドローン自身の損傷を最小限に抑えられる
また、万が一、最寄に安全な場所がない時は、エアバックやパラシュートの利用、開国音の放音等のエマージェンシー対応指示を出すことにより、ドローンの墜落による被害とドローン自身の損傷を最小限に抑えられる。
また、ゲリラ豪雨が予報に反して襲ってきた場合や、激震災害に遭遇した場合、ルート上で山火事が発生した場合などにおいて、ドローンが正常な飛行ができなくなった場合に、地上の人や物に影響を及ぼさないようにドローンを降ろすことができる。したがって、ドローンの墜落による被害とドローン自身の損傷を最小限に抑えられる。
同様に、流星、磁気嵐が発生し、センサ類が正常に機能しなくなったためにドローンが正常な飛行ができなくなった場合にも、地上の人や物に影響を及ぼさないようにドローンを降ろすことができる。したがって、ドローンの墜落による被害とドローン自身の損傷を最小限に抑えられる。
また、ドローン用航空地図DB120が利用できることにより、固定的に飛行障害になる場所、変動的に飛行障害になる場所、上空の飛行を回避すべき場所などを適切に回避するようにして、特定した着陸地点に向かうように指示することができる。
[変形例等]
なお、上述した実施の形態では、ドローンの属性は、ドローン別飛行ルートデータファイル140やその他の記憶手段に記憶しておき、状態等通知信号のIPアドレスなどのドローン識別情報により読み出して利用するものとして説明したが、これに限るものではない。ドローンが、自機の属性を状態等通知信号に含めて通知するようにしてもよい。
また、上述した実施の形態では、ドローンは主に自律航行するものである場合について説明したが、ドローンを遠隔操作されるものであってももちろんよい。この場合、飛行指示データ、対応指示情報、エマージェンシー対応指示など、対応指示装置1からドローン2に提供した情報は、対応指示装置1から例えば遠隔操作装置に送信して利用されることになる。なお、遠隔操作されているドローンであっても、対応指示情報とエマージェンシー対応指示とは直接に対応指示装置1から当該ドローンに送信し、ドローン自体が機能して緊急時対応をとるようにしてもよい。
また、遠隔操作されるドローンの場合、緊急時対応指示は、遠隔操作者が持つ遠隔操作装置に提供され、ドローンからのカメラ映像を遠隔操作装置の表示画面に表示すると共に、当該カメラ映像に緊急時対応指示に含まれる飛行ルートをAR(Augmented Reality)技術を用いて表示して遠隔操作者に示すなどのことができる。
また、ドローンが備える高度計に応じて、生成する飛行指示データの形式を変えることもできる。すなわち、高度計には、気圧の原理を使って高度計測を行うものと、反射波の原理を使って高度計測を行うものとがあり、同一経路でも高さを示す数値が異なるものとなる場合がある。このため、ドローンの属性情報として高度計の種類も管理するようにし、飛行指示データを提供するドローンが備える高度計に対応した飛行指示データを形成することができる。
また、上述したように、ドローン2は、カメラを搭載している。このカメラは、静止画や動画の撮影、送信されるライブ映像の撮影、ジンバル(カメラの位置を調整する回転体)によるブレ制御、画像認識、ビジョンポジショニングを実現できる。このため、ドローンのビジョンポジショニング機能を利用し、ドローンが撮影した地上の画像とドローン用航空地図の情報とを突き合わせ、ドローンの正確な位置を対応指示装置1側で把握することもできる。
また、上述した実施の形態では、対応指示装置1から各ドローン2(1)、2(2)、2(3)、…に飛行指示データ、緊急時指示情報、エマージェンシー指示情報を提供するようにしたが、これに限るものではない。飛行指示データ、緊急時指示情報、エマージェンシー指示情報を、ドローン運用管理装置5に提供し、ドローン運用管理装置5から配下のドローンに提供するようにすることもできる。
[その他]
なお、請求項のドローン用緊急事態対応指示装置の受信手段の機能は、実施の形態の対応指示装置1の情報処理部(以下、単に情報処理部と記載する。)100の主に通信I/F101が実現している。また、請求項のドローン用緊急事態対応指示装置の判別手段の機能は、情報処理部100の状態判別部112が実現し、請求項のドローン用緊急事態対応指示装置の形成手段の機能は、情報処理部100の緊急対応指示形成部が協働して実現している。また、ドローン用緊急事態対応指示装置の送信手段の機能は、情報処理部100の主に通信I/F101が実現している。
また、請求項のドローン用緊急事態対応指示装置の地図情報記憶手段の機能は、ドローン用緊急事態対応指示装置1のドローン用航空地図DB120が実現している。また、請求項のドローン用緊急事態対応指示装置の事後対応特定手段の機能は、情報処理部100の事後対応処理部114が実現している。
また、図40のフローチャートを用いて説明した処理が、この発明のドローン用緊急事態対応指示方法の一実施の形態が適用されたものである。また、図40のフローチャートを用いて説明した処理を実行するプログラムが、この発明のドローン用緊急事態対応指示プログラムの一実施の形態が適用されたものである。
1…ドローン用緊急事態対応指示装置、100…情報処理部、101…通信I/F、102…制御部、103…記憶装置、104…変動情報取得部、105…変動リンクコスト更新部、106…探索条件設定部、107…ルート探索部、108…飛行指示形成部、109…飛行情報取得部、110…リルート処理部、111…ルート変更指示部、112…状態判別部、113…緊急対応指示形成部、114…事後対応処理部、120…ドローン用航空地図DB、130…ドローン用航空NWDB、140…ドローン別飛行ルートデータファイル、150…ドローン用航空規制DB、2…ドローン、3…IoTプラットホーム、4a…気象情報提供装置、4b…交通情報提供装置、4c…混雑度情報提供装置、5…ドローン運用管理装置

Claims (9)

  1. 3次元地図を形成する3次元地図情報を記憶する地図情報記憶手段と、
    無人航空機であるドローンからの信号であって、当該ドローンの状態を示す状態情報と当該ドローンの現在位置を示す情報とを含む状態等通知信号を受信する受信手段と、
    前記受信手段を通じて前記状態等通知信号を受信した場合に、前記状態等通知信号に含まれる前記状態情報に基づいて、前記ドローンの状態を判別する判別手段と、
    前記判別手段での前記ドローンの状態が、緊急事態であり、飛行不能ではないと判別した場合に、前記地図情報記憶手段の前記3次元地図情報を参照し、前記現在位置から到達可能な着陸地点を特定して、前記現在位置から前記着陸地点までの飛行ルートを指示するデータであって、緯度、経度、高さを含んだ座標点列である経路指示データを含む対応指示情報を形成する形成手段と、
    前記形成手段で形成した前記対応指示情報を、前記状態等通知信号を送信してきた前記ドローン、及び、前記ドローンを遠隔操作するための装置の何れかを送信先に選択して送信する送信手段と
    を備えることを特徴とするドローン用緊急事態対応指示装置。
  2. 請求項1に記載のドローン用緊急事態対応指示装置であって、
    前記形成手段は、前記ドローンの機能に関する情報を考慮して、前記着陸地点を特定し、前記現在位置から前記着陸地点までの前記経路指示データを含む前記対応指示情報を形成する
    ことを特徴とするドローン用緊急事態対応指示装置。
  3. 請求項1または請求項2に記載のドローン用緊急事態対応指示装置であって、
    前記形成手段は、季節、曜日、時間帯を考慮して、前記着陸地点を特定し、前記現在位置から前記着陸地点までの前記経路指示データを含む前記対応指示情報を形成する
    ことを特徴とするドローン用緊急事態対応指示装置。
  4. 請求項1、請求項2、または請求項3のいずれかに記載のドローン用緊急事態対応指示装置であって、
    前記形成手段は、前記ドローンが飛行不能である場合には、地上への影響を少なくするようにして着陸するように指示する前記対応指示情報を形成する
    ことを特徴とするドローン用緊急事態対応指示装置。
  5. 請求項1、請求項2、請求項3または請求項4のいずれかに記載のドローン用緊急事態対応指示装置であって、
    前記地図情報記憶手段に記憶されている前記3次元地図情報は、前記ドローンの飛行について、少なくとも固定的に障害になる場所に関する固定飛行障害情報と、季節、時期、時間に応じて変動的に飛行障害が発生する場所に関する変動障害情報と、飛行を回避すべき場所に関する回避施設地域情報とを含み、
    前記形成手段は、前記固定飛行障害情報と、前記変動障害情報と、前記回避施設地域情報とを考慮して、前記経路指示データを含む前記対応指示情報を形成する
    ことを特徴とするドローン用緊急事態対応指示装置。
  6. 請求項1、請求項2、請求項3、請求項4、または請求項5のいずれかに記載のドローン用緊急事態対応指示装置であって、
    前記3次元地図情報に対応し、緯度、経度、高さによって特定されるノードの情報と、前記ノード間を接続するリンクの情報とを備え、前記ドローンの飛行ルートの探索が可能なドローン用航空ネットワークデータを記憶したネットワークデータ記憶手段を備え、
    前記形成手段は、前記状態等通知信号を送信してきた前記ドローンの現在位置から特定した前記着陸地点までの経路指示データを、前記ネットワークデータ記憶手段に記憶されている前記ドローン用航空ネットワークデータを用いて探索することにより形成する
    ことを特徴とするドローン用緊急事態対応指示装置。
  7. 請求項1、請求項2、請求項3、請求項4、請求項5または請求項6のいずれかに記載のドローン用緊急事態対応指示装置であって、
    前記形成手段で形成した前記対応指示情報が、前記送信手段を通じて送信された後の事後対応として、前記ドローンが着陸した地点を探索する対応を実行するように処理する処理手段
    を備えることを特徴とするドローン用緊急事態対応指示装置。
  8. ドローン用緊急事態対応指示装置が行うドローン用緊急事態対応指示方法であって、
    無人航空機であるドローンからの信号であって、当該ドローンの状態を示す状態情報と当該ドローンの現在位置を示す情報とを含む状態等通知信号を受信する受信工程と、
    前記受信工程において前記状態等通知信号を受信した場合に、前記状態等通知信号に含まれる前記状態情報に基づいて、前記ドローンの状態を判別する判別工程と、
    前記判別工程で、前記ドローンの状態が、緊急事態であり、飛行不能でないと判別した場合に、3次元地図を形成する3次元地図情報を記憶する地図情報記憶手段の前記3次元地図情報を参照し、前記現在位置から到達可能な着陸地点を特定して、前記現在位置から前記着陸地点までの飛行ルートを指示するデータであって、緯度、経度、高さを含んだ座標点列である経路指示データを含む対応指示情報を形成する形成工程と、
    前記形成工程において形成した前記対応指示情報を、前記状態等通知信号を送信してきた前記ドローン、及び、前記ドローンを遠隔操作するための装置の何れかを送信先に選択して送信する送信工程と
    を、前記ドローン用緊急事態対応指示装置が行うことを特徴とするドローン用緊急事態対応指示方法。
  9. ドローン用緊急事態対応指示装置に搭載されたコンピュータに実行させるプログラムであって、
    無人航空機であるドローンからの信号であって、当該ドローンの状態を示す状態情報と当該ドローンの現在位置を示す情報とを含む状態等通知信号を受信する受信ステップと、
    前記受信ステップにおいて前記状態等通知信号を受信した場合に、前記状態等通知信号に含まれる前記状態情報に基づいて、前記ドローンの状態を判別する判別ステップと、
    前記判別ステップで、前記ドローンの状態が緊急事態であり、飛行不能でないと判別した場合に、3次元地図を形成する3次元地図情報を記憶する地図情報記憶手段の前記3次元地図情報を参照し、前記現在位置から到達可能な着陸地点を特定して、前記現在位置から前記着陸地点までの飛行ルートを指示するデータであって、緯度、経度、高さを含んだ座標点列である経路指示データを含む対応指示情報を形成する形成ステップと、
    前記形成ステップにおいて形成した前記対応指示情報を、前記状態等通知信号を送信してきた前記ドローン、及び、前記ドローンを遠隔操作するための装置の何れかを送信先に選択して送信する送信ステップと
    を、前記コンピュータに実行させることを特徴とするドローン用緊急事態対応指示プログラム。
JP2017063449A 2017-03-28 2017-03-28 ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム Active JP6846253B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063449A JP6846253B2 (ja) 2017-03-28 2017-03-28 ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063449A JP6846253B2 (ja) 2017-03-28 2017-03-28 ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム

Publications (2)

Publication Number Publication Date
JP2018165115A JP2018165115A (ja) 2018-10-25
JP6846253B2 true JP6846253B2 (ja) 2021-03-24

Family

ID=63921618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063449A Active JP6846253B2 (ja) 2017-03-28 2017-03-28 ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム

Country Status (1)

Country Link
JP (1) JP6846253B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209319A1 (en) 2017-05-12 2018-11-15 Gencore Candeo, Ltd. Systems and methods for response to emergency situations using unmanned airborne vehicles with improved functionalities
JP7106424B2 (ja) * 2018-10-25 2022-07-26 株式会社Nttドコモ 情報処理装置
US11869371B2 (en) * 2018-11-09 2024-01-09 Rakuten Group, Inc. Unmanned aerial vehicle traffic management apparatus, takeoff and landing facility management apparatus, unmanned aerial vehicle traffic management method, and unmanned aerial vehicle system
JP7199505B2 (ja) * 2019-02-25 2023-01-05 株式会社日立ハイテク 医材搬送システム
JP7098596B2 (ja) * 2019-11-27 2022-07-11 ソフトバンク株式会社 情報処理装置、情報処理方法、および情報処理プログラム
JP7396484B2 (ja) * 2020-06-17 2023-12-12 日本電気株式会社 飛行設定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475632B2 (ja) * 2004-03-19 2010-06-09 中国電力株式会社 無人飛行体を用いた送電線点検システム
JP2006082775A (ja) * 2004-09-17 2006-03-30 Hiroboo Kk 無人飛行体制御システム及び方法
US7970532B2 (en) * 2007-05-24 2011-06-28 Honeywell International Inc. Flight path planning to reduce detection of an unmanned aerial vehicle
WO2016112733A1 (zh) * 2015-01-13 2016-07-21 广州极飞电子科技有限公司 无人机调度方法及***、无人机

Also Published As

Publication number Publication date
JP2018165115A (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6866203B2 (ja) ドローンナビゲーション装置、ドローンナビゲーション方法、ドローンナビゲーションプログラム、探索用データ形成装置及び探索用データ形成プログラム
JP6772100B2 (ja) ドローン用動態管理装置、ドローン用動態管理方法及びドローン用動態管理プログラム
JP6846253B2 (ja) ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム
JP2018165931A (ja) ドローン用管制装置、ドローン用管制方法及びドローン用管制プログラム
US11868131B2 (en) Flight path determination
US10885795B2 (en) Air space maps
US11150646B2 (en) Delivery with swarming aerial vehicles
JP7083010B2 (ja) 運航計画作成装置、運航計画作成方法および運航計画作成プログラム
Scherer et al. Flying fast and low among obstacles
JP6947626B2 (ja) Uav航行用ネットワークデータ生成装置、uav航行用ネットワークデータ生成方法、uav航行用経路作成装置
US11217104B2 (en) Airflow modeling for route optimization
KR20170080354A (ko) 무인기 안전 비행을 위한 가상적 스카이웨이와 이를 적용한 관제시스템 및 무인기 항법장치와 서비스
US20090210109A1 (en) Computing Flight Plans for UAVs While Routing Around Obstacles Having Spatial and Temporal Dimensions
US20240230336A9 (en) Route planning for unmanned aerial vehicles
US20220343773A1 (en) Updating airspace awareness for unmanned aerial vehicles
US20210304625A1 (en) Monotonic partitioning in unmanned aerial vehicle search and surveillance
EP3726501A1 (en) System and method for handling terrain in detect and avoid
JP2024097888A (ja) 表示制御装置、表示制御方法及び表示制御プログラム
KR102077389B1 (ko) 에어웨이 설정방법
US20210097873A1 (en) Aerospace hazard detection, recognition, prioritization and warning device, system and associated methods
US11810057B2 (en) Method, apparatus, and computer program product for vantage view assistance
JP2021043945A (ja) コンピュータシステムおよびプログラム
JP2021043599A (ja) 表示制御装置、表示制御方法及び表示制御プログラム
US20230282122A1 (en) Geofence management with an unmanned aerial vehicle
JP2023020509A (ja) 情報処理装置、プログラム、飛行経路探索方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6846253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250