JP6842190B2 - Drug spraying methods, programs, and equipment with unmanned aerial vehicles - Google Patents

Drug spraying methods, programs, and equipment with unmanned aerial vehicles Download PDF

Info

Publication number
JP6842190B2
JP6842190B2 JP2018510642A JP2018510642A JP6842190B2 JP 6842190 B2 JP6842190 B2 JP 6842190B2 JP 2018510642 A JP2018510642 A JP 2018510642A JP 2018510642 A JP2018510642 A JP 2018510642A JP 6842190 B2 JP6842190 B2 JP 6842190B2
Authority
JP
Japan
Prior art keywords
field
map
unmanned aerial
boundary
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018510642A
Other languages
Japanese (ja)
Other versions
JPWO2017175804A1 (en
Inventor
洋 柳下
洋 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nileworks Inc
Original Assignee
Nileworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nileworks Inc filed Critical Nileworks Inc
Publication of JPWO2017175804A1 publication Critical patent/JPWO2017175804A1/en
Application granted granted Critical
Publication of JP6842190B2 publication Critical patent/JP6842190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Mechanical Engineering (AREA)
  • Insects & Arthropods (AREA)
  • Automation & Control Theory (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Image Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本願発明は、無人飛行体(ドローン)を用いた農薬などの薬剤散布の方法、プログラム、および、装置、特に複雑な形状の狭い農地でも正確な散布が可能な方法、プログラム、および、装置に関する。 The present invention relates to a method, a program, and an apparatus for spraying a chemical such as a pesticide using an unmanned aerial vehicle (drone), particularly a method, a program, and an apparatus capable of accurately spraying even a narrow farmland having a complicated shape.

一般にドローンと呼ばれる遠隔操縦型小型無人ヘリコプターの応用が進んでいる。その応用分野のひとつとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が広くない日本においては、有人の飛行機やヘリコプターではなく、ドローンの使用が適しているケースが多い。 The application of remote-controlled small unmanned helicopters, which are generally called drones, is advancing. One of the fields of application is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (fields) (for example, Patent Document 1). In Japan, where agricultural land is not as large as in Europe and the United States, it is often appropriate to use drones instead of manned airplanes and helicopters.

ドローンによる薬剤散布は、日本において典型的な狭く複雑な地形の農地でも効率的かつ正確に薬剤散布を行なえるという長所がある。しかし、この長所を最大限に発揮するためには、ドローンの飛行制御を正確に行なう必要がある。飛行制御の正確性が不十分であり、たとえば、隣接する無農薬栽培の農地や住宅の庭に本来散布してはならない農薬を散布してしまうと大きな問題になる。また、農薬や肥料の重複散布や散布漏れが発生して生育状況に差ができてしまうと、規格外作物として商品流通できない、商品の等級が下がるといった問題が生じ得る。 Chemical spraying by drone has the advantage of being able to efficiently and accurately spray chemicals even on agricultural lands with narrow and complex terrain, which is typical in Japan. However, in order to maximize this advantage, it is necessary to accurately control the flight of the drone. The accuracy of flight control is inadequate, and for example, spraying pesticides that should not be sprayed on adjacent pesticide-free farmlands or residential gardens poses a major problem. In addition, if pesticides and fertilizers are repeatedly sprayed or leaked and the growth conditions are different, there may be problems that the product cannot be distributed as a nonstandard crop and the grade of the product is lowered.

ドローンの位置制御に一般的に使用されているGPSによる絶対位置測位(たとえば、特許文献1)は数メートルの精度のため正確な薬剤散布のためには不十分であった。また、農地の形状は、作付け状態や生育状況により変化するため、固定的な地図に基づいた飛行制御では限界があるという問題もあった。GPS搬送波の位相差を使用して基準点からの相対位置を正確に知る技術(RTK−GPS)が知られているが(たとえば、特許文献2)、相対位置の情報だけでは薬剤散布すべき領域を完全に把握することはできなかった。 Absolute positioning by GPS (for example, Patent Document 1), which is generally used for position control of drones, is insufficient for accurate drug spraying due to the accuracy of several meters. In addition, since the shape of the agricultural land changes depending on the planting condition and the growing condition, there is a problem that there is a limit to the flight control based on the fixed map. A technique (RTK-GPS) for accurately knowing the relative position from a reference point using the phase difference of a GPS carrier wave is known (for example, Patent Document 2), but the area where the drug should be sprayed only by the relative position information. Could not be completely grasped.

特許公開公報 特開2001−120151Patent Publication Japanese Patent Application Laid-Open No. 2001-120151 特許公開公報 特願平10−170629Patent Publication Japanese Patent Application No. 10-170629

複雑な農地にも対応可能な、ドローンによる正確な薬剤散布装置と方法を提供する。 We will provide accurate drone spraying equipment and methods that can be used on complex farmlands.

本願発明は、カメラを備えた薬剤撒布用無人飛行体の飛行制御方法であって、前記無人飛行体を薬剤撒布対象圃場の全体を前記カメラで撮影可能な高度にまで上昇させる第一のステップと、前記カメラによって撮影した映像に基づいて対象圃場の境界線の地図を作成する第二のステップと、前記無人飛行体を薬剤散布に適した高度にまで下降させる第三のステップと、前記地図にしたがって前記無人飛行体に薬剤散布を行なわせる第四のステップとを含む飛行制御方法を提供することで前記課題を解決する。 The present invention is a method for controlling the flight of an unmanned aerial vehicle for chemical spraying equipped with a camera, and the first step is to raise the unmanned aerial vehicle to an altitude at which the entire field to be sprayed can be photographed by the camera. The second step of creating a map of the boundary line of the target field based on the image taken by the camera, the third step of lowering the unmanned aerial vehicle to an altitude suitable for chemical spraying, and the map. Therefore, the problem is solved by providing a flight control method including a fourth step of causing the unmanned aerial vehicle to spray the drug.

また、本願発明は、前記第二のステップは、前記薬剤撒布対象圃場に設置された一つ以上の基準点ポールの色を識別するステップをさらに含む、段落0007に記載の飛行制御方法を提供することで前記課題を解決する。 The present invention also provides the flight control method according to paragraph 0007, wherein the second step further comprises a step of identifying the color of one or more reference point poles installed in the chemical spraying target field. This solves the above problem.

また、本願発明は、前記第四のステップは、GPS搬送波の位相に基づき測定された前記基準点ポールからの相対位置に基づいて前記無人飛行体の位置を把握するステップをさらに含む段落0008に記載の飛行制御方法を提供することで前記課題を解決する。 Further, the present invention is described in paragraph 0008, wherein the fourth step further includes a step of grasping the position of the unmanned vehicle based on the relative position from the reference point pole measured based on the phase of the GPS carrier wave. The above problem is solved by providing the flight control method of the above.

また、本願発明は、カメラを備えた薬剤撒布用無人飛行体の飛行制御プログラムであって、前記無人飛行体を薬剤撒布対象農地の全体を前記カメラで撮影可能な高度にまで上昇させる第一の手順と、前記カメラによって撮影した映像に基づいて対象農地の境界線の地図を作成する第二の手順と、前記無人飛行体を薬剤散布に適した高度にまで下降させる第三の手順と、前記地図にしたがって前記無人飛行体に薬剤散布を行なわせる第四の手順とをコンピューターに実行させる飛行制御プログラムを提供することで前記課題を解決する。 Further, the present invention is a flight control program for an unmanned flying object for chemical spraying equipped with a camera, wherein the unmanned flying vehicle is raised to an altitude at which the entire farmland subject to chemical spraying can be photographed by the camera. The procedure, the second step of creating a map of the boundary line of the target farmland based on the image taken by the camera, the third step of lowering the unmanned vehicle to an altitude suitable for chemical spraying, and the above. The problem is solved by providing a flight control program that causes a computer to execute a fourth step of causing the unmanned vehicle to spray a drug according to a map.

また、本願発明は、前記第二の手順は、前記薬剤撒布対象圃場に設置された一つ以上の基準点ポールの色を識別する手順をさらにコンピューターに実行させる段落0010に記載の飛行制御プログラムを提供することで前記課題を解決する。 Further, the present invention relates to the flight control program according to paragraph 0010, wherein the second procedure further causes a computer to perform a procedure for identifying the color of one or more reference point poles installed in the field to be sprayed. By providing it, the above-mentioned problem is solved.

また、本願発明は、前記第四の手順は、GPS搬送波の位相に基づき測定された前記基準点ポールからの相対位置に基づいて前記無人飛行体の位置を把握する手順をさらにコンピューターに実行させる段落0011に記載の飛行制御プログラムを提供することで前記課題を解決する。 Further, in the present invention, the fourth procedure further causes a computer to perform a procedure for grasping the position of the unmanned vehicle based on the relative position from the reference point pole measured based on the phase of the GPS carrier wave. The above problem is solved by providing the flight control program described in 0011.

また、本願発明は、薬剤撒布機能とカメラとを備えた無人飛行体を含む薬剤散布装置であって、前記薬剤散布装置は、圃場マップ保存手段と制御機能とを備え、前記制御機能が、前記無人飛行体を薬剤撒布対象圃場の全体を前記カメラで撮影可能な高度にまで上昇させ、前記カメラに前記薬剤撒布対象圃場の全体を撮影させ、撮影した前記薬剤撒布対象圃場の全体を前記圃場マップ保存手段に保存し、前記無人飛行体に前記圃場マップ保存手段に保存された情報に基づいて薬剤散布を行なわせる薬剤散布装置を提供することで前記課題を解決する。 Further, the present invention is a drug spraying device including an unmanned aerial vehicle equipped with a drug spraying function and a camera, wherein the drug spraying device includes a field map storage means and a control function, and the control function is described as described above. The unmanned aerial vehicle is raised to an altitude at which the entire field to be sprayed with the chemical can be photographed, the camera is made to photograph the entire field to be sprayed with the chemical, and the entire field to be sprayed with the chemical is photographed with the field map. The problem is solved by providing a drug spraying device that is stored in a storage means and causes the unmanned aerial vehicle to spray the drug based on the information stored in the field map storage means.

また、本願発明は、さらに、ひとつ以上の基準点ポールを含み、前記制御機能が、前記カメラに前記基準点ポールの色を認識させる、段落0013に記載の薬剤散布装置を提供することで前記課題を解決する。 The present invention further provides the drug spraying apparatus according to paragraph 0013, further comprising one or more reference point poles, wherein the control function causes the camera to recognize the color of the reference point poles. To solve.

また、本願発明は、前記制御機能が、GPS搬送波の位相に基づき測定された前記基準点ポールからの相対位置に基づいて前記無人飛行体の位置を把握する段落0014に記載の薬剤散布装置を提供することで前記課題を解決する。 The present invention also provides the drug spraying device according to paragraph 0014, wherein the control function grasps the position of the unmanned vehicle based on the relative position from the reference point pole measured based on the phase of the GPS carrier wave. By doing so, the above-mentioned problem is solved.

日本において典型的な複雑な形状の農地においても、また、農地の形状が変化する場合においても、正確な薬剤散布を実現可能になる。 Accurate chemical spraying can be achieved even in the case of a farmland with a complicated shape, which is typical in Japan, and even when the shape of the farmland changes.

本願発明に係る薬剤散布システムの第一の実施例の全体図である。It is an overall view of the 1st Example of the drug spraying system which concerns on this invention. 本願発明に係る薬剤散布システムを構成するドローンの機能構成の例である。This is an example of the functional configuration of the drone constituting the drug spraying system according to the present invention. 本願発明に係る薬剤散布システムを構成する基準点ポールの機能構成の例である。This is an example of the functional configuration of the reference point pole constituting the drug spraying system according to the present invention. 本願発明に係る薬剤散布システムにおけるGPS位相差を使用した正確な相対位置計測の仕組みを表わす図である。It is a figure which shows the mechanism of accurate relative position measurement using GPS phase difference in the drug spraying system which concerns on this invention. 本願発明の第一の実施例に係る薬剤散布の方法を示す図である。It is a figure which shows the method of chemical spraying which concerns on 1st Example of this invention. 本願発明の第二の実施例に係る薬剤散布の方法を示す図である。It is a figure which shows the method of chemical spraying which concerns on the 2nd Example of this invention.

図1に本願発明に係る薬剤散布装置の第一の実施例の全体図を示す(図は概念図であり縮尺は正確ではない)。図1−aは正面図(水平方向から見た図)であり、図1−bは平面図(上空から見た図)である。ドローン(101)は薬剤散布を行なうための無人飛行体である。なお、一般に、ドローンとは複数の回転翼を持つ無線操縦型の小型無人ヘリコプター(マルチコプター)を指すことが多いが、本願明細書では無人の飛行体の総称として使用する。すなわち、機体の大きさ、回転翼の数、飛行方式(プロペラ、ジェットエンジン等)、自律型であるか遠隔操縦型であるか、有線操縦であるか無線操縦であるか等にかかわらず、無人飛行体の総称としてドローンという名称を使用することとする。また、ドローンが散布する薬剤には、農薬、殺虫剤、液肥、水等、空中から地上に向けて散布可能な任意の液体・粉体が含まれるものとする。基準点ポール(102)は、圃場(104)の境界線上または基準となる位置に設置される機器であり、ドローン(101)が自身の正確な位置を把握するための基準点を提供する役割を果たす。境界線ポール(103)は、圃場(104)の境界線上の頂点にあたる部分に置かれた機器であり、ドローン(101)が上空から圃場(104)の形状を把握できるようにする役割を果たす。操縦器(105)は、通常は無線によってドローン(101)を人間(オペレーター)が操縦するための機器であり、一般的なスマートフォンやタブレット端末を使用することが望ましい。 FIG. 1 shows an overall view of a first embodiment of the drug spraying apparatus according to the present invention (the figure is a conceptual diagram and the scale is not accurate). 1-a is a front view (viewed from the horizontal direction), and FIG. 1-b is a plan view (viewed from the sky). The drone (101) is an unmanned aerial vehicle for spraying chemicals. In general, a drone often refers to a radio-controlled small unmanned helicopter (multicopter) having a plurality of rotor blades, but in the present specification, it is used as a general term for unmanned aerial vehicles. That is, unmanned regardless of the size of the aircraft, the number of rotor blades, the flight method (propeller, jet engine, etc.), autonomous type or remote control type, wired control or radio control, etc. The name drone will be used as a general term for airframes. In addition, the chemicals sprayed by the drone shall include any liquid or powder that can be sprayed from the air to the ground, such as pesticides, pesticides, liquid fertilizers, and water. The reference point pole (102) is a device installed on the boundary line of the field (104) or at a reference position, and serves to provide a reference point for the drone (101) to grasp its exact position. Fulfill. The boundary line pole (103) is a device placed at a portion corresponding to the apex on the boundary line of the field (104), and serves to enable the drone (101) to grasp the shape of the field (104) from the sky. The controller (105) is a device for a human (operator) to operate the drone (101) wirelessly, and it is desirable to use a general smartphone or tablet terminal.

図2に本願発明に係る薬剤散布装置のドローン(101)が備える機能構成の例を示す。制御手段(201)は、プログラムからの指令に従ってドローン(101)の水平位置と高度を制御すると共に他の構成要素を制御する構成要素であり、典型的には組み込み機器向けの小型コンピューターと関連ソフトウェアにより実現される。通信手段(202)は操縦器(105)との無線または有線の通信により、制御手段(201)にドローン(101)操縦の指令を提供し、また、ドローン(101)の状態(電池の残量等)やカメラ(205)で撮影した画像を操縦器(105)に送信する等の処理を行なうと共に、基準点ポール(102)との通信を提供する構成要素であり、典型的には無線LAN関連のハードウェアとソフトウェアにより実現される。薬剤散布機能(203)は、タンク、ノズル、および、ポンプ等から成る構成要素であり、制御機能(201)からの指令にしたがって圃場(104)への薬剤散布を行なう構成要素である。薬剤散布手段(203)は、常時薬剤を散布するのではなく、制御機能(201)からの指令を受けた時のみ薬剤を散布する構造となっていることが望ましい。GPS信号受信手段(204)は、通常は受信機とアンテナから構成され、GPS衛星からのGPS信号を受信し、搬送波の位相差の情報を利用して基準点ポール(102)に対するドローン(101)の正確な相対位置を把握するための手段である。また、実施例によっては衛星からのGPS信号を受信してドローン(101)の絶対位置を知るためにも使用される。カメラ(205)は、圃場(104)を撮影し、その形状を把握するための機器である。圃場マップ保存手段(206)は、カメラ(205)により圃場(104)を撮影した画像を保存して、薬剤散布の対象地域を把握するための手段である。圃場マップ保存手段(206)は、制御手段(201)を構成するコンピューターのメモリー上にあってもよいし、操縦器(104)のメモリー上にあってもよいし、その両方に分散されてあってもよいし、他のコンピューター上にあってもよい。プロペラ等の飛行手段や姿勢安定手段はドローン(101)における一般的技術であるため特に図示していない。 FIG. 2 shows an example of the functional configuration of the drone (101) of the drug spraying device according to the present invention. The control means (201) is a component that controls the horizontal position and altitude of the drone (101) and other components according to a command from the program, and is typically a small computer and related software for embedded devices. Is realized by. The communication means (202) provides the control means (201) with a command to operate the drone (101) by wireless or wired communication with the pilot (105), and the state of the drone (101) (remaining battery level). Etc.) and the image taken by the camera (205) is transmitted to the pilot (105), and at the same time, it is a component that provides communication with the reference point pole (102), and is typically a wireless LAN. Achieved by relevant hardware and software. The chemical spraying function (203) is a component including a tank, a nozzle, a pump, and the like, and is a component that sprays the chemicals to the field (104) in accordance with a command from the control function (201). It is desirable that the drug spraying means (203) has a structure in which the drug is sprayed only when a command from the control function (201) is received, instead of constantly spraying the drug. The GPS signal receiving means (204) is usually composed of a receiver and an antenna, receives GPS signals from GPS satellites, and uses information on the phase difference of the carrier wave to drone (101) with respect to the reference point pole (102). It is a means to grasp the exact relative position of. Also, depending on the embodiment, it is also used to receive a GPS signal from a satellite to know the absolute position of the drone (101). The camera (205) is a device for photographing the field (104) and grasping its shape. The field map storage means (206) is a means for saving an image of the field (104) taken by the camera (205) and grasping the target area for spraying the chemicals. The field map storage means (206) may be in the memory of the computer constituting the control means (201), in the memory of the controller (104), or may be distributed to both of them. It may be on another computer. Flying means such as a propeller and attitude stabilizing means are not shown in particular because they are general techniques in the drone (101).

図3に、本願発明に係る薬剤散布システムを構成する基準点ポール(102)の機能の例を示す。基準点ポール(102)はカメラ(205)で上空から撮影した画像において、画像処理によって容易に識別が可能な色(典型的には農地の緑と補色関係にある色)から成る部分(識別マーカー(301))を上面に備えていることが望ましい。また、基準点ポール(102)を農地の境界線(特に頂点にあたる位置)に設置する取り決めとしてもよい。GPS受信機能(302)は、GPS搬送波を受信する手段である。GPS信号送信機能(303)は、無線LANなどの手段によってドローン(101)に対して、受信したGPS信号を再送信する手段である。ドローン(101)の制御手段(201)は、ドローン(101)自身が受信したGPS信号と基準点ポール(102)のGPS受信機能(302)とGPS信号再送信機能(303)とを経由して受信したGPS信号の位相差を検知することで、次段落に示す方法で、自身と基準点ポール(102)の距離を正確に知ることができる。境界線ポール(103)は識別マーカー(301)に相当する部分(ただし、基準点ポール(102)とは色が異なることが望ましい)のみを有する機器である。同じ機器をスイッチの設定等によって基準点ポール(102)と境界線ポール(103)に切り替えて使用できるようにしてもよい。 FIG. 3 shows an example of the function of the reference point pole (102) constituting the drug spraying system according to the present invention. The reference point pole (102) is a portion (identification marker) of an image taken from the sky with a camera (205) consisting of colors that can be easily identified by image processing (typically, colors that are complementary to the green of agricultural land). (301)) is preferably provided on the upper surface. Further, the reference point pole (102) may be installed at the boundary line (particularly at the apex) of the agricultural land. The GPS receiving function (302) is a means for receiving a GPS carrier wave. The GPS signal transmission function (303) is a means for retransmitting a received GPS signal to the drone (101) by means such as a wireless LAN. The control means (201) of the drone (101) is via the GPS signal received by the drone (101) itself, the GPS reception function (302) of the reference point pole (102), and the GPS signal retransmission function (303). By detecting the phase difference of the received GPS signal, the distance between itself and the reference point pole (102) can be accurately known by the method shown in the next paragraph. The boundary line pole (103) is a device having only a portion corresponding to the identification marker (301) (however, it is desirable that the color is different from that of the reference point pole (102)). The same device may be used by switching between the reference point pole (102) and the boundary line pole (103) by setting a switch or the like.

図4に、本願発明に係る薬剤散布システムにおけるGPS位相差を使用した正確な相対位置計測の仕組みを示す。図は概念図であって縮尺は正確ではない。ドローン(101)および基準点ポール(102)は、複数のGPS衛星(401−1、および、401−2)からの送信信号(402)を受信する。送信信号(402)の位相差を測定することにより三角測量の原理によってドローン(101)と基準点ポール(102)の間の相対座標(403)をセンチメートル単位で測定できる。 FIG. 4 shows a mechanism of accurate relative position measurement using GPS phase difference in the drug spraying system according to the present invention. The figure is a conceptual diagram and the scale is not accurate. The drone (101) and the reference point pole (102) receive transmission signals (402) from a plurality of GPS satellites (401-1 and 401-2). By measuring the phase difference of the transmitted signal (402), the relative coordinates (403) between the drone (101) and the reference point pole (102) can be measured in centimeters by the principle of triangulation.

図5に、本願発明に係る薬剤散布システムの第一の実施例における農地マップ作成の方法の例を示す。この例では基準点ポール(102)を圃場(104)の境界線の頂点のひとつに置く取り決めとしているが、基準点ポール(102)は圃場(104)内外の任意の場所に置いてよい。ドローン(101)または操縦器(105)に内蔵された飛行制御コンピューター・プログラムにより、ドローン(101)は以下のように制御される。ドローン(101)が起動され、飛行を開始すると、最初に圃場(104)全体を俯瞰できる高度にまで上昇し、そこでホバリングし、カメラ(205)によって圃場(104)全体を撮影し、画像を分析して得られた結果を農地マップ保存手段(206)に保存する(図5−a(正面図))。基準点ポール(102)と境界線ポール(103)は識別マーカー(301)により上空から容易に画像認識できることから、圃場(104)の境界線の相対的位置がわかり、圃場(104)の形状を容易に把握できる。また、圃場(104)内における基準点ポール(102)の位置もわかる。第一の実施例では、圃場(104)の形状を事前に知らなくても、動的にマップを構築できるが、たとえば航空地図から得られた圃場(104)のおおよその形状を事前に保存しておき、上空からの撮影画像の画像認識で得られた基準点ポール(102)と境界線ポール(103)の位置と照合することでより正確な圃場(104)の形状を把握できるようにしてもよい。 FIG. 5 shows an example of a method for creating an agricultural land map in the first embodiment of the chemical spraying system according to the present invention. In this example, the reference point pole (102) is placed at one of the vertices of the boundary line of the field (104), but the reference point pole (102) may be placed at any place inside or outside the field (104). The flight control computer program built into the drone (101) or the pilot (105) controls the drone (101) as follows. When the drone (101) is activated and starts flying, it first rises to an altitude that gives a bird's-eye view of the entire field (104), then hovering there, taking a picture of the entire field (104) with a camera (205), and analyzing the image. The result obtained in this manner is stored in the agricultural land map storage means (206) (Fig. 5-a (front view)). Since the reference point pole (102) and the boundary line pole (103) can be easily image-recognized from the sky by the identification marker (301), the relative position of the boundary line of the field (104) can be known, and the shape of the field (104) can be determined. Easy to grasp. In addition, the position of the reference point pole (102) in the field (104) can be known. In the first embodiment, the map can be dynamically constructed without knowing the shape of the field (104) in advance, but for example, the approximate shape of the field (104) obtained from the aerial map is stored in advance. By collating with the positions of the reference point pole (102) and the boundary line pole (103) obtained by image recognition of the image taken from the sky, it is possible to grasp the more accurate shape of the field (104). May be good.

ドローン(101)が、十分な高度にまで上昇すれば一般的な画角のカメラ(205)であっても圃場(104)全体を撮影することが可能である。代替の方法として、ドローン(101)が、上空の複数の位置間を移動し、カメラ(205)によって複数の画像を撮影して、画像処理により当該複数の画像を組み合わせてひとつの圃場マップを構成できるようにしてもよい(このように複数の画像をつなぎ合わせる技術は公知である)。撮影時の水平方向の位置は基準点ポール(102)と境界線ポール(103)の画像認識(たとえば、所定数のポールが認識される位置に移動し、そこでホバリングする)によって、あるいは、GPSなどの絶対位置把握手段によってドローン(101)の制御手段(201)が自律的に決定するようにしてもよいし、操縦器(105)を使用して、操作者が操縦器(105)に表示されるカメラ(205)の映像を見ながらドローン(101)を操縦することで、手作業で決定してもよい。 If the drone (101) rises to a sufficient altitude, it is possible to photograph the entire field (104) even with a camera (205) having a general angle of view. As an alternative method, the drone (101) moves between a plurality of positions in the sky, a plurality of images are taken by a camera (205), and the plurality of images are combined by image processing to form one field map. It may be possible (a technique for joining a plurality of images in this way is known). The horizontal position at the time of shooting is determined by image recognition of the reference point pole (102) and the boundary line pole (103) (for example, moving to a position where a predetermined number of poles are recognized and hovering there), GPS, etc. The control means (201) of the drone (101) may be autonomously determined by the absolute position grasping means of the drone (101), or the operator is displayed on the control device (105) by using the control device (105). It may be decided manually by maneuvering the drone (101) while watching the image of the camera (205).

同様に、撮影時の垂直方向の位置(高さ)は、カメラ(205)の画像に基づきドローン(101)の制御手段(201)が自律的に決定するようにしてもよい(たとえば、所定の数のポールが認識されるまで高度を高める)し、操縦器(105)の操作者が送信されたカメラ(205)画像を見ながら決定してもよい。事前に圃場のおおよその形状と絶対位置がわかっている場合には、圃場全体をカメラ(205)で俯瞰できるおおよその高度まで上昇するよう制御手段(201)のプログラム・ロジックで計算できるようにしてもよい。 Similarly, the vertical position (height) at the time of shooting may be determined autonomously by the control means (201) of the drone (101) based on the image of the camera (205) (for example, a predetermined position). The altitude may be increased until a number of poles are recognized), and the operator of the pilot (105) may make the decision while looking at the transmitted camera (205) image. If the approximate shape and absolute position of the field are known in advance, the program logic of the control means (201) can be used to calculate the altitude of the entire field so that it can be overlooked by the camera (205). May be good.

圃場マップの保存が終了すると、図5−b(正面図)に示すように、ドローン(101)を薬剤散布に適した高度まで下降させる。圃場マップにより薬剤を散布すべき農地の形状は明らかになっており、また、図4に示したようにGPS搬送波位相に基づいて各基準点ポール(102)からの相対位置を正確に知ることができることから、図5−c(平面図)に示すように、複雑な農地の形状であっても無駄なく、かつ、漏れなく飛行して薬剤の散布を行なうことができ、農地の外への薬剤散布を防ぐことができる。ここで、農地の境界線上に近い位置では薬剤散布の量を減少、あるい、停止させるよう薬剤散布機能(203)のノズルを制御することで、農地外への薬剤散布量を最小化するようにしてもよい。 When the storage of the field map is completed, the drone (101) is lowered to an altitude suitable for chemical application, as shown in FIG. 5-b (front view). The field map clarifies the shape of the farmland on which the chemicals should be sprayed, and as shown in FIG. 4, it is possible to accurately know the relative position from each reference point pole (102) based on the GPS carrier phase. Therefore, as shown in FIG. 5-c (plan view), even if the shape of the farmland is complicated, it is possible to fly and spray the chemicals without waste and without leakage, and the chemicals can be sprayed outside the farmland. It is possible to prevent spraying. Here, by controlling the nozzle of the chemical spraying function (203) so as to reduce, or stop, the amount of chemical spraying near the boundary line of the agricultural land, the amount of chemical spraying outside the agricultural land should be minimized. It may be.

図6に、本願発明に係る薬剤散布システムの第二の実施例における薬剤散布方法の例を示す。第二の実施例と第一の実施例の基本的な考え方は同一であるが、第一の実施例では圃場(104)の境界線の頂点にあたる位置に複数の境界線ポール(103)(および、場合によっては基準点ポール(102))を設置するのに対して、第二の実施例では境界線ポール(103)を使用せず、かつ、農地内外の任意の位置に基準点ポール(102)を置く点が異なる(図6−a)。農地境界線の頂点上にポールを設置することが困難な場合には、第二の実施例が有効である。第二の実施例では、事前に地図情報等に基づいた農地マップが作成され、保存されていることが前提である。第二の実施例では、第一の実施例と同様にドローン(101)を圃場全体を俯瞰できる高度まで上昇させる(図5−aと同様)。一般に圃場と圃場外とでは上空から撮影した画像における色相・彩度・明度が大きく異なるため、圃場の境界線は、カメラ(205)の画像を画像処理することで識別可能である。事前に保存してある圃場マップと画像処理の結果とを照合することで、圃場内における基準点ポール(102)の相対的位置が明らかになり、以降は図5−bおよび図5−cと同様にして、ドローン(101)を薬剤散布に適した高度まで降下させ、正確な薬剤散布を行なうことが可能になる。基準点ポール(102)からの相対位置はセンチメートル単位で測定可能であるため、GPSの絶対位置情報のみに基づいた従来型の方法と比較して正確な薬剤散布が可能である。もし、事前に設定した圃場マップと現状の圃場の形状に多少相違がある場合でも、画像認識により把握した現状の圃場の境界線に基づいて正確な薬剤散布を行なうことができる。 FIG. 6 shows an example of the drug spraying method in the second embodiment of the drug spraying system according to the present invention. The basic idea of the second embodiment and the first embodiment is the same, but in the first embodiment, a plurality of boundary line poles (103) (and) are located at the apex of the boundary line of the field (104). In some cases, the reference point pole (102)) is installed, whereas in the second embodiment, the boundary line pole (103) is not used and the reference point pole (102) is installed at an arbitrary position inside or outside the agricultural land. ) Is different (Fig. 6-a). The second embodiment is effective when it is difficult to install a pole on the apex of the agricultural land boundary. In the second embodiment, it is premised that the agricultural land map based on the map information and the like is created and saved in advance. In the second embodiment, the drone (101) is raised to an altitude at which the entire field can be overlooked as in the first embodiment (similar to FIG. 5-a). In general, the hue, saturation, and brightness of images taken from the sky differ greatly between the field and the outside of the field, so the boundary line of the field can be identified by image processing the image of the camera (205). By collating the field map saved in advance with the result of image processing, the relative position of the reference point pole (102) in the field was clarified, and thereafter, it is shown in FIGS. 5b and 5-c. Similarly, the drone (101) can be lowered to an altitude suitable for drug spraying, enabling accurate drug spraying. Since the relative position from the reference point pole (102) can be measured in centimeters, accurate drug spraying is possible as compared with the conventional method based only on the absolute position information of GPS. Even if there is a slight difference between the preset field map and the current field shape, accurate chemical spraying can be performed based on the current field boundary line grasped by image recognition.

本願発明に係る薬剤散布システムの第三の実施例では、第二の実施例に加えて、ドローン(101)が高度を変化させながら、圃場(104)の境界線をより正確に把握する。一般に、圃場を撮影する場合には、どの角度から撮影するかにより画像の状態が異なる。たとえば、水平方向に近い角度から撮影すると、苗が画像の大部分を占めるため緑一色に近い画像が撮影される。一方、垂直方向に近い角度から撮影すると水や地面の占める部分が多くなるため黒に近い画像が撮影される。ドローン(101)を高い位置から段階的に下降させていきながら、カメラ(205)によって圃場(104)を撮影していくことで、最も明確に農地の境界線を把握できるポイントを探し出すことができる。最も明確に農地の境界線を把握できるポイントとは、事前に保存した圃場マップの境界線と画像認識により得られた境界線との一致度が最も高くなるポイントである。画像認識により最も現状に近い農地マップが得られた後は、図5−bおよび図5−cと同様にして正確な薬剤散布を行なうことができる。もし、事前に設定した圃場マップと現状の圃場の形状に多少の相違がある場合でも、画像認識により把握した現状の圃場の境界線に基づいて正確な薬剤散布を行なうことができる。 In the third embodiment of the drug spraying system according to the present invention, in addition to the second embodiment, the drone (101) changes the altitude to more accurately grasp the boundary line of the field (104). Generally, when a field is photographed, the state of the image differs depending on the angle at which the image is photographed. For example, when an image is taken from an angle close to the horizontal direction, the seedlings occupy most of the image, so that an image close to green is taken. On the other hand, when shooting from an angle close to the vertical direction, the area occupied by water and the ground increases, so an image close to black is shot. By taking a picture of the field (104) with the camera (205) while gradually lowering the drone (101) from a high position, it is possible to find the point where the boundary line of the farmland can be grasped most clearly. .. The point at which the boundary line of the agricultural land can be grasped most clearly is the point where the degree of coincidence between the boundary line of the field map saved in advance and the boundary line obtained by image recognition is the highest. After the agricultural land map closest to the current state is obtained by image recognition, accurate chemical spraying can be performed in the same manner as in FIGS. 5-b and 5-c. Even if there is a slight difference between the preset field map and the current field shape, accurate chemical spraying can be performed based on the current field boundary line grasped by image recognition.

(本願発明による技術的に顕著な効果)
本願発明の第一の実施例では、事前に圃場の地形・位置情報が入手できていなくても、散布対象地域を動的に把握することができ、GPSによる絶対測位だけでは実現不可能であったセンチメートル単位での薬剤散布が可能になる。本願発明の第二の実施例および第三の実施例では、事前にある程度正確な圃場マップを保存しておくことを前提にして、ひとつの基準点ポールを農地内に設置するだけで、GPSによる絶対測位だけでは実現不可能であったセンチメートル単位での正確な薬剤散布が可能になる。ここで、事前に保存してあった圃場マップと現状の圃場の形状に多少相違がある場合でも、画像認識により把握した現状の圃場の境界線に基づいて正確な薬剤散布を行なうことができる。
(Technically remarkable effect of the present invention)
In the first embodiment of the present invention, even if the topography and position information of the field cannot be obtained in advance, the area to be sprayed can be dynamically grasped, which cannot be realized only by absolute positioning by GPS. It is possible to spray chemicals in centimeter units. In the second embodiment and the third embodiment of the present invention, on the premise that a somewhat accurate field map is stored in advance, only one reference point pole is installed in the farmland, and GPS is used. Accurate chemical spraying in centimeters, which was not possible with absolute positioning alone, will be possible. Here, even if there is a slight difference between the field map saved in advance and the shape of the current field, accurate chemical spraying can be performed based on the boundary line of the current field grasped by image recognition.

Claims (7)

無人飛行体の飛行制御方法であって、It is a flight control method for unmanned aerial vehicles.
カメラを備えた無人飛行体を、薬剤撒布対象圃場の全体を前記カメラで撮影可能な高度にまで上昇させる上昇ステップと、An ascending step that raises an unmanned aerial vehicle equipped with a camera to an altitude that allows the entire field to be sprayed with the camera to be photographed.
前記カメラによって撮影された映像に基づいて、前記薬剤撒布対象圃場の境界線の地図を作成する圃場境界線地図作成ステップと、A field boundary map creation step for creating a map of the boundary line of the field to be sprayed based on the image taken by the camera, and a field boundary map creation step.
前記境界線の地図にしたがって無人飛行体に前記境界線内への薬剤散布を行なわせる散布ステップとを含み、Including a spraying step of causing the unmanned aerial vehicle to spray the drug into the boundary according to the map of the boundary.
前記上昇ステップは、さらに、事前に保存された境界線地図と画像認識処理により得られた境界線地図との一致度が最も高くなる高度への調整を行う調整ステップを含む、The ascending step further includes an adjustment step for adjusting to the altitude at which the pre-stored boundary map and the boundary map obtained by the image recognition process have the highest degree of matching.
飛行制御方法。Flight control method.
前記圃場境界線地図作成ステップは、前記薬剤撒布対象圃場に設置されたポールの色を識別するステップをさらに含む、The field boundary mapping step further includes a step of identifying the color of a pole installed in the field to be sprayed.
請求項1に記載の飛行制御方法。The flight control method according to claim 1.
前記散布ステップは、GPS搬送波の位相に基づき測定された前記ポールからの相対位置に基づいて前記無人飛行体の位置を把握するステップをさらに含む、The spraying step further comprises the step of grasping the position of the unmanned aerial vehicle based on the relative position from the pole measured based on the phase of the GPS carrier.
請求項1、または、請求項2に記載の飛行制御方法。The flight control method according to claim 1 or 2.
無人飛行体の飛行制御プログラムであって、An unmanned aerial vehicle flight control program
前記無人飛行体を薬剤撒布対象圃場の全体を前記カメラで撮影可能な高度にまで上昇させる上昇命令と、An ascending command to raise the unmanned aerial vehicle to an altitude that can be photographed by the camera, and an ascending command to raise the entire field to be sprayed with the drug.
前記カメラによって撮影された映像に基づいて、前記薬剤撒布対象圃場の境界線の地図を作成する圃場境界線地図作成命令と、A field boundary map creation command for creating a map of the boundary line of the field to be sprayed with the chemical based on the image taken by the camera, and a field boundary map creation command.
前記境界線の地図にしたがって無人飛行体に前記境界線内への薬剤散布を行なわせる散布命令とをコンピューターに実行させ、The computer is made to execute a spraying command for the unmanned aerial vehicle to spray the drug within the boundary line according to the map of the boundary line.
前記上昇命令は、さらに、事前に保存された境界線地図と画像認識処理により得られた境界線地図との一致度が最も高くなる高度への調整を行う調整命令を含む、The ascending command further includes an adjustment command for adjusting to the altitude at which the pre-stored boundary map and the boundary map obtained by the image recognition process have the highest degree of matching.
飛行制御プログラム。Flight control program.
前記圃場境界線地図作成命令は、前記薬剤撒布対象農地に設置されたポールの色を識別する命令をさらに含む、The field boundary mapping command further includes a command for identifying the color of the pole installed on the farmland to be sprayed.
請求項4に記載の飛行制御プログラム。The flight control program according to claim 4.
前記散布命令は、GPS搬送波の位相に基づき測定された前記ポールからの相対位置に基づいて前記無人飛行体の位置を把握する命令をさらに含む、The spray command further includes a command to grasp the position of the unmanned aerial vehicle based on the relative position from the pole measured based on the phase of the GPS carrier.
請求項4、または、請求項5に記載の飛行制御プログラム。The flight control program according to claim 4 or 5.
カメラを備えた無人飛行体であって、An unmanned aerial vehicle equipped with a camera
圃場境界線地図保存手段と制御機能とを備え、Equipped with field boundary map storage means and control function
前記制御機能が、前記無人飛行体を薬剤撒布対象圃場の全体を前記カメラで撮影可能な高度にまで上昇させ、The control function raises the unmanned aerial vehicle to an altitude at which the entire field to be sprayed can be photographed by the camera.
前記制御機能が、前記カメラに前記薬剤撒布対圃場の全体を撮影させ、The control function causes the camera to photograph the entire field with the chemical spraying.
撮影した前記薬剤撒布対象圃場の画像から得られた圃場境界線の地図を前記圃場境界線地図保存手段に保存し、A map of the field boundary line obtained from the photographed image of the field to be sprayed with the chemical is stored in the field boundary line map storage means.
前記制御機能が、事前に保存された境界線地図と画像認識処理により得られた境界線地図との一致度が最も高くなるよう、前記無人飛行体の高度調整を行う、The control function adjusts the altitude of the unmanned aerial vehicle so that the degree of coincidence between the boundary line map saved in advance and the boundary line map obtained by the image recognition process is the highest.
無人飛行体。Unmanned aerial vehicle.
JP2018510642A 2016-04-08 2017-04-05 Drug spraying methods, programs, and equipment with unmanned aerial vehicles Active JP6842190B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016078367 2016-04-08
JP2016078367 2016-04-08
PCT/JP2017/014272 WO2017175804A1 (en) 2016-04-08 2017-04-05 Method for chemical spraying using unmanned aerial vehicle, program, and device

Publications (2)

Publication Number Publication Date
JPWO2017175804A1 JPWO2017175804A1 (en) 2019-02-14
JP6842190B2 true JP6842190B2 (en) 2021-03-24

Family

ID=60001213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018510642A Active JP6842190B2 (en) 2016-04-08 2017-04-05 Drug spraying methods, programs, and equipment with unmanned aerial vehicles

Country Status (2)

Country Link
JP (1) JP6842190B2 (en)
WO (1) WO2017175804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072930A (en) * 2021-11-18 2023-05-25 주식회사 제이슨랩 Drone flight system in which flight altitude is determined based on fusion sensor-based measurement area

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929190B2 (en) * 2017-10-18 2021-09-01 株式会社クボタ Work area determination system for autonomous traveling work machines
JP6948917B2 (en) * 2017-11-10 2021-10-13 ヤンマーパワーテクノロジー株式会社 Spraying machine
CN109839945B (en) * 2017-11-27 2022-04-26 北京京东乾石科技有限公司 Unmanned aerial vehicle landing method, unmanned aerial vehicle landing device and computer readable storage medium
CN109090076B (en) * 2018-06-14 2020-11-13 华南农业大学 Spraying planning method for unmanned aerial vehicle
CN112997129B (en) * 2018-10-03 2024-03-26 株式会社尼罗沃克 Travel path generation device, travel path generation method, computer-readable storage medium, and unmanned aerial vehicle
CN109445461A (en) * 2018-11-27 2019-03-08 山东理工大学 Single armed trellis type vineyard aerial pesticide operational method based on the fusion of agricultural machinery agronomy
CN109329252A (en) * 2018-11-27 2019-02-15 山东理工大学 Both arms trellis type vineyard aerial pesticide operational method based on the fusion of agricultural machinery agronomy
JP7017815B2 (en) * 2018-12-05 2022-02-09 株式会社ナイルワークス Mobile
CN109639944B (en) * 2018-12-18 2020-08-04 吉林大学 Farmland image acquisition device
CN109845715B (en) * 2019-03-06 2020-12-18 广州极飞科技有限公司 Pesticide spraying control method, device, equipment and storage medium
JP2020170213A (en) 2019-04-01 2020-10-15 株式会社スカイマティクス Drone-work support system and drone-work support method
JP7252615B2 (en) * 2019-06-03 2023-04-05 国立研究開発法人農業・食品産業技術総合研究機構 Information processing device, information processing method, program, and structure
KR102327378B1 (en) * 2020-03-12 2021-11-18 비클시스템주식회사 Drone of Snow removal Blower
CN111626148B (en) * 2020-05-09 2023-07-11 浙江数治空间规划设计有限公司 Unmanned aerial vehicle farmland checking method, unmanned aerial vehicle farmland checking system, intelligent terminal and storage medium
JPWO2021251441A1 (en) * 2020-06-10 2021-12-16

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371313A (en) * 1989-08-11 1991-03-27 Mitsubishi Agricult Mach Co Ltd Index device for running vehicle for work
JP3932222B2 (en) * 1998-02-23 2007-06-20 ヤンマー農機株式会社 Precision farming
JP3771052B2 (en) * 1998-06-26 2006-04-26 ニューデルタ工業株式会社 Radio-controlled helicopter drug spraying device
JP4284264B2 (en) * 2004-10-29 2009-06-24 富士重工業株式会社 Unmanned helicopter and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072930A (en) * 2021-11-18 2023-05-25 주식회사 제이슨랩 Drone flight system in which flight altitude is determined based on fusion sensor-based measurement area
KR102661675B1 (en) * 2021-11-18 2024-05-07 주식회사 제이슨랩 Drone flight system in which flight altitude is determined based on fusion sensor-based measurement area

Also Published As

Publication number Publication date
WO2017175804A1 (en) 2017-10-12
JPWO2017175804A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6842190B2 (en) Drug spraying methods, programs, and equipment with unmanned aerial vehicles
JP6621140B2 (en) Method and program for spraying medicine by unmanned air vehicle
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US9641810B2 (en) Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
US20220357753A1 (en) Drop-off location planning for delivery vehicle
Xiang et al. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV)
EP3119178B1 (en) Method and system for navigating an agricultural vehicle on a land area
ME et al. Quadcopter UAV based fertilizer and pesticide spraying system
WO2017065103A1 (en) Small unmanned aircraft control method
AU2021202509A1 (en) Image based localization for unmanned aerial vehicles, and associated systems and methods
US20190110461A1 (en) Method and apparatus for identifying, locating and scaring away birds
WO2018189848A1 (en) Method for spraying chemical by unmanned flight vehicle, and program
CN206804018U (en) Environmental data server, unmanned vehicle and alignment system
KR20170059893A (en) Drone comprising self camera
KR20200089333A (en) Automatic camera-driven aircraft control for radar activation
CN111142546A (en) Multi-rotor unmanned aerial vehicle accurate landing guiding system and method
JP2020138681A (en) Control system for unmanned flight vehicle
KR101908340B1 (en) Method for controling real time of working object unmanned and working flight vehicle for agriculture
US10013611B2 (en) System and method for preparing an aerial hydrological-assay for golf courses
KR20190076227A (en) Automatic Obstacle Avoidance and Full automatic flight control method of Agricultrual Drone
Wubben et al. A vision-based system for autonomous vertical landing of unmanned aerial vehicles
JP6393157B2 (en) Spacecraft search and recovery system
RU2800212C1 (en) Automated system for introducing consumables during field agricultural works
US20230418310A1 (en) Automatic landing system for vertical take-off and landing aircraft, vertical take-off and landing aircraft, and landing control method for vertical take-off and landing aircraft
WO2023139628A1 (en) Area setting system and area setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6842190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250