JP6836716B2 - Friction material composition - Google Patents

Friction material composition Download PDF

Info

Publication number
JP6836716B2
JP6836716B2 JP2017030810A JP2017030810A JP6836716B2 JP 6836716 B2 JP6836716 B2 JP 6836716B2 JP 2017030810 A JP2017030810 A JP 2017030810A JP 2017030810 A JP2017030810 A JP 2017030810A JP 6836716 B2 JP6836716 B2 JP 6836716B2
Authority
JP
Japan
Prior art keywords
friction material
friction
material composition
mass
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030810A
Other languages
Japanese (ja)
Other versions
JP2018135446A (en
Inventor
陽 熊沢
陽 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017030810A priority Critical patent/JP6836716B2/en
Publication of JP2018135446A publication Critical patent/JP2018135446A/en
Application granted granted Critical
Publication of JP6836716B2 publication Critical patent/JP6836716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Braking Arrangements (AREA)

Description

本発明は、自動車等の制動に用いられるディスクブレーキパッド等の摩擦材に適した摩擦材組成物、特にアスベストを含まないノンアスベスト摩擦材組成物に関する。また、該摩擦材組成物を用いた摩擦材および摩擦部材に関する。 The present invention relates to a friction material composition suitable for a friction material such as a disc brake pad used for braking an automobile or the like, particularly a non-asbestos friction material composition containing no asbestos. Further, the present invention relates to a friction material and a friction member using the friction material composition.

自動車等には、その制動のためにディスクブレーキパッド、ブレーキライニング等の摩擦材が使用されている。摩擦材は、ディスクローター、ブレーキドラム等の対面材と摩擦することにより、制動の役割を果たしている。そのため、摩擦材には、良好な摩擦係数、耐摩耗性(摩擦材の寿命が長いこと)、強度、音振性(ブレーキ鳴きおよび異音が発生しにくいこと)等が要求される。摩擦係数は車速、減速度およびブレーキ温度によらず安定であることが要求される。 Friction materials such as disc brake pads and brake linings are used for braking in automobiles and the like. The friction material plays a role of braking by rubbing against a facing material such as a disc rotor and a brake drum. Therefore, the friction material is required to have a good friction coefficient, wear resistance (long life of the friction material), strength, sound vibration property (less likely to generate brake squeal and abnormal noise), and the like. The coefficient of friction is required to be stable regardless of vehicle speed, deceleration and braking temperature.

このような摩擦材について、近年では、摩擦材中に使用される銅が、ブレーキの摩耗粉として飛散し、河川、湖および海洋汚染等の原因と疑われており、使用を制限する動きが高まっている。 Regarding such friction materials, in recent years, copper used in the friction materials is scattered as brake wear powder and is suspected to be a cause of river, lake and marine pollution, and there is a growing movement to restrict the use of such friction materials. ing.

このような銅の使用を制限する動きの中、銅を含有しない摩擦材組成における熱伝導率および耐摩耗性を改善するために、熱伝導の高い黒鉛および酸化マグネシウムを添加する手法が提案されている(特許文献1)。 In such a movement to limit the use of copper, a method of adding graphite and magnesium oxide having high thermal conductivity has been proposed in order to improve the thermal conductivity and wear resistance in the friction material composition containing no copper. (Patent Document 1).

特開2003−322183号公報Japanese Unexamined Patent Publication No. 2003-322183

銅は繊維および粉末の形態で摩擦材に配合され、熱伝導率の付与および耐摩耗性改善に有効な成分である。銅を含有しない組成においては、熱伝導率が低下するため、高温での制動時に摩擦界面の熱が拡散せずに、摩擦材の摩耗量の増大、不均一な温度上昇が原因のブレーキ振動の発生等が増加するといった問題がある。このため、単純に、銅を除くだけでは熱伝導が低下し、高温制動時における摩擦係数の低下および耐摩耗性の悪化により、適用車種が限定されてしまう。 Copper is compounded in the friction material in the form of fibers and powder, and is an effective component for imparting thermal conductivity and improving wear resistance. In a composition that does not contain copper, the thermal conductivity decreases, so the heat at the friction interface does not diffuse during braking at high temperatures, and the amount of wear of the friction material increases, resulting in uneven temperature rise. There is a problem that the occurrence etc. increases. For this reason, simply removing copper reduces the thermal conductivity, and the applicable vehicle types are limited due to the decrease in the friction coefficient and the deterioration in wear resistance during high-temperature braking.

この点、特許文献1は、銅を含有しない摩擦材組成における熱伝導率および耐摩耗性を改善するために、熱伝導の高い黒鉛および酸化マグネシウムを添加するものであるが、多量の黒鉛の添加は摩擦係数の低下を引き起こし、ブレーキの重要特性である制動性能が損なわれることとなる。 In this regard, Patent Document 1 adds graphite and magnesium oxide having high thermal conductivity in order to improve the thermal conductivity and wear resistance in the friction material composition containing no copper, but adds a large amount of graphite. Causes a decrease in the friction coefficient, and the braking performance, which is an important characteristic of the brake, is impaired.

このことから、本発明の摩擦材組成物は、環境に対して有害であると疑われている銅を含有せずとも、熱伝導性が高く、高温制動時の耐摩耗性、通常時とフェード時の摩擦係数の確保を両立する摩擦材組成物を得ることを課題とする。 From this, the friction material composition of the present invention has high thermal conductivity, wear resistance during high-temperature braking, and normal and fade, even if it does not contain copper, which is suspected to be harmful to the environment. An object of the present invention is to obtain a friction material composition capable of ensuring a friction coefficient at the time.

上記課題を解決する本発明の摩擦材組成物は、結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、前記摩擦材組成物中に銅を含まず、または銅の含有量が0.5質量%以下であり、酸化マグネシウムを含有し、かつ黒鉛およびコークスを含有し、前記黒鉛および前記コークスは、粗粒物と微粒物の組合せで含有し、粗粒物は平均粒子径が150〜600μmであり、微粒物は平均粒子径が100μm以下であるものとする。 The friction material composition of the present invention for solving the above problems is a friction material composition containing a binder, an organic filler, an inorganic filler and a fiber base material, and the friction material composition does not contain copper. Alternatively, the copper content is 0.5% by mass or less, magnesium oxide is contained, and graphite and coke are contained, and the graphite and coke are contained in a combination of coarse particles and fine particles, and coarse particles are contained. It is assumed that the material has an average particle size of 150 to 600 μm, and the fine particle material has an average particle size of 100 μm or less.

本発明の摩擦材組成物は、前記黒鉛は平均粒子径が150〜600μmであり、前記コークスは平均粒子径が200〜600μmと、平均粒子径が100μm以下の二種類を含有することが好ましい。また、摩擦材組成物全量に対し、前記酸化マグネシウムを3〜13質量%含有し、黒鉛とコークスを合計4〜15質量%含有することが好ましい。さらに、本発明の摩擦材組成物は、酸化亜鉛を含有することが好ましく、この場合に、摩擦材組成物全量に対し、前記酸化亜鉛を2〜10質量%含有することがより好ましい。 In the friction material composition of the present invention, the graphite preferably has an average particle size of 150 to 600 μm, and the coke preferably contains two types, an average particle size of 200 to 600 μm and an average particle size of 100 μm or less. Further, it is preferable that magnesium oxide is contained in an amount of 3 to 13% by mass and graphite and coke are contained in a total amount of 4 to 15% by mass with respect to the total amount of the friction material composition. Further, the friction material composition of the present invention preferably contains zinc oxide, and in this case, it is more preferable to contain 2 to 10% by mass of the zinc oxide with respect to the total amount of the friction material composition.

本発明によれば、自動車用ディスクブレーキパッド等の摩擦材に用いた際に、環境負荷の高い銅を用いることなく、熱伝導率、耐摩耗性、通常時とフェード時における摩擦係数が両立して高い摩擦材組成物、摩擦材および摩擦部材を提供することができる。 According to the present invention, when used as a friction material for automobile disc brake pads and the like, heat conductivity, wear resistance, and friction coefficient during normal and fade times are compatible without using copper, which has a high environmental load. Higher friction material compositions, friction materials and friction members can be provided.

以下、本発明の摩擦材組成物、これを用いた摩擦材および摩擦部材について詳述する。なお、本発明の摩擦材組成物は、アスベストを含まない、いわゆるノンアスベスト摩擦材組成物である。 Hereinafter, the friction material composition of the present invention, the friction material using the friction material composition, and the friction member will be described in detail. The friction material composition of the present invention is a so-called non-asbestos friction material composition that does not contain asbestos.

また、本発明の摩擦材組成物は、結合材、有機充填材、無機充填材および繊維基材を含有するとともに、アスベストを実質的に含まない摩擦材組成物であって、該摩擦材組成物中に銅を含有しない、または銅を含有する場合であっても銅の含有量が銅元素として0.5質量%以下と極微量であるため、制動時に発生する摩耗粉によって、河川、湖および海洋等が汚染される虞がないものである。 Further, the friction material composition of the present invention is a friction material composition containing a binder, an organic filler, an inorganic filler and a fiber base material and substantially free of asbestos, and the friction material composition. Since the content of copper is as small as 0.5% by mass or less as a copper element even if it does not contain copper or contains copper, the wear debris generated during braking causes rivers, lakes and the like. There is no risk of polluting the ocean.

(無機充填材)
本発明の摩擦材組成物は、無機充填材として、酸マグネシウム、黒鉛、コークスおよび酸化亜鉛を含有する。これらはいずれも熱伝導率が高い物質であり、銅に替わり、高温での制動時に摩擦界面で発生する熱を拡散させて、摩擦材の摩耗量の増大および不均一な温度上昇を防止し、ブレーキ振動の発生を抑制する。
(Inorganic filler)
The friction material composition of the present invention contains magnesium acid, graphite, coke and zinc oxide as an inorganic filler. All of these are substances with high thermal conductivity, and instead of copper, they diffuse the heat generated at the friction interface during braking at high temperatures to prevent an increase in the amount of friction material wear and a non-uniform temperature rise. Suppresses the occurrence of brake vibration.

黒鉛およびコークスはともに、粗粒物ほど耐摩耗性に優れる。微粒物は摩擦材中で熱伝導経路を形成しやすく、熱伝導性を向上しやすい。このため、黒鉛およびコークスを平均粒子径が150〜600μmの粗粒物と平均粒子径が100μm以下の微粒物により構成すると、高い熱伝導性と耐摩耗性をともに確保することができる。この場合、黒鉛はコークスに比べ潤滑性能に優れるため、耐摩耗性が高いので、黒鉛を粗粒物(平均粒子径:150〜600μm)とし、コークスを平均粒子径が200〜600μmと、平均粒子径が100μm以下の二種類により構成することがより好ましい。 Both graphite and coke have better wear resistance as coarse particles. The fine particles easily form a heat conduction path in the friction material and easily improve the heat conductivity. Therefore, when graphite and coke are composed of coarse particles having an average particle diameter of 150 to 600 μm and fine particles having an average particle diameter of 100 μm or less, both high thermal conductivity and abrasion resistance can be ensured. In this case, since graphite is superior in lubrication performance to coke and has high wear resistance, graphite is used as a coarse particle (average particle size: 150 to 600 μm), and coke has an average particle size of 200 to 600 μm, which is an average particle. It is more preferable to use two types having a diameter of 100 μm or less.

なお、本発明における平均粒子径は、レーザー回折粒度分布測定などの方法を用いて測定することができる。例えば、レーザー回折/散乱式粒子径分布測定装置、商品名:LA・920(株式会社堀場製作所製)で測定することができる。また、JIS B 4130等に代表されるふるい分級によって測定することもできる。 The average particle size in the present invention can be measured by using a method such as laser diffraction particle size distribution measurement. For example, it can be measured with a laser diffraction / scattering type particle size distribution measuring device, trade name: LA.920 (manufactured by HORIBA, Ltd.). It can also be measured by sieving classification represented by JIS B 4130 or the like.

黒鉛およびコークスの合計含有量は、過少であると熱伝導が確保できず高温時の摩耗性能を発揮できない虞がある。一方、過大であると、潤滑特性が大きくなり、通常時の摩擦係数が低下する虞がある。この観点から、黒鉛およびコークスの合計含有量を摩擦材組成物全量に対し4〜15質量%とすることが好ましい。また、効きと摩耗の両立を考慮すると、6〜12質量%がより好ましい。 If the total content of graphite and coke is too small, heat conduction cannot be ensured and there is a risk that wear performance at high temperatures cannot be exhibited. On the other hand, if it is excessive, the lubrication characteristics may be increased and the friction coefficient at normal times may be lowered. From this viewpoint, the total content of graphite and coke is preferably 4 to 15% by mass with respect to the total amount of the friction material composition. Further, considering both effectiveness and wear, 6 to 12% by mass is more preferable.

本発明における黒鉛は、摩擦材に通常用いられるものを使用することができ、天然黒鉛または人造黒鉛いずれでもよい。 As the graphite in the present invention, those usually used as a friction material can be used, and either natural graphite or artificial graphite may be used.

コークスの種類には石炭コークスと石油コークスがあり、いずれも使用することができ、黒鉛に比べ結晶性は劣るがより安価である。また、黒鉛とコークスにおける粗粒物と微粒物の体積比率は5:1〜1:3の範囲が好ましい。耐摩耗性と熱伝導性の両立を考慮すると4:1〜1:1がより好ましい。また耐摩耗性、熱伝導性、価格を考慮すると、粗粒物として黒鉛を適用し、微粒物としてコークスを適用するのがより好ましい。 There are two types of coke, coal coke and petroleum coke, both of which can be used and are inferior in crystallinity to graphite but cheaper. The volume ratio of coarse particles to fine particles in graphite and coke is preferably in the range of 5: 1 to 1: 3. Considering both wear resistance and thermal conductivity, 4: 1 to 1: 1 is more preferable. Further, considering wear resistance, thermal conductivity, and price, it is more preferable to apply graphite as a coarse particle and coke as a fine particle.

本発明の摩擦材組成物は、上記の黒鉛およびコークスとともに、酸化マグネシウムを含有する。酸化マグネシウムはモース硬度6程度で、相手材の鋳鉄がモース硬度4であるため摩擦係数を向上できる。またセラミック粒子として高い熱伝導性を有するため摩擦材の熱伝導性を確保にすることができる。本発明における酸化マグネシウムは、一般に用いられているものでよく、活性酸化マグネシウムおよび電融酸化マグネシウムのいずれでもよい。酸化マグネシウムの配合量が過少であると高い摩擦係数と熱伝導性を保持できない虞がある。一方、過多となると酸化マグネシウムによる相手材の攻撃性が高まり、相手材摩耗粉による影響で摩擦材自身の耐摩耗性も悪化する虞がある。この観点から、酸化マグネシウムの含有量は摩擦材組成物全量に対し3〜13質量%含有することが好ましい。また、摩擦係数、熱伝導性、耐摩耗性の両立を考慮すると4〜7質量%がより好ましい。 The friction material composition of the present invention contains magnesium oxide together with the above-mentioned graphite and coke. Magnesium oxide has a Mohs hardness of about 6, and the cast iron of the mating material has a Mohs hardness of 4, so that the coefficient of friction can be improved. Further, since the ceramic particles have high thermal conductivity, the thermal conductivity of the friction material can be ensured. The magnesium oxide in the present invention may be generally used and may be either active magnesium oxide or fused magnesium oxide. If the amount of magnesium oxide is too small, it may not be possible to maintain a high coefficient of friction and thermal conductivity. On the other hand, if the amount is excessive, the aggression of the mating material due to magnesium oxide increases, and the abrasion resistance of the friction material itself may deteriorate due to the influence of the mating material wear powder. From this viewpoint, the content of magnesium oxide is preferably 3 to 13% by mass with respect to the total amount of the friction material composition. Further, 4 to 7% by mass is more preferable in consideration of both friction coefficient, thermal conductivity and wear resistance.

上記酸化マグネシウムの平均粒子径は1〜10μmが好ましく、さらに好ましくは2〜5μmである。 The average particle size of the magnesium oxide is preferably 1 to 10 μm, more preferably 2 to 5 μm.

本発明の摩擦材組成物は、上記の黒鉛およびコークス、酸化マグネシウムとともに、酸化亜鉛を含有することが好ましい。酸化亜鉛はセラミック粒子として高い熱伝導性を有し、摩擦材の熱伝導性を確保するため、フェード時の摩擦係数を安定させることができる。酸化亜鉛の含有量は、過少であると、フェード時の摩擦係数を保持できない虞がある。一方、過大となると、高速制動時の摩耗が悪化する虞がある。この観点から、酸化亜鉛の含有量は、摩擦材組成物全量に対し2〜10質量%とすることが好ましく、2〜6質量%とすることがより好ましい。本発明における酸化亜鉛は一般に用いられているものでよい。形状としては粒子状のものが好ましく、さらに粒子径は0.1〜3μmのものが好ましい。 The friction material composition of the present invention preferably contains zinc oxide together with the above-mentioned graphite, coke and magnesium oxide. Zinc oxide has high thermal conductivity as ceramic particles and secures the thermal conductivity of the friction material, so that the coefficient of friction at the time of fading can be stabilized. If the zinc oxide content is too low, the coefficient of friction at the time of fading may not be maintained. On the other hand, if it becomes excessive, there is a risk that wear during high-speed braking will worsen. From this viewpoint, the content of zinc oxide is preferably 2 to 10% by mass, more preferably 2 to 6% by mass, based on the total amount of the friction material composition. The zinc oxide in the present invention may be a commonly used one. The shape is preferably particulate, and the particle size is preferably 0.1 to 3 μm.

本発明のノンアスベスト摩擦材組成物は、上記黒鉛、コークス、酸化マグネシウム、酸化亜鉛以外の無機充填材をさらに含有することができる。含有することができる無機充填材としては、通常摩擦材に用いられる無機充填材であれば特に制限はない。 The non-asbestos friction material composition of the present invention can further contain an inorganic filler other than the above-mentioned graphite, coke, magnesium oxide and zinc oxide. The inorganic filler that can be contained is not particularly limited as long as it is an inorganic filler that is usually used as a friction material.

上記無機充填材としては、例えば、硫化錫、硫化ビスマス、二硫化モリブデン、硫化鉄、三硫化アンチモン、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、硫酸バリウム、マイカ、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ムライト、クロマイト、酸化チタン、シリカ、ドロマイト、炭酸カルシウム、炭酸マグネシウム、粒状または板状のチタン酸塩、珪酸ジルコニウム、γアルミナ、二酸化マンガン、四三酸化鉄、酸化セリウム、ジルコニア等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。粒状または板状のチタン酸塩としては、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム、チタン酸ナトリウム等を用いることができる。上記無機充填材は、摩擦材の耐熱性の悪化を避けるため、および耐摩耗性を向上させるため、摩擦係数を向上する目的で添加される摩擦調整材として含まれるものである。 Examples of the inorganic filler include tin sulfide, bismuth sulfide, molybdenum disulfide, iron sulfide, antimony trisulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, barium sulfate, mica, vermiculite, calcium sulfate, and talc. , Clay, zeolite, mulite, chromate, titanium oxide, silica, dolomite, calcium carbonate, magnesium carbonate, granular or plate-shaped titanate, zirconium silicate, γ-alumina, manganese dioxide, iron tetraoxide, cerium oxide, zirconia, etc. Can be used, and these can be used alone or in combination of two or more. As the granular or plate-shaped titanate, potassium hexatitanate, potassium octatitate, potassium titanate, magnesium magnesium titanate, sodium titanate and the like can be used. The inorganic filler is included as a friction adjusting material added for the purpose of improving the friction coefficient in order to avoid deterioration of the heat resistance of the friction material and to improve the wear resistance.

本発明の摩擦材組成物中における、無機充填材の含有量は、30〜80質量%であることが好ましく、40〜70質量%であることがより好ましく、50〜60質量%であることが特に好ましい。無機充填材の含有量を30〜80質量%の範囲とすることで、耐熱性の悪化を避けることができ、摩擦材のその他成分の含有量バランスの点でも好ましい。 The content of the inorganic filler in the friction material composition of the present invention is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, and preferably 50 to 60% by mass. Especially preferable. By setting the content of the inorganic filler in the range of 30 to 80% by mass, deterioration of heat resistance can be avoided, and it is also preferable in terms of the content balance of other components of the friction material.

(結合材)
結合材は、摩擦材用組成物に含まれる有機充填材、無機充填材および繊維基材等を一体化し、強度を与えるものである。本発明の摩擦材用組成物に含まれる結合材としては、特に制限は無く、通常、摩擦材の結合材として用いられる熱硬化性樹脂を用いることができる。
(Binder)
The binder integrates the organic filler, the inorganic filler, the fiber base material, and the like contained in the friction material composition to give strength. The binder contained in the composition for a friction material of the present invention is not particularly limited, and a thermosetting resin usually used as a binder for a friction material can be used.

上記熱硬化性樹脂としては、例えば、(1)フェノール樹脂、(2)アクリルエラストマー分散フェノール樹脂およびシリコーンエラストマー分散フェノール樹脂等の各種エラストマー分散フェノール樹脂、(3)アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂およびアルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂などが挙げられ、これらを単独でまたは2種類以上を組み合わせて使用することができる。特に、良好な耐熱性、成形性および摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。 Examples of the thermocurable resin include (1) phenol resin, (2) various elastomer-dispersed phenolic resins such as acrylic elastomer-dispersed phenolic resin and silicone elastomer-dispersed phenolic resin, (3) acrylic-modified phenolic resin, and silicone-modified phenolic resin. , Various modified phenolic resins such as cashew-modified phenolic resin, epoxy-modified phenolic resin and alkylbenzene-modified phenolic resin, and these can be used alone or in combination of two or more. In particular, it is preferable to use a phenol resin, an acrylic-modified phenol resin, a silicone-modified phenol resin, or an alkylbenzene-modified phenol resin because it provides good heat resistance, moldability, and a coefficient of friction.

本発明の摩擦材組成物中における、結合材の含有量は、5〜20質量%であることが好ましく、5〜10質量%であることがより好ましい。結合材の含有量を5〜20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化をより抑制できる。 The content of the binder in the friction material composition of the present invention is preferably 5 to 20% by mass, and more preferably 5 to 10% by mass. By setting the content of the binder in the range of 5 to 20% by mass, it is possible to further suppress the decrease in the strength of the friction material, and the porosity of the friction material is reduced and the elastic modulus is increased, resulting in noise such as squealing. Deterioration of vibration performance can be further suppressed.

(有機充填材)
有機充填材は、摩擦材の音振性能および耐摩耗性等を向上させるための摩擦調整材として含まれるものである。本発明の摩擦材組成物に含まれる有機充填材としては、上記性能を発揮できるものであれば特に制限はなく、通常、有機充填材として用いられる、カシューダスト、ゴム成分等を用いることができる。
(Organic filler)
The organic filler is included as a friction adjusting material for improving the sound vibration performance and wear resistance of the friction material. The organic filler contained in the friction material composition of the present invention is not particularly limited as long as it can exhibit the above performance, and cashew dust, a rubber component, etc., which are usually used as an organic filler, can be used. ..

上記カシューダストは、カシューナッツシェルオイルを硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。 The cashew dust may be any one usually used as a friction material, which is obtained by crushing a hardened cashew nut shell oil.

上記ゴム成分としては、例えば、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)、塩素化ブチルゴム、ブチルゴム、シリコーンゴム等が挙げられ、これらを単独でまたは2種類以上を組み合わせて使用される。また、古タイヤを破砕したタイヤゴムを単独または上記のゴムと組み合わせて使用してもよい。 Examples of the rubber component include acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber), chlorinated butyl rubber, butyl rubber, silicone rubber, etc., and these may be used alone or in combination of two or more. Used in combination. Further, the tire rubber obtained by crushing the old tire may be used alone or in combination with the above rubber.

本発明の摩擦材組成物中における、有機充填材の含有量は、1〜20質量%であることが好ましく、1〜10質量%であることがより好ましく、3〜8質量%であることが特に好ましい。有機充填材の含有量を1〜20質量%の範囲とすることで、摩擦材の弾性率が高くなること、鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。 The content of the organic filler in the friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and preferably 3 to 8% by mass. Especially preferable. By setting the content of the organic filler in the range of 1 to 20% by mass, the elastic modulus of the friction material becomes high, deterioration of sound vibration performance such as squeal can be avoided, and deterioration of heat resistance and heat can be avoided. It is possible to avoid a decrease in strength due to history.

(繊維基材)
繊維基材は、摩擦材において補強作用を示すものである。本発明の摩擦材組成物は、通常、繊維基材として用いられる、無機繊維、金属繊維、有機繊維、炭素系繊維等を用いることができ、これらを単独でまたは二種類以上を組み合わせて使用することができる。
(Fiber base material)
The fiber base material exhibits a reinforcing action in the friction material. In the friction material composition of the present invention, inorganic fibers, metal fibers, organic fibers, carbon-based fibers and the like, which are usually used as a fiber base material, can be used, and these are used alone or in combination of two or more. be able to.

上記無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、ガラス繊維、シリケート繊維等を用いることができ、1種または2種以上を組み合わせて用いることができる。これら、無機繊維の中では、SiO2、Al23、CaO、MgO、FeO、Na2O等を任意の組み合わせで含有した生分解性鉱物繊維が好ましく、市販品としてはLAPINUS FIBERS B.V製のRoxulシリーズ等が挙げられる。 As the inorganic fiber, ceramic fiber, biodegradable ceramic fiber, mineral fiber, glass fiber, silicate fiber and the like can be used, and one kind or a combination of two or more kinds can be used. Among these inorganic fibers, biodegradable mineral fibers containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc. in any combination are preferable, and commercially available products are manufactured by LAPINUS FIBERS BV. Examples include the Roxul series.

上記金属繊維としては、通常、摩擦材に用いられるものであれば特に制限はなく、例えば、アルミ、鉄、鋳鉄、亜鉛、錫、チタン、ニッケル、マグネシウム、シリコン、銅、黄銅等の金属または合金を主成分とする繊維を用いることができる。また、これらの金属若しくは合金は、繊維形状以外に、粉末の形状で含有してもよい。しかし、銅および銅を含有する合金は、環境有害性の観点で含有しないことが好ましい。 The metal fiber is not particularly limited as long as it is usually used as a friction material, and is, for example, a metal or alloy such as aluminum, iron, cast iron, zinc, tin, titanium, nickel, magnesium, silicon, copper, and brass. A fiber containing the above as a main component can be used. Further, these metals or alloys may be contained in the form of powder in addition to the fiber shape. However, copper and copper-containing alloys are preferably not contained from the viewpoint of environmental hazards.

上記有機繊維としては、アラミド繊維、セルロース繊維、アクリル繊維、フェノール樹脂繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 As the organic fiber, aramid fiber, cellulose fiber, acrylic fiber, phenol resin fiber and the like can be used, and these can be used alone or in combination of two or more.

上記炭素系繊維としては、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。 As the carbon-based fiber, flame-resistant fiber, pitch-based carbon fiber, PAN-based carbon fiber, activated carbon fiber and the like can be used, and these can be used alone or in combination of two or more.

本発明の摩擦材組成物における、繊維基材の含有量は、摩擦材組成物において5〜40質量%であることが好ましく、5〜20質量%であることがより好ましく、5〜15質量%であることが特に好ましい。繊維基材の含有量を5〜40質量%の範囲とすることで、摩擦材としての最適な気孔率が得られ、鳴き防止ができ、適正な材料強度が得られ、耐摩耗性を発現し、成形性をよくすることができる。 The content of the fiber base material in the friction material composition of the present invention is preferably 5 to 40% by mass, more preferably 5 to 20% by mass, and 5 to 15% by mass in the friction material composition. Is particularly preferable. By setting the content of the fiber base material in the range of 5 to 40% by mass, the optimum porosity as a friction material can be obtained, squeal can be prevented, appropriate material strength can be obtained, and wear resistance is exhibited. , The moldability can be improved.

[摩擦材]
本実施形態の摩擦材は、本発明の摩擦材組成物を一般に使用されている方法で成形して製造することができ、好ましくは加熱加圧成形して製造される。詳細には、例えば、本発明の摩擦材組成物をレーディゲミキサー(「レーディゲ」は登録商標)、加圧ニーダー、アイリッヒミキサー(「アイリッヒ」は登録商標)等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度130〜160℃、成形圧力20〜50MPa、成形時間2〜10分間の条件で成形し、得られた成形物を150〜250℃で2〜10時間熱処理することで製造される。また更に、必要に応じて塗装、スコーチ処理、研磨処理を行うことで製造される。
[Friction material]
The friction material of the present embodiment can be produced by molding the friction material composition of the present invention by a commonly used method, and is preferably produced by heat and pressure molding. Specifically, for example, the friction material composition of the present invention is uniformly mixed using a mixer such as a Raydige mixer (“Ledigge” is a registered trademark), a pressurized kneader, and an Erich mixer (“Eirich” is a registered trademark). This mixture is premolded with a molding die, and the obtained premolded product is molded under the conditions of a molding temperature of 130 to 160 ° C., a molding pressure of 20 to 50 MPa, and a molding time of 2 to 10 minutes. It is produced by heat-treating the molded product at 150 to 250 ° C. for 2 to 10 hours. Furthermore, it is manufactured by performing painting, scorch treatment, and polishing treatment as necessary.

[摩擦部材]
本実施形態の摩擦部材は、上記の本実施形態の摩擦材を摩擦面となる摩擦材として用いてなる。上記摩擦部材としては、例えば、下記の構成が挙げられる。
(1)摩擦材のみの構成。
(2)裏金と、該裏金の上に摩擦面となる本発明の摩擦材組成物からなる摩擦材とを有する構成。
(3)上記(2)の構成において、裏金と摩擦材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層および裏金と摩擦材との接着を目的とした接着層を更に介在させた構成。
[Friction member]
The friction member of the present embodiment uses the above-mentioned friction material of the present embodiment as a friction material serving as a friction surface. Examples of the friction member include the following configurations.
(1) Consists of only friction material.
(2) A configuration having a back metal and a friction material made of the friction material composition of the present invention serving as a friction surface on the back metal.
(3) In the configuration of (2) above, between the back metal and the friction material, a primer layer for surface modification to enhance the adhesive effect of the back metal and adhesion for adhesion between the back metal and the friction material. A configuration with additional layers.

上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属または繊維強化プラスチック等、具体的には、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチック等が挙げられる。プライマー層および接着層は、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。 The back metal is usually used as a friction member in order to improve the mechanical strength of the friction member, and the material is metal, fiber reinforced plastic, or the like, specifically, iron, stainless steel, or inorganic fiber reinforced plastic. , Carbon fiber reinforced plastic and the like. The primer layer and the adhesive layer may be those usually used for friction members such as brake shoes.

本実施形態の摩擦材組成物は、熱伝導率、耐摩耗性、摩擦係数に優れるため、自動車等のディスクブレーキパッド、ブレーキライニング等の上張り材として特に有用であるが、摩擦部材の下張り材として成形して用いることもできる。なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近のせん断強度、耐クラック性向上等を目的とした層のことである。 Since the friction material composition of the present embodiment is excellent in thermal conductivity, wear resistance, and friction coefficient, it is particularly useful as an upholstery material for disc brake pads, brake linings, etc. of automobiles, etc., but is an underlay material for friction members. It can also be molded and used as. The "upholstery material" is a friction material that serves as a friction surface of the friction member, and the "underlay material" is a friction material that is interposed between the friction material that is the friction surface of the friction member and the back metal. It is a layer for the purpose of improving shear strength and crack resistance in the vicinity of the adhesive portion with the back metal.

以下、本発明の摩擦材組成物、摩擦材および摩擦部材について、実施例および比較例を用いてさらに詳細に説明するが、本発明は何らこれらに制限されるものではない。 Hereinafter, the friction material composition, the friction material, and the friction member of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

表1および表2に示す配合比率(質量%)に従って材料を配合し、実施例1〜13および比較例1〜3の摩擦材組成物を得た。なお、表中の各成分の配合量の単位は、摩擦材組成物中の質量%である。この摩擦材組成物をレーディゲミキサー(株式会社マツボー社製、商品名:レーディゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形し、得られた予備成形物を成形温度150℃、成形圧力30MPaの条件で5分間成形プレス(三起精工株式会社製)を用いて鋼製の裏金と共に加熱加圧成形し、得られた成形品を200℃で4.5時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ11mm、摩擦材投影面積52cm2)を得た。作製したディスクブレーキパッドについて、下記方法により評価を行った結果を表1〜3に示す。 The materials were blended according to the blending ratios (mass%) shown in Tables 1 and 2 to obtain friction material compositions of Examples 1 to 13 and Comparative Examples 1 to 3. The unit of the blending amount of each component in the table is mass% in the friction material composition. This friction material composition is mixed with a Ladyge mixer (manufactured by Matsubo Co., Ltd., trade name: Ladyge mixer M20), and this mixture is premolded with a molding press (manufactured by Oji Kikai Kogyo Co., Ltd.) to obtain the obtained product. The pre-molded product was heat-press molded together with a steel backing using a molding press (manufactured by Sanki Seiko Co., Ltd.) for 5 minutes under the conditions of a molding temperature of 150 ° C. and a molding pressure of 30 MPa, and the obtained molded product was 200 ° C. The mixture was heat-treated for 4.5 hours, polished using a rotary polishing machine, and scorch-treated at 500 ° C. to obtain a disc brake pad (friction material thickness 11 mm, friction material projected area 52 cm 2 ). Tables 1 to 3 show the results of evaluation of the produced disc brake pads by the following methods.

なお、実施例において用いた黒鉛(粗粒)は平均粒子径:8μm、黒鉛(微粒)は平均粒子径:350μm、コークス(粗粒)は平均粒子径:30μm、コークス(微粒)は平均粒子径:300μmであり、酸化マグネシウムは平均粒子径:3μmである。 The graphite (coarse particles) used in the examples had an average particle diameter of 8 μm, the graphite (fine particles) had an average particle diameter of 350 μm, the coke (coarse particles) had an average particle diameter of 30 μm, and the coke (fine particles) had an average particle diameter. : 300 μm, and magnesium oxide has an average particle size: 3 μm.

(熱伝導率)
京都電子工業株式会社製Kemtherm QTM-D3を用い、ブレーキパッドの摩擦材表面の熱伝導率をプローブ法で測定した。評価にあたっては、熱伝導率が、1.1W/(m・K)以上を「◎」、1.0W/(m・K)以上かつ1.1W/(m・K)未満を「○」、1.0W/(m・K)未満を「×」として評価した。
(Thermal conductivity)
Using Kemtarm QTM-D3 manufactured by Kyoto Denshi Kogyo Co., Ltd., the thermal conductivity of the friction material surface of the brake pad was measured by the probe method. In the evaluation, a thermal conductivity of 1.1 W / (m · K) or more is “◎”, and a thermal conductivity of 1.0 W / (m · K) or more and less than 1.1 W / (m · K) is “○”. Less than 1.0 W / (m · K) was evaluated as “x”.

(耐摩耗性)
耐摩耗性は、ブレーキ温度300℃、車速60km/h、減速度0.3Gの制動1000回相当の摩擦材の摩耗量を評価し、高温での耐摩耗性とした。評価にあたっては、摩耗量が、0.6mm未満を「◎」、0.6mm以上かつ0.9mm未満を「○」、0.9mm以上を「×」として評価した。
(Abrasion resistance)
The wear resistance was determined by evaluating the amount of wear of the friction material equivalent to 1000 times of braking at a brake temperature of 300 ° C., a vehicle speed of 60 km / h, and a deceleration of 0.3 G. In the evaluation, the amount of wear less than 0.6 mm was evaluated as “⊚”, the amount of wear of 0.6 mm or more and less than 0.9 mm was evaluated as “◯”, and the amount of wear of 0.9 mm or more was evaluated as “x”.

(摩擦係数)
摩擦係数は、自動車技術会規格JASO C406に基づき測定し、第2効力試験の車速130km/h、減速度0.3Gにおける摩擦係数の平均値を評価した。なお、上記耐摩耗性、摩擦係数の評価はダイナモメーターを用い、イナーシャ7kgf・m・sec2で評価を行った。また、ベンチレーテッドディスクロータ(株式会社キリウ製、材質FC190)、一般的なピンスライド式のコレットタイプのキャリパを用いて実施した。本試験においては、第2フェード試験全15回制動の中で計測された摩擦係数の平均を「平均摩擦係数」および最小の摩擦係数(Min of Min)を「最小摩擦係数」として評価した。評価にあたっては、平均摩擦係数として、0.43以上を「◎」、0.40以上かつ0.43未満を「○」、0.40未満を「×」として評価し、最小摩擦係数として、0.23以上を「◎」、0.20以上かつ0.23未満を「○」、0.20未満を「×」として評価した。
(Coefficient of friction)
The coefficient of friction was measured based on the Japanese Automotive Standards Organization JASO C406, and the average value of the coefficient of friction at a vehicle speed of 130 km / h and a deceleration of 0.3 G in the second efficacy test was evaluated. The wear resistance and the coefficient of friction were evaluated using a dynamometer with an inertia of 7 kgf · m · sec 2 . In addition, a ventilated disc rotor (manufactured by Kiriu Corporation, material FC190) and a general pin slide type collet type caliper were used. In this test, the average of the friction coefficients measured during all 15 brakings in the second fade test was evaluated as the "average friction coefficient" and the minimum friction coefficient (Min of Min) was evaluated as the "minimum friction coefficient". In the evaluation, the average friction coefficient was evaluated as "◎" for 0.43 or more, "○" for 0.40 or more and less than 0.43, and "x" for less than 0.40, and 0 as the minimum friction coefficient. .23 or more was evaluated as “⊚”, 0.20 or more and less than 0.23 was evaluated as “◯”, and less than 0.20 was evaluated as “x”.

Figure 0006836716
Figure 0006836716

Figure 0006836716
Figure 0006836716

Figure 0006836716
Figure 0006836716

表1〜2は、本発明に係る摩擦材組成物(実施例)であり、表3は、本発明に係る摩擦材組成物からいずれかの要件がはずれた摩擦材組成部(比較例)である。表1〜3より、本発明に係る摩擦材組成物(実施例)はいずれも高い熱伝導率を有するとともに、安定した摩擦係数を示し、さらに摩耗量も小さくなっている。これに対し、酸化マグネシウムを含有しない比較例1の摩擦材組成物は、摩擦係数が低く、ブレーキの効きが悪いものとなっている。また、粗粒の黒鉛およびコークスを含有しない比較例3の摩擦材組成物はいずれも摩耗量が大きく、耐摩耗性が悪いことが明らかである。また、微粒の黒鉛およびコークスを含有しない比較例2の摩擦材組成物は、実施例1〜13の摩擦材組成物とほぼ同等の結果を示すが、別途調査したところ、粗粒黒鉛、粗粒コークスのみでは制動条件よって発揮される潤滑作用の差が大きく、摩擦係数のばらつきが大きいものであった。これに対し実施例1〜13の摩擦材組成物の摩擦係数はばらつきが小さく、安定した摩擦係数を示した。 Tables 1 and 2 show the friction material composition according to the present invention (Example), and Table 3 shows the friction material composition section (comparative example) in which any requirement is removed from the friction material composition according to the present invention. is there. From Tables 1 to 3, the friction material compositions (Examples) according to the present invention all have high thermal conductivity, show a stable friction coefficient, and have a small amount of wear. On the other hand, the friction material composition of Comparative Example 1 containing no magnesium oxide has a low coefficient of friction and a poor braking effect. Further, it is clear that the friction material composition of Comparative Example 3 which does not contain coarse-grained graphite and coke has a large amount of wear and poor wear resistance. Further, the friction material composition of Comparative Example 2 containing no fine graphite and coke shows almost the same results as the friction material compositions of Examples 1 to 13, but as a result of a separate investigation, coarse-grained graphite and coarse-grained particles were investigated. With coke alone, there was a large difference in the lubricating action exerted depending on the braking conditions, and there was a large variation in the friction coefficient. On the other hand, the friction coefficient of the friction material compositions of Examples 1 to 13 was small in variation and showed a stable friction coefficient.

これらの結果より、本発明に係る摩擦材組成物は、高い熱伝導率と耐摩耗性、通常時とフェード時の摩擦係数を確保できるものであることが確認された。 From these results, it was confirmed that the friction material composition according to the present invention can secure high thermal conductivity, wear resistance, and friction coefficient during normal operation and fading.

本発明の摩擦材組成物は、従来品と比較して、環境負荷の高い銅を含有せずに、高い熱伝導率と耐摩耗性、通常時とフェード時の摩擦係数を確保できるため、該摩擦材組成物は乗用車用ブレーキパッド等の摩擦材および摩擦部材に好適である。 Compared with the conventional product, the friction material composition of the present invention can secure high thermal conductivity and wear resistance, and a friction coefficient during normal operation and fading without containing copper having a high environmental load. The friction material composition is suitable for friction materials and friction members such as brake pads for passenger cars.

Claims (3)

結合材、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、
前記摩擦材組成物中に銅を含まず、または銅の含有量が0.5質量%以下であり、
摩擦材組成物全量に対して、酸化マグネシウムを4〜13質量%含有し、かつ黒鉛およびコークスを合計4〜15質量%含有し、
ここで、前記黒鉛は平均粒子径が150〜600μmであり、前記コークスは平均粒子径が200〜600μmと、平均粒子径が100μm以下の二種類を含有し、
さらに、前記黒鉛および前記コークスは、粗粒物と微粒物の組合せで含有し、粗粒物は平均粒子径が150〜600μmであり、微粒物は平均粒子径が100μm以下である摩擦材組成物。
A friction material composition containing a binder, an organic filler, an inorganic filler and a fiber base material.
The friction material composition does not contain copper, or the copper content is 0.5% by mass or less.
It contains 4 to 13% by mass of magnesium oxide and 4 to 15% by mass of graphite and coke in total with respect to the total amount of the friction material composition.
Here, the graphite has an average particle diameter of 150 to 600 μm, and the coke contains two types, an average particle diameter of 200 to 600 μm and an average particle diameter of 100 μm or less.
Further, the graphite and the coke are contained in a combination of coarse particles and fine particles, and the coarse particles have an average particle size of 150 to 600 μm, and the fine particles have an average particle size of 100 μm or less. ..
酸化亜鉛を含有する請求項1に記載の摩擦材組成物。 The friction material composition according to claim 1, which contains zinc oxide. 摩擦材組成物全量に対し、前記酸化亜鉛を2〜10質量%含有する請求項1または2に記載の摩擦材組成物。 The friction material composition according to claim 1 or 2, which contains 2 to 10% by mass of the zinc oxide with respect to the total amount of the friction material composition.
JP2017030810A 2017-02-22 2017-02-22 Friction material composition Active JP6836716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030810A JP6836716B2 (en) 2017-02-22 2017-02-22 Friction material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030810A JP6836716B2 (en) 2017-02-22 2017-02-22 Friction material composition

Publications (2)

Publication Number Publication Date
JP2018135446A JP2018135446A (en) 2018-08-30
JP6836716B2 true JP6836716B2 (en) 2021-03-03

Family

ID=63366536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030810A Active JP6836716B2 (en) 2017-02-22 2017-02-22 Friction material composition

Country Status (1)

Country Link
JP (1) JP6836716B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753561B2 (en) * 2013-09-17 2015-07-22 日清紡ブレーキ株式会社 Friction material
US11187294B2 (en) * 2019-08-29 2021-11-30 Showa Denko Materials Co., Ltd. Friction member, friction material composition, friction material, and vehicle
KR102243542B1 (en) * 2019-11-27 2021-04-23 주식회사 진흥브레이크 Friction material for brake pad
CN115367653B (en) * 2022-09-15 2023-03-28 中国矿业大学 Mine hoist brake control method considering brake shoe temperature and wear degree

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109369A (en) * 1994-10-12 1996-04-30 Nissin Kogyo Kk Friction material
JP2000027912A (en) * 1998-07-15 2000-01-25 Sumitomo Electric Ind Ltd Disk brake pad
JP4071434B2 (en) * 2000-10-31 2008-04-02 株式会社曙ブレーキ中央技術研究所 Friction material for brake
DE102007061459B4 (en) * 2006-12-27 2020-10-08 Akebono Brake Industry Co., Ltd. Asbestos-free friction material
JP5221177B2 (en) * 2008-03-21 2013-06-26 日清紡ホールディングス株式会社 Friction material
CN102691736B (en) * 2012-05-28 2014-12-10 海盐欧亚特汽配有限公司 Environment-friendly high wear-resistant asbestos-free brake block and electromagnetic hot pressing technique
JP6440947B2 (en) * 2014-02-25 2018-12-19 日本ブレーキ工業株式会社 Friction material composition, friction material using friction material composition, and friction member
JP6490942B2 (en) * 2014-10-14 2019-03-27 日本ブレーキ工業株式会社 Friction material composition, friction material and friction member

Also Published As

Publication number Publication date
JP2018135446A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6281755B1 (en) Friction material composition, and friction material and friction member using the same
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6024460B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5790175B2 (en) Non-asbestos friction material composition
KR20170087492A (en) Friction material composition, and friction material and friction member using said friction material composition
JP6836716B2 (en) Friction material composition
JP6490942B2 (en) Friction material composition, friction material and friction member
JPWO2019074012A1 (en) Friction material composition, friction material and friction member using friction material composition
JP6493956B2 (en) Friction material composition, friction material and friction member
JP6346424B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6512817B2 (en) Friction material composition, friction material using friction material composition and friction member
JP2018131479A (en) Friction material composition, friction material using friction material composition, and friction member
JP6493957B2 (en) Friction material composition, friction material and friction member
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
WO2016103972A1 (en) Friction material composition, friction material using said friction material composition, and friction member
WO2019151390A1 (en) Friction material, friction material composition, friction member, and vehicle
JP6570167B2 (en) Friction material composition, and friction material and friction member using the same
JP6445299B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6753579B2 (en) Friction material composition, friction material and friction member
JP6480145B2 (en) Friction material composition, friction material and friction member
JP6553355B2 (en) Friction material composition, friction material using friction material composition and friction member
JP2019151854A (en) Friction material composition, friction material, and friction member
JP2014141546A (en) Friction material composition, and friction material and friction member using the friction material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R151 Written notification of patent or utility model registration

Ref document number: 6836716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350