JP6836315B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP6836315B2
JP6836315B2 JP2015055481A JP2015055481A JP6836315B2 JP 6836315 B2 JP6836315 B2 JP 6836315B2 JP 2015055481 A JP2015055481 A JP 2015055481A JP 2015055481 A JP2015055481 A JP 2015055481A JP 6836315 B2 JP6836315 B2 JP 6836315B2
Authority
JP
Japan
Prior art keywords
negative electrode
mass
positive electrode
corrosion
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055481A
Other languages
Japanese (ja)
Other versions
JP2016177909A (en
Inventor
朋子 松村
朋子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015055481A priority Critical patent/JP6836315B2/en
Publication of JP2016177909A publication Critical patent/JP2016177909A/en
Application granted granted Critical
Publication of JP6836315B2 publication Critical patent/JP6836315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、制御弁式鉛蓄電池に関し、特に負極集電体の耳の腐食が抑制された制御弁式鉛蓄電池に関する。 The present invention relates to a control valve type lead acid battery, and more particularly to a control valve type lead acid battery in which corrosion of the ears of a negative electrode current collector is suppressed.

鉛蓄電池には、極板群を挿入した電槽の中に電解液を注液して構成される開放型の液式電池と、正極板と負極板の間に挿入された微細ガラスマットセパレータ(リテーナーマット)に電解液を保持させ、正極で発生する酸素ガスを負極活物質上で水に還元する、いわゆる酸素サイクルと呼ばれる原理を利用した制御弁式電池とがある。 Lead-acid batteries include an open-type liquid battery that is constructed by injecting an electrolytic solution into an electric tank in which a group of electrode plates is inserted, and a fine glass mat separator (retainer mat) that is inserted between the positive electrode plate and the negative electrode plate. ) Holds the electrolytic solution and reduces the oxygen gas generated at the positive electrode to water on the negative electrode active material. There is a control valve type battery using a principle called an oxygen cycle.

液式電池は、充電中に起こる水の電気分解反応や自然蒸発によって電解液中の水分が失われるため、適宜精製水を補給する必要があるのに対して、制御弁式鉛蓄電池は、メンテナンスフリーとすることができるため、近年、据え置き用や車載用にその利用が進んでいる。 Liquid batteries lose water in the electrolyte due to the electrolysis reaction of water that occurs during charging and natural evaporation, so it is necessary to replenish purified water as appropriate, whereas control valve lead-acid batteries are maintained. Since it can be made free, its use is increasing in recent years for stationary and in-vehicle use.

制御弁式鉛蓄電池においては、負極集電体の耳とストラップの溶接部が電解液から露出しているため、充電時においても、鉛の平衡電位より貴な状態におかれる。そのため、負極集電体では、耳やストラップを這い上がった硫酸と正極から発生した酸素によって、耳やストラップで腐食が進行し、溶接界面での破断が多発する問題があり、これまでに耐食性を向上させる目的で、負極集電体の合金組成について、種々検討されている。 In the control valve type lead-acid battery, since the welded portion between the ear and the strap of the negative electrode current collector is exposed from the electrolytic solution, it is kept in a noble state from the equilibrium potential of lead even during charging. Therefore, in the negative electrode current collector, there is a problem that corrosion progresses in the ears and straps due to sulfuric acid that crawls up the ears and straps and oxygen generated from the positive electrode, and breakage occurs frequently at the welding interface. For the purpose of improving, various studies have been conducted on the alloy composition of the negative electrode current collector.

特許文献1には、「負極格子に、カルシウム(Ca)を0.025〜0.065質量%、錫(Sn)を0.25〜1.0質量%含む鉛(Pb)−Ca−Sn系合金を用い、極板耳部を接続するストラップを形成するための足し鉛として、純鉛、あるいはSnを1.3質量%以下含むPb―Sn合金を用いたことを特徴とする密閉型鉛蓄電池」(請求項1)について、「負極格子中のCa量を0.020〜0.065質量%としたものでは、過充電試験後においても負極ストラップ(耳部との溶接部近傍)での腐食はほとんど認められなかった。」(0044)旨が記載されている。 Patent Document 1 states that "a lead (Pb) -Ca-Sn system containing 0.025 to 0.065% by mass of calcium (Ca) and 0.25 to 1.0% by mass of tin (Sn) in the negative electrode lattice. A sealed lead storage battery using an alloy and using pure lead or a Pb—Sn alloy containing 1.3% by mass or less of Sn as additional lead for forming a strap connecting the ears of the electrode plate. "(Claim 1)," If the amount of Ca in the negative electrode lattice is 0.020 to 0.065% by mass, corrosion at the negative electrode strap (near the welded portion with the ear portion) even after the overcharge test. Was hardly found. ”(0044) is stated.

特許文献2には、「鉛−スズ−カルシウム系合金からなる極板格子の耳部相互を、鉛−スズ−セレン系合金からなる棚部により接続したことを特徴とする鉛蓄電池」(請求項1)について、「負極格子には、鉛−0.5重量%スズ−0.08重量%カルシウム合金からなる鉛合金シートにエキスパンド加工を施したエキスパンド格子を‥用いた」(0012)ことが記載されている。 Patent Document 2 describes "a lead storage battery characterized in that the ears of a plate lattice made of a lead-tin-calcium alloy are connected to each other by a shelf made of a lead-tin-selenium alloy" (claim). Regarding 1), it is described that "an expanded lattice obtained by expanding a lead alloy sheet made of a lead-0.5 wt% tin-0.08 wt% calcium alloy was used as the negative electrode lattice" (0012). Has been done.

また、特許文献3には、「負極活物質の密度が3.5〜4.0g/cmであり、負極活物質と正極活物質の質量比を(負/正)が0.5〜0.8であることを特徴とする制御弁式鉛蓄電池」(請求項1)について、「負極活物質と正極活物質の質量比(負/正)を0.5〜0.8に小さく規定したので、スタンバイ使用における浮動充電電流が減少して正極格子の腐食が防止され、長寿命である。また負極活物質の密度を3.5〜4.0g/cmと小さく規定したので負極活物質の利用率が高くなり、従って正極活物質量に対する負極活物質量を減らしても、低温高率放電特性は従来品と同等に維持される。」(0007)と記載されている。
負極活物質と正極活物質の質量比(負/正)0.5〜0.8を、負極活物質の質量に対する正極活物質の質量の比(正/負)に換算すると、1.25〜2.0である。
Further, Patent Document 3 states that "the density of the negative electrode active material is 3.5 to 4.0 g / cm 3 , and the mass ratio of the negative electrode active material to the positive electrode active material (negative / positive) is 0.5 to 0. Regarding the "control valve type lead storage battery characterized by being 0.8" (claim 1), "the mass ratio (negative / positive) of the negative electrode active material to the positive electrode active material is defined as small as 0.5 to 0.8". Therefore, the floating charging current in standby use is reduced, corrosion of the positive electrode lattice is prevented, and the life is long. In addition, the density of the negative electrode active material is defined as small as 3.5 to 4.0 g / cm 3 , so that the negative electrode active material is used. Therefore, even if the amount of the negative electrode active material is reduced with respect to the amount of the positive electrode active material, the low temperature and high rate discharge characteristics are maintained at the same level as the conventional product. ”(0007).
Converting the mass ratio of the negative electrode active material to the positive electrode active material (negative / positive) 0.5 to 0.8 to the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material (positive / negative), 1.25 to It is 2.0.

特許文献4には、「化成された状態の前記正極板に保持されている総活物質量(P)と、化成された状態の前記負極板に保持されている総活物質量(N)の質量比N/Pが、1.0<N/P≦1.2の関係を有し、化成された状態における前記正極板の活物質の多孔度が45〜50%の範囲であることを特徴とする制御弁式鉛蓄電池。」(請求項1)について、「質量比N/Pの関係が、1.0<N/P≦1.2の範囲にあるときは、満充電未満の状態で長期間使用したときに負極板に難還元性硫酸鉛が蓄積しても、負極板には正極板との充放電反応に関与するために必要十分な活物質量が確保されているので、鉛蓄電池を長寿命化させることができる。そして、正極板に保持されている活物質の多孔度が45〜50%にあるので、活物質強度が向上し放電深度の深い充放電サイクルに伴う活物質の劣化や泥状化を抑制することができて、長寿命の鉛蓄電池を実現することが可能となる。」(0007)と記載されている。
このN/Pを負極活物質の質量に対する正極活物質の質量の比(P/N)に換算すると、0.83〜1.0である。
Patent Document 4 describes "the total amount of active material (P) held in the positive electrode plate in the chemical state and the total active material amount (N) held in the negative electrode plate in the chemical state. The mass ratio N / P has a relationship of 1.0 <N / P ≦ 1.2, and the porosity of the active material of the positive electrode plate in the formed state is in the range of 45 to 50%. Regarding the control valve type lead-acid battery (claim 1), "when the relationship of mass ratio N / P is in the range of 1.0 <N / P ≦ 1.2, it is in a state of less than full charge." Even if refractory lead sulfate accumulates on the negative electrode plate after long-term use, the negative electrode plate has a sufficient amount of active material to participate in the charge / discharge reaction with the positive electrode plate. The life of the storage battery can be extended, and since the porosity of the active material held on the positive electrode plate is 45 to 50%, the strength of the active material is improved and the active material is associated with a charge / discharge cycle with a deep discharge depth. It is possible to realize a lead-acid battery having a long life by suppressing deterioration and muddying of the electrode. ”(0007).
When this N / P is converted into the ratio (P / N) of the mass of the positive electrode active material to the mass of the negative electrode active material, it is 0.83 to 1.0.

特開2002−175798号公報JP-A-2002-175798 特開平8−339794号公報Japanese Unexamined Patent Publication No. 8-339794 特開2006−49025号公報Japanese Unexamined Patent Publication No. 2006-49025 特開2014−207198号公報Japanese Unexamined Patent Publication No. 2014-207198

従来の制御弁式鉛蓄電池においては、負極集電体の耳の耐食性を向上させる目的で、様々な負極集電体の合金組成が検討され、一定の成果を上げてきた。しかしながら、耐食性の高い合金組成を選択しても、高温環境下で使用された一部の電池において、フロート寿命が短く目標値に達しないという問題があった。
また、制御弁式鉛蓄電池において、正極活物質と負極活物質の質量比を規定することも、正極板の劣化防止(特許文献3(0007)参照)や、硫酸鉛の蓄積による負極容量の低下対策(特許文献4(0007)参照)等を目的として、従来から行われている。しかし、上記の質量比と負極集電体の耳の耐食性との関係について言及した先行技術は、発見できなかった。
In the conventional control valve type lead-acid battery, alloy compositions of various negative electrode current collectors have been studied for the purpose of improving the corrosion resistance of the ears of the negative electrode current collector, and some results have been achieved. However, even if an alloy composition having high corrosion resistance is selected, there is a problem that the float life of some batteries used in a high temperature environment is short and the target value is not reached.
Further, in the control valve type lead-acid battery, specifying the mass ratio of the positive electrode active material and the negative electrode active material also prevents deterioration of the positive electrode plate (see Patent Document 3 (0007)) and reduces the negative electrode capacity due to the accumulation of lead sulfate. It has been conventionally performed for the purpose of countermeasures (see Patent Document 4 (0007)) and the like. However, the prior art that mentions the relationship between the above mass ratio and the corrosion resistance of the ear of the negative electrode current collector could not be found.

本発明は、負極集電体の耳の腐食が抑制され、寿命の長い制御弁式鉛蓄電池を提供することを目的とする。 An object of the present invention is to provide a control valve type lead-acid battery having a long life by suppressing corrosion of the ears of a negative electrode current collector.

上記の目的を達成するために、本発明は、以下の手段を採用する。
(1)合金の全質量に対してCa0.07質量%以上0.12質量%以下、Sn0.75質量%以下を含有するPb−Ca−Sn系合金、又は合金の全質量に対してCa0.07質量%以上0.12質量%以下を含有し、Snが0%であるPb−Ca系合金からなる負極耳を備え、且つ、負極電極材料の質量に対する正極電極材料の質量の比が、1.27以上1.35以下、又は1.47以上であることを特徴とする制御弁式鉛蓄電池。
In order to achieve the above object, the present invention employs the following means.
(1) A Pb-Ca—Sn-based alloy containing 0.07% by mass or more and 0.12% by mass or less and 0.75% by mass or less of Sn with respect to the total mass of the alloy, or Ca0. It has a negative electrode ear made of a Pb—Ca based alloy containing 07% by mass or more and 0.12% by mass or less and Sn is 0%, and the ratio of the mass of the positive electrode material to the mass of the negative electrode material is 1. A control valve type lead storage battery characterized by being .27 or more and 1.35 or less, or 1.47 or more.

本発明によれば、負極集電体の耳の腐食を抑え、長寿命の制御弁式鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a control valve type lead-acid battery having a long life by suppressing corrosion of the ears of a negative electrode current collector.

負極ストラップ部の電位と負極集電体の耳の腐食速度の関係を示すグラフGraph showing the relationship between the potential of the negative electrode strap and the corrosion rate of the ear of the negative electrode current collector 正極/負極電極材料質量比と負極ストラップ部の電位の関係を示すグラフGraph showing the relationship between the mass ratio of the positive electrode / negative electrode material and the potential of the negative electrode strap 負極集電体の合金組成とフロート寿命年数及び負極腐食量の関係(正極/負極電極材料質量比=1.27)を示すグラフA graph showing the relationship between the alloy composition of the negative electrode current collector, the life of the float, and the amount of negative electrode corrosion (positive electrode / negative electrode material mass ratio = 1.27). 負極集電体の合金組成とフロート寿命年数及び負極腐食量の関係(正極/負極電極材料質量比=1.39)を示すグラフA graph showing the relationship between the alloy composition of the negative electrode current collector, the life of the float, and the amount of negative electrode corrosion (positive electrode / negative electrode material mass ratio = 1.39). 負極集電体の合金組成とフロート寿命年数及び負極腐食量の関係(正極/負極電極材料質量比=1.51)を示すグラフA graph showing the relationship between the alloy composition of the negative electrode current collector, the life of the float, and the amount of negative electrode corrosion (positive electrode / negative electrode material mass ratio = 1.51). 正極/負極電極材料質量比とフロート寿命年数及び負極腐食量の関係を示すグラフGraph showing the relationship between positive electrode / negative electrode material mass ratio, float life, and negative electrode corrosion amount 正極/負極電極材料質量比とフロート寿命年数及び負極腐食量の関係を示すグラフGraph showing the relationship between positive electrode / negative electrode material mass ratio, float life, and negative electrode corrosion amount

本発明者は、耐食性を向上させる合金の組成に関して種々検討したところ、合金の全質量に対してCaが0.07質量%以上0.12質量%以下、Snが0.75質量%以下のPb−Ca−Sn系合金、又は合金の全質量に対してCaが0.07質量%以上0.12質量%以下のPb−Ca系合金が、微細な結晶粒を形成し、耐食性に効果があることを見出した。
結晶性の組織を有する金属の腐食は、まず、結晶粒の粒界に沿って起こる。したがって、微細な結晶粒を形成する前記の合金においては、個々の結晶粒による粒界腐食の深さが小さいから、粒界に沿って起こる腐食が進行しがたいと推測し、これを負極集電体の耳に用いた。
As a result of various studies on the composition of the alloy for improving the corrosion resistance, the present inventor has found that Ca is 0.07% by mass or more and 0.12% by mass or less and Sn is 0.75% by mass or less based on the total mass of the alloy. -Ca-Sn-based alloy or Pb-Ca-based alloy in which Ca is 0.07% by mass or more and 0.12% by mass or less based on the total mass of the alloy forms fine crystal grains and is effective in corrosion resistance. I found that.
Corrosion of metals with a crystalline structure first occurs along the grain boundaries of the crystal grains. Therefore, in the above-mentioned alloy forming fine crystal grains, since the depth of intergranular corrosion by each crystal grain is small, it is presumed that the corrosion occurring along the grain boundaries is difficult to proceed, and this is a negative electrode collection. Used for the ears of the electric body.

ここで、鉛蓄電池の集電体は、格子状や放射状に桟を設けてなるいわゆるグリッド(格子)と呼ばれる部分を有しているから、一般的に「格子」と呼ばれることがある。集電体の耳の合金組成は、格子と同じであることが通常である。しかし、本発明は、負極集電体の耳の腐食の抑制を目的とするものであるから、耳が前記の合金組成であることが重要である。もちろん、耳を含む負極集電体が前記の合金組成である場合も、本発明に含まれる。
本明細書では、一般的な呼び名に倣って、耳を含む負極集電体を「負極格子」といい、負極集電体の耳を「負極耳」ということがある。
また、前記の合金組成は、主材がPb、Ca及びSnであるか、又はPb及びCaである(Snが0%)ことを表わすものであり、Al等の他の不可避元素の含有を否定するものではない。合金中の「%」の表記は、合金の全質量に対する割合を示す。
Here, since the current collector of the lead-acid battery has a portion called a so-called grid (grid) formed by providing grids or radial crosspieces, it is generally called a “grid”. The alloy composition of the ears of the current collector is usually the same as that of the grid. However, since the present invention aims to suppress corrosion of the ears of the negative electrode current collector, it is important that the ears have the above alloy composition. Of course, the case where the negative electrode current collector including the ear has the above alloy composition is also included in the present invention.
In the present specification, the negative electrode current collector including the ear may be referred to as a “negative electrode lattice”, and the ear of the negative electrode current collector may be referred to as a “negative electrode ear”, following a general name.
Further, the alloy composition indicates that the main materials are Pb, Ca and Sn, or Pb and Ca (Sn is 0%), and the inclusion of other unavoidable elements such as Al is denied. It's not something to do. The notation of "%" in the alloy indicates the ratio to the total mass of the alloy.

ところで、前記の合金からなる負極格子を有する鉛蓄電池であっても、高温環境下で使用された一部の機種では、目標の寿命年数に達しない場合があった。
その原因を調査した結果、負極耳とストラップとの溶接部付近(以下、「負極ストラップ部」という。)で腐食が進行しやすい電位になっていることが判明した。
By the way, even a lead-acid battery having a negative electrode lattice made of the above alloy may not reach the target lifespan of some models used in a high temperature environment.
As a result of investigating the cause, it was found that the potential is such that corrosion easily progresses in the vicinity of the welded portion between the negative electrode ear and the strap (hereinafter referred to as "negative electrode strap portion").

さらに、鋭意調査を行ったところ、負極ストラップ部の電位は、負極電極材料の質量に対する正極電極材料の質量の比に影響されるという新たな知見を得た。
なお、本明細書において、極板から集電体を除き、電池反応に寄与する物質(反応物質)と電池反応に寄与しない添加剤や補強材等の物質を合わせたものを電極材料と呼ぶ。本明細書では、「電極材料」を「活物質」という場合があり、「負極電極材料の質量に対する正極電極材料の質量の比」を、以下、「正極/負極電極材料質量比」という。
Further, as a result of diligent investigation, a new finding was obtained that the potential of the negative electrode strap portion is affected by the ratio of the mass of the positive electrode material to the mass of the negative electrode material.
In the present specification, the electrode material is a combination of a substance (reactant) that contributes to the battery reaction and a substance such as an additive or a reinforcing material that does not contribute to the battery reaction by removing the current collector from the electrode plate. In the present specification, the "electrode material" may be referred to as an "active material", and the "ratio of the mass of the positive electrode material to the mass of the negative electrode material" is hereinafter referred to as the "positive electrode / negative electrode material mass ratio".

図1は、電位と腐食速度の関係を示すグラフである。
電位と腐食速度の関係は、以下の試験セルを用いて、75℃、0〜+70mV (vs Pb/PbSO)の定電位条件で腐食試験を行い、
腐食速度=(初期厚み−試験後の腐食層を除いた厚み)/2/試験日数
として求めた。
試験セル構成
試験極および対極:純鉛の平板
参照極:Pb/PbSO電極
電解液:比重1.28硫酸
図1から、+30〜+50mV(vs Pb/PbSO)の電位範囲で、腐食速度が大きく、負極腐食が進行しやすいことがわかる。
FIG. 1 is a graph showing the relationship between the electric potential and the corrosion rate.
Regarding the relationship between the potential and the corrosion rate, a corrosion test was conducted at 75 ° C. and 0 to + 70 mV (vs Pb / PbSO 4) under constant potential conditions using the following test cells.
Corrosion rate = (initial thickness-thickness excluding corrosive layer after test) / 2 / number of test days.
Test cell configuration Test electrode and counter electrode: Pure lead flat plate Reference electrode: Pb / PbSO 4 electrode Electrolyte: Specific gravity 1.28 sulfuric acid From Fig. 1, the corrosion rate is in the potential range of +30 to +50 mV (vs Pb / PbSO 4). It can be seen that it is large and the negative electrode corrosion easily progresses.

図2は、正極/負極電極材料質量比と負極ストラップ部の電位との関係を示すグラフである。
負極ストラップ部の電位は、正極/負極電極材料質量比を1.19〜1.56に変化させた制御弁式鉛蓄電池を作製し、40℃2.23Vフロート充電を行い、Pb/PbSO参照極の先端を負極ストラップに接触させて測定した。
正極/負極電極材料質量比が1.35より大きく1.47未満の場合は、負極ストラップ部の電位が腐食の進行しやすい+30〜+50mV(vs Pb/PbSO)の電位になっている。これに対して、正極/負極電極材料質量比が1.35以下、又は1.47以上では、負極ストラップ部の電位が腐食の進行しやすい電位よりも貴になっている。そのため、負極腐食が抑制されると考えられる。
FIG. 2 is a graph showing the relationship between the mass ratio of the positive electrode / negative electrode material and the potential of the negative electrode strap portion.
For the potential of the negative electrode strap part, a control valve type lead-acid battery in which the positive electrode / negative electrode material mass ratio was changed to 1.19 to 1.56 was manufactured, and the float was charged at 40 ° C. and 2.23 V. Refer to Pb / PbSO 4. The measurement was performed by bringing the tip of the electrode into contact with the negative electrode strap.
When the mass ratio of the positive electrode / negative electrode material is greater than 1.35 and less than 1.47, the potential of the negative electrode strap portion is +30 to +50 mV (vs Pb / PbSO 4 ) at which corrosion easily progresses. On the other hand, when the mass ratio of the positive electrode / negative electrode material is 1.35 or less, or 1.47 or more, the potential of the negative electrode strap portion is more noble than the potential at which corrosion easily progresses. Therefore, it is considered that negative electrode corrosion is suppressed.

正極/負極電極材料質量比が、負極ストラップ部の電位に影響を与える作用・機序は、以下のように推察される。
正極/負極電極材料質量比が1.35以下では、正極活物質量が相対的に少ないので、正極活物質利用率が高くなり、正極電位が貴になって、酸素ガスの発生量が増加する。そのため、発生した酸素ガスを負極板で吸収しきれず、リテーナーマットから露出した負極ストラップや耳で還元が起きる。したがって、負極ストラップ部の電位が貴にシフトする。
正極/負極電極材料質量比が1.47以上では、負極活物質量が相対的に少ないので、正極で発生した酸素ガスを負極板で吸収しきれない。そのため、リテーナーマットから露出した負極ストラップや耳で還元が起き、負極ストラップ部の電位が貴にシフトする。
すなわち、正極/負極電極材料質量比が1.35以下の場合と1.47以上の場合とでは、作用・機序は異なるものの、負極ストラップ部の電位が貴にシフトするという同様の現象が生じるものと推察される。
The action / mechanism by which the mass ratio of the positive electrode / negative electrode material affects the potential of the negative electrode strap portion is inferred as follows.
When the positive electrode / negative electrode material mass ratio is 1.35 or less, the amount of positive electrode active material is relatively small, so that the positive electrode active material utilization rate becomes high, the positive electrode potential becomes noble, and the amount of oxygen gas generated increases. .. Therefore, the generated oxygen gas cannot be completely absorbed by the negative electrode plate, and reduction occurs in the negative electrode strap and the ear exposed from the retainer mat. Therefore, the potential of the negative electrode strap portion shifts to noble.
When the mass ratio of the positive electrode / negative electrode material is 1.47 or more, the amount of the negative electrode active material is relatively small, so that the oxygen gas generated at the positive electrode cannot be completely absorbed by the negative electrode plate. Therefore, reduction occurs in the negative electrode strap and the ear exposed from the retainer mat, and the potential of the negative electrode strap portion shifts to noble.
That is, although the action and mechanism are different between the case where the mass ratio of the positive electrode / negative electrode material is 1.35 or less and the case where the mass ratio is 1.47 or more, the same phenomenon that the potential of the negative electrode strap portion shifts to noble occurs. It is presumed to be.

なお、正極/負極電極材料質量比が1.27未満では、正極活物質利用率が高いため、正極劣化が負極腐食に先立って進行し、短寿命化の原因となる。したがって、正極/負極電極材料質量比1.27以上が必要である。
正極/負極電極材料質量比が1.62より大きい場合、寿命性能に特段の影響はない。しかし、エネルギー密度確保のため、上記質量比は1.62以下が好ましく、1.56以下がより好ましい。
If the mass ratio of the positive electrode / negative electrode material is less than 1.27, the utilization rate of the positive electrode active material is high, so that the deterioration of the positive electrode proceeds prior to the corrosion of the negative electrode, which causes a shortening of the life. Therefore, a positive electrode / negative electrode material mass ratio of 1.27 or more is required.
When the mass ratio of the positive electrode / negative electrode material is larger than 1.62, there is no particular effect on the life performance. However, in order to secure the energy density, the mass ratio is preferably 1.62 or less, more preferably 1.56 or less.

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 The optimum embodiment of the present invention is shown below. In carrying out the present invention, the examples can be appropriately changed in accordance with the common sense of those skilled in the art and the disclosure of the prior art.

(正極板の作製)
Ca0.06質量%、Sn1.5質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金から、厚さ3.8mmの正極格子を鋳造して正極集電体とした。なお、正極格子の合金組成、寸法、デザイン、および鋳造、エキスパンド、圧延シート打抜き等の製造方法は任意である。
ボールミル法による鉛粉99.9質量%と、合成樹脂繊維0.1質量%を、25℃で比重が1.16の硫酸を加えて正極ペーストとし、これを正極格子に充填して、熟成と乾燥を行い、正極格子と正極活物質からなる正極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。正極活物質の密度等は任意である。
(Making a positive electrode plate)
A positive electrode current collector with a thickness of 3.8 mm cast from a Pb-Ca-Sn alloy containing Ca 0.06% by mass, Sn 1.5% by mass, Al 0.02% by mass or less, and unavoidable impurities. And said. The alloy composition, dimensions, and design of the positive electrode lattice, and manufacturing methods such as casting, expanding, and punching of rolled sheets are arbitrary.
99.9% by mass of lead powder by the ball mill method and 0.1% by mass of synthetic resin fiber are added with sulfuric acid having a specific gravity of 1.16 at 25 ° C. to form a positive electrode paste, which is filled in a positive electrode lattice and aged. It was dried to prepare a positive electrode plate composed of a positive electrode lattice and a positive electrode active material. The paste filling amount was adjusted so that the mass ratio of the positive electrode / negative electrode material after chemical conversion was 1.19 to 1.56. The density of the positive electrode active material is arbitrary.

(負極板の作製)
Ca0.06〜0.13質量%、Sn0〜0.9質量%、Al0.02質量%以下、及び不可避不純物を含有するPb−Ca−Sn系合金、又はPb-Ca系合金からなる厚さ1.9mmの負極格子を鋳造し、表1及び表2に示すNo.1〜90の電池に用いる負極集電体とした。なお、負極格子の寸法、デザイン等は任意である。
ボールミル法の鉛粉98.3質量%と、合成樹脂繊維0.1質量%、カーボンブラック0.1質量%、BaSO1.4質量%、及びリグニン0.1質量%を、25℃で比重が1.14の硫酸を加えて負極ペーストとし、これを負極格子に充填して、熟成と乾燥を行い、負極格子と負極活物質からなる負極板を作製した。ペースト充填量は、化成後の正極/負極電極材料質量比が1.19〜1.56となるように調整した。負極活物質の密度等は任意である。
(Manufacturing of negative electrode plate)
Thickness 1 made of Pb-Ca-Sn-based alloy or Pb-Ca-based alloy containing Ca 0.06 to 0.13% by mass, Sn to 0.9% by mass, Al 0.02% by mass or less, and unavoidable impurities. A .9 mm negative electrode lattice was cast, and the No. 1 shown in Tables 1 and 2 were obtained. The negative electrode current collector used for the batteries 1 to 90 was used. The dimensions, design, etc. of the negative electrode grid are arbitrary.
98.3% by mass of lead powder by the ball mill method, 0.1% by mass of synthetic resin fiber, 0.1% by mass of carbon black, 1.4% by mass of BaSO 4 , and 0.1% by mass of lignin have specific gravity at 25 ° C. 1.14 sulfuric acid was added to prepare a negative electrode paste, which was filled in a negative electrode lattice, and aged and dried to prepare a negative electrode plate composed of a negative electrode lattice and a negative electrode active material. The paste filling amount was adjusted so that the mass ratio of the positive electrode / negative electrode material after chemical conversion was 1.19 to 1.56. The density of the negative electrode active material is arbitrary.

(電池の組立)
正極板8枚と負極板9枚を、微細ガラスマットセパレータを介して積層して極板群とし、極板群の長さが電槽内寸法になるまで圧迫を加えて電槽内に収納した。足し鉛に純鉛を用いて、同極板間を接続する正極ストラップ、及び負極ストラップをそれぞれ形成した。なお、ストラップには、純鉛に限らず、Pb−Sn系合金を使用することができる。
電槽に蓋体を接着した後、蓋体の注液部から電解液として硫酸を加え、電槽化成を施して、正極/負極電極材料質量比が1.19〜1.56、定格容量200Ah、2Vの制御弁式鉛蓄電池を組み立てた。
(Battery assembly)
Eight positive electrode plates and nine negative electrode plates were laminated via a fine glass mat separator to form a group of electrodes, and the electrode plates were compressed and stored in the battery until the length of the group reached the dimensions inside the battery. .. Pure lead was used as the added lead to form a positive electrode strap and a negative electrode strap connecting the same electrode plates, respectively. The strap is not limited to pure lead, and a Pb—Sn alloy can be used.
After adhering the lid to the battery case, sulfuric acid is added as an electrolytic solution from the liquid injection part of the lid body, and the battery case is formed to have a positive electrode / negative electrode material mass ratio of 1.19 to 1.56 and a rated capacity of 200 Ah. A 2V control valve type lead-acid battery was assembled.

(加速試験)
作製したNo.1〜90の鉛蓄電池について、以下の加速試験を行った。
試験条件
(1)容量確認試験:25℃、0.2CA、終止電圧1.75V/セル
(2)回復充電:25℃、2.23V/セル定電圧充電(最大電流0.2CA)、48時間
(3)フロート充電:50℃、2.23V/セル×14日間
(4)放電深度5%放電:50℃、0.005CA×10時間
(5)フロート充電:50℃、2.23V/セル×14日間
上記(1)〜(5)の工程を繰り返し行い、(1)の工程で放電時間が4時間未満になる時点で終了する。
(Accelerated test)
The following acceleration tests were performed on the produced lead-acid batteries Nos. 1 to 90.
Test conditions (1) Capacity confirmation test: 25 ° C, 0.2CA, final voltage 1.75V / cell (2) Recovery charging: 25 ° C, 2.23V / cell constant voltage charging (maximum current 0.2CA), 48 hours (3) Float charge: 50 ° C., 2.23 V / cell x 14 days (4) Discharge depth 5% Discharge: 50 ° C., 0.005 CA x 10 hours (5) Float charge: 50 ° C., 2.23 V / cell x The above steps (1) to (5) are repeated for 14 days, and the process ends when the discharge time becomes less than 4 hours in the step (1).

(寿命判定)
上記(1)〜(5)の2サイクルを25℃での寿命1年と換算して、加速試験終了までの期間からフロート寿命を判定した。目標とするフロート寿命は25℃換算で13年とした。
(Life judgment)
The two cycles (1) to (5) above were converted into a life of 1 year at 25 ° C., and the float life was determined from the period until the end of the accelerated test. The target float life was 13 years in terms of 25 ° C.

(負極腐食量)
加速試験終了後の電池を解体して取り出した負極ストラップと耳の溶接部の断面を金属顕微鏡で観察し、腐食層を除いた耳厚みを確認して、負極腐食量を下式を用いて算出した。
負極腐食量(%)=(耳初期厚み−試験後の腐食層を除いた耳厚み)/耳初期厚み×100
寿命年数及び負極腐食量の結果を表1、表2に示す。
(Negative electrode corrosion amount)
After disassembling the battery after the acceleration test, observe the cross section of the welded part between the negative electrode strap and the ear with a metallurgical microscope, check the ear thickness excluding the corroded layer, and calculate the negative electrode corrosion amount using the following formula. did.
Negative electrode corrosion amount (%) = (ear initial thickness-ear thickness excluding corroded layer after test) / ear initial thickness x 100
The results of life and negative electrode corrosion amount are shown in Tables 1 and 2.

表1のNo.1〜18、No.19〜36、No.37〜54の電池は、種々の負極格子合金を用い、正極/負極電極材料質量比をそれぞれ1.27、1.39、及び1.51としたものであり、それぞれ図3〜5に対応する。 No. in Table 1 1-18, No. 19-36, No. The batteries 37 to 54 use various negative electrode lattice alloys and have positive electrode / negative electrode material mass ratios of 1.27, 1.39, and 1.51, respectively, which correspond to FIGS. 3 to 5, respectively. ..

正極/負極電極材料質量比が1.39である電池(No.19〜36、図4)は、負極格子の合金組成に関わらず、負極耳腐食量が大きく、フロート寿命は目標値である25℃換算13年に遙かに及ばない。 Batteries with a positive electrode / negative electrode material mass ratio of 1.39 (Nos. 19 to 36, FIG. 4) have a large amount of negative electrode ear corrosion regardless of the alloy composition of the negative electrode lattice, and the float life is a target value 25. It is far less than 13 years in terms of ° C.

正極/負極電極材料質量比が1.27である電池(No.1〜18、図3)、及び1.51である電池(No.37〜54、図5)において、負極格子の合金組成中、Caが0.06質量%又は0.13質量%である電池(No.1〜3、No.16〜18、No.37〜39、No.52〜54)、及びSnが0.9質量%である電池(No.7、11、15、43、47、51)は、負極耳腐食量が大きく、目標のフロート寿命を達成していない。
これに対して、正極/負極電極材料質量比が1.27及び1.51であり、負極格子の合金組成が、Ca:0.07〜0.12質量%、Sn:0〜0.75質量%を満たす電池(No.4〜6、8〜10、12〜14、40〜42、44〜46、48〜50)は、負極耳腐食量が小さく、25℃換算13年を上回る寿命性能を有している。
In the batteries having a positive electrode / negative electrode material mass ratio of 1.27 (No. 1 to 18, FIG. 3) and the batteries having a positive electrode / negative electrode material mass ratio of 1.51 (No. 37 to 54, FIG. 5), the negative electrode lattice has an alloy composition. , Ca is 0.06% by mass or 0.13% by mass (No. 1-3, No. 16-18, No. 37-39, No. 52-54), and Sn is 0.9 mass%. The battery (No. 7, 11, 15, 43, 47, 51), which is%, has a large amount of negative electrode ear corrosion and does not achieve the target float life.
On the other hand, the positive electrode / negative electrode material mass ratios are 1.27 and 1.51, and the alloy composition of the negative electrode lattice is Ca: 0.07 to 0.12 mass%, Sn: 0 to 0.75 mass. Batteries satisfying% (No. 4 to 6, 8 to 10, 12 to 14, 40 to 42, 44 to 46, 48 to 50) have a small amount of negative electrode ear corrosion and have a life performance exceeding 13 years in terms of 25 ° C. Have.

表2は、負極格子の合金組成について、それぞれCaが0.07〜0.12質量%、Snが0〜0.75質量%であることを満たす5種類の電池(No.55〜60、No.61〜66、No.67〜72、No.73〜78、及びNo.79〜84)と、負極格子の合金組成中、Caが0.06質量%でSnが0.75質量%である電池(No.85〜90)において、それぞれ正極/負極電極材料質量比を1.19〜1.56の範囲で異ならせた結果(No.4、22、40、6、24、42、9、27、45、13、31、49、14、32、50、3、21、39を含む。)であり、図6、7は、その結果をグラフ化したものである。 Table 2 shows five types of batteries (No. 55-60, No. 5 to 60, No. 5 to 60% by mass) satisfying that Ca is 0.07 to 0.12% by mass and Sn is 0 to 0.75% by mass, respectively, with respect to the alloy composition of the negative electrode lattice. .61-66, No. 67-72, No. 73-78, and No. 79-84), Ca is 0.06% by mass and Sn is 0.75% by mass in the alloy composition of the negative electrode lattice. Results of different positive electrode / negative electrode material mass ratios in the range of 1.19 to 1.56 in the batteries (No. 85 to 90) (No. 4, 22, 40, 6, 24, 42, 9, 27, 45, 13, 31, 49, 14, 32, 50, 3, 21, 39 are included.), And FIGS. 6 and 7 are graphs of the results.

Caが0.06質量%でSnが0.75質量%である電池(No.85〜90、図6)は、いずれの正極/負極電極材料質量比であっても、負極耳腐食量が大きく、寿命年数が短いから、負極格子の合金組成が適正でないことが分かる。
前者の5種類の電池において、正極/負極電極材料質量比が1.43の場合(No.58、64、70、76、82)は、1.39の場合(No.22、24、27、31、32)と同じく、負極耳腐食量が大きく、寿命年数が短いから、正極/負極電極材料質量比が適正でないことがわかる。
正極/負極電極材料質量比が1.19の場合(No.55、61、67、73、79)は、いずれも負極耳腐食量は小さいが、25℃換算の寿命年数が13年を切っている。これは、正極活物質利用率が高いことにより、正極劣化が進んだことによるものである。
これに対して、前者の5種類の電池において、正極/負極電極材料質量比が1.32、1.35、1.47又は1.56の場合(No.56、57、59、60、62、63、65、66、68、69、71、72、74、75、77、78、80、81、83、84)は、正極/負極電極材料質量比が1.27又は1.51の場合(No.4、40、6、42、9、45、13、49、14、50)と同様に、負極耳腐食量が小さく、かつ、25℃換算の寿命年数13年以上を達成している。
A battery having a Ca content of 0.06% by mass and a Sn content of 0.75% by mass (No. 85 to 90, FIG. 6) has a large amount of negative electrode ear corrosion regardless of the positive electrode / negative electrode material mass ratio. Since the life is short, it can be seen that the alloy composition of the negative electrode lattice is not appropriate.
In the former five types of batteries, when the positive electrode / negative electrode material mass ratio is 1.43 (No. 58, 64, 70, 76, 82), it is 1.39 (No. 22, 24, 27, Similar to 31 and 32), since the amount of corrosion of the negative electrode ears is large and the life is short, it can be seen that the mass ratio of the positive electrode / negative electrode material is not appropriate.
When the positive electrode / negative electrode material mass ratio is 1.19 (No. 55, 61, 67, 73, 79), the amount of negative electrode ear corrosion is small, but the life span in terms of 25 ° C is less than 13 years. There is. This is because the positive electrode has deteriorated due to the high utilization rate of the positive electrode active material.
On the other hand, in the former five types of batteries, when the positive electrode / negative electrode material mass ratio is 1.32, 1.35, 1.47 or 1.56 (No. 56, 57, 59, 60, 62). , 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84) when the positive electrode / negative electrode material mass ratio is 1.27 or 1.51. Similar to (No. 4, 40, 6, 42, 9, 45, 13, 49, 14, 50), the amount of corrosion of the negative electrode ears is small, and the life span of 25 ° C. is 13 years or more. ..

以上の結果から、負極格子又は負極耳の合金組成が、Caを0.07質量%以上0.12質量%以下、Snを0.75質量%以下含むPb−Ca−Sn系合金又はPb−Ca系合金であり、正極/負極電極材料質量比が1.27以上1.35以下、又は1.47以上である場合に、長寿命の制御弁式鉛蓄電池が得られることがわかる。 From the above results, the alloy composition of the negative electrode lattice or the negative electrode ear is a Pb-Ca-Sn alloy or Pb-Ca containing 0.07% by mass or more and 0.12% by mass or less of Ca and 0.75% by mass or less of Sn. It can be seen that a long-life control valve type lead-acid battery can be obtained when the alloy is a positive electrode / negative electrode material mass ratio of 1.27 or more and 1.35 or less, or 1.47 or more.

なお、正極/負極電極材料質量比は、前述のように、正極格子に充填する正極ペーストと負極格子に充填する負極ペーストとの量比によって調整することができる。
市販の電池について、化成後の正極/負極電極材料質量比を確認するためには、電池に100%以上の充電をしてから解体して、正極板及び負極板を取り出し、正極電極材料、負極電極材料の質量を測定し、質量比を算出すればよい。また、できるだけ新品又は新品に近い電池で確認することが望ましい。
As described above, the mass ratio of the positive electrode / negative electrode material can be adjusted by the amount ratio of the positive electrode paste filled in the positive electrode lattice and the negative electrode paste filled in the negative electrode lattice.
In order to confirm the mass ratio of the positive electrode / negative electrode material after chemical conversion of a commercially available battery, the battery is charged to 100% or more, disassembled, the positive electrode plate and the negative electrode plate are taken out, and the positive electrode material and the negative electrode are taken out. The mass of the electrode material may be measured and the mass ratio may be calculated. In addition, it is desirable to check with a new battery or a battery as close to new as possible.

本発明によれば、長寿命の制御弁式鉛蓄電池が得られるから、据え置き用や車載用の電池として有用である。

According to the present invention, since a long-life control valve type lead-acid battery can be obtained, it is useful as a stationary or in-vehicle battery.

Claims (1)

合金の全質量に対してCa0.07質量%以上0.12質量%以下、Sn0.75質量%以下を含有するPb−Ca−Sn系合金、又は合金の全質量に対してCa0.07質量%以上0.12質量%以下を含有し、Snが0%であるPb−Ca系合金からなる負極耳を備え、且つ、負極電極材料の質量に対する正極電極材料の質量の比が、1.27以上1
.35以下、又は1.47以上であることを特徴とする制御弁式鉛蓄電池。
Pb-Ca-Sn based alloy containing Ca 0.07% by mass or more and 0.12% by mass or less and Sn 0.75% by mass or less with respect to the total mass of the alloy, or Ca 0.07% by mass with respect to the total mass of the alloy. The ratio of the mass of the positive electrode material to the mass of the negative electrode material is 1.27 or more, and the negative ear is made of a Pb—Ca alloy containing 0.12% by mass or less and Sn is 0%. 1
.. A control valve type lead-acid battery characterized by being 35 or less, or 1.47 or more.
JP2015055481A 2015-03-19 2015-03-19 Control valve type lead acid battery Active JP6836315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055481A JP6836315B2 (en) 2015-03-19 2015-03-19 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055481A JP6836315B2 (en) 2015-03-19 2015-03-19 Control valve type lead acid battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019128297A Division JP6830615B2 (en) 2019-07-10 2019-07-10 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2016177909A JP2016177909A (en) 2016-10-06
JP6836315B2 true JP6836315B2 (en) 2021-02-24

Family

ID=57070415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055481A Active JP6836315B2 (en) 2015-03-19 2015-03-19 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP6836315B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546792B (en) * 2017-04-28 2023-03-14 株式会社杰士汤浅国际 Lead-acid battery
JP7173322B2 (en) * 2019-05-31 2022-11-16 株式会社Gsユアサ lead acid battery
CN116583970A (en) * 2020-11-27 2023-08-11 株式会社杰士汤浅国际 Lead storage battery
WO2022202443A1 (en) * 2021-03-26 2022-09-29 古河電池株式会社 Current collection sheet for lead storage battery, lead storage battery, and bipolar lead storage battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1179013A (en) * 1980-10-03 1984-12-04 Purushothama Rao Sealed, maintenance-free, lead-acid batteries for float applications
JPS58157933A (en) * 1982-03-12 1983-09-20 Furukawa Battery Co Ltd:The Lead alloy for lead storage battery
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPH01128367A (en) * 1987-11-11 1989-05-22 Yuasa Battery Co Ltd Sealed type lead storage battery
JP3099330B2 (en) * 1989-06-30 2000-10-16 松下電器産業株式会社 Lead storage battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP4325153B2 (en) * 2002-07-19 2009-09-02 パナソニック株式会社 Control valve type lead acid battery
JP4904658B2 (en) * 2002-12-09 2012-03-28 株式会社Gsユアサ Method for producing lead-acid battery
JP2004281197A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2006114417A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP4798972B2 (en) * 2004-08-03 2011-10-19 古河電池株式会社 Control valve type lead-acid battery for standby
JP2007305370A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Lead storage cell
JP5138391B2 (en) * 2008-01-15 2013-02-06 古河電池株式会社 Control valve type lead acid battery

Also Published As

Publication number Publication date
JP2016177909A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6836315B2 (en) Control valve type lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
JP4148175B2 (en) Lead alloy and lead storage battery using the same
JP6597308B2 (en) Retainer type lead acid battery
WO2011052438A1 (en) Lead acid storage battery
JP5748091B2 (en) Lead acid battery
JP2017004963A (en) Control valve type lead-acid storage battery
JP6123943B2 (en) Method for producing lead-acid battery and method for producing electrode current collector for lead-acid battery
JP4798972B2 (en) Control valve type lead-acid battery for standby
JP6043734B2 (en) Lead acid battery
JP6601654B2 (en) Control valve type lead acid battery
JP2008140645A (en) Lead acid battery
JP6830615B2 (en) Control valve type lead acid battery
JP6455105B2 (en) Lead acid battery
JP2006210210A (en) Lead-acid battery
JP2008218258A (en) Lead acid battery
JP5505248B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP6278220B2 (en) Control valve type lead acid battery
CN105742555B (en) Valve-controlled lead accumulator
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2010277941A (en) Lead-acid battery
JP6406457B2 (en) Lead-acid battery, cast grid, and manufacturing method thereof
JP4827452B2 (en) Method for producing lead-acid battery
JP6041186B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190718

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190719

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190816

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190821

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200608

C27C Written answer of applicant after an oral proceeding

Free format text: JAPANESE INTERMEDIATE CODE: C2721

Effective date: 20200608

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201228

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210202

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R150 Certificate of patent or registration of utility model

Ref document number: 6836315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150