JP6836150B2 - 半導体装置、電源装置、電子機器、及び、電源装置の制御方法 - Google Patents

半導体装置、電源装置、電子機器、及び、電源装置の制御方法 Download PDF

Info

Publication number
JP6836150B2
JP6836150B2 JP2017008210A JP2017008210A JP6836150B2 JP 6836150 B2 JP6836150 B2 JP 6836150B2 JP 2017008210 A JP2017008210 A JP 2017008210A JP 2017008210 A JP2017008210 A JP 2017008210A JP 6836150 B2 JP6836150 B2 JP 6836150B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
switch circuit
turned
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008210A
Other languages
English (en)
Other versions
JP2018117484A (ja
Inventor
桑野 俊一
俊一 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017008210A priority Critical patent/JP6836150B2/ja
Priority to US15/855,417 priority patent/US10075072B2/en
Priority to CN201711442692.5A priority patent/CN108336913B/zh
Publication of JP2018117484A publication Critical patent/JP2018117484A/ja
Application granted granted Critical
Publication of JP6836150B2 publication Critical patent/JP6836150B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電源電圧を昇圧するために用いられる半導体装置に関する。また、本発明は、そのような半導体装置を用いた電源装置に関する。さらに、本発明は、そのような電源装置を備える電子機器、及び、電源装置の制御方法等に関する。
例えば、バッテリー等から供給される電源電圧を昇圧するスイッチングレギュレーターにおいては、電源投入時に平滑用のキャパシターに流れる突入電流を低減して電源電圧の変動を抑制するために、電源投入後に昇圧ノードの電圧を徐々に立ち上げることが行われている。そのような動作は、ソフトスタートと呼ばれている。
関連する技術として、特許文献1には、電源オン時の突入電流を抑えることを目的とする昇圧型スイッチングレギュレーターが開示されている。特許文献1の図1に示されているスイッチングレギュレーターには、スイッチング素子22と、電源20とコイル21との間に接続されたMOSトランジスター40とが設けられており、電源がオンするときに、MOSトランジスター40の抵抗値を高い状態から低い状態に変化させることで、電源オン時の突入電流が抑えられる。
また、特許文献2には、簡単な回路構成で突入電流の発生を防止することを目的とする昇圧型スイッチングレギュレーターが開示されている。特許文献2の図1に示されているスイッチングレギュレーターは、制御信号に応じてスイッチングを行うスイッチングトランジスターM1と、入力電圧をインダクターL1に供給するPMOSトランジスターM2及びM3と、PMOSトランジスターM3がオンして入力電圧の供給を開始してから所定の時間経過後に、PMOSトランジスターM2をオンさせて入力電圧をインダクターL1に供給させる制御回路部とを備えている。
特開2003−111391号(段落0007−0016、図1、図2) 特開2010−207005号(段落0007−0024、図1、図2)
特許文献1の図1に示されているスイッチングレギュレーターにおいては、MOSトランジスター40のオン抵抗を変化させることにより、ソフトスタート機能が実現される。しかしながら、MOSトランジスター40のオン抵抗は、ゲート電圧の僅かな変化によって大きく変化するので、オン抵抗の制御が困難である。
一方、特許文献2の図1に示されているスイッチングレギュレーターにおいては、オン抵抗が大きいPMOSトランジスターM3と、オン抵抗が小さいPMOSトランジスターM2とが、並列接続されている。PMOSトランジスターM3がオンした後にPMOSトランジスターM2をオンさせることにより、ソフトスタート機能が実現される。
特許文献2の図1に示されているスイッチングレギュレーターの一部の回路を半導体装置(IC)に内蔵する場合に、オン抵抗が大きいPMOSトランジスターM3、及び、制御信号に応じてスイッチングを行うスイッチングトランジスターM1は、あまり大きなサイズを必要としないので、ICに内蔵することが望ましい。
しかしながら、その場合には、PMOSトランジスターM3のドレインに接続される端子と、スイッチングトランジスターM1のドレインに接続される端子とをICに設けて、それらの端子間にインダクターL1を外付けする必要がある。従って、スイッチングトランジスターM1のみをICに内蔵する場合と比較して、ICの端子数が増加してしまうという問題がある。
また、特許文献1の図2を参照すると、MOSトランジスター40のオン抵抗は、MOSトランジスター制御回路41の容量413と抵抗411との時定数によって制御される。同様に、特許文献2の図2を参照すると、ソフトスタート動作は、ソフトスタート回路2のコンデンサーC11と抵抗R11との時定数によって制御される。
しかしながら、容量413又はコンデンサーC11のような大容量のキャパシターをICに内蔵すると、キャパシターが半導体チップ内で大きな面積を占有してチップ面積が増大したり、あるいは、キャパシターの容量値のばらつきによって動作タイミングがばらついてしまうという問題がある。
そこで、上記の点に鑑み、本発明の第1の目的は、ソフトスタート動作時に昇圧ノードに電圧を供給するスイッチ回路と、昇圧動作時にスイッチングを行うスイッチング素子とを半導体装置に内蔵する場合に、半導体装置の端子数の増加を抑えながら、電源投入後に昇圧ノードの電圧を徐々に立ち上げて突入電流を低減するソフトスタート機能を実現することである。
また、本発明の第2の目的は、そのような半導体装置において、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作において必要な期間を設定することである。さらに、本発明の第3の目的は、そのような半導体装置を用いた電源装置、そのような電源装置を備える電子機器、及び、電源装置の制御方法等を提供することである。
以上の課題の少なくとも一部を解決するために、本発明の第1の観点に係る半導体装置は、第1の電源端子と出力端子との間に接続されたスイッチ回路と、出力端子と第2の電源端子との間に接続されたスイッチング素子と、イネーブル信号に応答してスイッチ回路をオン状態としてから所定の期間が経過したときに、第1の電源端子と第2の電源端子との間に供給される電源電圧を昇圧するためにスイッチング素子にスイッチング動作を開始させる制御回路とを備える。
本発明の第1の観点によれば、スイッチ回路がオン状態となって出力端子の電位が上昇を開始してから所定の期間が経過したときに、スイッチング素子がスイッチング動作を開始して電源電圧を昇圧するので、電源投入後に昇圧ノードの電圧を徐々に立ち上げて突入電流を低減するソフトスタート機能を実現することができる。また、スイッチ回路及びスイッチング素子の両方が出力端子に接続されているので、スイッチ回路及びスイッチング素子を半導体装置に内蔵しても、半導体装置の端子数の増加を抑えることができる。
ここで、制御回路が、スイッチ回路をオン状態としてから第1の期間が経過したときに、スイッチ回路をオフ状態として、出力端子に一端が接続されたインダクターの他端と第1の電源端子との間に接続された第2のスイッチ回路をオン状態としても良い。このように、出力端子の電位が上昇してからインダクターの両端間に電圧を印加することにより、インダクターの両端間の急激な電位差変動を抑えることができる。
その場合に、制御回路は、第2のスイッチ回路をオン状態としてから第2の期間が経過したときに、スイッチング素子にスイッチング動作を開始させるようにしても良い。それにより、出力端子の電位がさらに上昇したときに、スイッチング素子がスイッチング動作を開始することができる。
また、制御回路は、第2のスイッチ回路をオン状態としてから第2の期間が経過した後に、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号をスイッチング素子に供給するようにしても良い。それにより、スイッチング素子が、第1の駆動信号に従ってスイッチング動作を行い、昇圧ノードの電圧を徐々に上昇させることができる。
さらに、制御回路は、昇圧ノードの電圧が所定の電圧よりも上昇した後に、昇圧ノードの電圧に基づいてパルス幅変調された第2の駆動信号をスイッチング素子に供給するようにしても良い。それにより、スイッチング素子が、第2の駆動信号に従ってスイッチング動作を行い、昇圧ノードの電圧を目標電圧に収束させることができる。
以上において、スイッチ回路が、第1の電源端子と出力端子との間に直列接続された複数のトランジスターを含むようにしても良い。例えば、第1の電源端子と出力端子との間に複数のPチャネルMOSトランジスターが直列接続される場合には、出力端子の電位が第1の電源端子の電位より高くなっても、寄生PNPバイポーラトランジスターによって出力端子から第1の電源端子に電流が流れることを防止できる。
また、半導体装置が、システムクロック信号を生成するクロック信号生成回路をさらに備え、制御回路が、システムクロック信号に基づいて、第1の駆動信号を生成するようにしても良い。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作におけるスイッチング素子のオン/オフ期間を細かく設定することができる。また、ソフトスタート動作のテストの一部をデジタル的に行うことができるので、半導体装置のテストを効率化することが可能である。
さらに、半導体装置がクロック信号生成回路を備える場合には、制御回路が、システムクロック信号に基づいて、第1の期間又は第2の期間を設定するようにしても良い。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作における第1の期間又は第2の期間を正確に設定することができる。
あるいは、制御回路が、昇圧ノードの電圧に基づいて、第1の期間又は第2の期間を設定するようにしても良い。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作における第1の期間又は第2の期間を適応的に設定することができる。
本発明の第2の観点に係る電源装置は、上記いずれかの半導体装置と、出力端子に接続された一端を有するインダクターと、出力端子と昇圧ノードとの間に接続されたダイオードと、昇圧ノードと第2の電源端子との間に接続されたキャパシターとを備える。
本発明の第2の観点によれば、端子数の増加を抑えながら、電源投入時に出力端子の電位の上昇を開始させるスイッチ回路と、出力端子の電位が上昇を開始してから所定の期間が経過したときに昇圧動作を開始するスイッチング素子とを内蔵した半導体装置を用いて、電源投入後に出力電圧を徐々に立ち上げて突入電流を低減するソフトスタート機能を実現した電源装置を提供することができる。
この電源装置は、第1の電源端子とインダクターの他端との間に接続された第2のスイッチ回路をさらに備えるようにしても良い。その場合には、オン抵抗を小さくするために大きなサイズを有する第2のスイッチ回路を半導体装置の外付け部品として、半導体装置を小型化することが可能である。
本発明の第3の観点に係る電子機器は、上記いずれかの電源装置と、電源装置の出力電圧が供給される負荷とを備える。本発明の第3の観点によれば、電源投入後に出力電圧を徐々に立ち上げて突入電流を低減するソフトスタート機能を実現した電源装置を用いて、電源投入時における電源電圧の変動を低減して信頼性の高い電子機器を提供することができる。
本発明の第4の観点に係る電源装置の制御方法は、第1の電源配線と第2の電源配線との間に供給される電源電圧を昇圧する電源装置の制御方法であって、第1の電源配線に接続された第1のスイッチ回路をオン状態として、インダクターの一端と第2の電源配線との間にダイオードを介して接続されたキャパシターの充電を開始するステップ(a)と、第1のスイッチ回路をオン状態としてから第1の期間が経過したときに、第1の電源配線とインダクターの他端との間に接続された第2のスイッチ回路をオン状態とするステップ(b)と、第2のスイッチ回路をオン状態としてから第2の期間が経過した後に、システムクロック信号に基づいて、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号を生成し、インダクターの一端と第2の電源配線との間に接続されたスイッチング素子に供給するステップ(c)と、キャパシターの両端間の電圧が所定の電圧よりも上昇した後に、キャパシターの両端間の電圧に基づいてパルス幅変調された第2の駆動信号をスイッチング素子に供給するステップ(d)とを備える。
本発明の第4の観点によれば、第1のスイッチ回路がオン状態となってキャパシターの充電を開始し、第2のスイッチ回路がオン状態となってキャパシターの両端間の電圧がさらに上昇した後に、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号がシステムクロック信号に基づいて生成されてスイッチング素子に供給される。従って、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作におけるスイッチング素子のオン/オフ期間を細かく設定することができる。
本発明の一実施形態に係る電源装置の構成例を示す回路図。 スイッチングレギュレーターの出力電圧の時間的変化を示す波形図。 スイッチングレギュレーターの出力電圧に対応して各信号を示す波形図。 図2に示す第3の期間における第1の駆動信号の時間的変化を示す波形図。 本発明の一実施形態に係る電源装置の制御方法を示すフローチャート。 本発明の一実施形態に係る電子機器の構成例を示すブロック図。
以下に、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、同一の構成要素には同一の参照番号を付して、重複する説明を省略する。
図1は、本発明の一実施形態に係る電源装置の構成例を示す回路図である。以下の実施形態においては、電源装置の一例として、電源電圧を昇圧するスイッチングレギュレーター(DC/DCコンバーター)について説明する。
<スイッチングレギュレーター>
図1に示すように、このスイッチングレギュレーターは、本発明の一実施形態に係る半導体装置(IC)100と、PNPバイポーラトランジスターQB1と、インダクターL1と、ダイオードD1と、キャパシターC1と、抵抗R1〜R3とを含んでいる。
スイッチングレギュレーターには、第1の電源配線PL1から高電位側の電源電位VDDが供給されると共に、第2の電源配線PL2から低電位側の電源電位VSSが供給される。図1には、電源電位VSSが接地電位(0V)である場合が示されている。スイッチングレギュレーターは、定常状態において、電源電圧(VDD−VSS)を昇圧して昇圧ノードN1において出力電圧VOUTを生成し、出力電圧VOUTを負荷Zに供給する。
半導体装置100は、例えば、MCU(マイクロコントロールユニット)又はLCD(液晶ディスプレイ)コントローラー等のSoC(system on a chip)であっても良く、スイッチングレギュレーターの一部の回路を内蔵している。なお、SoCとは、電子機器等に必要とされる一連の機能(システム)を1つの半導体チップに集積した半導体装置のことである。
半導体装置100は、基準電圧生成回路10と、クロック信号生成回路20と、ADC(アナログ/デジタル変換器)30と、発振回路40と、オペアンプ50と、PWM(パルス幅変調)回路60と、制御回路70と、スイッチ回路80と、NチャネルMOSトランジスターQN1と、端子P1〜P7とを含んでいる。端子P1〜P7は、半導体チップに設けられたパッド、又は、パッケージに設けられたピンである。
第1の電源端子P1には、第1の電源配線PL1から高電位側の電源電位VDDが供給され、第2の電源端子P2及び第3の電源端子P3には、第2の電源配線PL2から低電位側の電源電位VSSが供給される。基準電圧生成回路10は、例えば、バンドギャップリファレンス回路等を含み、電源電圧(VDD−VSS)に依存しない基準電圧VREFを生成する。
クロック信号生成回路20は、例えば、水晶発振回路等を含み、半導体装置100に含まれているCPU(中央演算装置)等に供給されるシステムクロック信号SCKを生成する。システムクロック信号SCKの周波数は、例えば、数十MHz〜100MHz程度である。システムクロック信号SCKは制御回路70にも供給され、制御回路70は、システムクロック信号SCKに同期して動作する。
ADC30は、帰還端子P7から供給されるフィードバック電圧VFBをデジタルのフィードバック信号DFBに変換して制御回路70に供給する。また、発振回路40は、例えば、CR発振回路等で構成され、発振動作を行うことによって昇圧クロック信号BCKを生成する。昇圧クロック信号BCKの周波数は、例えば、100kHz〜数MHz程度である。
このように、半導体装置100が、昇圧クロック信号BCKよりも高い周波数を有するシステムクロック信号SCKを生成するクロック信号生成回路20を備える場合には、制御回路70が、スイッチングレギュレーターのソフトスタート動作において必要な期間を設定するためにシステムクロック信号SCKを利用することができる。
オペアンプ50の非反転入力端子には、基準電圧生成回路10から基準電圧VREFが供給され、反転入力端子には、帰還端子P7からフィードバック電圧VFBが供給される。オペアンプ50は、基準電圧VREFとフィードバック電圧VFBとの差を増幅して、誤差信号ERRを出力端子から出力する。
PWM回路60は、オペアンプ50から供給される誤差信号ERRに基づいて、発振回路40から供給される昇圧クロック信号BCKをパルス幅変調するために用いられるリセット信号RSTを生成する。例えば、PWM回路60は、昇圧クロック信号BCKの立ち上がりに同期して三角波信号を生成し、三角波信号の電位が誤差信号ERRの電位よりも低い期間において、リセット信号RSTをローレベルに非活性化する。一方、PWM回路60は、三角波信号の電位が誤差信号ERRの電位よりも高くなると、リセット信号RSTをハイレベルに活性化する。
制御回路70は、例えば、ロジック回路71と、RSフリップフロップ72と、AND回路73及び74と、OR回路75とを含んでいる。制御回路70は、スイッチングレギュレーターのソフトスタート動作及び通常の昇圧動作を制御するために、チャージ信号CHG、インダクター接続信号IND、及び、ソフトスタート停止信号STPを生成すると共に、駆動信号DRVを生成してトランジスターQN1に供給する。
トランジスターQN1は、スイッチングレギュレーターにおけるスイッチング素子であり、出力端子P6と第2の電源端子P2との間に接続されている。トランジスターQN1は、出力端子P6に接続されたドレインと、第2の電源端子P2に接続されたソースと、駆動信号DRVが印加されるゲートとを有している。
トランジスターQN1は、駆動信号DRVがハイレベルに活性化されている期間においてオン状態となり、駆動信号DRVがローレベルに非活性化されている期間においてオフ状態となることにより、駆動信号DRVに従ってスイッチング動作を行う。なお、スイッチング素子としては、NチャネルMOSトランジスター以外にも、PチャネルMOSトランジスター、バイポーラトランジスター、IGBT(絶縁ゲートバイポーラトランジスター)、又は、サイリスター等を使用することができる。
スイッチ回路80は、スイッチングレギュレーターにおける第1のスイッチ回路であり、第1の電源端子P1と出力端子P6との間に接続されている。例えば、スイッチ回路80は、第1の電源端子P1と出力端子P6との間に直列接続された複数のトランジスターを含んでも良い。
図1に示す例においては、スイッチ回路80が、第1の電源端子P1と出力端子P6との間に直列接続されたPチャネルMOSトランジスターQP1及びQP2と、トランジスターQP1及びQP2を制御するためのインバーター81、NチャネルMOSトランジスターQN2、及び、抵抗R4とを含んでいる。
トランジスターQP1は、第1の電源端子P1に接続されたソースを有している。トランジスターQP2は、トランジスターQP1のドレインに接続されたドレインと、出力端子P6に接続されたソースとを有している。半導体装置100において、PチャネルMOSトランジスターのソース及びドレインは、例えば、P型の半導体基板のNウェル内に配置された2つのP型不純物領域で構成される。なお、上記においては、トランジスターQP1及びQP2の各々が有する2つのP型不純物領域の内で、Nウェルに電気的に接続されている方をソースと表記したが、電流の方向に従って表記する場合には、トランジスターQP2のドレインとソースとが逆になる。
それらのP型不純物領域及びNウェルは、寄生PNPバイポーラトランジスターを形成する。また、Nウェルには、第1の電源端子P1から電源電位VDDが供給される。従って、第1の電源端子P1と出力端子P6との間に1つのPチャネルMOSトランジスターが接続される場合には、出力端子P6の電位が第1の電源端子P1の電位よりも閾値電圧以上高くなると、寄生PNPバイポーラトランジスターがオン状態となって、出力端子P6から第1の電源端子P1に電流が流れてしまう。
一方、第1の電源端子P1と出力端子P6との間に複数のPチャネルMOSトランジスターが直列接続される場合には、それらのトランジスターを別々のNウェルに配置することにより、電流経路に逆向きのPN接合が挿入される。それにより、出力端子P6の電位が第1の電源端子P1の電位より高くなっても、寄生PNPバイポーラトランジスターによって出力端子P6から第1の電源端子P1に電流が流れることを防止できる。
インバーター81は、制御回路70から供給されるチャージ信号CHGを反転してトランジスターQP1のゲートに印加する。従って、チャージ信号CHGがハイレベルに活性化されると、トランジスターQP1がオン状態となり、チャージ信号CHGがローレベルに非活性化されると、トランジスターQP1がオフ状態となる。
トランジスターQN2は、トランジスターQP2のゲートに接続されたドレインと、電電電位VSSの配線に接続されたソースと、チャージ信号CHGが印加されるゲートとを有している。また、抵抗R4は、トランジスターQP2のドレインとゲートとの間に接続されている。
従って、チャージ信号CHGがハイレベルに活性化されると、トランジスターQN2がオン状態となってトランジスターQP2のゲートがローレベルになるので、トランジスターQP2がオン状態となる。また、チャージ信号CHGがローレベルに非活性化されると、トランジスターQN2がオフ状態となってトランジスターQP2のゲートが抵抗R4によってプルアップされるので、トランジスターQP2がオフ状態となる。
インダクターL1は、半導体装置100の出力端子P6に接続された一端を有している。トランジスターQB1及び抵抗R3は、半導体装置100の第1の電源端子P1とインダクターL1の他端との間に接続された第2のスイッチ回路を構成する。図1の構成によれば、オン抵抗を小さくするために大きなサイズを有する第2のスイッチ回路を半導体装置100の外付け部品として、半導体装置100を小型化することが可能である。
トランジスターQB1は、第1の電源端子P1に接続されたエミッターと、インダクターL1の他端に接続されたコレクターと、抵抗R3を介して制御端子P5に接続されたベースとを有している。制御回路70は、抵抗R3を介してトランジスターQB1のベースにインダクター接続信号INDを印加する。インダクター接続信号INDがローレベルに活性化されると、トランジスターQB1がオン状態となり、インダクター接続信号INDがハイレベルに非活性化されると、トランジスターQB1がオフ状態となる。
ダイオードD1は、半導体装置100の出力端子P6と昇圧ノードN1との間に接続されており、出力端子P6に接続されたアノードと、昇圧ノードN1に接続されたカソードとを有している。ダイオードD1としては、例えば、PN接合ダイオードに比べて順方向電圧が低くてスイッチング速度が速いショットキーバリアダイオードを用いても良い。
キャパシターC1は、昇圧ノードN1と半導体装置100の第2の電源端子P2との間に接続されており、昇圧ノードN1の電圧(スイッチングレギュレーターの出力電圧)VOUTを平滑化する。抵抗R1及びR2は、昇圧ノードN1と半導体装置100の第2の電源端子P2との間に直列接続されており、昇圧ノードN1の電圧VOUTを分圧してフィードバック電圧VFBを生成する分圧回路を構成している。
トランジスターQB1がオン状態であるときに、トランジスターQN1がオン状態である期間において、インダクターL1に電流が流れる。そのとき、ダイオードD1は、オフ状態となっている。インダクターL1に電流が流れることにより、インダクターL1において電気エネルギーが磁気エネルギーに変換されて蓄積される。
一方、トランジスターQN1がオフ状態である期間においては、インダクターL1に蓄積された磁気エネルギーが電気エネルギーとして放電されて、インダクターL1からダイオードD1を介して昇圧ノードN1に電流が流れる。それにより、昇圧ノードN1において、電源電圧(VDD−VSS)が昇圧されて出力電圧VOUTが生成され、キャパシターC1が充電される。
出力電圧VOUTは、駆動信号DRVのデューティー比によって決定される。トランジスターQN1がオン状態である期間の割合を表すオンデューティー比Dは、発振回路40によって生成される昇圧クロック信号BCKの1周期Tにおいて駆動信号DRVが活性化される期間τを用いて、次式(1)で表される。
D=τ/T ・・・(1)
ここで、0≦D≦1である。
以上において、第2のスイッチ回路を構成するトランジスターQB1及び抵抗R3を半導体装置100に内蔵しても良い。その場合には、半導体装置100に内蔵されたトランジスターQB1のコレクターと外付けのインダクターL1とを接続するために制御端子P5を用いるようにすれば、端子数が増加しない。また、PNPバイポーラトランジスターQB1の替りに、PチャネルMOSトランジスターが用いられても良い。
あるいは、抵抗R1及びR2を半導体装置100に内蔵しても良いし、さらに、ダイオードD1を半導体装置100に内蔵しても良い。また、ダイオードD1の替りにトランジスターを半導体装置100に内蔵しても良い。その場合には、制御回路70が、トランジスターQN1と交互にオン状態又はオフ状態となるようにダイオードD1の替りのトランジスターを制御しても良い。
<制御回路>
次に、図1に示す制御回路70の構成及び動作について、図1〜図4を参照しながら詳しく説明する。制御回路70において、ロジック回路71は、例えば、カウンター及びプログラマブルタイマーを含んでいる。カウンターは、クロック信号生成回路20から供給されるシステムクロック信号SCKを分周して分周クロック信号を生成する。
プログラマブルタイマーは、分周クロック信号に基づいて各動作のタイミングを決定し、チャージ信号CHG、インダクター接続信号IND、第1の駆動信号DRV1、及び、ソフトスタート停止信号STPを生成する。その際にプログラマブルタイマーが参照する値は、半導体装置100を製造する際にハードウェアに設定されても良いし、CPU等がレジスターに設定しても良い。
AND回路73は、第1の駆動信号DRV1が供給される非反転入力端子と、ソフトスタート停止信号STPが供給される反転入力端子とを有しており、ソフトスタート停止信号STPがローレベルに非活性化されているときに、第1の駆動信号DRV1を出力端子から出力する。
AND回路74は、RSフリップフロップ72の出力信号Qが供給される第1の入力端子と、ソフトスタート停止信号STPが供給される第2の入力端子とを有しており、ソフトスタート停止信号STPがハイレベルに活性化されているときに、RSフリップフロップ72の出力信号Qを第2の駆動信号DRV2として出力端子から出力する。
OR回路75は、AND回路73及び74の出力端子にそれぞれ接続された2つの入力端子を有しており、第1の駆動信号DRV1又は第2の駆動信号DRV2を駆動信号DRVとして出力端子から出力する。その結果、OR回路75は、ソフトスタート停止信号STPがローレベルに非活性化されているときに第1の駆動信号DRV1を出力し、ソフトスタート停止信号STPがハイレベルに活性化されているときに第2の駆動信号DRV2を出力する。
図2は、スイッチングレギュレーターの出力電圧の時間的変化を示す波形図であり、図3は、スイッチングレギュレーターの出力電圧に対応して各信号の時間的変化を示す波形図である。図3に示すように、初期状態において、チャージ信号CHGは、ローレベルに非活性化されており、インダクター接続信号INDは、ハイレベルに非活性化されており、ソフトスタート停止信号STP及び第1の駆動信号DRV1は、ローレベルに非活性化されている。
制御回路70には、外部の電源スイッチ又は操作部等から、電源投入時にハイレベルに活性化されるイネーブル信号ENが供給される。制御回路70は、イネーブル信号ENに応答してチャージ信号CHGをハイレベルに活性化し、第1の電源端子P1と出力端子P6との間に接続されているスイッチ回路80をオン状態とする。それにより、ソフトスタート動作が開始される。
制御回路70は、スイッチ回路80のオン状態を、図2に示す第1の期間T1だけ保持する。スイッチ回路80のトランジスターQP1及びQP2の各々は、例えば、20Ω〜30Ω程度のオン抵抗を有しており、トランジスターQP1及びQP2のオン抵抗及びダイオードD1を介して、キャパシターC1が充電される。
第1の期間T1において、昇圧ノードN1の電位は、電源電位VSSから中間電位VAまで上昇する。中間電位VAは、電源電位VSSよりも高く電源電位VDDよりも低い電位であり、トランジスターQP1及びQP2のオン抵抗に依存して定まる。スイッチングレギュレーターの出力電圧VOUTは、(VA−VSS)で表される。
制御回路70は、スイッチ回路80をオン状態としてから第1の期間T1が経過したときに、チャージ信号CHGをローレベルに非活性化して、スイッチ回路80をオフ状態とする。また、制御回路70は、インダクター接続信号INDをローレベルに活性化して、出力端子P6に一端が接続されたインダクターL1の他端と第1の電源端子P1との間に接続されたトランジスターQB1をオン状態とする。
このように、出力端子P6の電位が上昇してからインダクターL1の両端間に電圧を印加することにより、インダクターL1の両端間の急激な電位差変動を抑えることができる。トランジスターQB1は、例えば、1Ω以下のオン抵抗を有しており、トランジスターQB1のオン抵抗、インダクターL1、及び、ダイオードD1を介して、キャパシターC1が充電される。図2に示す第2の期間T2において、昇圧ノードN1の電位は、中間電位VAから電源電位VDDの近傍まで上昇する。
制御回路70は、イネーブル信号ENに応答してスイッチ回路80をオン状態としてから所定の期間が経過したときに、第1の電源端子P1と第2の電源端子P2との間に供給される電源電圧(VDD−VSS)を昇圧するために、トランジスターQN1にスイッチング動作を開始させる。
例えば、制御回路70は、トランジスターQB1をオン状態としてから第2の期間T2が経過したときに、トランジスターQN1にスイッチング動作を開始させる。それにより、出力端子P6の電位がさらに上昇したときに、トランジスターQN1がスイッチング動作を開始することができる。その後、図2に示す第3の期間T3と第4の期間T4とにおいて異なる制御が行われる。
制御回路70は、トランジスターQB1をオン状態としてから第2の期間T2が経過した後に、第3の期間T3において、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号DRV1をトランジスターQN1に供給する。第3の期間T3においては、ソフトスタート停止信号STPがローレベルに非活性化されているので、ロジック回路71によって生成される第1の駆動信号DRV1が、トランジスターQN1のゲートに印加される。それにより、トランジスターQN1が、第1の駆動信号DRV1に従ってスイッチング動作を行い、昇圧ノードN1の電圧VOUTを徐々に上昇させることができる。
そのような場合には、通常、大容量のキャパシターを含む時定数回路が用いられるが、本実施形態においては、ロジック回路71が、クロック信号生成回路20から供給される高速のシステムクロック信号SCKに基づいて、第1の駆動信号DRV1を生成する。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作におけるトランジスターQN1のオン/オフ期間を細かく設定することができる。また、ソフトスタート動作のテストの一部をデジタル的に行うことができるので、半導体装置のテストを効率化することが可能である。
図4は、図2に示す第3の期間における第1の駆動信号の時間的変化を示す波形図である。図4に示す例においては、図2に示す第3の期間T3が、複数のフェーズPH1、PH2、PH3、PH4、・・・に分割され、それらのフェーズ間において、第1の駆動信号DRV1が活性化される期間τ1、τ2、τ3、τ4、・・・が徐々に長く設定される。従って、式(1)に示すオンデューティー比Dが徐々に大きくなり、昇圧ノードN1の電圧VOUTが緩やかに上昇する。
再び図2及び図3を参照すると、制御回路70は、昇圧ノードN1の電圧VOUTが所定の電圧よりも上昇した後に、第4の期間T4において、昇圧ノードN1の電圧VOUTに基づいてパルス幅変調された第2の駆動信号DRV2をトランジスターQN1に供給する。ここで、所定の電圧は、目標電圧の90%〜95%程度であることが望ましい。図2に示す例においては、目標電圧を(VTG−VSS)として、昇圧ノードN1の電圧VOUTが、所定の電圧0.95(VTG−VSS)と比較される。
そのために、ロジック回路71は、ADC30から供給されるデジタルのフィードバック信号DFBの値を、予め設定された閾値と比較する。例えば、閾値は、所定の電圧に分圧回路の分圧比(R2/(R1+R2))を掛けて設定される。フィードバック信号DFBの値が閾値よりも大きくなると、ロジック回路71は、ソフトスタート停止信号STPをハイレベルに活性化する。それにより、ソフトスタート動作が終了して、通常の昇圧動作が開始される。
第4の期間T4においては、ソフトスタート停止信号STPがハイレベルに活性化されるので、AND回路74から出力される第2の駆動信号DRV2が、トランジスターQN1のゲートに印加される。それにより、トランジスターQN1が、第2の駆動信号DRV2に従ってスイッチング動作を行い、昇圧ノードN1の電圧VOUTを目標電圧(VTG−VSS)に収束させることができる。
RSフリップフロップ72は、発振回路40から供給される昇圧クロック信号BCK、及び、PWM回路60から供給されるリセット信号RSTに基づいて、パルス幅が変調された出力信号Qを生成する。例えば、RSフリップフロップ72は、リセット信号RSTがローレベルに非活性化されているときに、昇圧クロック信号BCKの立ち上がりに同期してセットされ、出力信号Qをハイレベルに活性化する。
また、RSフリップフロップ72は、昇圧クロック信号BCKがローレベルに非活性化されているときに、リセット信号RSTの立ち上がりに同期してリセットされ、出力信号Qをローレベルに非活性化する。出力信号Qは、第2の駆動信号DRV2として、トランジスターQN1のゲートに印加される。
以上において、制御回路70は、システムクロック信号SCKに基づいて、第1の期間T1又は第2の期間T2を設定するようにしても良い。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作における第1の期間T1又は第2の期間T2を正確に設定することができる。
あるいは、制御回路70は、昇圧ノードN1の電圧VOUTに基づいて、第1の期間T1又は第2の期間T2を設定するようにしても良い。それにより、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作における第1の期間T1又は第2の期間T2を適応的に設定することができる。そのために、ロジック回路71は、ADC30から供給されるデジタルのフィードバック信号DFBの値を、第1の期間T1又は第2の期間T2を設定するためのそれぞれの閾値と比較する。
以上説明したように、本実施形態によれば、スイッチ回路80がオン状態となって出力端子P6の電位が上昇を開始してから所定の期間が経過したときに、トランジスターQN1がスイッチング動作を開始して電源電圧を昇圧するので、電源投入後に昇圧ノードN1の電圧を徐々に立ち上げて突入電流を低減するソフトスタート機能を実現することができる。
また、スイッチ回路80及びトランジスターQN1の両方が出力端子P6に接続されているので、スイッチ回路80及びトランジスターQN1を半導体装置100に内蔵しても、半導体装置100の端子数の増加を抑えることができる。さらに、上記のような半導体装置100を用いて、電源投入後に出力電圧VOUTを徐々に立ち上げて突入電流を低減するソフトスタート機能を実現した電源装置を提供することができる。
<電源装置の制御方法>
次に、本発明の一実施形態に係る電源装置の制御方法について、図1〜図5を参照しながら説明する。図5は、本発明の一実施形態に係る電源装置の制御方法を示すフローチャートである。
この制御方法は、図1に示すように第1の電源配線PL1と第2の電源配線PL2との間に供給される電源電圧(VDD−VSS)を昇圧する電源装置(スイッチングレギュレーター)の制御方法である。なお、スイッチングレギュレーターは、複数の半導体装置(IC)又はディスクリート部品で構成されていても良い。
図5に示すステップS1において、制御回路70が、第1の電源配線PL1に接続されたスイッチ回路(第1のスイッチ回路)80をオン状態とする。それにより、インダクターL1の一端と第2の電源配線PL2との間にダイオードD1を介して接続されたキャパシターC1の充電が開始されて、キャパシターC1の両端間の電圧(スイッチングレギュレーターの出力電圧)VOUTが上昇する。
ステップS2において、制御回路70が、スイッチ回路80をオン状態としてから第1の期間T1が経過したときに、第1の電源配線PL1とインダクターL1の他端との間に接続された第2のスイッチ回路を構成するPNPバイポーラトランジスターQB1をオン状態とする。それにより、キャパシターC1の充電が促進されて、キャパシターC1の両端間の電圧VOUTがさらに上昇する。
ステップS3において、制御回路70が、トランジスターQB1をオン状態としてから第2の期間T2が経過した後に、システムクロック信号SCKに基づいて、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号DRV1を生成し、インダクターL1の一端と第2の電源配線PL2との間に接続されたNチャネルMOSトランジスター(スイッチング素子)QN1に供給する。それにより、トランジスターQN1が、第1の駆動信号DRV1に従ってスイッチング動作を行い、キャパシターC1の両端間の電圧VOUTを徐々に上昇させる。
ステップS4において、制御回路70が、キャパシターC1の両端間の電圧VOUTが所定の電圧よりも上昇した後に、キャパシターC1の両端間の電圧VOUTに基づいてパルス幅変調された第2の駆動信号DRV2をトランジスターQN1に供給する。それにより、トランジスターQN1が、第2の駆動信号DRV2に従ってスイッチング動作を行い、キャパシターC1の両端間の電圧VOUTを目標電圧に収束させる。
本発明の一実施形態に係る電源装置の制御方法によれば、スイッチ回路80がオン状態となってキャパシターC1の充電を開始し、トランジスターQB1がオン状態となってキャパシターC1の両端間の電圧VOUTがさらに上昇した後に、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号DRV1がシステムクロック信号SCKに基づいて生成されてトランジスターQN1に供給される。従って、キャパシターを含む時定数回路を用いることなく、ソフトスタート動作におけるトランジスターQN1のオン/オフ期間を細かく設定することができる。
<電子機器>
次に、本発明の一実施形態に係る電子機器について説明する。
図6は、本発明の一実施形態に係る電子機器の構成例を示すブロック図である。図6には、電子機器の一例として、携帯電話機の構成が示されている。図6に示すように、携帯電話機は、操作部110と、制御部120と、格納部130と、電源装置140と、LCDドライバー150と、LCDパネル160と、音声入出力部170と、通信部180とを含み、バッテリー200から電源電圧が供給されて動作する。
ここで、制御部120と、格納部130と、電源装置140の一部とが、図1に示す半導体装置100に内蔵されてSoCを構成しても良い。その場合に、LCDドライバー150は、図1に示す負荷Zに相当する。なお、図6に示す構成要素の一部を省略又は変更しても良いし、あるいは、図6に示す構成要素に他の構成要素を付加しても良い。
操作部110は、例えば、ボタンスイッチ又はタッチセンサー等を含む入力装置であり、ユーザーによる操作に応じた操作信号を制御部120に出力する。制御部120は、例えば、CPUを含み、プログラムに従って各種の信号処理や制御処理を実行する。例えば、制御部120は、操作部110から供給される操作信号に応じて、画像信号や音声信号の処理を行うと共に、外部との間で通信を行うために通信部180を制御する。
格納部130は、例えば、ROM(リードオンリー・メモリー)と、RAM(ランダムアクセス・メモリー)とを含んでいる。ROMは、CPUが各種の信号処理や制御処理を実行するためのプログラムやデータ等を格納している。また、RAMは、CPUの作業領域として用いられ、ROMから読み出されたプログラムやデータ、操作部110を用いて入力されたデータ、又は、CPUがプログラムに従って実行した演算結果等を一時的に格納する。
電源装置140は、バッテリー200から供給される電源電圧を昇圧して出力電圧VOUTを生成し、出力電圧VOUTをLCDドライバー150に供給する。電源装置140は、異なる電圧値を有する複数の出力電圧を生成してLCDドライバー150に供給しても良い。LCDドライバー150は、電源装置140から供給される出力電圧VOUTを利用して、制御部120から供給される画像信号に基づいてLCDパネル160に画像を表示させる。
音声入出力部170は、例えば、マイクロフォン及びADC(アナログ/デジタル変換器)と、DAC(デジタル/アナログ変換器)及びスピーカー等とを含んでいる。マイクロフォンは、印加される音波に応じた音声信号を出力し、ADCは、マイクロフォンから供給されるアナログ音声信号をデジタル音声信号に変換して制御部120に出力する。また、DACは、制御部120から供給されるデジタル音声信号をアナログ音声信号に変換してスピーカーに出力し、スピーカーは、DACから供給される音声信号に基づいて音波を発生する。
通信部180は、例えば、アナログ回路及びデジタル回路で構成される。通信部180は、移動体電話回線網に接続されたセルラー基地局との間で無線通信を行うことにより、制御部120から供給される音声信号をセルラー基地局に送信し、セルラー基地局から受信される音声信号を制御部120に出力する。その際に、制御部120は、音声入出力部170のADCから供給される音声信号を処理して通信部180に出力し、通信部180から供給される音声信号を処理して音声入出力部170のDACに出力する。
また、通信部180は、インターネットに接続された無線アクセスポイントとの間で無線通信を行うことにより、無線アクセスポイントから受信される画像信号及び音声信号を制御部120に出力する。その際に、制御部120は、通信部180から供給される画像信号を処理してLCDドライバー150に出力すると共に、通信部180から供給される音声信号を処理して音声入出力部170のDACに出力する。
電子機器としては、携帯電話機以外にも、例えば、携帯情報端末等の携帯機器、置時計等の時計、タイマー、オーディオ機器、デジタルスチルカメラ、デジタルムービー、ヘッドマウント・ディスプレイ、パーソナルコンピューター、車載装置(ナビゲーション装置等)、電卓、電子辞書、電子ゲーム機器、ロボット、測定機器、及び、医療機器(例えば、電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、及び、電子内視鏡)等が該当する。
本実施形態によれば、電源投入後に出力電圧VOUTを徐々に立ち上げて突入電流を低減するソフトスタート機能を実現した電源装置を用いて、電源投入時における電源電圧の変動を低減して信頼性の高い電子機器を提供することができる。
本発明は、以上説明した実施形態に限定されるものではなく、当該技術分野において通常の知識を有する者によって、本発明の技術的思想内で多くの変形が可能である。
10…基準電圧生成回路、20…クロック信号生成回路、30…ADC、40…発振回路、50…オペアンプ、60…PWM回路、70…制御回路、71…ロジック回路、72…RSフリップフロップ、73、74…AND回路、75…OR回路、80…スイッチ回路、81…インバーター、100…半導体装置、110…操作部、120…制御部、130…格納部、140…電源装置、150…LCDドライバー、160…LCDパネル、170…音声入出力部、180…通信部、200…バッテリー、QB1…PNPバイポーラトランジスター、QP1、QP2…PチャネルMOSトランジスター、QN1、QN2…NチャネルMOSトランジスター、D1…ダイオード、L1…インダクター、C1…キャパシター、R1〜R4…抵抗、PL1、PL2…電源配線、P1〜P7…端子、N1…昇圧ノード

Claims (12)

  1. 第1の電源端子と出力端子との間に接続されたスイッチ回路と、
    前記出力端子と第2の電源端子との間に接続されたスイッチング素子と、
    イネーブル信号に応答して前記スイッチ回路をオン状態としてから所定の期間が経過したときに、前記第1の電源端子と前記第2の電源端子との間に供給される電源電圧を昇圧するために前記スイッチング素子にスイッチング動作を開始させ、昇圧ノードの電圧を徐々に立ち上げて突入電流を低減する制御回路と、
    を備え
    前記制御回路が、前記スイッチ回路をオン状態としてから第1の期間が経過したときに、前記スイッチ回路をオフ状態として、前記出力端子に一端が接続されたインダクターの他端と前記第1の電源端子との間に接続された第2のスイッチ回路をオン状態とする半導体装置。
  2. 前記制御回路が、前記第2のスイッチ回路をオン状態としてから第2の期間が経過したときに、前記スイッチング素子にスイッチング動作を開始させる、請求項1記載の半導体装置。
  3. 前記制御回路が、前記第2のスイッチ回路をオン状態としてから前記第2の期間が経過した後に、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号を前記スイッチング素子に供給する、請求項記載の半導体装置。
  4. 前記制御回路が、前記昇圧ノードの電圧が所定の電圧よりも上昇した後に、前記昇圧ノードの電圧に基づいてパルス幅変調された第2の駆動信号を前記スイッチング素子に供給する、請求項記載の半導体装置。
  5. 前記スイッチ回路が、前記第1の電源端子と前記出力端子との間に直列接続された複数のトランジスターを含む、請求項1〜のいずれか1項記載の半導体装置。
  6. システムクロック信号を生成するクロック信号生成回路をさらに備え、
    前記制御回路が、前記システムクロック信号に基づいて、前記第1の駆動信号を生成する、請求項又は記載の半導体装置。
  7. システムクロック信号を生成するクロック信号生成回路をさらに備え、
    前記制御回路が、前記システムクロック信号に基づいて、前記第1の期間又は前記第2の期間を設定する、請求項1〜4のいずれか1項記載の半導体装置。
  8. 前記制御回路が、前記昇圧ノードの電圧に基づいて、前記第1の期間又は前記第2の期間を設定する、請求項1〜4のいずれか1項記載の半導体装置。
  9. 請求項1〜のいずれか1項記載の半導体装置と、
    前記出力端子に接続された一端を有するインダクターと、
    前記出力端子と前記昇圧ノードとの間に接続されたダイオードと、
    前記昇圧ノードと前記第2の電源端子との間に接続されたキャパシターと、
    を備える電源装置。
  10. 前記第1の電源端子と前記インダクターの他端との間に接続された第2のスイッチ回路をさらに備える、請求項記載の電源装置。
  11. 請求項又は10記載の電源装置と、
    前記電源装置の出力電圧が供給される負荷と、
    を備える電子機器。
  12. 第1の電源配線と第2の電源配線との間に供給される電源電圧を昇圧する電源装置の制御方法であって、
    前記第1の電源配線に接続された第1のスイッチ回路をオン状態として、インダクターの一端と前記第2の電源配線との間にダイオードを介して接続されたキャパシターの充電を開始するステップ(a)と、
    前記第1のスイッチ回路をオン状態としてから第1の期間が経過したときに、前記第1の電源配線と前記インダクターの他端との間に接続された第2のスイッチ回路をオン状態とするステップ(b)と、
    前記第2のスイッチ回路をオン状態としてから第2の期間が経過した後に、システムクロック信号に基づいて、時間の経過と共に単調増加するオンデューティー比を有する第1の駆動信号を生成し、前記インダクターの一端と前記第2の電源配線との間に接続されたスイッチング素子に供給するステップ(c)と、
    前記キャパシターの両端間の電圧が所定の電圧よりも上昇した後に、前記キャパシターの両端間の電圧に基づいてパルス幅変調された第2の駆動信号を前記スイッチング素子に供給するステップ(d)と、
    を備える電源装置の制御方法。
JP2017008210A 2017-01-20 2017-01-20 半導体装置、電源装置、電子機器、及び、電源装置の制御方法 Active JP6836150B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017008210A JP6836150B2 (ja) 2017-01-20 2017-01-20 半導体装置、電源装置、電子機器、及び、電源装置の制御方法
US15/855,417 US10075072B2 (en) 2017-01-20 2017-12-27 Semiconductor apparatus, power supply apparatus, electronic device, and control method for power supply apparatus
CN201711442692.5A CN108336913B (zh) 2017-01-20 2017-12-27 半导体装置、电源装置、电子设备及电源装置的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008210A JP6836150B2 (ja) 2017-01-20 2017-01-20 半導体装置、電源装置、電子機器、及び、電源装置の制御方法

Publications (2)

Publication Number Publication Date
JP2018117484A JP2018117484A (ja) 2018-07-26
JP6836150B2 true JP6836150B2 (ja) 2021-02-24

Family

ID=62906657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008210A Active JP6836150B2 (ja) 2017-01-20 2017-01-20 半導体装置、電源装置、電子機器、及び、電源装置の制御方法

Country Status (3)

Country Link
US (1) US10075072B2 (ja)
JP (1) JP6836150B2 (ja)
CN (1) CN108336913B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311218B (zh) * 2019-07-31 2022-05-24 坦帕科技(北京)有限公司 一种浮地开关电源的使能控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237244A (en) * 1988-12-20 1993-08-17 Bertenshaw David R Electric lighting and power controllers therefor
US5751140A (en) * 1997-03-25 1998-05-12 Space Systems/Loreal, Inc. Voltage converter with battery discharge protection
CN1136648C (zh) * 2000-07-05 2004-01-28 Tdk股份有限公司 电力变换装置
JP2003111391A (ja) 2001-10-03 2003-04-11 Seiko Instruments Inc 昇圧型スイッチング・レギュレータ
US7030596B1 (en) * 2003-12-03 2006-04-18 Linear Technology Corporation Methods and circuits for programmable automatic burst mode control using average output current
JP4352319B2 (ja) 2003-12-04 2009-10-28 富士電機デバイステクノロジー株式会社 電源供給装置
JP4570507B2 (ja) * 2005-04-21 2010-10-27 株式会社リコー 定電圧回路、定電圧回路を備えた半導体装置及び定電圧回路の制御方法
TW200713761A (en) * 2005-09-21 2007-04-01 Richtek Techohnology Corp Circuit and method for a soft-start with residual voltage
JP2007159288A (ja) 2005-12-06 2007-06-21 Seiko Epson Corp ソフトスタート回路および電源装置
JP2007159371A (ja) 2005-12-08 2007-06-21 Seiko Epson Corp 電源装置
JP2007306681A (ja) 2006-05-10 2007-11-22 Honda Motor Co Ltd 昇圧回路および電動パワーステアリング装置
JP5316965B2 (ja) * 2007-07-06 2013-10-16 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド 同期フリーホイーリングmosfetを有するブーストおよびアップ/ダウンスイッチングレギュレータ
US7868595B1 (en) * 2008-06-17 2011-01-11 National Semiconductor Corporation Apparatus and method for soft-start mode transition in a switching regulator
JP5380057B2 (ja) * 2008-11-28 2014-01-08 ローム株式会社 昇圧型スイッチング電源装置
JP5423060B2 (ja) 2009-03-05 2014-02-19 株式会社リコー 昇圧型スイッチングレギュレータ
JP5195836B2 (ja) * 2010-07-12 2013-05-15 株式会社デンソー ソフトスイッチング制御装置およびその製造方法
JP2012090387A (ja) * 2010-10-18 2012-05-10 Panasonic Corp Dc−dcコンバータ
CN103546031B (zh) * 2012-07-09 2016-04-20 晶豪科技股份有限公司 具有缓启动电路的电压转换器
CN102739052B (zh) * 2012-07-18 2014-12-31 华为技术有限公司 控制方法和装置
CN205004952U (zh) * 2015-09-25 2016-01-27 深圳微步信息股份有限公司 一种直流软启动电路

Also Published As

Publication number Publication date
US20180212517A1 (en) 2018-07-26
US10075072B2 (en) 2018-09-11
CN108336913A (zh) 2018-07-27
JP2018117484A (ja) 2018-07-26
CN108336913B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
US7138786B2 (en) Power supply driver circuit
TWI338995B (en) Method and circuit for controlling dc-dc converter
JP5154152B2 (ja) 昇圧電源回路
JP4895694B2 (ja) 電源回路
US20200274447A1 (en) Power converters and compensation circuits thereof
WO2006068012A1 (ja) スイッチングレギュレータ
JP2007043862A (ja) ソフトスタート回路、電源装置、電気機器
JP4853003B2 (ja) ソフトスタート回路及びこれを用いたスイッチング電源
JP2009219240A (ja) Dc−dcコンバータ
JP2011083050A (ja) チャージポンプ回路、チャージポンプ回路の制御方法
JP4265894B2 (ja) Dc/dcコンバータの制御回路及びdc/dcコンバータ
JP2015053833A (ja) Dc/dcコンバータおよびその制御回路、ならびに電子機器
JP2012019625A (ja) 駆動回路、該駆動回路を備えた半導体装置、これらを用いたスイッチングレギュレータおよび電子機器
JP2009055708A (ja) スイッチングレギュレータ及びそのスイッチングレギュレータを使用したdc−dc変換装置
JP6836150B2 (ja) 半導体装置、電源装置、電子機器、及び、電源装置の制御方法
JP6805798B2 (ja) 過電流検出回路、半導体装置、及び、電源装置
JP2008178257A (ja) スイッチングレギュレータの制御回路およびそれを利用したスイッチングレギュレータならびに電子機器
TWI740203B (zh) 閘極驅動電路、具有該閘極驅動電路之電荷泵及晶片
JP4526962B2 (ja) 電源装置および電子装置
JP5423060B2 (ja) 昇圧型スイッチングレギュレータ
JP4311683B2 (ja) 半導体装置、降圧チョッパレギュレータ、電子機器
JP2004088964A (ja) スイッチング電源装置
JP2018007307A (ja) 同期整流方式のスイッチングレギュレータ
JP4983275B2 (ja) Dc/dcコンバータ
JP2005044203A (ja) 電源回路

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6836150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350