JP6835344B2 - High color rendering light source device - Google Patents

High color rendering light source device Download PDF

Info

Publication number
JP6835344B2
JP6835344B2 JP2016076521A JP2016076521A JP6835344B2 JP 6835344 B2 JP6835344 B2 JP 6835344B2 JP 2016076521 A JP2016076521 A JP 2016076521A JP 2016076521 A JP2016076521 A JP 2016076521A JP 6835344 B2 JP6835344 B2 JP 6835344B2
Authority
JP
Japan
Prior art keywords
color rendering
light
light source
rendering index
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016076521A
Other languages
Japanese (ja)
Other versions
JP2017188578A (en
Inventor
穣 八木
穣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intexs Corp
Original Assignee
Intexs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intexs Corp filed Critical Intexs Corp
Priority to JP2016076521A priority Critical patent/JP6835344B2/en
Publication of JP2017188578A publication Critical patent/JP2017188578A/en
Application granted granted Critical
Publication of JP6835344B2 publication Critical patent/JP6835344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は高演色光源装置に係り、特にLED(Light Emitting Diode:発光ダイオード)素子を光源に使用した優れた演色性を持つ光源として好適な高演色光源装置に関する。 The present invention relates to a high color rendering light source device, and more particularly to a high color rendering light source device suitable as a light source having excellent color rendering properties using an LED (Light Emitting Diode) element as a light source.

現在、高い演色性を持つ光源は蛍光灯タイプでトリプルAと呼ばれている平均演色性指数95以上の光源である。これらの光源の平均演色性指数Raは95以上でかつ特殊演色指数Riは90以上といわれている。 Currently, the light source with high color rendering properties is a fluorescent lamp type light source called triple A, which has an average color rendering index of 95 or more. It is said that the average color rendering index Ra of these light sources is 95 or more and the special color rendering index Ri is 90 or more.

現在、高い演色性を持つ光源として用いられている蛍光灯においては、蛍光体に強い紫外線等の光を照射して発色させているため、平均演色性指数Raが95以上で、かつ特殊演色指数Riが90以上の高い演色性指数を安定的に長時間保持することは難しいものであった。そこで、一般的な高演色の蛍光灯は1000時間から3000時間程度の時間程度でしか演色性指数数値を保証していない。 Currently, fluorescent lamps used as light sources with high color rendering properties irradiate the phosphor with light such as strong ultraviolet rays to develop color, so the average color rendering index Ra is 95 or more and the special color rendering index is special. It was difficult to stably maintain a high color rendering index of 90 or more for a long time. Therefore, a general high color rendering fluorescent lamp guarantees a color rendering index value only for about 1000 to 3000 hours.

また、一般白色LED光源の場合においても、発光原理、発色原理などの構造的な観点からの理由より、通常、平均演色性指数Raの値を95以上、特殊演色指数Riを90以上確保するのは大変難しいものであった。 Also, even in the case of a general white LED light source, the average color rendering index Ra value is usually 95 or more and the special color rendering index Ri is 90 or more for structural reasons such as light emission principle and color development principle. Was very difficult.

さらに、一般白色LED光源の場合、平均演色性指数Raの値と特殊演色性指数Riの値を両立させ、長時間の安定的演色指数の保持はさらに大変厳しいものであった。一方、特殊演色性指数Riの値を改善するために、白色LED光源の発光体を430nm以下の紫色に近い紫外線領域とした光源と、黄色の蛍光体とを組み合わせた光源が良いとされるが、白色LED光源の発光効率、平均演色性指数Raの数値を確保することが困難である等の問題点があった。 Furthermore, in the case of a general white LED light source, the value of the average color rendering index Ra and the value of the special color rendering index Ri are compatible, and it is even more difficult to maintain a stable color rendering index for a long time. On the other hand, in order to improve the value of the special color rendering index Ri, it is said that a light source in which the light source of the white LED light source is in the ultraviolet region close to purple of 430 nm or less and a light source in which a yellow phosphor is combined is preferable. , There are problems such as it is difficult to secure the luminous efficiency of the white LED light source and the numerical value of the average color rendering index Ra.

仮に、白色光源が平均演色性指数Raおよび特殊演色性指数Riで満たされたとしても、経時変化に伴い平均演色性指数Raおよび特殊演色性指数Riの数値が変動する現象が生じて演色性指数の劣化が生じる恐れがあった。この場合は、従来の蛍光管と同様、一定期間の経過内での保証という期限を設ける必要があった。 Even if the white light source is filled with the average color rendering index Ra and the special color rendering index Ri, the values of the average color rendering index Ra and the special color rendering index Ri fluctuate with time, and the color rendering index There was a risk of deterioration. In this case, as with conventional fluorescent tubes, it was necessary to set a time limit for guaranteeing within a certain period of time.

一般的に、高演色性の光源を連続点灯した場合において、演色性の数値が変動した場合において、修正することが出来ないのが従来の光源であり、これは蛍光灯でもLED照明でも同様であった。 In general, when a light source with high color rendering properties is continuously lit, it is a conventional light source that cannot be corrected when the value of color rendering properties fluctuates, and this is the same for both fluorescent lamps and LED lighting. there were.

これらの問題点を克服するためにLED技術においては、例えば、特許文献1のような提案がされている。 In order to overcome these problems, for example, Patent Document 1 has been proposed in the LED technology.

このようにLED利用が着目されているが、現在においては、高演色性を持つ光源、即ち平均演色性指数Raが95以上、特殊演色性指数Riが90以上を両立する光源がなく、また経時変化に伴い演色性指数が劣化した場合に調整を行い演色性指数の数値を改善するという機能を持った光源はこれまで存在しなかった。 In this way, the use of LEDs has been attracting attention, but at present, there is no light source having high color rendering properties, that is, a light source having an average color rendering index Ra of 95 or more and a special color rendering index Ri of 90 or more, and over time. Until now, there has been no light source that has the function of adjusting the color rendering index when it deteriorates due to changes and improving the value of the color rendering index.

特開2012-216717号公報Japanese Unexamined Patent Publication No. 2012-216717

従来の高演色性のLED光源としては、平均演色性指数Raが95以上、特殊演色性指数Riが90以上であるような同一光源が今まで存在しなかった。また、経時変化が生じ、演色性指数が変動するために長期信頼性にかけるという課題が存在していた。 As a conventional high color rendering index LED light source, there has never been the same light source having an average color rendering index Ra of 95 or more and a special color rendering index Ri of 90 or more. In addition, there has been a problem of long-term reliability due to changes over time and fluctuations in the color rendering index.

本発明はこれらの問題点に鑑みてなされたものであり、LED素子を光源に使用し、平均演色性指数Raおよび特殊演色性指数Riがともに優れているとともに、演色性指数が変化した時に適正値に戻して常に優れた演色性を保持することのできる高演色光源装置を提供することを目的とする。 The present invention has been made in view of these problems, and when an LED element is used as a light source, both the average color rendering index Ra and the special color rendering index Ri are excellent, and the color rendering index is appropriate when the color rendering index changes. It is an object of the present invention to provide a high color rendering light source device capable of returning to a value and always maintaining excellent color rendering properties.

前記目的を達成するための本発明の第1の態様の高演色光源装置は、分光波形特性LBの出力光を発光させる白色LED素子からなる主光源発光素子と、前記主光源発光素子の前記分光波形特性LBの演色性指数を改善する紫外線波長の光、青色波長の光、緑色波長の光および赤色波長の光を個別に発光する単色LED素子からなる補佐的単色発光素子と、前記各発光素子に対して電力を供給して発光させる制御手段と、前記各発光素子の出力レベルを調整する出力調整手段と、前記各発光素子の出力レベルを記憶する記憶手段とを備えた高演色光源装置であって、前記出力調整手段は前記高演色光源装置と遠隔操作自在とするように接続されており、前記高演色光源装置全体の分光波形特性LCを測定する分光測定手段と、前記分光測定手段によって測定された前記分光波形特性LCを前記高演色出力調整手段に伝達する測定情報伝達手段とを備えており、前記出力調整手段は、前記測定情報伝達手段より受領した測定された分光波形特性LCに対応して、前記高演色光源装置全体の分光波形特性の平均演色性指数Raを高演色性を示す目標基準値以上、各特殊演色性指数Riを高演色性を示す目標基準値以上に調整するように、前記補佐的単色発光素子の前記単色LED素子に対して、前記分光波形特性LCを目標光の分光波形特性LCに近づけるに必要な電力であって紫外線波長の光、青色波長の光、緑色波長の光および赤色波長の光に対して前記記憶手段によって既に記憶されている個別に必要な電力を個別に供給させるように前記制御手段に指令を発して、前記補佐的単色発光素子の前記単色LED素子を発光させるように形成されていることを特徴とする。 The high color rendering index device of the first aspect of the present invention for achieving the above object is a main light source light emitting element composed of a white LED element that emits output light having a spectral waveform characteristic LB, and the spectrum of the main light emitting element. an auxiliary adjuvant manner monochromatic light emitting element ing from monochromatic LED element color rendering properties of the ultraviolet wavelengths to improve the exponential light, the light of blue wavelength, the light of the light and red wavelength of green wavelength individually emission waveform characteristics LB, each A high color rendering index including a control means for supplying power to a light emitting element to emit light, an output adjusting means for adjusting the output level of each light emitting element, and a storage means for storing the output level of each light emitting element. an apparatus, the output adjusting means is coupled to freely said high color rendering light source device and the remote control, a spectroscopic measurement means for measuring a spectral waveform characteristic LC of the entire high color rendering light source apparatus, the spectroscopic measurement The spectral waveform characteristic LC measured by the means is provided with a measurement information transmitting means for transmitting the LC to the high color rendering output adjusting means, and the output adjusting means has the measured spectral waveform characteristics received from the measuring information transmitting means. Corresponding to LC, the average color rendering index Ra of the spectral waveform characteristics of the entire high color rendering index device is equal to or higher than the target reference value indicating high color rendering , and each special color rendering index Ri is equal to or higher than the target reference value indicating high color rendering. The power required to bring the spectral waveform characteristic LC closer to the spectral waveform characteristic LC of the target light with respect to the monochromatic LED element of the auxiliary monochromatic light emitting element so as to be adjusted, that is, the light of the ultraviolet wavelength and the blue wavelength. The auxiliary monochromatic light emitting element issues a command to the control means so as to individually supply the individually required power already stored by the storage means to the light, the light having a green wavelength, and the light having a red wavelength. It is characterized in that it is formed so as to emit light of the monochromatic LED element.

本発明の第1の態様の高演色光源装置によれば、LED素子を光源に使用して、平均演色性指数Raおよび特殊演色性指数Riがともに優れている光を出力することができる。更に、分光測定手段によって測定した前記高演色光源装置全体の分光波形特性LCに応じて前記出力調整手段が、遠隔操作によって、前記分光波形特性LCを目標光の分光波形特性LAに近づけるに必要な電力を補佐的単色発光素子にそれぞれ供給させるように制御手段に指令を発して、補佐的単色発光素子を発光させることができ、自動的に前記高演色光源装置全体の分光波形特性の平均演色性指数Raを95以上、各特殊演色性指数Riをが90以上に調整することができ、平均演色性指数Raおよび特殊演色性指数Riがともに優れている光を常に出力することができる。また更に、高演色の光を調整して発光させるために紫外線波長の光、青色波長の光、緑色波長の光および赤色波長の光を個別に発光する単色LED素子からなる補佐的単色発光素子を設けているので、4種類の波長の光に対して個別に、かつ、確実に高演色な光を発光するように調整することができる。 According to the high color rendering index device of the first aspect of the present invention, the LED element can be used as a light source to output light having excellent average color rendering index Ra and special color rendering index Ri. Further, it is necessary for the output adjusting means to bring the spectral waveform characteristic LC closer to the spectral waveform characteristic LA of the target light by remote operation according to the spectral waveform characteristic LC of the entire high color rendering light source device measured by the spectral measuring means. A command is issued to the control means to supply electric power to each of the auxiliary monochromatic light emitting elements, the auxiliary monochromatic light emitting element can emit light, and the average color rendering property of the spectral waveform characteristics of the entire high color rendering light source device is automatically obtained. The index Ra can be adjusted to 95 or more, and each special color rendering index Ri can be adjusted to 90 or more, and light with excellent average color rendering index Ra and special color rendering index Ri can always be output. Furthermore, in order to adjust and emit high-colored light, an auxiliary monochromatic light emitting element consisting of a monochromatic LED element that individually emits light having an ultraviolet wavelength, blue wavelength light, green wavelength light, and red wavelength light is provided. Since it is provided, it is possible to individually and surely adjust so as to emit high-colored light with respect to light of four kinds of wavelengths.

また、本発明の第2の態様の高演色光源装置は、第1の態様において、前記補佐的単色発光素子が、紫外線波長が350nmから430nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子と、青色波長が460nmから485nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子と、緑色波長が505nmから530nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子と、赤色波長が630nmから680nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子とからなることを特徴とする。 Further, the high color rendering index device of the second aspect of the present invention is for improving the special color rendering index Ri in which the auxiliary monochromatic light emitting element emits light having an ultraviolet wavelength of 350 nm to 430 nm in the first aspect. A monochromatic LED element for improving the average color rendering index Ra that emits light having a blue wavelength of 460 nm to 485 nm, and a monochromatic LED element for improving the average color rendering index Ra that emits light having a green wavelength of 505 nm to 530 nm. It is characterized by comprising a monochromatic LED element and a monochromatic LED element for improving the special color rendering index Ri that emits light having a red wavelength of 630 nm to 680 nm.

本発明の第2の態様の高演色光源装置によれば、4種類の単色LED素子がそれぞれの波長の光を個別に制御されて発光するので、より適切な補佐を行って、平均演色性指数Raおよび特殊演色性指数Riがともに優れている光を常に出力することができる。 According to the high color rendering light source device of the second aspect of the present invention, four types of monochromatic LED elements individually control and emit light of each wavelength, so that more appropriate assistance is provided to obtain an average color rendering index. It can always output light with excellent Ra and special color rendering index Ri.

本発明によれば、LED素子を光源に使用し、平均演色性指数Raおよび特殊演色性指数Riがともに優れているとともに、演色性指数が変化した時に適正値に戻して常に優れた演色性を保持することのできる光源装置を提供することができる。 According to the present invention, when an LED element is used as a light source, both the average color rendering index Ra and the special color rendering index Ri are excellent, and when the color rendering index changes, the value is returned to an appropriate value to always maintain excellent color rendering. A light source device that can be held can be provided.

本発明による高演色光源装置の第1実施形態を示すブロック図A block diagram showing a first embodiment of a high color rendering light source device according to the present invention. 目標とする光と、一般的な高演色の白色LED素子の出力光との分光波形特性図Spectral waveform characteristic diagram of the target light and the output light of a general high color rendering white LED element 図2に示す白色LED素子の出力光の分光波形特性を本発明によって改善した高い演色性をもつ分光波形特性を図2に重ねて表示した分光波形特性図The spectral waveform characteristic diagram showing the spectral waveform characteristics of the output light of the white LED element shown in FIG. 2 with the spectral waveform characteristics having high color rendering properties improved by the present invention is superimposed on FIG. 図2に示す白色LED素子の分光波形特性に基づく演色性指数表Color rendering index table based on the spectral waveform characteristics of the white LED element shown in FIG. 本発明による分光波形特性に基づく演色性指数の表Table of color rendering index based on spectral waveform characteristics according to the present invention 本発明による高演色光源装置の第2実施形態を示すブロック図A block diagram showing a second embodiment of the high color rendering light source device according to the present invention.

以下、本発明の具体的な実施の形態について、図1から図6を参照にして詳細に説明する。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6.

図1は、本発明による高演色光源装置の第1実施形態の構成を説明するブロック図である。図1においてLSは光源部であり、主光源発光素子としての白色LED素子LEDWと補佐的単色発光素子としての短波長光源の紫外線LED素子LEDUVと、青色LED素子LEDBと、緑色LED素子LEDGと、赤色LED素子LEDRとを光源部基板に設置して形成されている。各LED素子には出力部OUTの出力部基板に設置されたスイッチング素子TRがそれぞれ独立して直列に接続されている。各スイッチング素子TRは制御部COからの信号(例えば、パルス信号(PWM))を受けて各LED素子に電力を供給する。 FIG. 1 is a block diagram illustrating a configuration of a first embodiment of a high color rendering light source device according to the present invention. In FIG. 1, the LS is a light source unit, and includes a white LED element LEDW as a main light source light emitting element, an ultraviolet LED element LEDUV as a short wavelength light source as an auxiliary single color light emitting element, a blue LED element LEDB, and a green LED element LEDG. It is formed by installing the red LED element LEDR on the light source substrate. The switching element TR installed on the output unit board of the output unit OUT is independently connected in series to each LED element. Each switching element TR receives a signal from the control unit CO (for example, a pulse signal (PWM)) and supplies electric power to each LED element.

図1において、CONは各発光素子に対して電力を供給して発光させる制御手段としての制御部COと、各発光素子の出力レベルを記憶する記憶手段としての記憶部MEMにプログラムされた個々のLED素子の駆動電流の出力を創生するコントロール部である。別基板の調整基板に設けられた各発光素子の出力レベルを調整する出力調整手段としての出力調整部ADJより個々のLED素子の駆動電流の出力調整を行う。具体的には、出力調整部ADJにおいてパルス信号(PWM)のデューティー比を設定し、制御部COにおいて当該デューティー比に応じたパルス信号(PWM)を作成して各スイッチング素子TRへ出力させる。出力調整部ADJにおけるパルス信号(PWM)のデューティー比の設定は、高演色光源装置全体のLED素子が発光した出力光の分光波形特性の平均演色性指数Raを目標基準値(例えば、95)以上、各特殊演色性指数Riを目標基準値(例えば、90)以上になるように手動によってフィードバック調整するとよい。このフィードバック調整の際に必要とされる分光波形特性の測定は、図6に示すような分光センサーISを光源部LSの近傍に設置して行ったり、手持ちで行うとよい。 In FIG. 1, CON is programmed into a control unit CO as a control means for supplying electric power to each light emitting element to emit light, and a storage unit MEM as a storage means for storing the output level of each light emitting element. It is a control unit that creates the output of the drive current of the LED element. Adjustment of another board The output of the drive current of each LED element is adjusted by the output adjustment unit ADJ as an output adjustment means for adjusting the output level of each light emitting element provided on the substrate. Specifically, the output adjustment unit ADJ sets the duty ratio of the pulse signal (PWM), and the control unit CO creates a pulse signal (PWM) corresponding to the duty ratio and outputs it to each switching element TR. To set the duty ratio of the pulse signal (PWM) in the output adjustment unit ADJ, set the average color rendering index Ra of the spectral waveform characteristics of the output light emitted by the LED elements of the entire high color rendering light source device to the target reference value (for example, 95) or more. , It is advisable to manually adjust the feedback of each special color rendering index Ri so that it exceeds the target reference value (for example, 90). The measurement of the spectral waveform characteristics required for this feedback adjustment may be performed by installing the spectroscopic sensor IS as shown in FIG. 6 in the vicinity of the light source unit LS, or by hand.

図6は、本発明による高演色光源装置の第2実施形態の構成を説明するブロック図である。図6に示すように、出力調整部ADJにおけるパルス信号(PWM)のデューティー比の設定は、遠隔操作によって自動的に行うようにするとよい。具体的には、光源部LSの近傍に高演色光源装置全体の出力光に対して分光波形特性を測定する分光測定手段としての分光センサーISを設ける。この分光センサーISにおいては、例えばフォトセンサーにより受光し、信号処理部DAによって分光波形特性を求める演算処理を実行する。この信号処理部DAに内蔵された送信部(図示せず)から出力調整部ADJに設けた信号解析部SAの受信部(図示せず)に分光波形特性がインターネットやLAN等通じて送信(伝達)されるように形成されている。これらの送信部と受信部とは分光測定手段によって測定された分光波形特性を出力調整手段に伝達する測定情報伝達手段を形成している。信号解析部SAにおいては、受信した分光波形特性に基づいて高演色光源装置全体のLED素子が発光した出力光の分光波形特性の平均演色性指数Raを目標基準値(例えば、95)以上、各特殊演色性指数Riを目標基準値(例えば、90)以上になるようにフィードバック調整(後述)するように形成されている。これにより光源部LSの出力調整を遠隔操作によって自動的に行うとよい。なお、自動調整処理に代えて、手動によって調整してもよいことは勿論である。 FIG. 6 is a block diagram illustrating a configuration of a second embodiment of the high color rendering light source device according to the present invention. As shown in FIG. 6, the duty ratio of the pulse signal (PWM) in the output adjusting unit ADJ may be set automatically by remote control. Specifically, a spectroscopic sensor IS is provided in the vicinity of the light source unit LS as a spectroscopic measurement means for measuring the spectroscopic waveform characteristics with respect to the output light of the entire high color rendering light source device. In this spectroscopic sensor IS, for example, a photo sensor receives light, and the signal processing unit DA executes arithmetic processing for obtaining spectral waveform characteristics. The spectral waveform characteristics are transmitted (transmitted) from the transmitter (not shown) built into the signal processing unit DA to the receiver (not shown) of the signal analysis unit SA provided in the output adjustment unit ADJ via the Internet, LAN, etc. ) Is formed. These transmitting units and receiving units form a measurement information transmitting means that transmits the spectral waveform characteristics measured by the spectroscopic measuring means to the output adjusting means. In the signal analysis unit SA, the average color rendering index Ra of the spectral waveform characteristics of the output light emitted by the LED elements of the entire high color rendering light source device is set to the target reference value (for example, 95) or more based on the received spectral waveform characteristics. The special color rendering index Ri is formed so as to be feedback-adjusted (described later) so as to be equal to or higher than the target reference value (for example, 90). As a result, the output of the light source unit LS should be adjusted automatically by remote control. Needless to say, the manual adjustment may be performed instead of the automatic adjustment process.

このコントロール部CONは電源部PSよりDC電源供給を受けている。電源部PSは外部AC電源より供給を受け、コントロール部CON用にDC電源変換を行っている。 This control unit CON receives DC power supply from the power supply unit PS. The power supply unit PS receives supply from an external AC power supply and performs DC power supply conversion for the control unit CON.

図2は、目標とする目標光の分光波形特性LAと、主光源発光素子である白色LED素子LEDWから発光される出力光の分光波形特性LBを示している。本第1実施形態においては、この図2のAの部分に紫外線波長、Bの部分に青色波長および緑色波長、さらにCの部分に赤色波長の単色光をそれぞれ発光する単色LED素子(LEDUV、LEDB、LEBG、LEDR)からなる単一または複数の補佐的単色発光素子を発光させて分光波形を加えることにより、高演色光源装置全体のLED素子が発光した出力光の分光波形特性LCを図3のように目標光の分光波形特性LAに近づけるように増大させることができる。その増大の度合は、平均演色性指数Raを95以上、各特殊演色性指数Riを90以上とさせるように出力調整部ADJのパルス信号(PWM)のデューティー比を設定することにより調整される。図2に示す目標光の分光波形特性LAは、日本印刷学会(1997年)のCIE昼色D50の内容を示し、分光分布の波長域が300nm〜830nmであり、Raが95以上、Riが90以上とされている。 FIG. 2 shows the spectral waveform characteristic LA of the target light and the spectral waveform characteristic LB of the output light emitted from the white LED element LEDW which is the main light source light emitting element. In the first embodiment, a monochromatic LED element (LEDUV, LEDB) that emits monochromatic light having an ultraviolet wavelength in the part A of FIG. 2, a blue wavelength and a green wavelength in the part B, and a red wavelength in the part C. , LEBG, LEDR), and by adding a spectral waveform by emitting light from a single or multiple auxiliary monochromatic light emitting elements, the spectral wavelength characteristic LC of the output light emitted by the LED elements of the entire high color light source device is shown in FIG. As described above, the spectral wavelength characteristic LA of the target light can be increased so as to approach the LA. The degree of increase is adjusted by setting the duty ratio of the pulse signal (PWM) of the output adjustment unit ADJ so that the average color rendering index Ra is 95 or more and each special color rendering index Ri is 90 or more. The spectral waveform characteristic LA of the target light shown in FIG. 2 shows the contents of the CIE day color D50 of the Printing Society of Japan (1997), the wavelength range of the spectral distribution is 300 nm to 830 nm, Ra is 95 or more, and Ri is 90. It is said that it is over.

さらに説明すると、本実施形態においては、紫外線波長が350nmから430nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子として紫外線LED素子LEDUVを用い、青色波長が460nmから485nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子として青色LED素子LEDBを用い、緑色波長が505nmから530nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子として緑色LED素子LEDGを用い、赤色波長が630nmから680nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子として赤色LED素子LEDRを用いている。そして、各単色LED素子(LEDUV、LEDB、LEBG、LEDR)に対して、図3に示す分光波形特性Lc−分光波形特性Lbの差分の光を出力可能な電力(パルス調整を含む)を出力調整部ADJによって演算して供給することによって発光させている(紫外線LED素子LEDUVにおいては紫外線波長が430nmの縦線部分および上向き太矢印参照、青色LED素子LEDBにおいては青色波長が480nmの縦線部分および上向き太矢印参照、緑色LED素子LEDGにおいては緑色が505nmの縦線部分および上向き太矢印参照、赤色LED素子LEDRにおいては赤色波長が630nmの縦線部分および上向き太矢印参照)。このような各単色LED素子(LEDUV、LEDB、LEBG、LEDR)に対する出力調整部ADJによる出力調整は、本発明の高演色光源装置を新設した時、その後定期的または発光出力が低減した場合等に必要に応じて実行するとよい。さらに、出力調整結果は記憶部MEMに記憶させておいて、その後の出力調整の際にデータを利用するとよい。 Further, in the present embodiment, the ultraviolet LED element LEDUV is used as a monochromatic LED element for improving the special color performance index Ri that emits light having an ultraviolet wavelength of 350 nm to 430 nm, and light having a blue wavelength of 460 nm to 485 nm. The blue LED element LEDB is used as the monochromatic LED element for improving the average color play index Ra, and the green LED element LEDG is used as the monochromatic LED element for improving the average color play index Ra that emits light having a green wavelength of 505 nm to 530 nm. The red LED element LEDR is used as a monochromatic LED element for improving the special color performance index Ri that emits light having a red wavelength of 630 nm to 680 nm. Then, for each monochromatic LED element (LEDUV, LEDB, LEBG, LEDR), the power (including pulse adjustment) capable of outputting the light of the difference between the spectral wavelength characteristic Lc and the spectral waveform characteristic Lb shown in FIG. 3 is output adjusted. It emits light by calculating and supplying it by the part ADJ (see the vertical line part with an ultraviolet wavelength of 430 nm and the thick upward arrow in the ultraviolet LED element LEDUV, and the vertical line part with a blue wavelength of 480 nm in the blue LED element LEDB. See the thick upward arrow, for the green LED element LEDG, see the vertical line part with a green color of 505 nm and the thick upward arrow, and for the red LED element LEDR, see the vertical line part with a red wavelength of 630 nm and the thick upward arrow). The output adjustment by the output adjustment unit ADJ for each monochromatic LED element (LEDUV, LEDB, LEBG, LEDR) is performed when the high color rendering light source device of the present invention is newly installed, or when the light emission output is reduced periodically or thereafter. It may be executed as needed. Further, the output adjustment result may be stored in the storage unit MEM, and the data may be used in the subsequent output adjustment.

図4は図2および図3に示す白色LED素子LEDWから発光される出力光の分光波形特性LBから得られた演色性指数のR1からR15までの数値である。平均演色性指数Raは演色性指数のR1からR8までの平均値であるので91であり、特殊演色性指数Riは各演色性指数のR9からR15のそれぞれの数値であり、平均すると85である。一方の平均演色性指数Raは、目標基準値の例である日本印刷学会(1997年)のCIE昼色D50の95以上という規格および従来の高演色性タイプの蛍光灯AAA規格の95以上という数値を満たしていない。さらに、他方の特殊演色性指数Riは、目標基準値の例である日本印刷学会(1997年)のCIE昼色D50の90以上という規格および従来の高演色性タイプの蛍光灯AAA規格の90以上という数値を満たしていない。目標基準値としては、高演色光源装置に求められる仕様に対応して設定するとよい。 FIG. 4 is a numerical value from R1 to R15 of the color rendering index obtained from the spectral waveform characteristic LB of the output light emitted from the white LED element LEDW shown in FIGS. 2 and 3. The average color rendering index Ra is 91 because it is the average value of R1 to R8 of the color rendering index, and the special color rendering index Ri is the respective numerical values of R9 to R15 of each color rendering index, which is 85 on average. .. On the other hand, the average color rendering index Ra is a value of 95 or more for the CIE day color D50 of the Japan Printing Society (1997), which is an example of the target standard value, and 95 or more for the conventional high color rendering type fluorescent lamp AAA standard. Does not meet. Furthermore, the other special color rendering index Ri is 90 or more of the CIE day color D50 of the Japan Printing Society (1997), which is an example of the target standard value, and 90 or more of the conventional high color rendering type fluorescent lamp AAA standard. Does not meet the numerical value. The target reference value may be set according to the specifications required for the high color rendering light source device.

図5は図3に示す本発明に基づく高演色光源装置全体のLED素子が発光した出力光の分光波形特性LCから得られた演色性指数のR1からR15までの数値である。平均演色性指数Raは95以上の96であり、各特殊演色性指数Riはそれぞれが90以上であり、平均すると94で、両演色性指数ともに目標基準値の例である日本印刷学会(1997年)のCIE昼色D50の規格および従来の高演色性指数の数値より大幅に改善され蛍光灯のAAA規格を満たしている。 FIG. 5 is a numerical value from R1 to R15 of the color rendering index obtained from the spectral waveform characteristic LC of the output light emitted by the LED element of the entire high color rendering light source device based on the present invention shown in FIG. The average color rendering index Ra is 96 of 95 or more, and each special color rendering index Ri is 90 or more, and the average is 94. Both color rendering indexes are examples of target reference values. ) CIE day color D50 standard and the value of the conventional high color rendering index are greatly improved and meet the AAA standard of fluorescent lamps.

さらに説明すると、図5に示す数値より、補佐的な単波長の各単色LED素子(LEDUV、LEDB、LEBG、LEDR)は白色LED素子LEDWから発光される出力光の分光波形特性LBを目標光の分光波形特性LAに近づける作用を有している。即ち、紫外線波長においては演色性指数R12の特殊演色性指数Riを72.21から94.03に増大させており、紫外線波長として350nmから430nmを含んでいる。青色波長においては平均演色性指数Raを91.11から96.32の95以上に増大させており、青色波長として465nm〜485nmを含んでいる。緑色波長においては青色波長と同様に、平均演色性指数Raを91.11から96.32の95以上に増大させており、緑色波長として505nmから525nmを含んでいる。赤色波長においては演色性指数R9の特殊演色性指数Riを75.28から92.47に増大させており、赤色波長として630nmから660nmを含んでいる。また、各色の中間色については、複数種類の各単色LED素子(LEDUV、LEDB、LEBG、LEDR)を発光させるとよい。 Further explaining, from the numerical values shown in FIG. 5, each monochromatic LED element (LEDUV, LEDB, LEBG, LEDR) of the auxiliary single wavelength sets the spectral waveform characteristic LB of the output light emitted from the white LED element LEDW as the target light. It has the effect of approaching the spectral waveform characteristic LA. That is, in the ultraviolet wavelength, the special color rendering index Ri of the color rendering index R12 is increased from 72.21 to 94.03, and the ultraviolet wavelength includes 350 nm to 430 nm. At the blue wavelength, the average color rendering index Ra is increased from 91.11 to 96.32, which is 95 or more, and the blue wavelength includes 465 nm to 485 nm. At the green wavelength, the average color rendering index Ra is increased from 91.11 to 96.32, which is 95 or more, and the green wavelength includes 505 nm to 525 nm, as in the blue wavelength. At the red wavelength, the special color rendering index Ri of the color rendering index R9 is increased from 75.28 to 92.47, and the red wavelength includes 630 nm to 660 nm. Further, for the intermediate color of each color, it is preferable to make each of a plurality of types of monochromatic LED elements (LEDUV, LEDB, LEBG, LEDR) emit light.

図6に基づいて遠隔操作で分光特性の補正を行うことを説明する。なお、図6においては電源部を省略してある。光源部LSの近傍に設置されたフォトセンサーからなる分光センサーISにより検知された光は信号処理部DAによりデータ化され、LANまたはインターネット等の回線を通じて、離れた場所に設置された信号解析部SAまで搬送される。これらの搬送されたデータを基に、自動的に出力調整部ADJによって演算して各単色LED素子(LEDUV、LEDB、LEBG、LEDR)に対して、図3に示す分光波形特性Lc−分光波形特性Lbの差分の光を出力可能な電力を供給することによって発光させる。このような遠隔操作による分光特性の補正を前記の必要なタイミングにおいて実行するとよく、出力調整部ADJによる出力情報を記憶して再利用するとよい。このように遠隔操作による補正を行うことにより、光源部LSの取替えや移動を行うことなく容易に補正を行うことも可能となる。特に、多数の高演色光源装置を一箇所で一元管理したり、作業環境の厳しい領域に設置されている高演色光源装置の補正を容易に実行することができる。 It will be described that the spectral characteristics are corrected by remote control based on FIG. In FIG. 6, the power supply unit is omitted. The light detected by the spectroscopic sensor IS, which consists of a photo sensor installed near the light source unit LS, is converted into data by the signal processing unit DA, and the signal analysis unit SA installed at a remote location through a line such as LAN or the Internet. Will be transported to. Based on these conveyed data, the output adjustment unit ADJ automatically calculates and for each monochromatic LED element (LEDUV, LEDB, LEBG, LEDR), the spectral waveform characteristic Lc-spectral waveform characteristic shown in FIG. Light with a difference of Lb is emitted by supplying electric power capable of outputting it. The correction of the spectral characteristics by such remote control may be performed at the required timing, and the output information by the output adjusting unit ADJ may be stored and reused. By performing the correction by remote control in this way, it is possible to easily perform the correction without replacing or moving the light source unit LS. In particular, a large number of high color rendering light source devices can be centrally managed in one place, and correction of high color rendering light source devices installed in a harsh working environment can be easily executed.

なお、本発明は前記実施形態に限定されるものではなく、必要に応じて変更することができる。 The present invention is not limited to the above embodiment, and can be modified as necessary.

本発明の高演色光源装置によれば、高い演色性光源でかつRa、Riとも従来蛍光灯と同等以上の性能をもちかつ経時変化にいたる場合においても、補正を行うことで再利用が可能になる。これらのことから、演色性の高い市場用途にも利用が可能となり、ファッション、食品関連、工業応用分野で色味の確認など用途拡大が期待できる。 According to the high color rendering light source device of the present invention, even when a high color rendering light source, both Ra and Ri have performance equal to or higher than that of a conventional fluorescent lamp and changes over time, it can be reused by correcting it. Become. From these facts, it can be used for market applications with high color rendering properties, and it can be expected to expand applications such as confirmation of color in fashion, food-related, and industrial application fields.

LS 光源部
LEDW 白色LED素子
LEDUV 紫外線LED素子
LEDB 青色LED素子
LEDG 緑色LED素子
LEDR 赤色LED素子
CON コントロール部
CO 制御部
ADJ 出力調整部
MEM 記憶部
OUT 出力部
TR スイッチング素子
PS 電源部
IS 分光センサー
DA 信号処理部
Internet インターネット
LAN ネットワーク
SA 信号解析部
LS light source
LEDW white LED element
LEDUV UV LED element
LEDB blue LED element
LEDG green LED element
LEDR red LED element
CON control section
CO control unit
ADJ output adjustment unit
MEM storage
OUT output section
TR switching element
PS power supply
IS spectroscopic sensor
DA signal processing unit
Internet internet
LAN network
SA signal analysis department

Claims (2)

分光波形特性LBの出力光を発光させる白色LED素子からなる主光源発光素子と、
前記主光源発光素子の前記分光波形特性LBの演色性指数を改善する紫外線波長の光、青色波長の光、緑色波長の光および赤色波長の光を個別に発光する単色LED素子からなる補佐的単色発光素子と、
前記各発光素子に対して電力を供給して発光させる制御手段と、
前記各発光素子の出力レベルを調整する出力調整手段と、
前記各発光素子の出力レベルを記憶する記憶手段とを
備えた高演色光源装置であって、
前記出力調整手段は前記高演色光源装置と遠隔操作自在とするように接続されており、
前記高演色光源装置全体の分光波形特性LCを測定する分光測定手段と、
前記分光測定手段によって測定された前記分光波形特性LCを前記出力調整手段に伝達する測定情報伝達手段とを備えており、
前記出力調整手段は、前記測定情報伝達手段より受領した測定された分光波形特性LCに対応して、前記高演色光源装置全体の分光波形特性の平均演色性指数Raを高演色性を示す目標基準値以上、各特殊演色性指数Riを高演色性を示す目標基準値以上に調整するように、前記補佐的単色発光素子の前記単色LED素子に対して、前記分光波形特性LCを目標光の分光波形特性LCに近づけるに必要な電力であって紫外線波長の光、青色波長の光、緑色波長の光および赤色波長の光に対して前記記憶手段によって既に記憶されている個別に必要な電力を個別に供給させるように前記制御手段に指令を発して、前記補佐的単色発光素子の前記単色LED素子を発光させるように形成されている
ことを特徴とする高演色光源装置。
A main light source light emitting element consisting of a white LED element that emits the output light of the spectral waveform characteristic LB,
The spectral waveform characteristics LB of color rendering properties of the ultraviolet wavelengths to improve the exponential light, the light of blue wavelength, the auxiliary adjuvant ing light of the light and red wavelength from the monochromatic LED elements individually emission of green wavelength of the main light source the light emitting element Monochromatic light emitting element and
A control means for supplying electric power to each of the light emitting elements to emit light,
Output adjusting means for adjusting the output level of each light emitting element and
A high color rendering light source device including a storage means for storing the output level of each light emitting element.
The output adjusting means is connected to the high color rendering light source device so as to be remotely controllable.
A spectroscopic measuring means for measuring the spectral waveform characteristic LC of the entire high color rendering light source device, and
It is provided with a measurement information transmitting means for transmitting the spectral waveform characteristic LC measured by the spectroscopic measuring means to the output adjusting means.
The output adjusting means corresponds to the measured spectral color rendering characteristic LC received from the measurement information transmitting means, and sets the average color rendering index Ra of the spectral waveform characteristics of the entire high color rendering light source device as a target reference indicating high color rendering. With respect to the monochromatic LED element of the auxiliary monochromatic light emitting element, the spectral waveform characteristic LC is used to disperse the target light so as to adjust each special color rendering index Ri to equal to or greater than the target reference value indicating high color rendering. Waverability characteristics The individually required power that is already stored by the storage means for light with an ultraviolet wavelength, light with a blue wavelength, light with a green wavelength, and light with a red wavelength, which is the power required to approach the LC. A high color rendering light source device, characterized in that it is formed so as to issue a command to the control means to supply light to the control means so as to cause the monochromatic LED element of the auxiliary monochromatic light emitting element to emit light.
前記補佐的単色発光素子は、
紫外線波長が350nmから430nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子と、
青色波長が460nmから485nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子と、
緑色波長が505nmから530nmを有する光を発光する平均演色性指数Ra改善用の単色LED素子と、
赤色波長が630nmから680nmを有する光を発光する特殊演色性指数Ri改善用の単色LED素子と
からなることを特徴とする請求項1に記載の高演色光源装置。
The auxiliary monochromatic light emitting element is
A monochromatic LED element for improving the special color rendering index Ri that emits light with an ultraviolet wavelength of 350 nm to 430 nm,
A monochromatic LED element for improving the average color rendering index Ra that emits light with a blue wavelength of 460 nm to 485 nm,
A monochromatic LED element for improving the average color rendering index Ra that emits light with a green wavelength of 505 nm to 530 nm,
The high color rendering light source device according to claim 1, further comprising a monochromatic LED element for improving the special color rendering index Ri that emits light having a red wavelength of 630 nm to 680 nm.
JP2016076521A 2016-04-06 2016-04-06 High color rendering light source device Active JP6835344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076521A JP6835344B2 (en) 2016-04-06 2016-04-06 High color rendering light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076521A JP6835344B2 (en) 2016-04-06 2016-04-06 High color rendering light source device

Publications (2)

Publication Number Publication Date
JP2017188578A JP2017188578A (en) 2017-10-12
JP6835344B2 true JP6835344B2 (en) 2021-02-24

Family

ID=60045047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076521A Active JP6835344B2 (en) 2016-04-06 2016-04-06 High color rendering light source device

Country Status (1)

Country Link
JP (1) JP6835344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050444B (en) * 2019-02-01 2021-04-09 靳鹏 Method for simulating CIE standard illuminant by using multi-channel LED and illumination system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253309A (en) * 2003-02-21 2004-09-09 Nichia Chem Ind Ltd Special purpose led illumination with color rendering properties
US7095056B2 (en) * 2003-12-10 2006-08-22 Sensor Electronic Technology, Inc. White light emitting device and method
US7009343B2 (en) * 2004-03-11 2006-03-07 Kevin Len Li Lim System and method for producing white light using LEDs
US20060018118A1 (en) * 2004-07-21 2006-01-26 Lee Joon C Spectrum matching
JP4832995B2 (en) * 2005-09-01 2011-12-07 シャープ株式会社 Light emitting device
KR20090079709A (en) * 2008-01-18 2009-07-22 (주)세오전자 Light Control Device Using in LED Lamp
US8232745B2 (en) * 2008-04-14 2012-07-31 Digital Lumens Incorporated Modular lighting systems
US20130307419A1 (en) * 2012-05-18 2013-11-21 Dmitri Simonian Lighting system with sensor feedback
JP5005712B2 (en) * 2009-02-03 2012-08-22 三菱電機株式会社 Light emitting device
US8339029B2 (en) * 2009-02-19 2012-12-25 Cree, Inc. Light emitting devices and systems having tunable chromaticity
CN102341925A (en) * 2009-04-27 2012-02-01 东芝照明技术株式会社 Illuminating device
JP5672985B2 (en) * 2010-11-04 2015-02-18 三菱化学株式会社 Semiconductor white light emitting device
US8952631B2 (en) * 2011-03-15 2015-02-10 Telelumen Llc Method of optimizing light output during light replication
JP6358457B2 (en) * 2014-01-20 2018-07-18 パナソニックIpマネジメント株式会社 Light emitting device, illumination light source, and illumination device
JP6436336B2 (en) * 2014-02-13 2018-12-12 Tianma Japan株式会社 Backlight light source device and liquid crystal display device
US9867255B2 (en) * 2014-06-10 2018-01-09 Philips Lighting Holding B.V. Light emitting arrangement with adjustable emission spectrum

Also Published As

Publication number Publication date
JP2017188578A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US9894725B2 (en) Current feedback for improving performance and consistency of LED fixtures
US8044612B2 (en) Method and apparatus for networked illumination devices
TWI498047B (en) Method and apparatus for controlling and measuring aspects of time-varying combined light
US8177389B1 (en) Deterministically calculating dimming values for four or more light sources
US7350933B2 (en) Phosphor converted light source
RU2603842C2 (en) Method and apparatus for increasing dimming range of solid state lighting fixtures
US8823630B2 (en) Systems and methods for providing color management control in a lighting panel
EP1346609B1 (en) Led luminary system
US9066402B2 (en) LED-based lighting fixtures and related methods for thermal management
US8946998B2 (en) LED-based light emitting systems and devices with color compensation
US20080136334A1 (en) System and method for controlling lighting
CN101513123A (en) Generating light by color mixing
TW200734995A (en) Light emitting device and method for driving the same
JP6235574B2 (en) Self-adjusting illumination driver for driving an illumination source and illumination unit including an auto-adjusting illumination driver
CN104503135A (en) Light source component, display module and display device
US20170150582A1 (en) Splittable light strings and methods of splitting light strings
JP6835344B2 (en) High color rendering light source device
US9986613B2 (en) Methods and apparatus for calibrating light output based on reflected light
CN104206020A (en) Methods and apparatus for interpolating low frame rate transmissions in lighting systems
KR101878946B1 (en) Automatic correction system of lighting error of each section of LED landscape lighting device
JP4988525B2 (en) Light-emitting diode luminaire
CN110072316B (en) Spectral feedback control method, controller and system of multi-channel LED light source
KR20080009378A (en) Apparatus for inspecting back light unit
KR102688565B1 (en) The LED System Performing Automatic Table Setting of Dimming
KR20070078314A (en) Apparatus and method for adjusting white balance of light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6835344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250