JP6830296B2 - 複合熱源ヒートポンプ装置 - Google Patents

複合熱源ヒートポンプ装置 Download PDF

Info

Publication number
JP6830296B2
JP6830296B2 JP2016139012A JP2016139012A JP6830296B2 JP 6830296 B2 JP6830296 B2 JP 6830296B2 JP 2016139012 A JP2016139012 A JP 2016139012A JP 2016139012 A JP2016139012 A JP 2016139012A JP 6830296 B2 JP6830296 B2 JP 6830296B2
Authority
JP
Japan
Prior art keywords
heat
load
temperature
compressor
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016139012A
Other languages
English (en)
Other versions
JP2018009736A (ja
Inventor
眞柄 隆志
隆志 眞柄
真典 上田
真典 上田
岳彦 川上
岳彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2016139012A priority Critical patent/JP6830296B2/ja
Publication of JP2018009736A publication Critical patent/JP2018009736A/ja
Application granted granted Critical
Publication of JP6830296B2 publication Critical patent/JP6830296B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、外気以外の所定熱源を熱源とするヒートポンプ回路および外気を熱源とするヒートポンプ回路を有し、熱交換により加熱または冷却された負荷側の循環液を熱交換端末に供給することにより冷暖房を実行可能な複合熱源ヒートポンプ装置に関するものである。
従来、この種の複合熱源ヒートポンプ装置においては、外気以外の所定熱源を熱源とするヒートポンプ回路の負荷側熱交換器と、外気を熱源とするヒートポンプ回路の負荷側熱交換器とを、熱交換端末側の循環液が循環する循環回路に対して直列に連結し、外気温度と基準温度の比較によりいずれか一方のヒートポンプ回路の圧縮機を優先動力源、他方のヒートポンプ回路の圧縮機を補助動力源に設定し、熱交換端末に供給される循環液を加熱する暖房運転の立ち上げ時に、まず優先動力源のみを所定の優先回転速度で駆動させ、所定の目標時間の経過時における循環液の温度が所定の目標温度に到達していない場合、または所定の時間範囲内における循環液の温度変化率が所定の閾値に満たない場合には、補助動力源も所定の補助回転速度で駆動させる立ち上げ制御を行うものがあった。(例えば、特許文献1参照。)
特開2016−23827号公報
ところで、近年、循環液を加熱して熱交換端末に供給する暖房運転を行うだけでなく、循環液を冷却して熱交換端末に供給する冷房運転も行うことができるヒートポンプ装置が普及してきており、従来のものにおける暖房運転の立ち上げ制御を、冷房運転に適用することが考えられた。
ここで、前記暖房運転の立ち上げ制御をそのまま冷房運転に適用した場合、まず優先動力源のみを所定の優先回転速度で駆動させ、所定の目標時間の経過時における循環液の温度が所定の目標温度に到達していない場合、または所定の時間範囲内における循環液の温度変化率が所定の閾値に満たない場合には、補助動力源も所定の補助回転速度で駆動させるものであるが、外気温度、室内設定温度、循環液の目標設定温度を鑑みると、冷房負荷は暖房負荷に比べて小さく、冷房運転時に暖房運転時と同じ立ち上げ制御を行うと出力過多となり、循環液の温度が目標温度に到達した後に大きくアンダーシュートしてしまい、目標温度に安定するまでに時間がかかり、無駄な電力の増大を招くという問題があった。
本発明は、このような背景に鑑みてなされたものであり、冷房運転および暖房運転の立ち上げ時において、簡易な制御により循環液の温度を目標温度に迅速に到達させ、冷房運転時における負荷側循環液の目標温度からのアンダーシュート、および暖房運転時における負荷側循環液の目標温度からのオーバーシュートを効果的に抑制することができる複合熱源ヒートポンプ装置を提供することを目的とする。
本発明は上記課題を解決するために、請求項1では、第1圧縮機、第1四方弁、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器、を第1冷媒配管で接続した第1ヒートポンプ回路と、第2圧縮機、第2四方弁、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器、を第2冷媒配管で接続した第2ヒートポンプ回路と、前記第1負荷側熱交換器、前記第2負荷側熱交換器、熱交換端末を、負荷側配管で接続し、前記第1負荷側熱交換器または前記第2負荷側熱交換器にて冷却あるいは加熱された循環液を前記熱交換端末に循環させる負荷側循環回路と、外気温度を検出する外気温度検出手段と、動作を制御する制御装置と、を有し、冷却された前記循環液を前記熱交換端末に供給する冷房運転および加熱された前記循環液を前記熱交換端末に供給する暖房運転を行う複合熱源ヒートポンプ装置において、前記制御装置は、前記冷房運転および前記暖房運転の立ち上げ時において、前記外気温度検出手段が検出した外気温度に基づいて前記第1圧縮機および前記第2圧縮機のうち一方を優先動力源、他方を補助動力源と判定する優先回路判定ステップと、最大回転速度よりも回転速度を低く設定して前記優先動力源のみを駆動する優先回路駆動ステップと、前記優先回路駆動ステップ後に、所定の目標時間の経過時に前記循環液の温度が所定の目標温度に到達していない場合、または所定の時間範囲内における前記循環液の温度変化率が所定の閾値に満たない場合には、前記優先動力源の回転速度よりも回転速度を低く設定して前記補助動力源を駆動する補助回路駆動ステップと、を含む立ち上げ運転制御を実行し、記補助回路駆動ステップにおける補助動力源の回転速度を、前記暖房運転時よりも前記冷房運転時の方を低い回転速度に設定するものとした。
この発明の請求項1によれば、制御装置は、冷房運転および暖房運転の立ち上げ時において、優先回路判定ステップと、優先回路駆動ステップと、補助回路駆動ステップとを含む立ち上げ運転制御を実行し、補助回路駆動ステップにおける補助動力源の回転速度を、暖房運転時よりも冷房運転時の方を低い回転速度に設定するようにしたことで、冷房運転時においては、簡易な制御により循環液の温度を目標温度に迅速に到達させつつも、冷房負荷の方が暖房負荷より小さいことから補助回路駆動ステップでの補助動力源の回転速度を低くして冷房負荷に見合う冷房出力としたので、循環液の温度が目標温度から大きくアンダーシュートするのを抑制することができ、また、暖房運転時においては、補助回路駆動ステップでの補助動力源の回転速度は冷房運転時よりも大きくしているので、冷房負荷よりも大きい暖房負荷に見合う暖房出力とすることができ、簡易な制御により循環液の温度を目標温度に迅速に到達させつつも、循環液の温度が目標温度から大きくオーバーシュートするのを抑制することができるものである。
本発明の実施形態に係る複合熱源ヒートポンプ装置の主要なユニットを示す外観構成図。 複合熱源ヒートポンプ装置の全体構成を示す構成図。 暖房運転時の動作を説明する説明図。 冷房運転時の動作を説明する説明図。 暖房運転における実施形態の立ち上げ制御を示すグラフであり、(a)は2台の圧縮機の回転速度の推移を示し、(b)は負荷側循環液の温度の推移を示す。 冷房運転における第1比較例および実施形態の立ち上げ制御を示すグラフであり、(a)は2台の圧縮機の回転速度の推移を示し、(b)は負荷側循環液の温度の推移を示す。
本発明の実施形態に係る複合熱源ヒートポンプ装置1の構成について適宜図1と図2を参照しながら詳細に説明する。
図1に示すように、複合熱源ヒートポンプ装置1は、第1ヒートポンプ回路40(図2参照)を備える地中熱ヒートポンプユニット4と、第2ヒートポンプ回路50(図2参照)を備える空気熱ヒートポンプユニット5とを有している。また、複合熱源ヒートポンプ装置1は、熱交換端末36に負荷側循環液L(例えば、水や不凍液)を循環させる負荷側循環回路30と、熱源側循環回路20と、複合熱源ヒートポンプ装置1の動作を制御する制御手段としての制御装置6(61、62)と、制御装置6に信号を送るリモコン60とを有しており、熱交換端末36が設置された室内の暖房または冷房を行うものである。
図2に示すように、本実施形態に係る複合熱源ヒートポンプ装置1は、外気とは別の熱源、ここでは地中熱源を利用して熱交換端末36側の負荷側循環液Lを加熱または冷却する第1ヒートポンプ回路40の第1負荷側熱交換器41と、外気を熱源として利用して熱交換端末36側の負荷側循環液Lを加熱または冷却する第2ヒートポンプ回路50の第2負荷側熱交換器51とを負荷側循環回路30に対して直列に配設し、負荷側循環回路30を循環する負荷側循環液Lの流れに対して、第1負荷側熱交換器41が第2負荷側熱交換器51よりも上流側に配設されている。この複合熱源ヒートポンプ装置1は、暖房装置および冷房装置として機能させることができるものである。
第1ヒートポンプ回路40は、第1冷媒C1を圧縮する回転速度可変の第1圧縮機43と、第1四方弁44と、第1負荷側熱交換器41と、第1減圧手段としての第1膨張弁45と、第1熱源側熱交換器46と、これらを環状に接続する第1冷媒配管42とを備えて構成されている。
前記第1冷媒配管42に設けられた第1四方弁44は、第1ヒートポンプ回路40における第1冷媒C1の流れ方向に切り換える切換弁としての機能を有し、第1圧縮機43から吐出された第1冷媒C1を、第1負荷側熱交換器41、第1膨張弁45、第1熱源側熱交換器46の順に流通させ、第1圧縮機43に戻す流路を形成する状態(暖房運転時の状態)と、第1圧縮機43から吐出された第1冷媒C1を、第1熱源側熱交換器46、第1膨張弁45、第1負荷側熱交換器41の順に流通させ、第1圧縮機43に戻す流路を形成する状態(冷房運転時の状態)とに切換可能なものである。
また、図2に示す地中熱ヒートポンプユニット4において、符号42aは、第1圧縮機43から吐出された第1冷媒C1の温度を検出する第1冷媒吐出温度センサであり、符号42bは、第1膨張弁45から第1熱源側熱交換器46までの第1冷媒配管42に設けられ、暖房運転時の低圧側、または冷房運転時の高圧側の第1冷媒C1の温度を検出する第1冷媒温度センサである。
第2ヒートポンプ回路50は、第2冷媒C2を圧縮する回転速度可変の第2圧縮機53と、第2四方弁54と、第2負荷側熱交換器51と、第2減圧手段としての第2膨張弁55と、送風ファン56の作動により送られる外気との熱交換を行う第2熱源側熱交換器57と、これらを環状に接続する第2冷媒配管52とを備えて構成されている。
前記第2冷媒配管52に設けられた第2四方弁54は、第2ヒートポンプ回路50における第2冷媒C2の流れ方向を切り換える切換弁としての機能を有し、第2圧縮機53から吐出された第2冷媒C2を、第2負荷側熱交換器51、第2膨張弁55、第2熱源側熱交換器57の順に流通させ、第2圧縮機53に戻す流路を形成する状態(暖房運転時の状態)と、第2圧縮機53から吐出された第2冷媒C2を、第2熱源側熱交換器57、第2膨張弁55、第2負荷側熱交換器51の順に流通させ、第2圧縮機53に戻す流路を形成する状態(冷房運転時の状態)とに切換可能なものである。
また、図2に示す空気熱ヒートポンプユニット5において、符号52aは、第2圧縮機53から吐出された第2冷媒C2の温度を検出する第2冷媒吐出温度センサであり、符号52bは、第2膨張弁55から第2熱源側熱交換器57までの第2冷媒配管52に設けられ、暖房運転時の低圧側、または冷房運転時の高圧側の第2冷媒C2の温度を検出する第2冷媒温度センサであり、符号52cは外気温度を検出する外気温度検出手段としての外気温度センサである。
なお、第1ヒートポンプ回路40および第2ヒートポンプ回路50の冷媒としては、R410AやR32等のHFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができる。
前記第1負荷側熱交換器41、第1熱源側熱交換器46、および第2負荷側熱交換器51は、例えばプレート式熱交換器で構成されている。このプレート式熱交換器は、複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路と循環液等の流体を流通させる流体流路とが各伝熱プレートを境にして交互に形成されている。
熱源側循環回路20は、回転数可変の熱源側循環ポンプ22と、第1熱源側熱交換器46と、前記第1熱源側熱交換器46を流通する第1冷媒C1と熱交換する熱源として(この例では地中に)設置された地中熱交換器23とが、熱媒配管としての熱源側配管21によって環状に接続されている。この熱源側配管21には、熱源側循環ポンプ22によって、熱媒として熱源側循環液H(水や不凍液)が循環されると共に、熱源側循環液Hを貯留し熱源側循環回路20の圧力を調整する熱源側シスターン24が設けられている。なお、地中熱交換器23は、地中に設けられるのには限られず、例えば、湖沼、貯水池、井戸等の水源中に設けられていてもよい。
負荷側循環回路30は、第1負荷側熱交換器41と、第2負荷側熱交換器51と、冷温水パネルやファンコイル等の暖房および冷房が行える負荷端末としての熱交換端末36とが、負荷側配管31によって上流側から順に環状に接続されている。この負荷側配管31には、負荷側循環回路30に負荷側循環液Lを循環させる負荷側循環ポンプ32が設けられており、熱交換端末36毎に分岐した負荷側配管31の各々には、その開閉により熱交換端末36への負荷側循環液Lの供給を制御する開閉手段としての熱動弁33がそれぞれ設けられ、熱動弁33は、熱交換端末36が設置された室温が所定の温度になるように開閉が制御されるものであり、図2では熱交換端末36外に設けられているが、熱交換端末36に内蔵されていてもよいものである。なお、熱交換端末36は図2では2つ設けられているが、1つであってもよく、3つ以上であってもよく、数量や仕様が特に限定されるものではない。
また、図2に示す負荷側循環回路30において、符号34は、負荷側配管31に設けられ熱交換端末36から第1負荷側熱交換器41に流入する負荷側循環液Lの温度を検出する戻り温度センサであり、符号35は、負荷側循環液Lを貯留し負荷側循環回路30の圧力を調整する負荷側シスターンである。
制御装置6は、熱源側循環回路20、負荷側循環回路30、および第1ヒートポンプ回路40の動作を制御する地中熱ヒートポンプ制御装置61と、第2ヒートポンプ回路50の動作を制御する空気熱ヒートポンプ制御装置62とを備えている。制御装置6は、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えており、外気温度センサ52c等の温度センサ、およびリモコン60からの信号を受けて、複合熱源ヒートポンプ装置1の動作を制御できるようになっている。
次に、図3を用いて暖房運転時の状態について説明する。暖房運転時においては、第1ヒートポンプ回路40では、図示のように、前記第1四方弁44が暖房運転時の状態に切り換えられ、第1圧縮機43で圧縮された高温・高圧のガス状の第1冷媒C1が第1圧縮機43から吐出され、第1冷媒C1は凝縮器として機能する第1負荷側熱交換器41にて、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lに熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第1冷媒C1が第1膨張弁45において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第1熱源側熱交換器46において、熱源側循環回路20を流れる熱源側循環液Hと熱交換を行って熱源側循環液Hから吸熱して低温・低圧のガス状の第1冷媒C1となって、再び第1圧縮機43へ戻るものである。
一方、第2ヒートポンプ回路50では、第2圧縮機53で圧縮された高温・高圧のガス状の第2冷媒C2が第2圧縮機53から吐出され、第2冷媒C2は凝縮器として機能する第2負荷側熱交換器51にて、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lに熱を放出して加熱しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第2冷媒C2が第2膨張弁55において減圧されて低圧の冷媒になって蒸発しやすい状態となり、蒸発器として機能する第2熱源側熱交換器57において、送風ファン56の作動により送られる外気と熱交換を行って外気から吸熱して低温・低圧のガス状の第2冷媒C2となって、再び第2圧縮機53へ戻るものである。
また、熱源側循環回路20では、地中熱交換器23によって地中熱が採熱され、その熱を帯びた熱源側循環液Hが熱源側循環ポンプ22の駆動により第1熱源側熱交換器46に供給される。そして第1熱源側熱交換器46にて第1冷媒C1と熱源側循環液Hとで熱交換が行われ、地中熱交換器23にて採熱された地中熱が第1冷媒C1側に汲み上げられ、第1冷媒C1が加熱され蒸発するものである。
また、負荷側循環回路30では、一定回転数で駆動される負荷側循環ポンプ32の駆動により第1負荷側熱交換器41に流入した負荷側循環液Lは、凝縮器として機能する第1負荷側熱交換器41において第1冷媒C1と熱交換されて加熱された後、凝縮器として機能する第2負荷側熱交換器51において第2冷媒C2と熱交換されてさらに加熱され、加熱された負荷側循環液Lは、その後、熱交換端末36に供給されて室内の暖房が行われ、熱交換端末36にて放熱され温度低下した負荷側循環液Lは再び第1負荷側熱交換器41へと戻るものである。
なお、前記においては、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5の両方を動作させた暖房運転時の状態について説明したが、これに限られない。すなわち、地中熱ヒートポンプユニット4単体のみを動作させての暖房運転や、空気熱ヒートポンプユニット5単体のみを動作させての暖房運転も可能なものである。
次に、図4を用いて冷房運転時の状態について説明する。冷房運転時においては、第1ヒートポンプ回路40では、図示のように、前記第1四方弁44が冷房運転時の状態に切り換えられ、第1圧縮機43で圧縮された高温・高圧のガス状の第1冷媒C1が第1圧縮機43から吐出され、第1冷媒C1は凝縮器として機能する第1熱源側熱交換器46にて、熱源側循環回路20を流れる熱源側循環液Hと熱交換を行って熱源側循環液Hに熱を放出しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第1冷媒C1が第1膨張弁45において減圧されて低圧の冷媒となって蒸発しやすい状態となり、蒸発器として機能する第1負荷側熱交換器41において、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lから吸熱して低温・低圧のガス状の第1冷媒C1となって、再び第1圧縮機43へ戻るものである。
一方、第2ヒートポンプ回路50では、第2圧縮機53で圧縮された高温・高圧のガス状の第2冷媒C2が第2圧縮機53から吐出され、第2冷媒C2は凝縮器として機能する第2熱源側熱交換器57において、送風ファン56の作動により送られる外気と熱交換を行って外気へ熱を放出しながら気液混合状態で高圧の冷媒に変化する。そして、この状態の第2冷媒C2が第2膨張弁55において減圧されて低圧の冷媒になって蒸発しやすい状態となり、蒸発器として機能する第2負荷側熱交換器51において、負荷側循環回路30を流れる負荷側循環液Lと熱交換を行って負荷側循環液Lから吸熱して低温・低圧のガス状の第2冷媒C2となって、再び第2圧縮機53へ戻るものである。
また、熱源側循環回路20では、熱源側循環液Hが熱源側循環ポンプ22の駆動により第1熱源側熱交換器46に供給される。そして第1熱源側熱交換器46にて第1冷媒C1と熱源側循環液Hとで熱交換が行われ、高温となっている第1冷媒C1の熱が熱源側循環液H側に放熱されて第1冷媒C1が冷却され凝縮された後、熱源側循環液Hの熱は地中熱交換器23によって地中へと放熱されるものである。
また、負荷側循環回路30では、一定回転数で駆動される負荷側循環ポンプ32の駆動により第1負荷側熱交換器41に流入した負荷側循環液Lは、蒸発器として機能する第1負荷側熱交換器41において第1冷媒C1と熱交換されて冷却された後、蒸発器として機能する第2負荷側熱交換器51において第2冷媒C2と熱交換されてさらに冷却され、冷却された負荷側循環液Lは、その後、熱交換端末36に供給されて室内の冷房が行われ、熱交換端末36にて吸熱し温度上昇した負荷側循環液Lは再び第1負荷側熱交換器41へと戻るものである。
なお、前記においては、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5の両方を動作させた冷房運転時の状態について説明したが、これに限られない。すなわち、地中熱ヒートポンプユニット4単体のみを動作させての冷房運転や、空気熱ヒートポンプユニット5単体のみを動作させての冷房運転も可能なものである。
次に、暖房運転開始時の立ち上げ運転制御について説明する。
前記制御装置6は、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のどちらか一方を作動させると共に負荷側循環ポンプ32を駆動させる、あるいは地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5の双方を作動させると共に負荷側循環ポンプ32を駆動させて、負荷側循環回路30を循環する負荷側循環液Lを加熱する暖房運転において、その立ち上げ時には、負荷側循環液Lの温度がリモコン60等により設定された目標温度に到達するまでは、立ち上げ運転制御(図5参照)を実行する。目標温度に到達した後は優先動力源の圧縮機HP1のみを駆動する1台駆動通常運転制御、または優先動力源の圧縮機HP1と補助動力源の圧縮機HP2の両方を駆動する2台駆動通常運転制御に移行し、何れの場合も負荷側循環液Lの温度が目標温度となるように圧縮機の回転数が調整されるものである。
なお、以下、説明の便宜上、第1圧縮機43および第2圧縮機53のうち、優先動力源の圧縮機を圧縮機HP1といい、補助動力源の圧縮機を圧縮機HP2という。
前記暖房運転開始時の立ち上げ運転制御は、第1圧縮機43および第2圧縮機53のうち一方を優先動力源の圧縮機HP1、他方を補助動力源の圧縮機HP2と判定する優先回路判定ステップと、最大回転速度よりも回転速度を低く設定して優先動力源の圧縮機HP1のみを駆動する優先回路駆動ステップと、所定の目標時間の経過時に負荷側循環液Lの温度が所定の目標温度に到達していない場合には、最大回転速度よりも回転速度を低く設定して補助動力源の圧縮機HP2を駆動する補助回路駆動ステップと、を少なくとも含んでいる。
前記優先回路判定ステップでは、外気温度に基づいて、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のうちどちらの熱効率(COP)が高いか判定する。
具体的には、暖房運転時の優先回路判定ステップは、外気温度センサ52cで検出した外気温度と所定の基準温度(例えば5℃)とを比較し、外気温度センサ52cで検出した外気温度が所定の基準温度以上の場合には、空気熱ヒートポンプユニット5の方が地中熱ヒートポンプユニット4よりも採熱効率が高いため、第2圧縮機53を優先動力源と判定し、第1圧縮機43を補助動力源と判定する。
一方、外気温度が所定の基準温度(例えば5℃)よりも低い場合には、地中熱ヒートポンプユニット4の方が空気熱ヒートポンプユニット5よりも採熱効率が高いため、第1圧縮機43を優先動力源と判定し、第2圧縮機53を補助動力源と判定する。
前記優先回路駆動ステップでは、暖房運転の立ち上げ時において、最大回転速度(例えば90rps)よりも回転速度を低く設定して、優先動力源の圧縮機HP1のみを駆動し(例えば70rps)、補助動力源の圧縮機HP2は駆動しない。
なお、最大回転速度は、ヒートポンプ装置の仕様や圧縮機の性能を考慮して適宜設定し、圧縮機の最大回転速度でもよいし最大回転速度から低く設定してもよい。
前記補助回路駆動ステップでは、暖房運転の立ち上げ時において、所定の目標時間(例えば3分間)の経過時に負荷側循環液Lの温度が所定の目標温度(例えば、使用者が設定した温度)に到達していない場合には、補助動力源の圧縮機HP2の熱効率の向上を図るため、最大回転速度(例えば90rps)よりも回転速度を低く設定して、補助動力源の圧縮機HP2を駆動する(例えば50rps)。
なお、本実施形態においては、所定の目標時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、これに限定されるものではなく、所定の時間範囲内における負荷側循環液Lの温度の温度変化(ここでは温度上昇率)が所定の閾値に満たない場合には補助動力源の圧縮機HP2を駆動してもよい。
具体的には、例えば、所定の立ち上げ時間経過後(1分経過後)において、所定の経過時間ごと(30秒ごと)に負荷側循環液Lの温度の温度上昇率を求め、温度上昇率が30秒間に1.0℃に満たない場合には、補助動力源の圧縮機HP2を例えば、50rpsで駆動してもよい。
また、前記補助回路駆動ステップを実行した後において、所定の判定時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達していない場合には、優先回路駆動ステップにおける回転速度(70rps)よりも高く設定して優先動力源の圧縮機HP1を例えば最大回転速度の90rpsで駆動する。なお、ここでは所定の判定時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、所定の時間範囲内(例えば30秒ごと)における負荷側循環液Lの温度の温度変化率(ここでは温度上昇率)が所定の閾値(例えば0.8℃)に満たない場合には優先動力源の圧縮機HP1を最大回転速度の90rpsで駆動してもよい。
そして、前記ように優先動力源の圧縮機HP1を最大回転速度で駆動させた後において、所定の判定時間(例えば、1分間)の経過時に負荷側循環液Lの温度が目標温度に到達していない場合には、補助回路駆動ステップにおける回転速度(50rps)よりも高く設定して補助動力源の圧縮機HP2を駆動する(例えば、最大回転速度の90rps)。なお、ここでは所定の判定時間(例えば、1分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、所定の時間範囲内(例えば30秒ごと)における負荷側循環液Lの温度の温度上昇率が所定の閾値(例えば0.8℃)に満たない場合には補助動力源の圧縮機HP2を最大回転速度の90rpsで駆動してもよい。
続いて、暖房運転時の立ち上げ運転制御における基本動作について、図5を参照しながら説明する。図5(a)は2台の圧縮機HP1、HP2の回転速度の推移を示し、(b)は負荷側循環液Lの温度の推移を示す。
図5に示すように、複合熱源ヒートポンプ装置1は、運転開始後の暖房運転の立ち上げ時において(t=0)、優先回路判定ステップと優先回路駆動ステップを実行し、最大回転速度(例えば90rps)よりも回転速度を低く設定して、優先動力源の圧縮機HP1のみを例えば70rpsで駆動する(t1)。
このとき、熱交換端末36が設置された被空調空間の暖房負荷が大きい場合には、所定の目標時間(例えば、3分間)の経過時(t2)に負荷側循環液Lの温度が所定の目標温度に到達しないため、制御装置6は、時刻t2において、最大回転速度(例えば、90rps)よりも回転速度を低く設定して補助動力源の圧縮機HP2を例えば50rpsで駆動する(t2〜t3)。
補助回路駆動ステップによって補助動力源の圧縮機HP2を50rpsで駆動させ(t3〜t4)、所定の判定時間(例えば、3分間)が経過する前に負荷側循環液Lの温度が所定の目標温度に到達したら(t4)、制御装置6は、時刻t4において、戻り温度センサ34により検出される負荷側循環液Lの温度が目標温度に到達したことを判定し、その後は優先動力源の圧縮機HP1および補助動力源の圧縮機HP2の2台温度制御に移行して管理する(t4〜)。なお、ここでは、時刻t4以降において、負荷側循環液Lの温度が目標温度を上回っている場合、優先動力源の圧縮機HP1よりも先に補助動力源の圧縮機HP2の方の回転速度を低下させて、負荷側循環液Lの温度を目標温度になるように制御するようにしたことで、採熱効率のよい優先動力源の圧縮機HP1の仕事量をそのままに採熱効率の劣る補助動力源の圧縮機HP2の仕事量を減らして、効率のよい運転をさせるものである。
次に、冷房運転開始時の立ち上げ運転制御について説明する。
前記制御装置6は、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のどちらか一方を作動させると共に負荷側循環ポンプ32を駆動させる、あるいは地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5の双方を作動させると共に負荷側循環ポンプ32を駆動させて、負荷側循環回路30を循環する負荷側循環液Lを冷却する冷房運転において、その立ち上げ時には、負荷側循環液Lの温度がリモコン60等により設定された目標温度に到達するまでは、立ち上げ運転制御(図6参照)を実行する。目標温度に到達した後は優先動力源の圧縮機HP1のみを駆動する1台駆動通常運転制御、または優先動力源の圧縮機HP1と補助動力源の圧縮機HP2の両方を駆動する2台駆動通常運転制御に移行し、何れの場合も負荷側循環液Lの温度が目標温度となるように圧縮機の回転数が調整されるものである。
なお、以下、説明の便宜上、第1圧縮機43および第2圧縮機53のうち、優先動力源の圧縮機を圧縮機HP1といい、補助動力源の圧縮機を圧縮機HP2という。
前記冷房運転開始時の立ち上げ運転制御は、第1圧縮機43および第2圧縮機53のうち一方を優先動力源の圧縮機HP1、他方を補助動力源の圧縮機HP2と判定する優先回路判定ステップと、最大回転速度よりも回転速度を低く設定して優先動力源の圧縮機HP1のみを駆動する優先回路駆動ステップと、所定の目標時間の経過時に負荷側循環液Lの温度が所定の目標温度に到達していない場合には、最大回転速度よりも回転速度を低く設定して補助動力源の圧縮機HP2を駆動する補助回路駆動ステップと、を少なくとも含んでいる。
前記優先回路判定ステップでは、外気温度に基づいて、地中熱ヒートポンプユニット4および空気熱ヒートポンプユニット5のうちどちらの熱効率(COP)が高いか判定する。
具体的には、外気温度が比較的高い場合(30℃以上の場合)には、外気への放熱効率が低くなることから、冷房運転時の優先回路判定ステップは、外気温度センサ52cで検出した外気温度と所定の基準温度(例えば30℃)とを比較し、外気温度センサ52cで検出した外気温度が所定の基準温度以上の場合、地中熱ヒートポンプユニット4の方が空気熱ヒートポンプユニット5よりも放熱効率が高いため、第1圧縮機43を優先動力源と判定し、第2圧縮機53を補助動力源と判定する。
一方、外気温度が所定の基準温度(例えば30℃)よりも低い場合には、空気熱ヒートポンプユニット5の方が地中熱ヒートポンプユニット4よりも放熱効率が高いため、第2圧縮機53を優先動力源と判定し、第1圧縮機43を補助動力源と判定する。
前記優先回路駆動ステップでは、冷房運転の立ち上げ時において、最大回転速度(例えば90rps)よりも回転速度を低く設定して、優先動力源の圧縮機HP1のみを駆動し(例えば70rps)、補助動力源の圧縮機HP2は駆動しない。
なお、最大回転速度は、ヒートポンプ装置の仕様や圧縮機の性能を考慮して適宜設定し、圧縮機の最大回転速度でもよいし最大回転速度から低く設定してもよい。
前記補助回路駆動ステップでは、冷房運転の立ち上げ時において、所定の目標時間(例えば3分間)の経過時に負荷側循環液Lの温度が所定の目標温度(例えば、使用者が設定した温度)に到達していない場合には、補助動力源の圧縮機HP2の熱効率の向上を図るため、最大回転速度(例えば90rps)よりも回転速度を低く設定して、補助動力源の圧縮機HP2を駆動する(例えば35rps)。
なお、本実施形態においては、所定の目標時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、これに限定されるものではなく、所定の時間範囲内における負荷側循環液Lの温度の温度変化率(ここでは温度低下率)が所定の閾値に満たない場合には補助動力源の圧縮機HP2を駆動してもよい。
具体的には、例えば、所定の立ち上げ時間経過後(1分経過後)において、所定の経過時間ごと(30秒ごと)に負荷側循環液Lの温度の温度低下率を求め、温度低下率が30秒間に1.0℃に満たない場合には、補助動力源の圧縮機HP2を例えば、35rpsで駆動してもよい。
また、前記補助回路駆動ステップを実行した後において、所定の判定時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達していない場合には、優先回路駆動ステップにおける回転速度(70rps)よりも高く設定して優先動力源の圧縮機HP1を例えば最大回転速度の90rpsで駆動する。なお、ここでは所定の判定時間(例えば、3分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、所定の時間範囲内(例えば30秒ごと)における負荷側循環液Lの温度の温度変化率(ここでは温度低下率)が所定の閾値(例えば0.8℃)に満たない場合には優先動力源の圧縮機HP1を最大回転速度の90rpsで駆動してもよい。
そして、前記ように優先動力源の圧縮機HP1を最大回転速度で駆動させた後において、所定の判定時間(例えば、1分間)の経過時に負荷側循環液Lの温度が目標温度に到達していない場合には、補助回路駆動ステップにおける回転速度(35rps)よりも高く設定して補助動力源の圧縮機HP2を駆動する(例えば、最大回転速度の90rps)。なお、ここでは所定の判定時間(例えば、1分間)の経過時に負荷側循環液Lの温度が目標温度に到達したかどうかを判定したが、所定の時間範囲内(例えば30秒ごと)における負荷側循環液Lの温度の温度低下率が所定の閾値(例えば0.8℃)に満たない場合には補助動力源の圧縮機HP2を最大回転速度の90rpsで駆動してもよい。
続いて、冷房運転時の立ち上げ運転制御における基本動作について、図6を参照しながら説明するが、まず、本実施形態の第1比較例として、暖房運転時の立ち上げ制御を冷房運転時の立ち上げ制御にそのまま適用した場合の圧縮機HP1、HP2の回転速度の推移、および負荷側循環液Lの温度の推移を破線で示すグラフにより説明する。なお、図6(a)は2台の圧縮機HP1、HP2の回転速度の推移を示し、(b)は負荷側循環液Lの温度の推移を示す。
図6に破線で示すように、複合熱源ヒートポンプ装置1は、運転開始後の冷房運転の立ち上げ時において(t=0)、優先回路判定ステップと優先回路駆動ステップを実行し、最大回転速度(例えば90rps)よりも回転速度を低く設定して、優先動力源の圧縮機HP1のみを例えば70rpsで駆動する(t1)。
このとき、熱交換端末36が設置された被空調空間の冷房負荷が大きい場合には、所定の目標時間(例えば、3分間)の経過時(t2)に負荷側循環液Lの温度が所定の目標温度に到達しないため、制御装置6は、時刻t2において、最大回転速度(例えば、90rps)よりも回転速度を低く設定して補助動力源の圧縮機HP2を例えば50rpsで駆動する(t2〜t4)。
補助回路駆動ステップによって補助動力源の圧縮機HP2を50rpsで駆動させ(t4〜t5)、所定の判定時間(例えば、3分間)が経過する前に負荷側循環液Lの温度が所定の目標温度に到達したら(t5)、制御装置6は、時刻t5において、戻り温度センサ34により検出される負荷側循環液Lの温度が目標温度に到達したことを判定し、その後は優先動力源の圧縮機HP1および補助動力源の圧縮機HP2の2台温度制御に移行して管理する(t5〜)。
ここで、第1比較例において、負荷側循環液Lの温度が所定の目標温度に到達した時刻t5以降は、負荷側循環液Lは目標温度から大きくアンダーシュートし、補助動力源の圧縮機HP2の回転速度を低下させても目標温度に安定するまでには時間がかかっている。これは複合熱源ヒートポンプ装置1による冷房出力が過多の状態であることを意味しており、外気温度、室内設定温度、負荷側循環液Lの目標設定温度を鑑みると冷房負荷は暖房負荷に比べて小さいことから、第1比較例のように、冷房運転時において暖房運転時と同じ立ち上げ制御を適用した場合には、負荷側循環液Lの温度は目標温度に到達した後に大きくアンダーシュートしてしまい、無駄な電力の増大を招くおそれがある。
そこで、本実施形態においては、上記のようなアンダーシュートを抑制するために、前記第1比較例のように、冷房運転時において暖房運転時と同じ立ち上げ制御を適用し、冷房運転時の補助回路駆動ステップにおける補助動力源の圧縮機HP2の回転速度を、暖房運転時の補助回路駆動ステップにおける補助動力源の圧縮機HP2の回転速度と同じ回転速度(50rps)に設定するのではなく、冷房運転時の補助回路駆動ステップにおける補助動力源の圧縮機HP2の回転速度を、暖房運転時の補助回路駆動ステップにおける補助動力源の圧縮機HP2の回転速度よりも低い回転速度(例えば35rps)に設定して、補助動力源の圧縮機HP2を駆動する。これにより、前記第1比較例と異なり、図6の実線のグラフに示すような挙動となる。
すなわち、本実施形態では、図6に実線で示すように、複合熱源ヒートポンプ装置1は、運転開始後の冷房運転の立ち上げ時において(t=0)、優先回路判定ステップと優先回路駆動ステップを実行し、最大回転速度(例えば90rps)よりも回転速度を低く設定して、優先動力源の圧縮機HP1のみを例えば70rpsで駆動する(t1)。
そして、所定の目標時間(例えば、3分間)の経過時(t2)に負荷側循環液Lの温度が所定の目標温度に到達しないため、制御装置6は、時刻t2において、最大回転速度(例えば、90rps)よりも回転速度を低く設定して補助動力源の圧縮機HP2を例えば35rpsで駆動する(t2〜t3)。
補助回路駆動ステップによって補助動力源の圧縮機HP2を35rpsで駆動させ(t3〜t6)、所定の判定時間(例えば、3分間)が経過する前に負荷側循環液Lの温度が所定の目標温度に到達したら(t6)、制御装置6は、時刻t6において、戻り温度センサ34により検出される負荷側循環液Lの温度が目標温度に到達したことを判定し、その後は優先動力源の圧縮機HP1および補助動力源の圧縮機HP2の2台温度制御に移行して管理する(t6〜)。
ここで、前記補助回路駆動ステップにおいて、第1比較例よりも補助動力源の圧縮機HP2の回転速度を低く駆動させたことで、負荷側循環液Lの温度を目標温度に迅速に到達させつつも、負荷側循環液Lの温度が目標温度に到達した後における目標温度からのアンダーシュートを抑制することができ、無駄な電力消費を抑制することができるものである。
なお、時刻t6以降において、負荷側循環液Lの温度が目標温度を下回っている場合、優先動力源の圧縮機HP1よりも先に補助動力源の圧縮機HP2の方の回転速度を低下させて、負荷側循環液Lの温度を目標温度になるように制御するようにしたことで、放熱効率のよい優先動力源の圧縮機HP1の仕事量をそのままに放熱効率の劣る補助動力源の圧縮機HP2の仕事量を減らして、効率のよい運転をさせるものである。
以上のことから、暖房運転および冷房運転の立ち上げ時に、前記優先回路判定ステップと、前記優先回路駆動ステップと、前記補助回路駆動ステップとを含む立ち上げ運転制御を行うものにおいて、前記補助回路駆動ステップでの補助動力源の圧縮機HP2の回転速度を、暖房運転時よりも冷房運転時の方が低い回転速度に設定するようにしたことで、冷房運転時においては、簡易な制御により負荷側循環液Lの温度を目標温度に迅速に到達させつつも、冷房負荷の方が暖房負荷より小さいことから補助回路駆動ステップでの補助動力源の圧縮機HP2の回転速度を低くして冷房負荷に見合う冷房出力としたことで、負荷側循環液Lの温度が目標温度から大きくアンダーシュートするのを抑制することができ、また、暖房運転時においては、補助回路駆動ステップでの補助動力源の圧縮機HP2の回転速度は冷房運転時よりも大きくしているので、冷房負荷よりも大きい暖房負荷に見合う暖房出力とすることができ、簡易な制御により負荷側循環液Lの温度を目標温度に迅速に到達させつつも、負荷側循環液Lの温度が目標温度から大きくオーバーシュートするのを抑制することができるものである。
また、先に説明した図5および図6に示した本実施形態では、優先動力源の圧縮機HP1のみの駆動では負荷側循環液Lが目標温度に到達せず、補助動力源の圧縮機HP2も駆動して負荷側循環液Lが目標温度に到達する場合について説明したが、優先回路駆動ステップにおいて優先動力源の圧縮機HP1を駆動させて、所定の目標時間(例えば、3分間)が経過する前に負荷側循環液Lの温度が所定の目標温度に到達した場合は、優先動力源の圧縮機HP1の回転速度を調整することで負荷側循環液Lの温度を目標温度に維持させるように制御し、補助動力源の圧縮機HP2は駆動することがないものである。
なお、本発明は先に説明した一実施形態に限定されるものでなく、本実施形態では、地中熱ヒートポンプユニット4の熱源として地中熱交換器23を示したが、熱源としては、地中熱の他に、湖沼、貯水池、井戸等の水熱源も利用可能であり、外気以外の熱源を利用するものであれば種類は問わないものであり、さらに、第1熱源側熱交換器46に供給される熱源側循環液Hは熱源側循環回路20のような閉回路を循環する形態でなくてもよく、熱源側循環液Hは第1熱源側熱交換器46で熱交換した後は外部に排出されるような開放式の形態であってもよいものである。
1 複合熱源ヒートポンプ装置
6 制御装置
30 負荷側循環回路
31 負荷側配管
36 熱交換端末
40 第1ヒートポンプ回路
41 第1負荷側熱交換器
42 第1冷媒配管
43 第1圧縮機
44 第1四方弁
45 第1膨張弁
46 第1熱源側熱交換器
50 第2ヒートポンプ回路
51 第2負荷側熱交換器
52 第2冷媒配管
52c 外気温度センサ
53 第2圧縮機
54 第2四方弁
55 第2膨張弁
57 第2熱源側熱交換器
L 負荷側循環液
HP1 優先動力源の圧縮機
HP2 補助動力源の圧縮機

Claims (1)

  1. 第1圧縮機、第1四方弁、第1負荷側熱交換器、第1膨張弁、及び、外気とは別の所定の熱源と熱交換可能な第1熱源側熱交換器、を第1冷媒配管で接続した第1ヒートポンプ回路と、
    第2圧縮機、第2四方弁、第2負荷側熱交換器、第2膨張弁、及び、外気と熱交換可能な第2熱源側熱交換器、を第2冷媒配管で接続した第2ヒートポンプ回路と、
    前記第1負荷側熱交換器、前記第2負荷側熱交換器、熱交換端末を、負荷側配管で接続し、前記第1負荷側熱交換器または前記第2負荷側熱交換器にて冷却あるいは加熱された循環液を前記熱交換端末に循環させる負荷側循環回路と、
    外気温度を検出する外気温度検出手段と、
    動作を制御する制御装置と、を有し、冷却された前記循環液を前記熱交換端末に供給する冷房運転および加熱された前記循環液を前記熱交換端末に供給する暖房運転を行う複合熱源ヒートポンプ装置において、
    前記制御装置は、前記冷房運転および前記暖房運転の立ち上げ時において、前記外気温度検出手段が検出した外気温度に基づいて前記第1圧縮機および前記第2圧縮機のうち一方を優先動力源、他方を補助動力源と判定する優先回路判定ステップと、
    最大回転速度よりも回転速度を低く設定して前記優先動力源のみを駆動する優先回路駆動ステップと、
    前記優先回路駆動ステップ後に、所定の目標時間の経過時に前記循環液の温度が所定の目標温度に到達していない場合、または所定の時間範囲内における前記循環液の温度変化率が所定の閾値に満たない場合には、前記優先動力源の回転速度よりも回転速度を低く設定して前記補助動力源を駆動する補助回路駆動ステップと、
    を含む立ち上げ運転制御を実行し、
    記補助回路駆動ステップにおける補助動力源の回転速度を、前記暖房運転時よりも前記冷房運転時の方を低い回転速度に設定するようにしたことを特徴とする複合熱源ヒートポンプ装置。
JP2016139012A 2016-07-14 2016-07-14 複合熱源ヒートポンプ装置 Active JP6830296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139012A JP6830296B2 (ja) 2016-07-14 2016-07-14 複合熱源ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139012A JP6830296B2 (ja) 2016-07-14 2016-07-14 複合熱源ヒートポンプ装置

Publications (2)

Publication Number Publication Date
JP2018009736A JP2018009736A (ja) 2018-01-18
JP6830296B2 true JP6830296B2 (ja) 2021-02-17

Family

ID=60995110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139012A Active JP6830296B2 (ja) 2016-07-14 2016-07-14 複合熱源ヒートポンプ装置

Country Status (1)

Country Link
JP (1) JP6830296B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209965B2 (ja) * 2019-02-27 2023-01-23 東北電力株式会社 ガス気化システム

Also Published As

Publication number Publication date
JP2018009736A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6231395B2 (ja) 複合熱源ヒートポンプ装置
JP6231403B2 (ja) 複合熱源ヒートポンプ装置
JP6976878B2 (ja) ヒートポンプ空調システム
JP6609198B2 (ja) 複合熱源ヒートポンプ装置
JP6147659B2 (ja) ヒートポンプ装置
JP6537990B2 (ja) ヒートポンプ式冷温水供給システム
JP6817735B2 (ja) ヒートポンプ式空調システム
JP2019194510A (ja) ヒートポンプ熱源機
JP6830296B2 (ja) 複合熱源ヒートポンプ装置
JP6800283B2 (ja) 空気調和装置
JP6599812B2 (ja) 複合熱源ヒートポンプ装置
JP6526398B2 (ja) ヒートポンプシステム
JP6933599B2 (ja) ヒートポンプ冷熱源機
JP6574392B2 (ja) ヒートポンプ装置
JP6208086B2 (ja) 複合熱源ヒートポンプ装置
JP6359398B2 (ja) 複合熱源ヒートポンプ装置
JP6359397B2 (ja) 複合熱源ヒートポンプ装置
JP7041024B2 (ja) 複合熱源ヒートポンプ装置
JP6609195B2 (ja) ヒートポンプ装置
JP6574393B2 (ja) 複合熱源ヒートポンプ装置
JP6258800B2 (ja) 複合熱源ヒートポンプ装置
JP6943800B2 (ja) 複合熱源ヒートポンプ装置
JP6208085B2 (ja) ヒートポンプ装置
JP7074915B2 (ja) ヒートポンプ装置
JP6039869B2 (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200326

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200812

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201015

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201118

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201201

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210115

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R150 Certificate of patent or registration of utility model

Ref document number: 6830296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250