JP6824112B2 - 導波素子、発光装置及び導波素子の製造方法 - Google Patents

導波素子、発光装置及び導波素子の製造方法 Download PDF

Info

Publication number
JP6824112B2
JP6824112B2 JP2017096573A JP2017096573A JP6824112B2 JP 6824112 B2 JP6824112 B2 JP 6824112B2 JP 2017096573 A JP2017096573 A JP 2017096573A JP 2017096573 A JP2017096573 A JP 2017096573A JP 6824112 B2 JP6824112 B2 JP 6824112B2
Authority
JP
Japan
Prior art keywords
crystal region
crystal
region
layer
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017096573A
Other languages
English (en)
Other versions
JP2018194617A (ja
Inventor
年輝 彦坂
年輝 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017096573A priority Critical patent/JP6824112B2/ja
Priority to US15/902,379 priority patent/US10551645B2/en
Priority to CN201810160351.7A priority patent/CN108873162A/zh
Publication of JP2018194617A publication Critical patent/JP2018194617A/ja
Application granted granted Critical
Publication of JP6824112B2 publication Critical patent/JP6824112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/07Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 buffer layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Filters (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明の実施形態は、導波素子、発光装置及び導波素子の製造方法に関する。
2つ以上の光導波路を有する波長変換装置が提案されている。例えば、この2つ以上の光導波路の非線形分極が反転している。導波素子により、入射した光の波長を変換することができる。導波素子において波長変換効率の向上が求められる。
特開平4−81725号公報
本発明の実施形態は、効率の向上が可能な導波素子、発光装置及び導波素子の製造方法を提供する。
本発明の実施形態によれば、導波素子は、第1結晶領域及び第2結晶領域を含む。前記第1結晶領域は、第1方向に延び、第1窒化物半導体を含む。前記第2結晶領域は、前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続する。前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差する。前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かう。前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かう。
図1(a)〜図1(c)は、第1実施形態に係る導波素子を例示する模式図である。 図2(a)〜図2(f)は、第1実施形態に係る導波素子の製造方法を例示する模式的断面図である。 図3(a)及び図3(b)は、導波素子の特性を例示するグラフ図である。 図4(a)及び図4(b)は、導波素子の特性を例示するグラフ図である。 図5(a)〜図5(c)は、参考例の導波素子を示す模式的斜視図である。 図6(a)〜図6(g)は、実施形態に係る導波素子を例示する模式図である。 図7(a)〜図7(g)は、参考例の導波素子を例示する模式図である。 図8は、第1実施形態に係る別の導波素子を例示する模式的斜視図である。 図9は、第2実施形態に係る導波素子を例示する模式的斜視図である。 図10(a)〜図10(f)は、第2実施形態に係る別の導波素子を例示する模式図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1(a)〜図1(c)は、第1実施形態に係る導波素子を例示する模式図である。
図1(a)及び図1(b)は、斜視図である。図1(c)は、図1(b)のA1−A2線断面図である。
図1(a)に示すように、実施形態に係る導波素子110は、第1結晶領域11及び第2結晶領域12を含む。第1結晶領域11及び第2結晶領域12は、第1方向に沿って延びる。第1結晶領域11及び第2結晶領域12は、導波路10に含まれる。
第1方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向及びX軸方向に対して垂直な方向をY軸方向とする。
第1結晶領域11は、第1端部E1と第2端部E2とを含む。第1端部E1から第2端部E2に向かう方向は、第1方向(Z軸方向)に沿う。第1結晶領域11は、第1窒化物半導体を含む。
第2結晶領域12は、第3端部E3と第4端部E4とを含む。第3端部E3から第4端部E4に向かう方向は、第1方向(Z軸方向)に沿う。第2結晶領域12は、第2窒化物半導体を含む。第2結晶領域12は、例えば、第1結晶領域11と連続している。第2結晶領域12は、例えば、第1結晶領域11と接する。第2結晶領域12は、例えば、第1結晶領域11と光学的に結合している。第1結晶領域11と第2結晶領域12との間の境界は、観測できる場合、または、観測できない場合があっても良い。
第1結晶領域11から第2結晶領域12に向かう第2方向は、第1方向と交差する。第2方向は、第1方向に対して垂直である。第2方向は、例えば、X軸方向である。
第1結晶領域11の第1方向に沿う長さLz1は、第1結晶領域11の第2方向に沿う長さLx1よりも長い。第2結晶領域12の第1方向に沿う長さLz2は、第2結晶領域12の第2方向に沿う長さLx2よりも長い。
第1方向及び第2方向を含む平面(例えばX−Z平面)と交差する方向を第3方向とする。第3方向は、例えば、Y軸方向である。
第1結晶領域11の第1方向に沿う長さLz1は、第1結晶領域11の第3方向に沿う長さLy1よりも長い。第2結晶領域12の第1方向に沿う長さLz2は、第2結晶領域12の第3方向に沿う長さLy2よりも長い。この例では、長さLy1は、長さLx1よりも長い。長さLy2は、長さLx2よりも長い。
例えば、長さLz1は、長さLz2と実質的に同じである。長さLz1は、長さLz2の0.95倍以上1.05倍以下である。例えば、長さLy1は、長さLy2と実質的に同じである。長さLy1は、長さLy2の0.95倍以上1.05倍以下である。例えば、長さLx1は、長さLx2と実質的に同じでも良く、異なっても良い。例えば、長さLx1は、長さLx2の0.95倍以上1.05倍以下でも良い。
長さLx1と長さLx2の和が、導波路10の幅Wに対応する。
第1結晶領域11及び第2結晶領域12は、例えば、窒化ガリウム(GaN)を含む。第1結晶領域11及び第2結晶領域12は、例えば、Alx1Ga1−x1N(0≦x1<1)を含んでも良い。第1結晶領域11及び第2結晶領域12は、例えば、Alx1Ga1−x1N(0≦x1≦1)を含んでも良い。
図1(b)に示すように、この例では、第1層50がさらに設けられる。第1層50は、例えば、基体(または基板)である。
図1(c)に示すように、第1層50に凹部50q(例えば溝)及び凸部50pが設けられる。導波路10の少なくとも一部は、凹部50qの中に設けられている。
第1層50は、例えば、第1部分領域50a、第2部分領域50b、第3部分領域50c及び第4部分領域50dを含む。第2方向(X軸方向)において、第1部分領域50aと、第2部分領域50bと、の間に、第1結晶領域11の少なくとも一部が位置する。第2方向において、第1結晶領域11のその少なくとも一部と、第2部分領域50bと、の間に、第2結晶領域12の少なくとも一部が位置する。第3部分領域50cから第1結晶領域11に向かう方向は、第3方向(第1方向及び第2方向を含む平面と交差する方向であり、この例では、Y軸方向)に沿う。第4部分領域50dから第2結晶領域12に向かう方向は、第3方向(この例ではY軸方向)に沿う。
第1部分領域50a、第2部分領域50b、第3部分領域50c及び第4部分領域50dは、互いに他の1つと連続している。
第1層50(基体または基板)は、例えば、c面サファイア基板である。第1層50は、酸化アルミニウム(Al、または、AlO)、シリコン(Si)、窒化アルミニウム(AlN)及び炭化ケイ素(SiC)からなる群から選択された少なくとも1つを含む。第1層50の例については、後述する。
第1層50の屈折率は、第1結晶領域11の屈折率よりも低い。第1層50の屈折率は、第2結晶領域12の屈折率よりも低い。第1層50は、例えば、クラッド層として機能しても良い。
この例では、第2層60がさらに設けられている。第2層60は、例えば、第5部分領域60e、第6部分領域60f、第7部分領域60g及び第8部分領域60hを含む。第2方向(X軸方向)において、第5部分領域60eと、第6部分領域60fと、の間に第1結晶領域11の別の一部が位置する。第2方向において、第1結晶領域11のその別の一部と、第6部分領域60fと、の間に、第2結晶領域12の別の一部が位置する。第1結晶領域11から第7部分領域60gに向かう方向は、第3方向(Y軸方向)に沿う。第2結晶領域12から第8部分領域60hに向かう方向は、第3方向に沿う。
第2層60の屈折率は、第1結晶領域11の屈折率よりも低い。第2層60の屈折率は、第2結晶領域12の屈折率よりも低い。第1層50は、例えば、クラッド層として機能しても良い。
例えば、第1結晶領域11及び第2結晶領域12が、Alx1Ga1−x1N(0≦x1<1)を含む場合、第2層60は、Alx2Ga1−x2N(0<x2≦1、x1<x2)を含んでも良い。例えば、第2層60は、酸化シリコン(SiO)、酸化亜鉛(ZnO)、及び、窒化シリコン(SiN)、酸窒化シリコン(SiON)及び、酸化アルミニウム(Al、または、AlO)からなる群から選択された少なくともいずれかを含んでも良い。
第1結晶領域11の第1端部E1及び第2結晶領域12の第3端部E3から第1光L1が入射する。第1光L1は、これらの結晶領域の中を伝搬する。伝搬方向R1(図1(b)参照)は、Z軸方向に沿う。第2光L2が、第1結晶領域11の第2端部E2及び第2結晶領域12の第4端部E4から出射する。第2光L2の第2波長は、第1光L1の第1波長とは異なる。導波素子110により、波長変換が行われる。
第1層50の屈折率、及び、第2層60の屈折率のそれぞれが導波路10の屈折率よりも低いことにより、光は、導波路10(第1結晶領域11及び第2結晶領域12)を効率的に伝搬する。第2層60が省略され、第1結晶領域11の上記の別の一部、及び、第2結晶領域12の上記の別の一部の周りが気体(例えば空気など)でも良い。これらの結晶領域の周りが減圧空間でも良い。このような場合も、光は、導波路10(第1結晶領域11及び第2結晶領域12)を効率的に伝搬する。
図1(a)及び図1(c)に示すように、第1結晶領域11は、極性の第1向きCO1を有する。第2結晶領域12は、極性の第2向きCO2を有する。第1向きCO1は、第2向きCO2と、逆の成分を有する。例えば、第1向きCO1は、第2向きCO2と逆である。
例えば、第1結晶領域11の極性の第1向きCO1は、第1結晶領域11から第2結晶領域12に向かう。例えば、第2結晶領域12の極性の第2向きCO2は、第2結晶領域12から第1結晶領域11に向かう。
例えば、第1結晶領域11及び第2結晶領域12は、六方晶構造を有する。第1結晶領域11の極性の第1向きCO1は、第1結晶領域11の<0001>方向に対応する。第2結晶領域12の極性の第2向きCO2は、第2結晶領域12の<0001>方向に対応する。第1結晶領域11の<0001>方向は、第1結晶領域11から第2結晶領域12に向かう。第2結晶領域12の<0001>方向は、第2結晶領域12から第1結晶領域11に向かう。第1結晶領域11における<0001>方向は、+X方向である。第2結晶領域12の<0001>方向は、−X方向である。
例えば、第1方向(Z軸方向)は、第1結晶領域11のm軸方向に沿い、第2結晶領域12のm軸方向に沿う。
このような導波素子110により、高い波長変換効率が得られる。高い効率が得られる。例えば、2つの結晶領域において、結晶の極性の向きが互いに異なる。これにより、導波素子110に入射した光において、位相が整合する。例えば、基本波の電界成分(TE ω )と、第2高調波の電界成分(TE 2ω)と、の重なり積分を大きくできる。高効率で波長を変換できる。導波素子110の特性の例については、後述する。
既に説明したように、実施形態においては、長さLy1は長さLx1よりも長く、長さLy2は長さLx2よりも長い。既に説明したように、導波路10のX軸方向の幅Wは、長さLx1と長さLx2との和である。一方、導波路10のY軸方向の幅は、長さLy1または長さLy2である。長さLy1が長さLx1よりも長く、長さLy2が長さLx2よりも長いことで、導波路10のX軸方向の幅WをY軸方向の幅に近づけることができる。例えば、幅Wを拡大し易い。例えば、第1結晶領域11の第2方向に沿う長さ(長さLx1)と、第2結晶領域12の第2方向に沿う長さ(長さLx2)と、の和は、第1結晶領域11の第3方向に沿う長さ(長さLy1)の0.1倍以上2倍以下が好ましい。これにより、例えば、X軸方向での光の反射の回数を抑制できる。例えば、導波路10における損失を抑制できる。
以下、実施形態に係る導波素子110の作製方法の例について説明する。以下の例では、導波素子において、複数の導波路が形成される。
図2(a)〜図2(f)は、第1実施形態に係る導波素子の製造方法を例示する模式的断面図である。
図2(a)に示すように、第1層50となる基板50Fの上面に、マスク層71となる膜を形成し、その上に、レジスト層72となる膜を形成する。レジスト層72となる膜をストライプ状に加工する。これにより、レジスト層72が形成される。レジスト層72は、Z軸方向に延びるストライプ状である。レジスト層72をマスクとして用いて、マスク層71となる膜を加工する。これにより、マスク層71が形成される。マスク層71は、Z軸方向に延びるストライプ状である。マスク層71をマスクとして用いて、基板50Fを加工する。基板50Fの一部が除去されて、基板50Fに、凹部50q(例えば溝)及び凸部50pが形成される。これにより、第1層50が形成される。凹部50q(例えば溝)及び凸部50pは、Z軸方向に沿って延びる。以下、第1層50の形成(基板50Fの加工)の例について説明する。
基板50Fとして、例えば、c面のサファイア基板が用いられる。c面は、例えば、X−Z平面に対して実質的に平行である。例えば、サファイア基板のm軸方向は、Z軸方向に沿う。すなわち、凹部50q(例えば溝)及び凸部50pは、m軸方向に沿って延びる。
マスク層71として、酸化シリコンが用いられる。マスク層71の厚さは、例えば、約50nmである。
1つのレジスト層72のX軸方向に沿う長さは、例えば約1.0μmである。複数のレジスト層72の間のX軸方向に沿う間隔(開口部の幅)は、例えば約1.0μmである。ストライプの周期は、例えば約2.0μmである。
レジスト層72をマスクとして用いた、酸化シリコン膜(マスク層71となる膜)の一部の除去においては、例えば、バッファードフッ酸を用いたエッチングが行われる。除去の前に、Oアッシャ処理を行っても良い。これにより、親水性が向上し、エッチングの均一性が向上する。酸化シリコン膜の一部の除去により、マスク層71が得られる。この後、レジスト層72を除去する。
マスク層71をマスクとして用いた、基板50Fの一部の除去には、例えば、ドライエッチング処理が行われる。これにより、複数の凹部50q及び複数の凸部50pが形成される。複数の凹部50q及び複数の凸部50pは、Z軸方向に延びる。これにより、第1層50が得られる。第1層50は、第1側面51及び第2側面52を有する。これらの側面は、例えば、Z軸方向に延びる。これらの側面は、例えば、Z−Y平面に沿っている。これらの側面は、サファイアの面に対応する。
このように、図2(a)に関して説明した処理が行われる。マスク層71は、除去しても良い。または、マスク層71は、残しても良い。
図2(b)に示すように、第1層50の第1側面51及び第2側面52に、バッファ層を形成する。例えば、第1側面51の表面に第1バッファ層11bが形成される。第2側面52の表面に、第2バッファ層12bが形成される。これらのバッファ層は、例えば、GaNである。
図2(c)に示すように、これらのバッファ層の上に、結晶層を成長させる。例えば、第1バッファ層11bの表面に第1結晶層11cが形成される。第2バッファ層12bの表面上に、第2結晶層12cが形成される。これらの結晶層は、例えば、GaNである。これらの結晶層は、第1側面51(第1バッファ層11b)、及び、第2側面52(第2バッファ層12b)の上に、選択的に成長される。
第1層50(基板)の凹部50qの両方の側面(側壁)から、結晶層(第1結晶層11c及び第2結晶層12c)が成長される。第1結晶層11cにおいて、<0001>方向は、第1側面51から第2側面52に向かう。第2結晶層12cにおいて、<0001>方向は、第2側面52から第1側面51に向かう。このように、両方の側面から、c軸が向かい合った2つのGaN層が形成される。第1結晶層11cは、極性の第1向きCO1を有する。第2結晶層12cは、極性の第2向きCO2を有する。これらの向きは互いに逆である。
図2(d)に示すように、2つの結晶層の成長を続けると、2つ結晶層(GaN層)が互いに接する。2つの結晶層が合体する。これにより、凹部50q中において、c軸の方向が互いに逆の2つのGaN層が形成される。第1結晶層11cの少なくとも一部が、第1結晶領域11となる。第2結晶層12cの少なくとも一部が、第2結晶領域12となる。第1結晶領域11は、第1結晶層11cの少なくとも一部と、第1バッファ層11bの少なくとも一部と、を含んでも良い。第2結晶領域12は、第2結晶層12cの少なくとも一部と、第2バッファ層12bの少なくとも一部と、を含んでも良い。
図2(e)に示すように、第1層50(基板)、第1結晶領域11、及び、第2結晶領域12の上に、第2層60を形成する。第2層60は、例えば、AlNである。第2層60の厚さは、例えば200nmである。第2層60は、例えば、第1結晶領域11と重なる部分領域を有する。第2層60の厚さは、例えば、この部分領域のY軸方向に沿った長さに対応する。
第2層60は、例えば、スパッタ法により形成される。第2層60は、例えば、蒸着法、ALD法、または、CVD法などにより形成されても良い。
この例では、第2層60の形成の前に、マスク層71が除去されている。マスク層71は、残しても良い。
上記の図2(d)に関して説明した工程において、結晶層の成長をさらに続けても良い。この場合、図2(f)に示すように、1つの凹部50qから成長した第1結晶層11cと、別の1つの凹部50qから成長した第2結晶層12cと、が接触する。これにより、結晶層の複数の組みが形成される。複数の組みの1つは、結晶の極性の向きが互いに反転した2つの結晶層を含む。例えば、複数の第1結晶領域11の1つと、複数の第1結晶領域11の別の1つと、の間に、複数の第2結晶領域12の1つが位置する。複数の第2結晶領域12の1つと、複数の第2結晶領域12の別の1つと、の間に、複数の第1結晶領域11の1つが位置する。これらの結晶領域は、互いに接する。このような構造の形成の後に、第2層60が形成される。
図2(e)及び図2(f)に例示した例において、第2層60は、省略しても良い。
バッファ層(第1バッファ層11b及び第2バッファ層12b)、及び、結晶層(第1結晶層11c及び第2結晶層12c)は、エピタキシャル成長法により形成される。以下、エピタキシャル成長の例について、説明する。
図2(a)に例示した工程により、凹部50q、凸部50p及び側面を有する第1層50(基板)が得られる。この第1層50を、有機洗浄及び酸洗浄によって処理する。この後、第1層50をMOCVD装置の反応室内に導入する。
MOCVD装置において、水素雰囲気において、第1層50(基板)のサーマルクリーニングを行う。このときの温度は、約1100℃である。次に、トリメチルガリウム(TMGa)及びアンモニア(NH)を用い、バッファ層となるGaNを形成する。バッファ層の厚さ(X軸方向に沿う長さ)は、約30nmである。このときの成長温度(基板温度)は、約500℃である。
その後、窒素及び水素を含む雰囲気にて、TMGa及びアンモニアを用い、結晶層となるGaNを成長させる。このときの成長温度は、約1120℃であり、成長圧力は100hPaであり、V/III比は、300である。このGaNは、第1層50(基板)の凹部50qの側面(第1側面51及び第2側面52)から選択的に成長する。これらの側面は、サファイアの面に対応する。GaNは、凹部50qの底面上には実質的に成長しない。選択的な成長は、例えば、成長速度の差異に起因する。
成長した結晶層(GaN)において、GaNのc軸方向は、基板の主面(X−Z平面)に対して実質的に平行である。
結晶層となるGaNの成長の初期において、GaN層(結晶層)は、Z軸方向に沿って延びる。成長時間が長くなると、基板の凹部50qにおいて、対向する2つの結晶層が互いに接するようになる。このとき、GaN層の上面(X−Z平面に沿う面)は、(11−20)面となる。さらに結晶成長を続けると、図2(f)に例示した構造が形成される。
第2層60がMOCVD装置で形成されても良い。例えば、第2層60がAlNである場合には、例えば、トリメチルアルミニウム(TMAl)及びアンモニア(NH)を用いて第2層60を形成できる。このときの成長温度は、約1120℃であり、成長圧力は100hPaであり、V/III比は、100である。
例えば、第2層60が酸化アルミニウムである場合には、例えば、窒素雰囲気で、トリメチルガリウム(TMAl)及び酸素(O)を用いて第2層60を形成できる。このときの成長温度は約1100℃であり、成長圧力は100hPaである。
上記の結晶成長の後、温度を室温まで下げる。これにより、第1結晶領域11及び第2結晶領域12が形成される。
上記のように、1つの凹部50qの第1側面51及び第2側面52から、2つの結晶層をそれぞれ成長させることで、2つの結晶層の材料は、互いに実質的に同じになる。これにより、2つの結晶領域(第1結晶領域11及び第2結晶領域12)の特性は、結晶方位を除いて実質的に同じになる。これにより、導波路10(第1結晶領域11及び第2結晶領域12)において、高い均質性が得られる。
1つの凹部50qの第1側面51及び第2側面52から、2つの結晶層をそれぞれ成長させることで、2つの結晶層の厚さは、互いに実質的に同じになる。例えば、第1結晶領域11の第2方向(X軸方向)に沿う長さLx1は、第2結晶領域12の第2方向に沿う長さLx2の0.9倍以上1.1倍以下である。長さLx1は、長さLx2の0.95倍以上1.05倍でも良い。2つの結晶領域のこれらの長さ(厚さ)が、互いに実質的に同じことにより、例えば、基本波の電界成分(TE ω )と、第2高調波の電界成分(TE 2ω)と、の重なり積分を大きくでき、より高い効率が得られる。
上記のように、導波素子110において、例えば、凹部50qの2つの側面から、2つの結晶層が成長する。このため、成長の初期に形成された部分に比べて、成長の後期に形成された部分において、結晶品質が高くできる。例えば、転位密度を小さくできる。
例えば、第1結晶領域11は、第1部分11p及び第2部分11qを含む(図2(e)参照)。第1部分11pと第2結晶領域12との間に、第2部分11qが位置する。第2部分11qにおける転位密度は、第1部分11pにおける転位密度よりも低い。
例えば、第2結晶領域12は、第3部分12p及び第4部分12qを含む(図2(e)参照)。第3部分12pと第1結晶領域11との間に、第4部分12qが位置する。第4部分12qにおける転位密度は、第3部分12pにおける転位密度よりも低い。
第1結晶領域11及び第2結晶領域12において、互いに他と近い領域の転位密度が低いことで、この領域を通過する光に対しての損失を低くできる。より高い効率が得られる。
以下、実施形態に係る導波素子110の特性の例について説明する。以下の例においては、第1結晶領域11及び第2結晶領域12は、GaNである。第1結晶領域11の<0001>方向、及び、第2結晶領域12の<0001>方向は、X軸方向に対して平行である。第1結晶領域11の<0001>方向は、第1結晶領域11から第2結晶領域12に向かう。第2結晶領域12の<0001>方向は、第2結晶領域12から第1結晶領域11に向かう。第1層50は、c面サファイア基板である。第2層60は、AlNである。長さLx1は、長さLx2と同じである。以下、導波路10の幅W(図1参照)を変えたときの特性のシミュレーション結果について説明する。シミュレーションにおいて、長さLz1及び長さLz2のそれぞれは、1mmである。長さLy1及び長さLy2のそれぞれは、2μmである。このような導波路10において、第1端部E1及び第3端部E3に、第1光(入射光)が、入射し、導波路10中を伝搬する。入射光は、レーザ光(コヒーレント光)である。
導波路10における第2高調波の強度Iは、以下の式で表される。
Figure 0006824112
上記の式において、sin(Δkz/2)/(Δkz/2)の項は、伝搬方向の位相整合因子である。Δkは、波数ベクトル不整合である。上記の式において、d(y)は、非線形光学定数である。上記の式において、E2ω(y)は、第2高調波である。上記の式において、Eω(y)は、基本波である。
上記の式に基づいて、導波路10を伝搬する光の特性がシミュレーション計算により求められる。以下、光の特性のシミュレーション結果の例について説明する。
図3(a)及び図3(b)は、導波素子の特性を例示するグラフ図である。
これらの図において、入射光(第1光L1)の波長は、1064nmである。図3(a)は、導波素子110のモード分散曲線の例を示す。図3(a)の横軸は、導波路10の幅W(μm)である。縦軸は、実効屈折率neffである。図3(a)には、基本波のTEモードTE ω、第2高調波のTEモードTE 2ω、第2高調波のTEモードTE 2ω、第2高調波のTEモードTE 2ω、及び、第2高調波のTEモードTE 2ωのそれぞれ特性が示されている。
図3に示すように、導波路10の幅Wが大きくなると、基本波のTEモードTE ω、第2高調波のTEモードTE 2ω、第2高調波のTEモードTE 2ω、第2高調波のTEモードTE 2ω、及び、第2高調波のTEモードTE 2ωのそれぞれの実効屈折率neffは、上昇する。幅Wが約1μmの第1条件CN1のときに、基本波のTEモードTE ωの実効屈折率neffは、第2高調波のTEモードTE 2ωの実効屈折率neffと一致する。幅このような条件のときに、基本波のTEモードTE ωの速度が、第2高調波のTEモードTE 2ωの速度と一致する。例えば、基本波のTEモードTE ωが、第2高調波のTEモードTE 2ωに効率良く変換される。
幅Wが約2.7μmの第2条件CN2のときに、基本波のTEモードTE ωの実効屈折率neffは、第2高調波のTEモードTE 2ωの実効屈折率neffと一致する。このような条件のときに、基本波のTEモードTE ωの速度が、第2高調波のTEモードTE 2ωの速度と一致する。例えば、基本波のTEモードTE ωが、第2高調波のTEモードTE 2ωに効率良く変換される。
図3(b)は、第1条件CN1のときにおける電界強度EF(任意単位)を示す。図3(b)の横軸は、X軸方向の位置px(μm)である。縦軸は、電界強度EFである。図3(b)には、基本波のTEモードTE ωの電界強度EF、及び、第2高調波のTEモードTE 2ωの電界強度EFが示されている。図3(b)には、実施形態に係る導波素子110の特性と、参考例の導波素子119aの特性と、が例示されている。導波素子110においては、第1結晶領域11の<0001>方向は、+X方向であり、第2結晶領域12の<0001>方向は、−X方向である。一方、導波素子119aにおいては、第1結晶領域11の<0001>方向は、+Y方向であり、第2結晶領域12の<0001>方向は、−Y方向である。
図3(b)に示すように、導波素子110における基本波のTEモードTE ωの電界強度EFは、導波素子119aにおける基本波のTEモードTE ωの電界強度EFと同じである。導波素子110及び119aの両方において、基本波のTEモードTE ωの電界強度EFは偶関数の特性を有する。
一方、導波素子110における第2高調波のTEモードTE 2ωの電界強度EFは、導波素子119aにおける第2高調波のTEモードTE 2ωの電界強度EFとは異なる。導波素子110における第2高調波のTEモードTE 2ωの電界強度EFは、偶関数の特性を有する。導波素子119aにおける第2高調波のTEモードTE 2ωの電界強度EFは、奇関数の特性を有する。
導波素子110においては、基本波のTEモードTE ωの電界強度EFと、第2高調波のTEモードTE 2ωの電界強度EFと、が合成されたときに、合成された電界強度EFは、強くなる。これに対して、導波素子119aにおいては、基本波のTEモードTE ωの電界強度EFと、第2高調波のTEモードTE 2ωの電界強度EFと、が合成されたときに、合成された電界強度EFは、弱くなる。波長変換の効率が不十分である。
このように、実施形態に係る導波素子110においては、光の位相が整合し、重なり積分が増大できる。実施形態によれば、高効率で波長を変換できる。
上記の第2条件CN2のときにも、導波素子110においては、光の位相が整合し、重なり積分が増大できる。第2条件CN2のときには、導波素子110における第2高調波のTEモードTE 2ωの電界強度EFにおいて、同じ極性の3つのピークが生じる。これに対して、第2条件CN2のとき、導波素子119aにおける第2高調波のTEモードTE 2ωの電界強度EFは、正負が逆の3つのピークが生じる。第2条件CN2においても、実施形態に係る導波素子110においては、光の位相が整合し、重なり積分が増大できる。
上記の第1条件CN1及び第2条件CN2のときに、入射光(第1光L1)の1064nmの波長が、出射光(第2光L2)において、532nmの波長に変換される。
図4(a)及び図4(b)は、導波素子の特性を例示するグラフ図である。
この例では、第1結晶領域11及び第2結晶領域12は、AlNである。第1結晶領域11の<0001>方向、及び、第2結晶領域12の<0001>方向は、X軸方向に対して平行である。第1結晶領域11の<0001>方向は、第1結晶領域11から第2結晶領域12に向かう。第2結晶領域12の<0001>方向は、第2結晶領域12から第1結晶領域11に向かう。第1層50は、c面サファイア基板である。第2層60は、酸化アルミニウム(AlO)である。
図4(a)及び図4(b)において、入射光(第1光L1)の波長は、532nmである。図4(a)は、導波素子110のモード分散曲線の例を示す。図4(a)の横軸は、導波路10の幅W(μm)である。縦軸は、実効屈折率neffである。
幅Wが約0.18μmの第3条件CN3のときに、基本波のTEモードTE ωの実効屈折率neffは、第2高調波のTEモードTE 2ωの実効屈折率neffと一致する。このような条件のときに、基本波のTEモードTE ωの速度が、第2高調波のTEモードTE 2ωの速度と一致する。例えば、基本波のTEモードTE ωが、第2高調波のTEモードTE 2ωに効率良く変換される。
幅Wが約0.42μmの第4条件CN4のときに、基本波のTEモードTE ωの実効屈折率neffは、第2高調波のTEモードTE 2ωの実効屈折率neffと一致する。このような条件のときに、基本波のTEモードTE ωの速度が、第2高調波のTEモードTE 2ωの速度と一致する。例えば、基本波のTEモードTE ωが、第2高調波のTEモードTE 2ωに効率良く変換される。
図4(b)は、第3条件CN3のときにおける電界強度EF(任意単位)を示す。図3(b)の横軸は、X軸方向の位置px(μm)である。縦軸は、電界強度である。
図4(b)に示すように、導波素子110における基本波のTEモードTE ωの電界強度EFは、導波素子119aにおける基本波のTEモードTE ωの電界強度EFと同じである。導波素子110及び119aの両方において、基本波のTEモードTE ωの電界強度EFは偶関数の特性を有する。導波素子110における第2高調波のTEモードTE 2ωの電界強度EFは、偶関数の特性を有する。導波素子119aにおける第2高調波のTEモードTE 2ωの電界強度EFは、奇関数の特性を有する。
導波素子110においては、基本波のTEモードTE ωの電界強度EFと、第2高調波のTEモードTE 2ωの電界強度EFと、が合成されたときに、合成された電界強度EFは、強くなる。これに対して、導波素子119aにおいては、基本波のTEモードTE ωの電界強度EFと、第2高調波のTEモードTE 2ωの電界強度EFと、が合成されたときに、合成された電界強度EFは、弱くなる。
このように、実施形態に係る導波素子110においては、光の位相が整合し、重なり積分が増大できる。実施形態によれば、高効率で波長を変換できる。
上記の第4条件CN4のときにも、導波素子110においては、光の位相が整合し、重なり積分が増大できる。第4条件CN4のときには、導波素子110における第2高調波のTEモードTE 2ωの電界強度EFにおいて、同じ極性の3つのピークが生じる。これに対して、第4条件CN4のとき、導波素子119aにおける第2高調波のTEモードTE 2ωの電界強度EFは、異なる極性の3つのピークが生じる。第4条件CN4においても、実施形態に係る導波素子110においては、光の位相が整合し、重なり積分が増大できる。
上記の第3条件CN3及び第4条件CN4のときに、入射光(第1光L1)の532nmの波長が、出射光(第2光L2)において、266nmの波長に変換される。
図3(a)に示した例の第1条件CN1において、1064nmの波長が532nmの波長に変換される。逆に、第1条件CN1において、532nmの波長が1064mの波長に変換されても良い。これは、第1条件CN1においては、1064nmの波長に対する実効屈折率neffが、532nmの波長に対する実効屈折率neffと同じであるためである。第1条件CN1のときに、532nmの波長は266mの波長に変換されない。これは、第1条件CN1においては、532nmの波長に対する実効屈折率neffが、266nmの波長に対する実効屈折率neffと異なるためである。
一方、図4(a)に示した例の第3条件CN3において、532nmの波長が266nmの波長に変換される。逆に、第3条件CN3において、266nmの波長が532nmの波長に変換されても良い。これは、第3条件CN3においては、532nmの波長に対する実効屈折率neffが、266nmの波長に対する実効屈折率neffと同じであるためである。第3条件CN3のときに、532nmの波長は1064nmの波長に変換されない。これは、第3条件CN3においては、532nmの波長に対する実効屈折率neffが、1064nmの波長に対する実効屈折率neffと異なるためである。
図5(a)〜図5(c)は、参考例の導波素子を示す模式的斜視図である。
図5(a)に示すように、参考例の導波素子119aにおいては、導波路10Aとして、結晶領域11A及び12が設けられる。結晶領域11Aから結晶領域12Aに向かう方向が、X軸方向である。結晶領域11Aにおける結晶の極性の第1向きCO1(例えば<0001>方向)は、+Y方向である。結晶領域12Aにおける結晶の極性の第2向きCO2(例えば<0001>方向)は、−Y方向である。このような参考例においては、図3(b)及び図4(b)に関して説明したように、波長変換の効率が不十分である。さらに、参考例の導波素子119aの構造を作製することは容易ではない。
図5(b)に示すように、参考例の導波素子119bにおいても、結晶領域11Aから結晶領域12Aに向かう方向が、X軸方向である。結晶領域11Aにおける結晶の極性の第1向きCO1(例えば<0001>方向)は、+Y方向である。結晶領域12Aにおける結晶の極性の第2向きCO2(例えば<0001>方向)は、−Y方向である。導波素子119bにおいては、2つの結晶領域は、平坦な基板50Aの上にそれぞれ形成される。例えば、結晶性の基板50Aの一部をマスクした状態で、その結晶性を引き継ぐ結晶領域11Aが形成される。この後、このマスクを除去し、露出した基板50Aの別の一部に、極性を反転させる処理を行う。この後、この別の一部の上に、結晶領域12Aを形成する。このような方法により、導波素子119bが得られる。例えば、基板50Aとして、LiNbO基板などが用いられる。極性を反転させる処理として、例えば、Tiなどの拡散が行われる。導波素子119bにおいても、波長変換の効率が不十分である。さらに、2つの結晶領域が別に形成されるため、2つの結晶領域の特性を互いに同じにすることが実用的には困難である。さらに、2つの結晶領域の厚さは、実用的な結晶成長を考慮すると、薄い。このため、導波路10Aの幅(厚さ)が薄くなり、光の伝搬において損失が生じやすい。
図5(c)に示すように、参考例の導波素子119cにおいては、結晶領域11A及び結晶領域12Aが、Z軸方向に沿って交互に並ぶ。入射光(第1光L1)は、結晶領域11A及び結晶領域12Aを交互に通過する。このような構成も、LiNbO基板などが用いて、分極を反転させる処理(Tiなどの拡散)により形成できる。または、以下の方法が考えられる。例えば、Siの(100)面の基板の一部の上にAs膜を形成し、その上に、AlGaAs層を形成する。この後、その基板の別の一部の上に、Ga膜を形成し、その上に、AlGaAs層を形成する。これにより、結晶領域11A及び結晶領域12AがZ軸方向に沿って交互に並ぶ構造が形成できる。結晶領域11Aにおいては、極性の第1向きCO1は、+Y方向である。結晶領域12Aにおいては、極性の第2向きCO2は、−Y方向である。このような導波素子119cにおいても、2つの結晶領域が別に形成されるため、2つの結晶領域の特性を互いに同じにすることが実用的には困難である。さらに、2つの結晶領域の厚さは、実用的な結晶成長を考慮すると、薄い。このため、導波路10Aの幅(厚さ)が薄くなり、光の伝搬において損失が生じやすい。
参考例の導波素子119cの製造方法を応用して、+c軸のGaN(Ga極性)及び−c軸のGaN(N極性)を形成する場合を検討する。この方法においては、+c軸のGaN(Ga極性)の成長速度に比べて、−c軸のGaN(N極性)の成長速度が著しく低い(遅い)。このため、+c軸のGaNと、−c軸のGaNと、において、厚さ、または、周期の乱れが生じやすい。これらの乱れによって、位相不整合が増大し、波長変換効率が低下する。さらに、一般的に、+c軸のGaNと−c軸のGaNとにおいて、結晶成長中に取り込まれる不純物濃度が異なる。例えば、−c軸のGaNの方が、+c軸のGaNに比べて、不純物濃度(酸素または炭素の濃度)が2桁以上高い。これらの不純物は、光の吸収を生じさせる。このため、変換効率の低下が生じる。+c軸のGaNに比べて、−c軸のGaNは結晶性が低下し易い。例えば、−c軸のGaNにおける転位密度は、+c軸のGaNにおける転位密度の10倍以上である。転位による伝搬損失により変換効率が低下する。
これに対して、本願の手法においては、凹部50qの2つの側面から、2つの結晶層が成長する。この2つの結晶層は、+c軸のGaNである。これにより、2つの結晶層において、成長速度の差は生じない。これにより、周期及び厚さが実質的に等しい2つの結晶層が得られる。急峻な境界が形成できる。さらに、+c軸のGaNにより、2つの結晶層が形成されるため、不純物の取り込みが少ない。結晶性の良い導波路10が得られる。実施形態によれば、変換効率の高い導波素子が得られる。
不純物は、例えば、酸素、炭素及びシリコンからなる群から選択された第1元素を含む。実施形態において、例えば、第1結晶領域11における第1元素(不純物)の濃度(第1濃度)と、第2結晶領域12における第1元素の濃度(第2濃度)と、の差は小さい。第1濃度は、第2濃度の0.01倍超100倍未満である。2つの結晶領域中の不純物濃度の差は、例えば、2桁未満である。これらの2つの結晶領域における酸素の濃度のそれぞれは、例えば、1017/cm以下と低い。これらの2つの結晶領域における炭素の濃度のそれぞれは、例えば、1017/cm以下と低い。これらの2つの結晶領域におけるシリコンの濃度のそれぞれは、例えば、1017/cm以下と低い。
以下、参考例の導波素子119cと比較して、実施形態に係る導波素子110の特性の例について説明する。
図6(a)〜図6(g)は、実施形態に係る導波素子を例示する模式図である。
図6(a)は、導波素子110を例示する模式的斜視図である。図6(b)は、導波素子110の特性を例示するグラフ図である。図6(c)〜図6(g)は、導波素子110の特性を例示するグラフ図である。
図6(a)に示すように、導波素子110の導波路10において、第1結晶領域11及び第2結晶領域12が設けられる。第1結晶領域11において、結晶の極性の第1向きCO1(例えば<0001>方向)は、+X方向である。第2結晶領域12において、結晶の極性の第2向きCO2(例えば<0001>方向)は、−X方向である。導波路10に第1光L1が入射し、第2光L2が出射する。第1光L1は、基本波である。第2光L2は、例えば、SHG(second- harmonic generation:第2高調波発生)波である。光の伝搬方向は、Z軸方向に沿っている。
第1結晶領域11のX軸方向に沿う長さと、第2結晶領域12のX軸方向に沿う長さと、の和を規格化厚さWnとする。
図6(b)の横軸は、規格化厚さWnである。縦軸は、実効屈折率neffである。基本波の電界成分Eω、及び、SHG波の電界成分E2ωは、規格化厚さWnが増大すると、上昇する。規格化厚さWnが約0.18である条件CNnのときに、これらの電界成分に対する実効屈折率neffが、互いに同じになる。すなわち、速度が同じになる。
図6(c)に示すように、第1結晶領域11及び第2結晶領域12が、Z軸方向に沿って延びる。
図6(d)〜図6(g)の横軸は、Z軸方向の位置である。図6(d)の縦軸は、基本波の電界成分Eωである。図6(e)の縦軸は、二次非線形分極P2ωを示す。図6(e)には、成分P11及び成分P12が示されている。図6(f)及び図6(g)の縦軸は、SHG波の電界成分E2ωである。
図6(d)に示すように、速度cωの基本波が、導波路10(第1結晶領域11及び第2結晶領域12)に入射する。図6(e)に示すように、導波路10において、第1結晶領域11及び第2結晶領域12を設けることで、二次非線形分極P2ωの負の成分の極性が、反転される。これにより、成分P11及び成分P12の両者が正になる。既に説明したように、条件CNnのときにおいて、SHG波の速度c2ωは、基本波の速度cωと同じである。このため、図6(f)に示すように、SHG波の電界成分E2ωの位相は、基本波の電界成分Eωの位相と一致する。図6(f)及び図6(g)に示すように、例えば、全ての位相が一致し、増幅が行われる。
実施形態に係る導波素子110においては、結晶の極性が反転した2つの結晶領域を用いることで、波長が変換された光が増幅される。簡単な構成により、高効率の波長変換が得られる。
実施形態においては、位相が整合する。基本波(入射光)のTEモードの電界強度分布と、第2高調波のTEモードの電界強度分布と、の重なり積分が増大する。高効率の波長変換が可能となる。例えば、可視光を高い効率で紫外線に変換できる。
図7(a)〜図7(g)は、参考例の導波素子を例示する模式図である。
図7(a)は、参考例の導波素子119dを例示する模式的斜視図である。図7(b)は、導波素子119dの特性を例示するグラフ図である。図7(c)〜図7(g)は、導波素子119dの特性を例示するグラフ図である。
図7(a)に示すように、導波素子119dの導波路10Aにおいて、結晶領域11A及び結晶領域12Aが、Z軸方向に沿って交互に設けられる。結晶領域11Aにおいて、結晶の極性の第1向きCO1は、+Y方向である。結晶領域12Aにおいて、結晶の極性の第2向きCO2は、−Y方向である。導波路10Aに第1光L1(基本波)が入射し、第2光L2(SHG波)が出射する。光の伝搬方向は、Z軸方向に沿っている。結晶領域11A及び結晶領域12AのY軸方向に沿う長さを規格化厚さWnとする。
図7(b)に示すように、導波素子119dにおいては、基本波の電界成分Eωに対する実効屈折率neffは、及び、SHG波の電界成分E2ωに対する実効屈折率neffと一致しない。SHG波の速度は、基本波の速度と同じにならない。
図7(c)に示すように、結晶領域11A及び結晶領域12Aが、Z軸方向に沿って並ぶ。
図7(d)に示すように、速度cωの基本波が、導波路10(結晶領域11及び晶領域12)に入射する。図7(e)に示すように、結晶領域11における二次非線形分極P2ωの極性に対して、結晶領域12における二次非線形分極P2ωの極性が反転される。結晶領域12における位相が、結晶領域11における位相に対してシフトする。SHG波の速度c2ωは、基本波の速度cωと同じではない。このため、一部の成分の位相が一致したときにおいても、他の成分の位相は一致しない。このため、導波素子119dにおいては、波長変換の効率を十分に高くできない。
図8は、第1実施形態に係る別の導波素子を例示する模式的斜視図である。
図8に示すように、本実施形態に係る別の導波素子110aは、第1結晶領域11及び第2結晶領域12に加えて、第3結晶領域13及び第4結晶領域14をさらに含む。導波素子110aは、例えば、図2(f)に関して説明した方法により形成できる。
第3結晶領域13は、第1方向(Z軸方向)に延び、第3窒化物半導体を含む。第4結晶領域14は、第1方向に延び、第4窒化物半導体を含む。例えば、第4結晶領域14は、第3結晶領域13と連続する。例えば、第3結晶領域13は、第2結晶領域1と連続する。
第2方向(X軸方向)において、第1結晶領域11と第4結晶領域14との間に、第2結晶領域12が位置する。第2方向において、第2結晶領域12と第4結晶領域14との間に第3結晶領域13が位置する。
第3結晶領域13の極性の第3向きCO3、及び、第4結晶領域14の極性の第4向きCO4は、第2方向(X軸方向)に沿う。第3向きCO3は、第4向きCO4と逆である。第3向きCO3は、第1向きCO1と同じである。第4向きCO4は、第2向きCO2と同じである。
第3結晶領域13の<0001>方向は、第3結晶領域13から第4結晶領域14に向かう。第4結晶領域14の<0001>方向は、第4結晶領域14から第3結晶領域13に向かう。第3結晶領域13の<0001>方向は、第1結晶領域11から第2結晶領域12に向かう。第4結晶領域14の<0001>方向は、第2結晶領域12から第1結晶領域11に向かう。
第3結晶領域13は、第5端部E5及び第6端部E6を含む。第5端部E5から第6端部E6に向かう方向は、第1方向(Z軸方向)に沿う。第4結晶領域14は、第7端部E7及び第8端部E8を含む。第7端部E7から第8端部E8に向かう方向は、第1方向に沿う。この場合、第1光L1は、第1端部E1及び第3端部E3に加えて、第5端部E5及び第7端部E7に入射する。
このように、結晶の方位が互いに逆の組みを、複数設けても良い。さらに高い効率の波長変換が実施できる。
(第2実施形態)
本実施形態は、発光装置に係る。発光装置は、第1実施形態に係る導波素子(及びその変形)と、光源部と、を含む。以下の例では、導波素子110が用いられる。
図9は、第2実施形態に係る導波素子を例示する模式的斜視図である。
図9に示すように、本実施形態に係る発光装置310は、導波素子110と、光源部210と、を含む。光源部210は、第1波長の第1光L1を出射する。
既に説明したように、第1結晶領域11は、第1端部E1及び第2端部E2を含む。第1端部E1から第2端部E2に向かう方向は、第1方向(Z軸方向)に沿う。第2結晶領域12は、第3端部E3及び第4端部E4を含む。第3端部E3から第4端部E4に向かう方向は、第1方向に沿う。第1光L1は、第1端部E1及び第3端部E3に入射する。第2端部E2及び第4端部E4から出射する第2光L2の第2波長は、第1波長とは異なる。第1波長は、第2波長の実質的に2倍である。
例えば、第1波長は、400ナノメートル以上900ナノメートル以下である。例えば、第2波長は、200ナノメートル以上450ナノメートル以下である。
導波素子110及び光源部210は、例えば、基板50Aの上に設けられる。基板50Aの一部は、第1層50となっても良い。
光源部210は、例えば、半導体発光素子である。光源部210は、例えば、レーザである。光源部210は、例えば、InGaNレーザである。光源部210から出射する光(第1光L1)の波長は、例えば、520nmである。波長変換されて得られる第2光L2の第2波長は、例えば260nmである。
光源部210は、第1半導体層81、発光層83、第2半導体層82、絶縁膜91、第1電極92a及び第2電極92bを含む。この例では、バッファ層80が設けられている。基板50Aと第2電極92bとの間に、バッファ層80が設けられる。バッファ層80と第2電極92bとの間に第1半導体層81が設けられる。第1半導体層81と第2電極92bとの間に発光層83が設けられる。発光層83と第2電極92bとの間に第2半導体層82が設けられる。第1半導体層81は、コンタクト層81aとクラッド層81bとガイド層81cを含む。第2半導体層82は、コンタクト層82aとクラッド層82bとガイド層82cを含む。ガイド層82cの一部と、第2電極92bの一部と、の間にリッジ部84が設けられる。リッジ部84はコンタクト層82aとクラッド層82bを含む。
第1半導体層81は、例えば、第1導電形(例えばn形)の窒化物半導体(例えば、n形GaN)を含む。コンタクト層81aは、例えば、n形GaNを含む。クラッド層81bは、例えば、n形AlGaNを含む。ガイド層81cは、例えば、n形InGaNを含む。第2半導体層82は、例えば、第2導電形(例えばp形)の窒化物半導体(例えば、p形GaN)を含む。コンタクト層82aは、例えば、p形GaNを含む。クラッド層82bは、例えば、p形AlGaNを含む。ガイド層82cは、例えば、p形InGaNを含む。発光層83は、例えば、InGaNを含む。クラッド層81bの屈折率は、ガイド層81cの屈折率よりも低い。クラッド層82bの屈折率は、ガイド層82cの屈折率よりも低い。
実施形態においては、例えば、InGaNレーザの光源部210と、導波素子110と、が基板50Aの上にモノリシックに形成される。これにより、高い効率で超小型の発光装置が提供できる。
図9に例示した発光装置310において、導波素子110a(図8参照)と、光源部210と、が組み合わされても良い。この場合、第1光L1は、第1端部E1及び第3端部E3に加えて、第5端部E5及び第7端部E7に入射する。
図10(a)〜図10(f)は、第2実施形態に係る別の導波素子を例示する模式図である。
図10(a)に示すように、導波素子111において、複数の導波路10が設けられる。このような導波素子111に、光源部210からの第1光L1が入射する。この例では、複数の導波路10は、互いに離れている。
図10(b)に示すように、導波素子112においても、複数の導波路10が設けられる。このような導波素子112に、光源部210からの第1光L1が入射する。この例では、複数の導波路10のそれぞれは、他と接している。
図10(c)に示すように、導波素子113においても、導波路10、及び、別の導波路10Aが設けられる。これらの導波路の構成は、互いに異なる。そして、光源部210に加えて、別の光源部220が設けられる。これらの光源部から出射する光(第1光L1、及び、別の第1光L1A)は、互いに異なる。例えば、波長が互いに異なる。このような、複数の構成が、1つの基板50Aの上に設けられても良い。
図10(d)に示すように、導波素子114においては、導波路10、及び、別の導波路10Bが設けられる。別の導波路10Bは、導波路10と連続している。これらの導波路の1つを伝搬する光が、これらの導波路の他の1つを通過する。これらの導波路の構成は、互いに異なる。例えば、導波路10で波長変換された光が、別の導波路10Bでさらに波長変換される。例えば、第1光L1の第4高調波を生成できる。1つの光源部210から第1光L1が、導波路に入射する。
図10(e)に示すように、導波素子115においては、導波路10Cの幅(導波路10の延びる方向と交差する方向に沿った導波路10Cの長さ)が、延びる方向に沿って変化する。この例では、光源部210に近い領域における幅よりも、光源部210から遠い領域における幅は大きい。このような構成により、例えば、波長変換される光の波長の範囲が拡大できる。
図10(f)に示すように、導波素子116においては、導波路10Dは屈曲している。導波路10Dは折れ曲がっている。このような構成により、例えば、導波路長を長くでき、変換効率が増大できる。
このように、導波路、及び、光源部において、種々の変形が可能である。
(第3実施形態)
本実施形態は、導波素子の製造方法に係る。本製造方法は、例えば、図2(a)〜図2(f)に関して説明した処理の少なくとも一部を含む。
本製造方法は、結晶性の第1層50を用意する工程を含む(図2(a)参照)。第1層50は、第1方向(例えばZ軸方向)に延びる凹部50qを有する。凹部50qは、第1側面51及び第2側面52を有する。第1側面51及び第2側面52は、第1方向と交差する第2方向(例えばX軸方向)において互いに対向する。
本製造方法は、第1側面51から窒化物半導体を含む第1結晶層11cを成長させ、第2側面52から窒化物半導体を含む第2結晶層12cを成長させる工程を含む(図2(c)参照)。
本製造方法は、第1結晶層11cと第2結晶層12cとを互いに接触させ、第1結晶層11cを含む第1結晶領域11、及び、第2結晶層12cを含む第2結晶領域12を形成することを含む(図2(d)参照)。
このような製造方法により、効率の向上が可能な導波素子を製造できる。
(第4実施形態)
上記の第1実施形態においては、第1結晶領域11及び第2結晶領域12は、窒化物半導体を含む。第4実施形態においては、第1結晶領域11及び第2結晶領域12は、窒化物半導体以外の材料を含んでも良い。これ以外は、第1実施形態と同様である。
第4実施形態に係る導波素子(例えば、図1(a)〜図1(c)に例示した導波素子110など)は、第1結晶領域11及び第2結晶領域12を含む。第1結晶領域11は、第1方向に延びる。第2結晶領域12は、第1方向に延び、第1結晶領域11と連続する。第1結晶領域11から第2結晶領域12に向かう第2方向は、第1方向と交差する。第1結晶領域11の極性の第1向きCO1、及び、第2結晶領域12の極性の第2向きCO2は、第2方向に沿う。第1向きCO1は、第2向きCO2と、逆である。
第4実施形態においても導波素子(例えば、図8に例示した導波素子110a)は、第3結晶領域13及び第4結晶領域14をさらに含んでも良い。第3結晶領域13は、第1方向に延びる。第4結晶領域14は、第1方向に延び第3結晶領域13と連続する。第2方向において、第1結晶領域11と第4結晶領域14との間に第2結晶領域12が位置する。第2方向において、第2結晶領域12と第4結晶領域14との間に第3結晶領域が位置する。第3結晶領域13の極性の第3向きCO3、及び、第4結晶領域14の極性の第4向きCO4は、第2方向に沿う。第3向きCO3は、第1向きCO1と同じである。第4向きCO4は、第2向きと同じである。
例えば、第3結晶領域13は、第2結晶領域12と連続しても良い。
上記の第1結晶領域11〜第4結晶領域14は、例えば、SiC、ZnO、ZnSe、GaP、GaAsP、AlGaInP、AlGaAs及びGaAsから選択された少なくとも1つを含む。
第4実施形態に係る導波素子においても、効率の向上が可能な導波素子及び発光装置が提供できる。
例えば、レーザの波長域を、深紫外または中赤外領域などに拡げる方法として、非線形光学効果を利用した波長変換技術がある。波長変換法として、例えば、強誘電体材料の複屈折を利用した位相整合法が利用される。非線形光学定数の空間変調構造により、位相の不整合を補償する技術として、疑似位相整合法がある。化合物半導体は、大きな2次非線形定数を有する。化合物半導体は、波長変換材料として用いることができる。化合物半導体による疑似位相整合において、例えば、周期的に分極を変調する方法がある。しかしながら、例えば、分極を結晶方位により変調させる場合には、結晶方位によって最適な結晶成長条件が異なるため、各分極領域の大きさや結晶の品質に差が生じやすく、波長変換効率が低下しやすい。
実施形態においては、良好な光学特性を有する2つの結晶領域を安定して製造することができる。
2次の非線形光学効果は、Pω3(2)=ε0χ(2)(ω3:ω1,ω2)Eω1Eω2で表される。ここで、P(2)は、二次の非線形分極である。ε0は、真空の誘電率である。χ(2)は、2次の非線形感受率である。Eは、光電場である。角振動数ω1及びω2の入射光と、非線形媒質と、の相互作用によって非線形分極が生じる。入射光とは異なる角振動数ω3(ω3=ω1±ω2)の光が得られる。すなわち、波長が変換される。
実施形態に係る導波素子においては、例えば、2次非線形光学効果を用いた波長変換に利用できる。2次非線形光学効果を用いた波長変換は、例えば、第2高調発波発生(SHG)、和周波発生(SFG:sum-frequency generation)、差周波発生(DFG:difference-frequency generation)、及び、光パラメトリック発生・発振(OPO:optical parametric oscillation)の少なくともいずれかを含む。
実施形態は、以下の構成を含んでも良い。
(構成1)
第1方向に延び、第1窒化物半導体を含む第1結晶領域と、
前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続した第2結晶領域と、
を備え、
前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かう、導波素子。
(構成2)
前記第1方向は、前記第1結晶領域のm軸方向に沿い、前記第2結晶領域のm軸方向に沿う、構成1記載の導波素子。
(構成3)
前記第1結晶領域は、第1部分と、第2部分と、を含み、
前記第1部分と前記第2結晶領域との間に前記第2部分が位置し、
前記第2部分における転位密度は、前記第1部分における転位密度よりも低く、
前記第2結晶領域は、第3部分と、第4部分と、を含み、
前記第3部分と前記第1結晶領域との間に前記第4部分が位置し、
前記第4部分における転位密度は、前記第3部分における転位密度よりも低い、構成1または2に記載の導波素子。
(構成4)
前記第1結晶領域に含まれる第1元素の第1濃度は、前記第2結晶領域に含まれる前記第1元素の第2濃度の0.01倍超100倍未満であり、
前記第1元素は、酸素、炭素及びシリコンからなる群から選択された1つである、構成1〜3のいずれか1つに記載の導波素子。
(構成5)
前記第1結晶領域の前記第2方向に沿う長さは、前記第2結晶領域の前記第2方向に沿う長さの0.9倍以上1.1倍以下である、構成1〜4のいずれか1つに記載の導波素子。
(構成6)
前記第1結晶領域の前記第2方向に沿う長さと、前記第2結晶領域の前記第2方向に沿う長さと、の和は、前記第1方向及び前記第2方向を含む平面と交差する第3方向に沿う前記第1結晶領域の長さの0.1倍以上2倍以下である、構成1〜4のいずれか1つに記載の導波素子。
(構成7)
前記第1結晶領域の前記第1方向に沿う長さは、前記第1結晶領域の前記第2方向に沿う長さよりも長く、
前記第2結晶領域の前記第1方向に沿う長さは、前記第2結晶領域の前記第2方向に沿う長さよりも長い、構成1〜4のいずれか1つに記載の導波素子。
(構成8)
前記第1結晶領域の前記第1方向に沿う前記長さは、前記第1結晶領域の第3方向に沿う長さよりも長く、
前記第2結晶領域の前記第1方向に沿う前記長さは、前記第2結晶領域の前記第3方向に沿う長さよりも長く、
前記第3方向は、前記第1方向及び前記第2方向を含む平面と交差した、構成7記載の導波素子。
(構成9)
第1部分領域、第2部分領域、第3部分領域及び第4部分領域を含む第1層をさらに備え、
前記第2方向において、前記第1部分領域と、前記第2部分領域と、の間に前記第1結晶領域の少なくとも一部が位置し、
前記第2方向において、前記第1結晶領域の前記少なくとも一部と、前記第2部分領域と、の間に、前記第2結晶領域の少なくとも一部が位置し、
前記第3部分領域から前記第1結晶領域に向かう方向は、前記第1方向及び前記第2方向を含む平面と交差する第3方向に沿い、
前記第4部分領域から前記第2結晶領域に向かう方向は、前記第3方向に沿う、構成1〜7のいずれか1つに記載の導波素子。
(構成10)
前記第1層は、酸化アルミニウム、シリコン、窒化アルミニウム及び炭化ケイ素からなる群から選択された少なくとも1つを含む、構成9記載の導波素子。
(構成11)
前記第1層の屈折率は、前記第1結晶領域の屈折率よりも低く、前記第2結晶領域の屈折率よりも低い、構成9記載の導波素子。
(構成12)
第5部分領域、第6部分領域、第7部分領域及び第8部分領域を含む第2層をさらに備え、
前記第2層の屈折率は、前記第1結晶領域の屈折率よりも低く、前記第2結晶領域の屈折率よりも低く、
前記第2方向において、前記第5部分領域と、前記第6部分領域と、の間に前記第1結晶領域の別の一部が位置し、
前記第2方向において、前記第1結晶領域の前記別の一部と、前記第6部分領域と、の間に、前記第2結晶領域の別の一部が位置し、
前記第1結晶領域から前記第7部分領域に向かう方向は、前記第3方向に沿い、
前記第2結晶領域から前記第8部分領域に向かう方向は、前記第3方向に沿う、構成9〜11のいずれか1つに記載の導波素子。
(構成13)
前記第1結晶領域及び前記第2結晶領域は、Alx1Ga1−x1N(0≦x1<1)を含み、
前記第2層は、Alx2Ga1−x2N(0<x2≦1、x1<x2)を含む、構成12記載の導波素子。
(構成14)
前記第2層は、酸化シリコン、酸化亜鉛、窒化シリコン、酸窒化シリコン及び酸化アルミニウムからなる群から選択された少なくとも1つを含む、構成12記載の導波素子。
(構成15)
前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
をさらに備え、
前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
前記第3結晶領域の<0001>方向は、前記第3結晶領域から前記第4結晶領域に向かい、
前記第4結晶領域の<0001>方向は、前記第4結晶領域から前記第3結晶領域に向かう、構成1〜14のいずれか1つに記載の導波素子。
(構成16)
前記第3結晶領域は前記第2結晶領域と連続した、構成15記載の導波素子。
(構成17)
前記第1結晶領域及び前記第2結晶領域は、Alx1Ga1−x1N(0≦x1≦1)を含む、請求項1〜16のいずれか1つに記載の導波素子。
(構成18)
構成1〜14のいずれか1つに記載の導波素子と、
第1波長の第1光を出射する光源部と、
を備え、
前記第1結晶領域は、第1端部と第2端部とを含み、前記第1端部から前記第2端部に向かう方向は前記第1方向に沿い、
前記第2結晶領域は、第3端部と第4端部とを含み、前記第3端部から前記第4端部に向かう方向は前記第1方向に沿い、
前記第1光は、前記第1端部及び前記第3端部に入射し、
前記第2端部及び前記第4端部から出射する第2光の第2波長は、前記第1波長とは異なる、発光装置。
(構成19)
前記第1波長は、前記第2波長の実質的に2倍である、構成18記載の発光装置。
(構成20)
前記第1波長は、400ナノメートル以上900ナノメートル以下であり、
前記第2波長は、200ナノメートル以上450ナノメートル以下である、構成18または19に記載の発光装置。
(構成21)
前記導波素子は、
前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
をさらに含み、
前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
前記第3結晶領域の<0001>方向は、前記第3結晶領域から前記第4結晶領域に向かい、
前記第4結晶領域の<0001>方向は、前記第4結晶領域から前記第3結晶領域に向かい、
前記第3結晶領域は、第5端部と第6端部とを含み、前記第5端部から前記第6端部に向かう方向は前記第1方向に沿い、
前記第4結晶領域は、第7端部と第8端部とを含み、前記第7端部から前記第8端部に向かう方向は前記第1方向に沿い、
前記第1光は、前記第5端部及び前記第7端部に入射する、構成18〜20のいずれか1つに記載の発光装置。
(構成22)
前記第3結晶領域は前記第2結晶領域と連続した、構成21記載の発光装置。
(構成23)
第1方向に延びる第1結晶領域と、
前記第1方向に延び前記第1結晶領域と連続した第2結晶領域と、
を備え、
前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
前記第1結晶領域の極性の第1向き、及び、前記第2結晶領域の極性の第2向きは、前記第2方向に沿い、
前記第1向きは、前記第2向きと、逆である、導波素子。
(構成24)
前記第1方向に延びる第3結晶領域と、
前記第1方向に延び前記第3結晶領域と連続した第4結晶領域と、
をさらに備え、
前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
前記第3結晶領域の極性の第3向き、及び、前記第4結晶領域の極性の第4向きは、前記第2方向に沿い、
前記第3向きは、前記第1向きと同じであり、
前記第4向きは、前記第2向きと同じである、構成23記載の導波素子。
(構成25)
前記第3結晶領域は前記第2結晶領域と連続した、構成24記載の導波素子。
(構成26)
第1方向に延びる凹部を有する結晶性の第1層であって、前記凹部は、前記第1方向と交差する第2方向において互いに対向する第1側面及び第2側面を有した、前記第1層を用意し、
前記第1側面から窒化物半導体を含む第1結晶層を成長させ、前記第2側面から窒化物半導体を含む第2結晶層を成長させ、
前記第1結晶層と前記第2結晶層とを互いに接触させ、前記第1結晶層を含む第1結晶領域、及び、前記第2結晶層を含む第2結晶領域を形成する、導波素子の製造方法。
実施形態によれば、効率の向上が可能な導波素子、発光装置及び導波素子の製造方法が提供できる。
なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電形などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、導波素子に含まれる結晶領域、第1層及び第2層などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した導波素子及び発光装置を基にして、当業者が適宜設計変更して実施し得る全ての導波素子及び発光装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10、10A、10B、10C、10D…導波路、 11…第1結晶領域、 11A…結晶領域、 11b…第1バッファ層、 11c…第1結晶層、 11p…第1部分、 11q…第2部分、 12…第2結晶領域、 12A…結晶領域、 12b…第2バッファ層、 12c…第2結晶層、 12p…第3部分、 12q…第4部分、 13…第3結晶領域、 14…第4結晶領域、 50…第1層、 50A…基板、 50F…基板、 50a〜50d…第1〜第4部分領域、 50p…凸部、 50q…凹部、 51…第1側面、 52…第2側面、 60…第2層、 60e〜60h…第5〜第8部分領域、 71…マスク層、 72…レジスト層、 80…バッファ層、 81…第1半導体層、 81a…コンタクト層、 81b…クラッド層、 81c…ガイド層、 82…第2半導体層、 82a…ガイド層、 82b…クラッド層、 82c…ガイド層、 83…発光層、 84…リッジ部、 91…絶縁膜、 92a、92b…第1、第2電極、 110、110a、111〜116、119a〜119d…導波素子、 210、220…光源部、 310…発光装置、 CN1〜CN4…第1〜第4条件、 CNn…条件、 CO1〜CO4…第1〜第4向き、 E1〜E8…第1〜第8端部、 EF…電界強度、 L1、L2…第1、第2光、 L1A…別の第1光、 Lx1、Lx2、Ly1、Ly2、Lz1、Lz2…長さ、 P11、P12…成分、 R1…伝搬方向、 W…幅、 Wn…規格化厚さ、 neff…実効屈折率、 px…位置

Claims (18)

  1. 第1方向に延び、第1窒化物半導体を含む第1結晶領域と、
    前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続した第2結晶領域と、
    第1部分領域、第2部分領域、第3部分領域及び第4部分領域を含む第1層と、
    前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
    前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
    を備え、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
    前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かい、
    前記第2方向において、前記第1部分領域と、前記第2部分領域と、の間に前記第1結晶領域の少なくとも一部が位置し、
    前記第2方向において、前記第1結晶領域の前記少なくとも一部と、前記第2部分領域と、の間に、前記第2結晶領域の少なくとも一部が位置し、
    前記第3部分領域から前記第1結晶領域に向かう方向は、前記第1方向及び前記第2方向を含む平面と交差する第3方向に沿い、
    前記第4部分領域から前記第2結晶領域に向かう方向は、前記第3方向に沿
    前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
    前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
    前記第3結晶領域の<0001>方向は、前記第3結晶領域から前記第4結晶領域に向かい、
    前記第4結晶領域の<0001>方向は、前記第4結晶領域から前記第3結晶領域に向かう、導波素子。
  2. 前記第3結晶領域は前記第2結晶領域と連続した、請求項記載の導波素子。
  3. 第5部分領域、第6部分領域、第7部分領域及び第8部分領域を含む第2層をさらに備え、
    前記第2層の屈折率は、前記第1結晶領域の屈折率よりも低く、前記第2結晶領域の屈折率よりも低く、
    前記第2方向において、前記第5部分領域と、前記第6部分領域と、の間に前記第1結晶領域の別の一部が位置し、
    前記第2方向において、前記第1結晶領域の前記別の一部と、前記第6部分領域と、の間に、前記第2結晶領域の別の一部が位置し、
    前記第1結晶領域から前記第7部分領域に向かう方向は、前記第3方向に沿い、
    前記第2結晶領域から前記第8部分領域に向かう方向は、前記第3方向に沿う、請求項1または2に記載の導波素子。
  4. 第1方向に延び、第1窒化物半導体を含む第1結晶領域と、
    前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続した第2結晶領域と、
    前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
    前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
    を備え、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
    前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かい、
    前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
    前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
    前記第3結晶領域の<0001>方向は、前記第3結晶領域から前記第4結晶領域に向かい、
    前記第4結晶領域の<0001>方向は、前記第4結晶領域から前記第3結晶領域に向かう、導波素子。
  5. 前記第3結晶領域は前記第2結晶領域と連続した、請求項記載の導波素子。
  6. 前記第1結晶領域は、第1部分と、第2部分と、を含み、
    前記第1部分と前記第2結晶領域との間に前記第2部分が位置し、
    前記第2部分における転位密度は、前記第1部分における転位密度よりも低く、
    前記第2結晶領域は、第3部分と、第4部分と、を含み、
    前記第3部分と前記第1結晶領域との間に前記第4部分が位置し、
    前記第4部分における転位密度は、前記第3部分における転位密度よりも低い、請求項1〜のいずれか1つに記載の導波素子。
  7. 前記第1結晶領域に含まれる第1元素の第1濃度は、前記第2結晶領域に含まれる前記第1元素の第2濃度の0.01倍超100倍未満であり、
    前記第1元素は、酸素、炭素及びシリコンからなる群から選択された1つである、請求項1〜のいずれか1つに記載の導波素子。
  8. 前記第1結晶領域の前記第2方向に沿う長さは、前記第2結晶領域の前記第2方向に沿う長さの0.9倍以上1.1倍以下である、請求項1〜のいずれか1つに記載の導波素子。
  9. 前記第1結晶領域及び前記第2結晶領域は、Alx1Ga1−x1N(0≦x1≦1)を含む、請求項1〜のいずれか1つに記載の導波素子。
  10. 請求項1〜のいずれか1つに記載の導波素子と、
    第1波長の第1光を出射する光源部と、
    を備え、
    前記第1結晶領域は、第1端部と第2端部とを含み、前記第1端部から前記第2端部に向かう方向は前記第1方向に沿い、
    前記第2結晶領域は、第3端部と第4端部とを含み、前記第3端部から前記第4端部に向かう方向は前記第1方向に沿い、
    前記第1光は、前記第1端部及び前記第3端部に入射し、
    前記第2端部及び前記第4端部から出射する第2光の第2波長は、前記第1波長とは異なる、発光装置。
  11. 記第3結晶領域は、第5端部と第6端部とを含み、前記第5端部から前記第6端部に向かう方向は前記第1方向に沿い、
    前記第4結晶領域は、第7端部と第8端部とを含み、前記第7端部から前記第8端部に向かう方向は前記第1方向に沿い、
    前記第1光は、前記第5端部及び前記第7端部に入射する、請求項1記載の発光装置。
  12. 導波素子と、
    第1波長の第1光を出射する光源部と、
    を備え、
    前記導波素子は、
    第1方向に延び、第1窒化物半導体を含む第1結晶領域と、
    前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続した第2結晶領域と、
    前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
    前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
    を備え、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
    前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かい、
    前記第1結晶領域は、第1端部と第2端部とを含み、前記第1端部から前記第2端部に向かう方向は前記第1方向に沿い、
    前記第2結晶領域は、第3端部と第4端部とを含み、前記第3端部から前記第4端部に向かう方向は前記第1方向に沿い、
    前記第1光は、前記第1端部及び前記第3端部に入射し、
    前記第2端部及び前記第4端部から出射する第2光の第2波長は、前記第1波長とは異なり、
    前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
    前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
    前記第3結晶領域の<0001>方向は、前記第3結晶領域から前記第4結晶領域に向かい、
    前記第4結晶領域の<0001>方向は、前記第4結晶領域から前記第3結晶領域に向かい、
    前記第3結晶領域は、第5端部と第6端部とを含み、前記第5端部から前記第6端部に向かう方向は前記第1方向に沿い、
    前記第4結晶領域は、第7端部と第8端部とを含み、前記第7端部から前記第8端部に向かう方向は前記第1方向に沿い、
    前記第1光は、前記第5端部及び前記第7端部に入射する、発光装置。
  13. 第1方向に延びる第1結晶領域と、
    前記第1方向に延び前記第1結晶領域と連続した第2結晶領域と、
    前記第1方向に延び、第3窒化物半導体を含む第3結晶領域と、
    前記第1方向に延び、第4窒化物半導体を含み前記第3結晶領域と連続した第4結晶領域と、
    を備え、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の極性の第1向き、及び、前記第2結晶領域の極性の第2向きは、前記第2方向に沿い、
    前記第1向きは、前記第2向きと、逆であり、
    前記第2方向において、前記第1結晶領域と前記第4結晶領域との間に前記第2結晶領域が位置し、
    前記第2方向において、前記第2結晶領域と前記第4結晶領域との間に前記第3結晶領域が位置し、
    前記第3結晶領域の極性の第3向き、及び、前記第4結晶領域の極性の第4向きは、前記第2方向に沿い、
    前記第3向きは、前記第1向きと同じであり
    前記第4向きは、前記第2向きと同じである、導波素子。
  14. 第1方向に延びる凹部を有する結晶性の第1層であって、前記凹部は、前記第1方向と交差する第2方向において互いに対向する第1側面及び第2側面を有した、前記第1層を用意し、
    前記第1側面から窒化物半導体を含む第1結晶層を成長させ、前記第2側面から窒化物半導体を含む第2結晶層を成長させ、
    前記第1結晶層と前記第2結晶層とを互いに接触させ、前記第1結晶層を含む第1結晶領域、及び、前記第2結晶層を含む第2結晶領域を形成し、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
    前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かう、導波素子の製造方法。
  15. 第1方向に延びる凹部を有する結晶性の第1層であって、前記凹部は、前記第1方向と交差する第2方向において互いに対向する第1側面及び第2側面を有した、前記第1層を用意し、
    前記第1側面から窒化物半導体を含む第1結晶層を成長させ、前記第2側面から窒化物半導体を含む第2結晶層を成長させ、
    前記第1結晶層と前記第2結晶層とを互いに接触させ、前記第1結晶層を含む第1結晶領域、及び、前記第2結晶層を含む第2結晶領域を形成し、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の極性の第1向き、及び、前記第2結晶領域の極性の第2向きは、前記第2方向に沿い、
    前記第1向きは、前記第2向きと、逆である、導波素子の製造方法。
  16. 第1方向に延びる凹部を有する結晶性の第1層であって、前記凹部は、前記第1方向と交差する第2方向において互いに対向する第1側面及び第2側面を有した、前記第1層を用意し、
    前記第1側面から窒化物半導体を含む第1結晶層を前記第1結晶層の<0001>方向に成長させ、前記第2側面から窒化物半導体を含む第2結晶層を前記第2結晶層の<0001>方向に成長させ、
    前記第1結晶層と前記第2結晶層とを互いに接触させ、前記第1結晶層を含む第1結晶領域、及び、前記第2結晶層を含む第2結晶領域を形成し、
    前記第1結晶層の前記<0001>方向は、前記第1側面から前記第2側面に向かい、
    前記第2結晶層の前記<0001>方向は、前記第2側面から前記第1側面に向かう、導波素子の製造方法。
  17. 第1方向に延び、第1窒化物半導体を含む第1結晶領域と、
    前記第1方向に延び、第2窒化物半導体を含み前記第1結晶領域と連続した第2結晶領域と、
    第1部分領域、第2部分領域、第3部分領域及び第4部分領域を含む第1層と、
    を備え、
    前記第1結晶領域から前記第2結晶領域に向かう第2方向は、前記第1方向と交差し、
    前記第1結晶領域の<0001>方向は、前記第1結晶領域から前記第2結晶領域に向かい、
    前記第2結晶領域の<0001>方向は、前記第2結晶領域から前記第1結晶領域に向かい、
    前記第2方向において、前記第1部分領域と、前記第2部分領域と、の間に前記第1結晶領域の一部が位置し、
    前記第2方向において、前記第1結晶領域の前記一部と、前記第2部分領域と、の間に、前記第2結晶領域の一部が位置し、
    前記第3部分領域から前記第1結晶領域に向かう方向は、前記第1方向及び前記第2方向を含む平面と交差する第3方向に沿い、
    前記第4部分領域から前記第2結晶領域に向かう方向は、前記第3方向に沿
    前記第1層は、前記第2方向において前記第1結晶領域の別の一部と重ならず、前記第2方向において前記第2結晶領域の別の一部と重ならない、導波素子。
  18. 第5部分領域、第6部分領域、第7部分領域及び第8部分領域を含む第2層をさらに備え、
    前記第2層の屈折率は、前記第1結晶領域の屈折率よりも低く、前記第2結晶領域の屈折率よりも低く、
    前記第2方向において、前記第5部分領域と、前記第6部分領域と、の間に前記第1結晶領域の前記別の一部が位置し、
    前記第2方向において、前記第1結晶領域の前記別の一部と、前記第6部分領域と、の間に、前記第2結晶領域の前記別の一部が位置し、
    前記第1結晶領域から前記第7部分領域に向かう方向は、前記第3方向に沿い、
    前記第2結晶領域から前記第8部分領域に向かう方向は、前記第3方向に沿う、請求項17記載の導波素子。
JP2017096573A 2017-05-15 2017-05-15 導波素子、発光装置及び導波素子の製造方法 Active JP6824112B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017096573A JP6824112B2 (ja) 2017-05-15 2017-05-15 導波素子、発光装置及び導波素子の製造方法
US15/902,379 US10551645B2 (en) 2017-05-15 2018-02-22 Waveguide element, light-emitting device, and method for manufacturing waveguide element
CN201810160351.7A CN108873162A (zh) 2017-05-15 2018-02-27 波导元件、发光装置以及波导元件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017096573A JP6824112B2 (ja) 2017-05-15 2017-05-15 導波素子、発光装置及び導波素子の製造方法

Publications (2)

Publication Number Publication Date
JP2018194617A JP2018194617A (ja) 2018-12-06
JP6824112B2 true JP6824112B2 (ja) 2021-02-03

Family

ID=64097218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017096573A Active JP6824112B2 (ja) 2017-05-15 2017-05-15 導波素子、発光装置及び導波素子の製造方法

Country Status (3)

Country Link
US (1) US10551645B2 (ja)
JP (1) JP6824112B2 (ja)
CN (1) CN108873162A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269190B2 (ja) 2020-02-27 2023-05-08 株式会社東芝 窒化物結晶、光学装置、半導体装置、窒化物結晶の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896931A (en) * 1988-08-18 1990-01-30 North American Philips Corp. Frequency doubling device
JPH0481725A (ja) 1990-07-24 1992-03-16 Matsushita Electric Ind Co Ltd 波長変換装置
JPH0682863A (ja) 1992-09-01 1994-03-25 Fujitsu Ltd 光半導体素子及びその製造方法
US5972730A (en) * 1996-09-26 1999-10-26 Kabushiki Kaisha Toshiba Nitride based compound semiconductor light emitting device and method for producing the same
US6064512A (en) * 1997-06-05 2000-05-16 The Board Of Trustees Of The Leland Stanford Junior University Patterned poled structure devices having increased aperture size, increased power handling and three dimensional patterning capabilities
JP2003077847A (ja) * 2001-09-06 2003-03-14 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
EP1714317B1 (en) * 2004-01-12 2008-05-28 Eidgenössische Technische Hochschule Zürich Optical devices comprising thin ferroelectric films
JP2006229171A (ja) * 2005-02-21 2006-08-31 Toshiba Corp 窒化物半導体レーザ装置及びその製造方法
US20090072243A1 (en) 2005-04-18 2009-03-19 Kyoto University Compound semiconductor device and method for fabricating compound semiconductor
JP5285835B2 (ja) * 2005-07-13 2013-09-11 株式会社東芝 半導体素子およびその製造方法
JP5158319B2 (ja) * 2007-03-26 2013-03-06 株式会社リコー 波長変換素子、レーザ装置、画像形成装置及び表示装置
JP4920497B2 (ja) * 2007-05-29 2012-04-18 株式会社東芝 光半導体装置
JP4948292B2 (ja) * 2007-06-29 2012-06-06 キヤノン株式会社 情報処理装置、情報管理方法、及びプログラム
JP5177084B2 (ja) * 2008-08-06 2013-04-03 住友電気工業株式会社 波長変換素子および波長変換素子の製造方法
US8507304B2 (en) * 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
EP2733752B1 (en) * 2011-07-12 2016-10-05 Marubun Corporation Light emitting element and method for manufacturing the same
KR101392366B1 (ko) * 2012-08-14 2014-05-07 한국광기술원 질화물 발광 다이오드 제조방법
JP5731455B2 (ja) * 2012-09-07 2015-06-10 日本電信電話株式会社 光変調器およびその製造方法
WO2014054284A1 (ja) * 2012-10-05 2014-04-10 パナソニック株式会社 窒化物半導体構造、積層構造、および窒化物半導体発光素子

Also Published As

Publication number Publication date
CN108873162A (zh) 2018-11-23
US10551645B2 (en) 2020-02-04
JP2018194617A (ja) 2018-12-06
US20180329236A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US8693515B2 (en) Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
KR101591523B1 (ko) 파장 변환 소자의 제조 방법 및 파장 변환 소자
JP4793489B2 (ja) Iii族窒化物半導体レーザ素子を作製する方法
WO2011077856A1 (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US20110158276A1 (en) Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
EP3193378A1 (en) Nitride semiconductor device and quantum cascade laser using the same
US7099073B2 (en) Optical frequency-converters based on group III-nitrides
US8259386B2 (en) Wavelength conversion element and method for manufacturing wavelength conversion element
JP6824112B2 (ja) 導波素子、発光装置及び導波素子の製造方法
Ota et al. Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 µm
JP5294167B2 (ja) 窒化物半導体発光素子およびその製造方法
JP2009145440A (ja) 波長変換素子
JP4762772B2 (ja) 波長変換素の製造方法
JP2008170710A (ja) 波長変換装置
JP2011211244A (ja) Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5316627B2 (ja) 波長変換素子の製造方法
He et al. Ultra-high Q Microring Resonators on Gallium-nitride-on-sapphire Platform
Zhang et al. Unexpected Realization of N-Polar AlN Films on Si-Face 4H–SiC Substrates Using RF Sputtering and High-Temperature Annealing
JP2005115150A (ja) 疑似位相整合型波長変換素子及びその製造方法
Chen Nonlinear Integrated Photonics in the Visible Spectrum Based on III-N Material Platform
Schunemann et al. Development of a low-loss, non-critically phase-matched, 1-m-pumpable ZGP analog for the mid-infrared

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R151 Written notification of patent or utility model registration

Ref document number: 6824112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151