JP6818094B2 - Catalyst and method for producing it, method for producing N-alkylimidazole compound - Google Patents

Catalyst and method for producing it, method for producing N-alkylimidazole compound Download PDF

Info

Publication number
JP6818094B2
JP6818094B2 JP2019127903A JP2019127903A JP6818094B2 JP 6818094 B2 JP6818094 B2 JP 6818094B2 JP 2019127903 A JP2019127903 A JP 2019127903A JP 2019127903 A JP2019127903 A JP 2019127903A JP 6818094 B2 JP6818094 B2 JP 6818094B2
Authority
JP
Japan
Prior art keywords
catalyst
active ingredient
hours
acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019127903A
Other languages
Japanese (ja)
Other versions
JP2020182929A (en
Inventor
航空 袁
航空 袁
峰 石
峰 石
永吉 黄
永吉 黄
紅利 王
紅利 王
祥涛 趙
祥涛 趙
Original Assignee
中国科学院蘭州化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院蘭州化学物理研究所 filed Critical 中国科学院蘭州化学物理研究所
Publication of JP2020182929A publication Critical patent/JP2020182929A/en
Application granted granted Critical
Publication of JP6818094B2 publication Critical patent/JP6818094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8476Tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/32Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は有機合成の分野に関し、特に触媒及びその製造方法、及びN−アルキルイミダゾール系化合物の製造方法に関する。 The present invention relates to the field of organic synthesis, particularly to a catalyst and a method for producing the same, and a method for producing an N-alkylimidazole compound.

N−アルキルイミダゾール系化合物は、非常に重要なファインケミカルであり、イオン液体、医薬品、抗菌剤、酵素阻害剤、及び他のファインケミカルに広く使用されている。例えば、それはイミダゾリウムイオン液体の最も重要な出発物質であり、それを通して多種多様なイオン液体を合成することができ、それはまた医薬原料であるメトロニダゾール、セクニダゾール及び獣医薬ジメガゾールの合成のためのベース構造でもある。N-アルキルイミダゾールは、5員複素環の1つの窒素原子上に孤立電子対を有し、また、一定の塩基性及び求核性を有するので、有機合成における有機配位子及び触媒としても使用できる。中、長炭素鎖のN−アルキルイミダゾールは、優れた表面特性を有し、両性界面活性剤として最も一般的に使用されているカチオン性官能基の1つであり、エポキシ樹脂の硬化剤としても広く使用できる。 N-alkylimidazole compounds are very important fine chemicals and are widely used in ionic liquids, pharmaceuticals, antibacterial agents, enzyme inhibitors, and other fine chemicals. For example, it is the most important starting material for imidazolium ionic liquids, through which a wide variety of ionic liquids can be synthesized, it is also the base structure for the synthesis of the medicinal raw materials metronidazole, secnidazole and veterinary dimegazol. But also. Since N-alkylimidazole has a lone electron pair on one nitrogen atom of a 5-membered heterocycle and has a certain basicity and nucleophilicity, it is also used as an organic ligand and catalyst in organic synthesis. it can. Medium and long carbon chain N-alkylimidazoles have excellent surface properties, are one of the most commonly used cationic surfactants as amphoteric surfactants, and are also used as curing agents for epoxy resins. Can be widely used.

N-アルキルイミダゾールは、このような独特の物理的化学的性質、及び、広い用途の可能性を有する。しかしながら、先行文献に報告されているN-アルキルイミダゾール製造方法は、苛酷な反応条件、不純な生成物、及び触媒の再利用の不可能性などの欠点を有する。特許文献1には、酸結合剤としての水素化ナトリウムを、相間移動触媒としてのテトラブチルアンモニウムヨージドを使用するセチルイミダゾール製造方法が開示されているが、この方法に使用される水素化ムナトリウは高価であって、安全生産に不利である。また、Soo Y. Koは、非特許文献1において、均一条件下で、触媒としてのアゾジカルボン酸ジエチルまたはジイソプロピルエステルを使用する一連のN−アルキルイミダゾール系化合物合成方法という報告を行っている。しかしながら、この合成方法では、触媒価格が高い上、触媒が分離しにくく、繰り返し使用することが困難なので、規模化生産には不利である。 N-alkylimidazoles have such unique physical and chemical properties and potential for a wide range of applications. However, the N-alkylimidazole production methods reported in the prior art have drawbacks such as harsh reaction conditions, impure products, and the inability to reuse the catalyst. Patent Document 1 discloses a method for producing cetylimidazole using sodium hydride as an acid binder and tetrabutylammonium iodide as a phase transfer catalyst, but the hydrogenated munatoriu used in this method is It is expensive and disadvantageous for safe production. In addition, Soo Y. Ko reports in Non-Patent Document 1 a series of methods for synthesizing N-alkylimidazole compounds using diethyl azodicarboxylate or diisopropyl ester as a catalyst under uniform conditions. However, this synthesis method is disadvantageous for large-scale production because the catalyst price is high, the catalyst is difficult to separate, and it is difficult to use it repeatedly.

中国特許公開第102180873号公報Chinese Patent Publication No. 102180873

Tetrahedron Letters 46(2005)631-633Tetrahedron Letters 46 (2005) 631-633

このようなN-アルキルイミダゾールの製造方法では、反応条件が過酷であり、生成物が不純であり、触媒をリサイクルすることができない等の欠点を有する。 Such a method for producing N-alkylimidazole has drawbacks such as severe reaction conditions, impure product, and inability to recycle the catalyst.

本発明は、触媒及びその製造方法、ならびにN−アルキルイミダゾール系化合物の製造方法を提供する。本発明により提供される触媒がN-アルキルイミダゾール系化合物の製造に使用される場合、反応条件が温和であるだけでなく、生成物選択性が高く、かつ触媒は容易にリサイクルされて再使用することができる。 The present invention provides a catalyst and a method for producing the same, and a method for producing an N-alkylimidazole compound. When the catalyst provided by the present invention is used in the production of N-alkylimidazole compounds, not only the reaction conditions are mild, but also the product selectivity is high, and the catalyst is easily recycled and reused. be able to.

本発明は、活性成分及び酸処理した担体を含む触媒を提供し、担体はシリコン・アルミナ酸化物及び/またはシリカであり、活性成分は金属酸化物を含み、金属酸化物中の金属元素は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、及び希土類元素のうちの1つ以上を含み、この触媒は、N-アルキルイミダゾール系化合物を得るための、イミダゾール系化合物とアルキル化剤とのアルキル化反応に作用するThe present invention provides a catalyst containing an active ingredient and an acid-treated carrier, the carrier being silicon-alumina oxide and / or silica, the active ingredient comprising a metal oxide, and the metal elements in the metal oxide being zirconium, niobium, hafnium, tantalum, calcium, magnesium, copper, seen containing nickel, iron, cobalt, zinc, and one or more of the rare earth elements, the catalyst, to obtain N- alkyl imidazole compound, It acts on the alkylation reaction between imidazole compounds and alkylating agents .

好ましくは、触媒中の活性成分の質量分率は、0.1〜25%である。 Preferably, the mass fraction of the active ingredient in the catalyst is 0.1 to 25%.

好ましくは、担体の比表面積が50m2/gを超え、シリコン・アルミナ酸化物のアルミニウム含有量が0を除いて、0〜20%である。 Preferably, the specific surface area of the carrier exceeds 50 m 2 / g and the aluminum content of the silicon-alumina oxide is 0 to 20%, excluding zero.

本発明は、(1)担体を酸溶液に浸漬した後、順に乾燥、焼成処理して、酸処理した担体を得る工程と、(2)工程(1)で得られた酸処理した担体を活性成分塩溶液に浸漬した後、順に乾燥、焼成処理して、触媒を得る工程とを含む、上記の技術構成での触媒を製造する方法をさらに提供する。 In the present invention, (1) the carrier is immersed in an acid solution and then dried and calcined in order to obtain an acid-treated carrier, and (2) the acid-treated carrier obtained in step (1) is activated. Further provided is a method for producing a catalyst having the above-mentioned technical configuration, which comprises a step of immersing in a component salt solution and then sequentially drying and calcining to obtain a catalyst.

好ましくは、工程(1)における酸溶液が、塩酸、硫酸、硝酸、リン酸、酢酸及びモリブデン酸の1つ以上を含み、酸溶液の濃度が、1〜5mol/Lである。 Preferably, the acid solution in step (1) contains one or more of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and molybdic acid, and the concentration of the acid solution is 1 to 5 mol / L.

好ましくは、工程(2)における活性成分塩溶液が、活性成分塩酸塩溶液、活性成分硝酸塩溶液、活性成分硫酸塩溶液、活性成分リン酸塩溶液及び酢酸塩溶液のうちの1つ以上を含み、活性成分塩溶液の濃度が、0.1〜3mol/Lである。 Preferably, the active ingredient salt solution in step (2) comprises one or more of the active ingredient hydrochloride solution, the active ingredient nitrate solution, the active ingredient sulfate solution, the active ingredient phosphate solution and the acetate solution. The concentration of the active ingredient salt solution is 0.1 to 3 mol / L.

好ましくは、工程(1)及び工程(2)における乾燥処理の温度は独立して、80〜120℃であり、乾燥処理時間は独立して3〜6時間であり、焼成処理の温度は独立して300〜800℃であり、焼成処理時間は独立して3〜6時間である。 Preferably, the drying treatment temperature in the steps (1) and (2) is independently 80 to 120 ° C., the drying treatment time is independently 3 to 6 hours, and the firing treatment temperature is independent. The temperature is 300 to 800 ° C., and the firing treatment time is independently 3 to 6 hours.

本発明は、触媒の作用下でのイミダゾール系化合物とアルキル化剤とがアルキル化反応して、N-アルキルイミダゾール系化合物を得る工程を含むこと、を特徴とするN-アルキルイミダゾール系化合物の製造方法を提供する。アルキル化反応の温度は100〜400℃であり、触媒は、上記の技術構成に記載された触媒、または上記の技術構成に記載された方法により製造された触媒である。 The present invention comprises a step of obtaining an N-alkylimidazole-based compound by an alkylation reaction between an imidazole-based compound and an alkylating agent under the action of a catalyst, wherein the N-alkylimidazole-based compound is produced. Provide a method. The temperature of the alkylation reaction is 100 to 400 ° C., and the catalyst is the catalyst described in the above technical configuration or the catalyst produced by the method described in the above technical configuration.

好ましくは、イミダゾール系化合物とアルキル化剤とのモル比が1:1〜10である。 Preferably, the molar ratio of the imidazole compound to the alkylating agent is 1: 1-10.

好ましくは、イミダゾール系化合物が、式I-1〜式I-3のいずれかで表される構造を有する。 Preferably, the imidazole-based compound has a structure represented by any of formulas I-1 to I-3.

式I-1中のR1、R2及びR3は、それぞれ独立して、炭素原子1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、ベンジル、ビニル、トリフルオロメチル、2−イミダゾリル、フッ素、塩素、臭素またはヨウ素からなる群から選択され、アルキル化剤は、アルデヒド、ケトンまたはアルコールを含み、アルデヒドは、式II−1〜式II−3のいずれかに示される構造を有する。 R 1 , R 2 and R 3 in Formula I-1 are independently alkyl groups of carbon atoms 1-18, hydrogen, methoxy, phenyl, phenoxy, benzyl, vinyl, trifluoromethyl, 2-imidazolyl, respectively. Selected from the group consisting of fluorine, chlorine, bromine or iodine, the alkylating agent comprises an aldehyde, ketone or alcohol, the aldehyde having a structure represented by any of formulas II-1 to II-3.

式II−1において、R1は、炭素数1〜18のアルキル基または水素から選択され、式II−2〜式II−3において、R1、R2は、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、式II-3中、nは1〜4の整数であり、ケトンは、式III−1〜式III−3のいずれかに示される構造を有する。 In formula II-1, R 1 is selected from an alkyl group having 1 to 18 carbon atoms or hydrogen, and in formulas II-2 to II-3, R 1 and R 2 are alkyl groups having 1 to 18 carbon atoms. , Hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine. In formula II-3, n is an integer of 1 to 4, and the ketone is formula III-1 to formula III-. It has the structure shown in any of 3.

式III-1中のR1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または置換アルキル基から選択され、式III-2〜式III−3中、R1、R2及びR3はそれぞれ独立して、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、アルコールは、式IV-1から式IV-12のいずれか1つに示される構造を有する。 R 1 and R 2 in formula III-1 are independently selected from the alkyl group or substituted alkyl group of carbon atoms 1 to 18, respectively, and in formula III-2 to formula III-3, R 1 , R 2 and R 3 is independently selected from the group consisting of alkyl groups with 1 to 18 carbon atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine, and alcohols are from formulas IV-1 to IV-. It has the structure shown in any one of twelve.



式IV-1において、R1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または水素から選択され、式IV−6〜式IV−12において、R1は炭素原子1〜18のアルカン、水素、メトキシ基、フェニル基、フェノキシ基、フッ素基、塩素基、臭素基またはヨウ素からなる群から選択され、式IV−7〜式IV−9において、R2は、炭素原子1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、mは1〜6の整数であり、式IV−3において、nは2〜8の整数であり、式IV−6、式IV−7及び式IV−9において、nは独立して0〜4の整数である。


In formula IV-1, R 1 and R 2 are independently selected from alkyl groups or hydrogens of carbon atoms 1-18, and in formulas IV-6 to IV-12, R 1 is carbon atoms 1-18. Selected from the group consisting of an alkyl, hydrogen, methoxy group, phenyl group, phenoxy group, fluorine group, chlorine group, bromine group or iodine, in formulas IV-7 to IV-9, R 2 is a carbon atom 1 to 1. Selected from the group consisting of 18 alkyl groups, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine, m is an integer of 1-6 and in formula IV-3 n is an integer of 2-8. In formulas IV-6, IV-7 and IV-9, n is an independent integer of 0-4.

本発明は、活性成分と酸処理した担体とを含む触媒を提供する。担体はシリコン・アルミナ酸化物及び/またはシリカであり、活性成分は金属酸化物を含み、金属酸化物中の金属元素は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、及び希土類元素のうちの1つ以上を含み、この触媒は、N-アルキルイミダゾール系化合物を得るための、イミダゾール系化合物とアルキル化剤とのアルキル化反応に作用する。本発明では、活性成分は酸処理した担体の細孔内部及び表面に担持されている。本発明の酸処理した担体は、表面及び細孔に多数の酸性部位を形成し、金属活性成分との相乗作用により、活性化アルキル化剤との反応性能を大幅に向上させて、高選択性にイミダゾール系化合物をアルキル化反応させる。本発明により提供される触媒は、N-アルキルイミダゾール系化合物の触媒の製造に使用される、製造方法は簡単になり、反応条件は温和であり、かつ反応生成物の収率及び選択率が高く、実施例の結果は反応生成物の収率が55%〜93%で、選択率は90%以上であることを示す。 The present invention provides a catalyst containing an active ingredient and an acid-treated carrier. The carrier is silicon-alumina oxide and / or silica, the active ingredient contains a metal oxide, and the metal elements in the metal oxide are zirconium, niobium, hafnium, tantalum, calcium, magnesium, copper, nickel, iron, cobalt, zinc, and viewed including one or more of the rare earth elements, the catalyst, to obtain N- alkyl imidazole compounds, acting on an alkylation reaction with imidazole compound with an alkylating agent. In the present invention, the active ingredient is supported inside and on the surface of the pores of the acid-treated carrier. The acid-treated carrier of the present invention forms a large number of acidic sites on the surface and pores, and synergistically acts with the metal active ingredient to significantly improve the reaction performance with the activating alkylating agent, resulting in high selectivity. Is alkylated with an imidazole compound. The catalyst provided by the present invention, when used in the preparation of the catalyst of the N- alkyl imidazole compound, the manufacturing method is simplified, the reaction conditions are mild, and yield and selectivity of the reaction product High, the results of the examples show that the yield of the reaction product is 55% to 93% and the selectivity is 90% or more.

本発明はN-アルキルイミダゾール系化合物の製造方法を提供する。本発明では、上記の技術構成を有する触媒は、N-アルキルイミダゾール系化合物の製造方法における触媒であるので、製造方法が簡単であり、反応条件が温和であり、さらに、反応生成物の収率及び選択率が高い。実施例の結果は、反応生成物の収率が55%〜93%であり、選択率が90%以上であることを示している。 The present invention provides a method for producing an N-alkylimidazole compound. In the present invention, the catalyst having the above technical constitution is a catalyst in the method for producing an N-alkylimidazole compound, so that the production method is simple, the reaction conditions are mild, and the yield of the reaction product is mild. And the selectivity is high. The results of the examples show that the yield of the reaction product is 55% to 93% and the selectivity is 90% or more.

実施例1で調製された触媒の20nmスケールの透過型電子顕微鏡写真である。20 nm scale transmission electron micrograph of the catalyst prepared in Example 1. 実施例1で調製した触媒の50nmスケールの透過型電子顕微鏡写真である。5 is a 50 nm scale transmission electron micrograph of the catalyst prepared in Example 1. 実施例1で調製した触媒の100nmスケールの透過型電子顕微鏡写真である。3 is a 100 nm scale transmission electron micrograph of the catalyst prepared in Example 1. 実施例1で調製した触媒の200nmスケールの透過型電子顕微鏡写真である。6 is a 200 nm scale transmission electron micrograph of the catalyst prepared in Example 1.

本発明は、活性成分と酸処理した担体とを含む触媒を提供する。担体はシリコン・アルミナ酸化物及び/またはシリカであり、活性成分は金属酸化物を含み、金属酸化物中の金属元素は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、及び希土類元素のうちの1つ以上を含む。 The present invention provides a catalyst containing an active ingredient and an acid-treated carrier. The carrier is silicon-alumina oxide and / or silica, the active ingredient contains a metal oxide, and the metal elements in the metal oxide are zirconium, niobium, hafnium, tantalum, calcium, magnesium, copper, nickel, iron, Contains one or more of cobalt, zinc, and rare earth elements.

本発明によって提供される触媒は、アルキル化反応触媒であり、本発明において、触媒は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、希土類元素を1つ以上含む活性成分を含む。本発明において、希土類元素は、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、テルビウム、ジスプロシウム、ルテチウム、スカンジウム及びイットリウムのうちの1つ以上を含むことが好ましく、活性成分は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、テルビウム、ジスプロシウム、ルテチウム、スカンジウム及びイットリウムを1つ以上含むことが好ましい。また、ストロンチウム、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、バリウム、のうちの1つまたは複数を含むことが好ましい。 The catalyst provided by the present invention is an alkylation reaction catalyst, and in the present invention, the catalyst contains one zirconium, niobium, hafnium, tantalum, calcium, magnesium, copper, nickel, iron, cobalt, zinc and rare earth elements. Contains the active ingredients including the above. In the present invention, the rare earth element preferably contains one or more of lanthanum, cerium, praseodymium, neodymium, samarium, terbium, dysprosium, lutetium, scandium and ittrium, and the active ingredient is zirconium, niobium, hafnium, tantalum , Calcium, magnesium, copper, nickel, iron, cobalt, zinc, lantern, cerium, praseodymium, neodymium, samarium, terbium, dysprosium, lutetium, scandium and yttrium. Further, it is preferable to contain one or more of strontium, calcium, magnesium, copper, nickel, iron, cobalt, zinc and barium.

本発明において、触媒中の活性成分の質量分率は、0.1〜25%が好ましく、1〜18%がより好ましく、2〜15%がさらに好ましく、5〜10%が最も好ましい。 In the present invention, the mass fraction of the active ingredient in the catalyst is preferably 0.1 to 25%, more preferably 1 to 18%, further preferably 2 to 15%, and most preferably 5 to 10%.

本発明において、触媒は、酸処理した担体をさらに含み、担体はシリコン・アルミナ酸化物及び/またはシリカである。担体の比表面積は、50m2/gを超えることが好ましく、200〜1000m2/gがより好ましく、400〜600m2/gがさらに好ましい。担体の粒径は、1〜5mmが好ましく、2〜4mmがより好ましい。担体の孔径は、3Å〜500nmが好ましく、1〜200nmがさらに好ましい。本発明において、シリコン・アルミナ酸化物のアルミニウム含有量は、0を除いて、0〜20%が好ましく、1〜18%がより好ましく、5〜15%がさらに好ましい。本発明において、シリコン・アルミナ酸化物及びシリカは市販品を使用してもよい。 In the present invention, the catalyst further comprises an acid-treated carrier, the carrier being silicon-alumina oxide and / or silica. The specific surface area of the support is preferably greater than 50 m 2 / g, more preferably 200~1000m 2 / g, more preferably 400-600m 2 / g. The particle size of the carrier is preferably 1 to 5 mm, more preferably 2 to 4 mm. The pore size of the carrier is preferably 3 Å to 500 nm, more preferably 1 to 200 nm. In the present invention, the aluminum content of the silicon-alumina oxide is preferably 0 to 20%, more preferably 1 to 18%, still more preferably 5 to 15%, excluding 0. In the present invention, commercially available products may be used as the silicon-alumina oxide and silica.

本発明は、(1)担体を酸溶液に浸漬した後、順に乾燥、焼成処理して、酸処理した担体を得る工程と、(2)工程(1)で得られた酸処理した担体を活性成分塩溶液に浸漬した後、順に乾燥、焼成処理して触媒を得る工程を含む、上記の技術構成の触媒を製造する製造方法をさらに提供する。 In the present invention, (1) the carrier is immersed in an acid solution and then dried and calcined in order to obtain an acid-treated carrier, and (2) the acid-treated carrier obtained in step (1) is activated. Further provided is a production method for producing a catalyst having the above-mentioned technical composition, which comprises a step of immersing the catalyst in a component salt solution and then sequentially drying and calcining the catalyst to obtain a catalyst.

本発明においては、担体を酸溶液に浸漬した後、順に乾燥、焼成処理して、酸処理した担体を得る。 In the present invention, the carrier is immersed in an acid solution and then dried and fired in order to obtain an acid-treated carrier.

本発明において、酸性溶液は、塩酸、硫酸、硝酸、リン酸、酢酸、及びモリブデン酸のうちの1つ以上を含み、その酸性溶液の濃度は1〜5mol/Lが好ましく、2〜4mol/Lがより好ましい。本発明において、担体の質量と酸溶液との体積比は、1g:0.6〜1.3mLが好ましく、1g:1mLがさらに好ましい。本発明において、担体を酸性溶液に浸漬する時間は、3〜8時間が好ましく、4〜6時間がさらに好ましい。本発明において、担体は酸性溶液を完全に吸収することができ、浸漬が完了した後、残った酸性溶液は存在しない。 In the present invention, the acidic solution contains one or more of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, and molybdic acid, and the concentration of the acidic solution is preferably 1 to 5 mol / L, preferably 2 to 4 mol / L. Is more preferable. In the present invention, the volume ratio of the mass of the carrier to the acid solution is preferably 1 g: 0.6 to 1.3 mL, and more preferably 1 g: 1 mL. In the present invention, the time for immersing the carrier in the acidic solution is preferably 3 to 8 hours, more preferably 4 to 6 hours. In the present invention, the carrier can completely absorb the acidic solution and there is no residual acidic solution after the immersion is completed.

本発明は、担体を酸溶液に浸漬した後、順に酸を浸漬した担体を乾燥、焼成処理する。本発明において、乾燥温度は、80〜120℃が好ましく、100℃がより好ましい。乾燥時間は、3〜6時間が好ましく、4〜5時間がさらに好ましい。本発明において、焼成処理の温度は、300〜800℃が好ましく、400〜700℃がより好ましく、3〜6時間が好ましく、4〜5時間がより好ましい。本発明において、焼成雰囲気は、空気であることが好ましい。 In the present invention, the carrier is immersed in an acid solution, and then the carrier in which the acid is immersed is dried and fired in order. In the present invention, the drying temperature is preferably 80 to 120 ° C, more preferably 100 ° C. The drying time is preferably 3 to 6 hours, more preferably 4 to 5 hours. In the present invention, the temperature of the firing treatment is preferably 300 to 800 ° C., more preferably 400 to 700 ° C., preferably 3 to 6 hours, and more preferably 4 to 5 hours. In the present invention, the firing atmosphere is preferably air.

本発明においては、担体を酸性溶液に浸漬した後、焼成処理を行うことにより、担体表面及び細孔に多数の酸性部位を形成することができる。触媒作用がある適当強度の酸性部位を形成することに有利であるから、焼成温度を上記の範囲とすること好ましい。 In the present invention, a large number of acidic sites can be formed on the surface of the carrier and the pores by immersing the carrier in an acidic solution and then performing a firing treatment. It is preferable to set the firing temperature in the above range because it is advantageous to form an acidic portion having a catalytic action and an appropriate strength.

本発明において、酸処理した担体を得た後、酸処理した担体を活性成分塩溶液に浸漬する。本発明において、活性成分塩溶液は、活性成分塩酸塩溶液、活性成分硝酸塩溶液、活性成分硫酸塩溶液、活性成分リン酸塩溶液、及び活性成分酢酸塩溶液のうちの1つ以上を含むことが好ましい。活性成分塩溶液の濃度は、0.1〜3mol/Lが好ましく、0.5〜2.5mol/Lがより好ましく、1〜2mol/Lがさらに好ましい。本発明において、活性成分塩溶液の溶媒は水であることが好ましい。本発明において、酸処理した担体と活性成分塩溶液との比は、1g:0.6〜1.3mLが好ましく、1g:1mLがさらに好ましい。本発明においては、酸処理した担体を活性成分塩溶液に3〜8時間浸漬するのが好ましく、4〜6時間浸漬するのがより好ましい。 In the present invention, after obtaining the acid-treated carrier, the acid-treated carrier is immersed in the active ingredient salt solution. In the present invention, the active ingredient salt solution may contain one or more of the active ingredient hydrochloride solution, the active ingredient nitrate solution, the active ingredient sulfate solution, the active ingredient phosphate solution, and the active ingredient acetate solution. preferable. The concentration of the active ingredient salt solution is preferably 0.1 to 3 mol / L, more preferably 0.5 to 2.5 mol / L, and even more preferably 1 to 2 mol / L. In the present invention, the solvent of the active ingredient salt solution is preferably water. In the present invention, the ratio of the acid-treated carrier to the active ingredient salt solution is preferably 1 g: 0.6 to 1.3 mL, more preferably 1 g: 1 mL. In the present invention, the acid-treated carrier is preferably immersed in the active ingredient salt solution for 3 to 8 hours, more preferably 4 to 6 hours.

本発明において、酸処理した担体を活性成分塩溶液に浸漬した後、順に活性成分塩溶液を浸漬した担体を乾燥、焼成処理して、触媒を得る。本発明において、乾燥温度は、80〜120℃が好ましく、100℃がより好ましい。乾燥時間は、3〜6時間が好ましく、4〜5時間がさらに好ましい。 In the present invention, the acid-treated carrier is immersed in the active ingredient salt solution, and then the carrier in which the active ingredient salt solution is immersed is dried and fired in order to obtain a catalyst. In the present invention, the drying temperature is preferably 80 to 120 ° C, more preferably 100 ° C. The drying time is preferably 3 to 6 hours, more preferably 4 to 5 hours.

本発明において、焼成処理の温度は、300〜800℃が好ましく、400〜700℃がより好ましく、3〜6時間がさらに好ましく、4〜5時間がさらに好ましい。本発明において、焼成雰囲気は空気であることが好ましい。 In the present invention, the firing treatment temperature is preferably 300 to 800 ° C., more preferably 400 to 700 ° C., even more preferably 3 to 6 hours, still more preferably 4 to 5 hours. In the present invention, the firing atmosphere is preferably air.

本発明は、酸処理した担体を活性成分塩溶液に浸漬し、活性成分の金属イオンを担体の表面及び細孔に吸着させ、次いで乾燥及び焼成処理し、活性成分金属イオンが酸化状態を形成し安定化し、担体に強固に接着されて、使用中に交換しにくくなり、性能安定化に保持される。 In the present invention, the acid-treated carrier is immersed in an active ingredient salt solution, the active ingredient metal ions are adsorbed on the surface and pores of the carrier, and then dried and calcined, so that the active ingredient metal ions form an oxidized state. It stabilizes and is firmly adhered to the carrier, making it difficult to replace during use and maintaining performance stabilization.

本発明は、また、触媒の作用下で、イミダゾール系化合物とアルキル化剤とをアルキル化反応させることにより、製造されるN-アルキルイミダゾール系化合物の製造方法を提供する。アルキル化反応の温度は、100〜400℃である。触媒は、上記の技術構成に記載された触媒、または上記の技術構成に記載された方法により製造された触媒である。 The present invention also provides a method for producing an N-alkylimidazole compound produced by subjecting an imidazole compound and an alkylating agent to an alkylation reaction under the action of a catalyst. The temperature of the alkylation reaction is 100-400 ° C. The catalyst is the catalyst described in the above technical configuration or the catalyst produced by the method described in the above technical configuration.

本発明において、イミダゾール系化合物とアルキル化剤とのモル比は、1:1〜10が好ましく、1:2〜8がより好ましく、1:3〜7がさらに好ましい。 In the present invention, the molar ratio of the imidazole compound to the alkylating agent is preferably 1: 1 to 10, more preferably 1: 2 to 8, and even more preferably 1: 3 to 7.

本発明の実施形態において、N-アルキルイミダゾール系化合物の製造方法は、固定床連続反応方式と回分式反応器反応方式とを含むことが好ましい。 In the embodiment of the present invention, the method for producing the N-alkylimidazole compound preferably includes a fixed bed continuous reaction method and a batch reactor reaction method.

N-アルキルイミダゾール系化合物の製造方法は、固定床連続反応方式が好ましい場合、反応方式は、具体的には、供給ポンプにより、イミダゾール系化合物及びアルキル化剤を固定床反応器に送り込み、気化器により加熱し、気化された原料混合物をキャリアガスであるN2と均一に混合し、触媒床に送り込み、触媒の触媒作用によりアルキル化反応を行い、反応後の混合物を凝縮器で室温まで冷却して、液体を貯蔵槽に収集する。本発明において、イミダゾール系化合物とアルキル化薬剤との混合物の液体対気速度は、0.5〜20h-1が好ましく、5〜10h-1がより好ましい。キャリアガスであるN2対気速度は、500〜700h-1が好ましく、600h-1がさらに好ましい。 When the fixed bed continuous reaction method is preferable as the method for producing the N-alkyl imidazole compound, the reaction method is specifically that the imidazole compound and the alkylating agent are sent to the fixed bed reactor by a supply pump and vaporized. The vaporized raw material mixture is uniformly mixed with N 2 which is a carrier gas, sent to a catalyst bed, an alkylation reaction is carried out by the catalytic action of the catalyst, and the reaction mixture is cooled to room temperature in a condenser. And collect the liquid in the storage tank. In the present invention, the liquid airspeed imidazole compound and a mixture of an alkylating agent, preferably 0.5~20h- 1, 5~10h- 1 is more preferred. N 2 airspeed which is a carrier gas is preferably 500~700h- 1, 600h- 1 is more preferred.

N-アルキルイミダゾール系化合物の製造方法は、バッチ式反応器反応方式が好ましい場合、具体的には、反応器に触媒、イミダゾール系化合物及びアルキル化剤を添加し、密閉させた後、保護ガスによりシステム内の空気を置換して、アルキル化反応を行う。反応が終了した後、室温まで冷却し、ろ過により、反応混合液から触媒を濾取する。本発明において、触媒とイミダゾール系化合物との質量比は、0.01〜0.5:1が好ましく、0.05〜0.45:1がより好ましく、0.1〜0.4:1がさらに好ましい。本発明において、反応時間は、6〜24時間が好ましく、10〜20時間がより好ましい。本発明において、アルキル化剤がアルコールである場合、保護ガスは窒素または水素であることが好ましい。アルキル化剤がケトンまたはアルデヒドである場合、保護ガスは水素であることが好ましい。 When the batch reactor reaction method is preferable as the method for producing the N-alkylimidazole compound, specifically, a catalyst, an imidazole compound and an alkylating agent are added to the reactor, sealed, and then sealed with a protective gas. The air in the system is replaced to carry out the alkylation reaction. After completion of the reaction, the catalyst is cooled to room temperature and the catalyst is filtered off from the reaction mixture by filtration. In the present invention, the mass ratio of the catalyst to the imidazole compound is preferably 0.01 to 0.5: 1, more preferably 0.05 to 0.45: 1, and 0.1 to 0.4: 1. More preferred. In the present invention, the reaction time is preferably 6 to 24 hours, more preferably 10 to 20 hours. In the present invention, when the alkylating agent is an alcohol, the protective gas is preferably nitrogen or hydrogen. When the alkylating agent is a ketone or aldehyde, the protective gas is preferably hydrogen.

本発明において、イミダゾール系化合物は、式I-1〜式I-3のいずれかで表される構造を有することが好ましい。
In the present invention, the imidazole-based compound preferably has a structure represented by any of formulas I-1 to I-3.

式I-1中のR1、R2及びR3は、それぞれ独立して、炭素原子1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、ベンジル、ビニル、トリフルオロメチル、2−イミダゾリル、フッ素、塩素、臭素またはヨウ素からなる群から選択されることが好ましく、炭素数1〜16のアルキル基であることがより好ましく、炭素数2〜15のアルキル基であることがさらに好ましく、炭素数3〜10のアルキル基であることが最も好ましい。本発明において、アルキル基として、直鎖状アルキル基及び異性体状アルキル基を含むことが好ましい。 R 1 , R 2 and R 3 in Formula I-1 are independently alkyl groups of carbon atoms 1-18, hydrogen, methoxy, phenyl, phenoxy, benzyl, vinyl, trifluoromethyl, 2-imidazolyl, respectively. It is preferably selected from the group consisting of fluorine, chlorine, bromine or iodine, more preferably an alkyl group having 1 to 16 carbon atoms, even more preferably an alkyl group having 2 to 15 carbon atoms. Most preferably, it is an alkyl group of 3 to 10. In the present invention, the alkyl group preferably contains a linear alkyl group and an isomeric alkyl group.

本発明において、イミダゾール系化合物は、表1中のいずれかに示す構造を有することが好ましい。 In the present invention, the imidazole compound preferably has the structure shown in any of Table 1.

本発明において、アルキル化剤は、アルデヒド、ケトン、アルコールのいずれかを含むことが好ましい。 In the present invention, the alkylating agent preferably contains any one of aldehyde, ketone and alcohol.

本発明において、アルキル化剤はアルデヒドであることが好ましい場合、アルデヒドは、式II-1から式II-3のいずれかで表される構造を有することが好ましい。 In the present invention, when the alkylating agent is preferably an aldehyde, the aldehyde preferably has a structure represented by any of formulas II-1 to II-3.

式II−1において、R1は炭素数1〜18のアルキル基または水素から選択され、炭素数1〜16のアルキル基であることが好ましく、炭素数2〜15のアルキル基であることがより好ましく、炭素数3〜10のアルキル基であることが最も好ましい。式II−2〜式II−3において、R1、R2は、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、炭素数1〜16のアルキル基であることが好ましく、炭素数2〜15のアルキル基であることがより好ましく、炭素数3〜10のアルキル基であることが最も好ましい。本発明において、アルキル基は直鎖アルキルとイソアルキル基であることが好ましい。式II-3において、nは1〜4の整数である。 In formula II-1, R 1 is selected from an alkyl group having 1 to 18 carbon atoms or hydrogen, preferably an alkyl group having 1 to 16 carbon atoms, and more preferably an alkyl group having 2 to 15 carbon atoms. Most preferably, it is an alkyl group having 3 to 10 carbon atoms. In formulas II-2 to II-3, R 1 and R 2 are selected from the group consisting of alkyl groups having 1 to 18 carbon atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine, and are carbons. It is preferably an alkyl group having a number of 1 to 16, more preferably an alkyl group having 2 to 15 carbon atoms, and most preferably an alkyl group having 3 to 10 carbon atoms. In the present invention, the alkyl group is preferably a linear alkyl group and an isoalkyl group. In Formula II-3, n is an integer of 1-4.

本発明において、アルキル化剤はアルデヒドであることが好ましい場合、アルデヒドは、表2中のいずれかに示す構造を有することが好ましい。 In the present invention, when the alkylating agent is preferably an aldehyde, the aldehyde preferably has the structure shown in any of Table 2.

本発明において、アルキル化剤がケトンであることが好ましい場合、ケトンは、式III−1〜式III−3のいずれかで表される構造を有することが好ましい。 In the present invention, when the alkylating agent is preferably a ketone, the ketone preferably has a structure represented by any of formulas III-1 to III-3.

式III-1中のR1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または置換アルキル基から選択される。炭素原子1〜18のアルキル基は、炭素原子1〜16のアルキル基であることが好ましく、炭素原子2〜15のアルキル基であることがより好ましく、炭素原子3〜10のアルキル基であることが最も好ましい。置換アルキル基はフェニル、フェノキシ、及びフッ素、塩素、臭素またはヨウ素の置換アルキル基であることが好ましい。式III-2〜式III-3中、R1、R2及びR3はそれぞれ独立して、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、炭素数1〜16のアルキル基であることがより好ましく、炭素数2〜15のアルキル基であることがさらに好ましく、炭素数3〜10のアルキル基であることが最も好ましい。本発明において、アルキルは、直鎖アルキルとイソアルキル基であることが好ましい。 R 1 and R 2 in Formula III-1 are independently selected from alkyl groups or substituted alkyl groups of carbon atoms 1-18. The alkyl group of carbon atoms 1 to 18 is preferably an alkyl group of carbon atoms 1 to 16, more preferably an alkyl group of carbon atoms 2 to 15, and an alkyl group of carbon atoms 3 to 10. Is the most preferable. The substituted alkyl group is preferably a substituted alkyl group of phenyl, phenoxy, and fluorine, chlorine, bromine or iodine. In the formula III-. 2 to Formula III-3, R 1, R 2 and R 3 are each independently an alkyl group having 1 to 18 carbon atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine It is more preferably an alkyl group having 1 to 16 carbon atoms, further preferably an alkyl group having 2 to 15 carbon atoms, and most preferably an alkyl group having 3 to 10 carbon atoms. .. In the present invention, the alkyl is preferably a linear alkyl and an isoalkyl group.

本発明において、アルキル化剤がケトンであることが好ましい場合、ケトンは、表3中のいずれかに示す構造を有することが好ましい。 In the present invention, when the alkylating agent is preferably a ketone, the ketone preferably has the structure shown in any of Table 3.

本発明において、アルキル化剤がアルコールであることが好ましい場合、アルコールは式IV−1〜式IV−12のいずれかで表される構造を有する。 In the present invention, when the alkylating agent is preferably an alcohol, the alcohol has a structure represented by any of the formulas IV-1 to IV-12.

式IV-1において、R1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または水素から選択さることが好ましい。式IV-6〜式IV-12において、R1は炭素原子1〜18のアルカン、水素、メトキシ基、フェニル基、フェノキシ基、フッ素基、塩素基、臭素基またはヨウ素からなる群から選択されることが好ましい。式IV-7〜式IV-9において、R2は、炭素原子1〜18個のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択されることが好ましい。本発明において、炭素原子1〜18のアルキル基は炭素原子1〜16のアルキル基であることが好ましく、式炭素原子2〜15のアルキル基であることがより好ましく、式炭素原子3〜10のアルキル基であることが最も好ましい。アルキル基は、直鎖アルキルとイソアルキル基であることが好ましい。本発明において、式IV-2におけるmは1〜6の整数であることが好ましく、2〜5の整数であることがより好ましい。式IV-3におけるnは2〜8の整数であることが好ましく、3〜7の整数であることがより好ましく、4〜6の整数であることが最も好ましい。式IV-6、式IV-7及び式IV-9におけるnは独立して0〜4の整数であることが好ましく、1〜4の整数であることがより好ましく、2〜3の整数であることがさらに好ましい。 In formula IV-1, R 1 and R 2 are preferably independently selected from alkyl groups of carbon atoms 1 to 18 or hydrogen. In formulas IV-6 to IV-12, R 1 is selected from the group consisting of alkanes, hydrogen, methoxy groups, phenyl groups, phenoxy groups, fluorine groups, chlorine groups, bromine groups or iodine of carbon atoms 1-18. Is preferable. In formulas IV-7 to IV-9, R 2 is preferably selected from the group consisting of alkyl groups with 1 to 18 carbon atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine. .. In the present invention, the alkyl group of carbon atoms 1 to 18 is preferably an alkyl group of carbon atoms 1 to 16, more preferably an alkyl group of formula carbon atoms 2 to 15, and of the formula carbon atoms 3 to 10. Most preferably it is an alkyl group. The alkyl group is preferably a linear alkyl group and an isoalkyl group. In the present invention, m in the formula IV-2 is preferably an integer of 1 to 6, and more preferably an integer of 2 to 5. In Formula IV-3, n is preferably an integer of 2 to 8, more preferably an integer of 3 to 7, and most preferably an integer of 4 to 6. In formulas IV-6, IV-7 and IV-9, n is preferably an integer of 0 to 4, more preferably an integer of 1 to 4, and an integer of 2 to 3. Is even more preferable.

本発明において、アルキル化剤はアルコールであることが好ましい場合、アルコールは表4中のいずれかに示す構造を有することが好ましい。 In the present invention, when the alkylating agent is preferably an alcohol, the alcohol preferably has the structure shown in any of Table 4.

本発明によって提供されるN-アルキルイミダゾール系化合物の製造方法は、上記の技術構成に記載される触媒を採用するので、本発明によって提供される方法は簡単になり、反応条件を温和させ、生成物選択性を上昇させ、かつ触媒が容易に回収されて再使用されることができる。 Since the method for producing the N-alkylimidazole compound provided by the present invention employs the catalyst described in the above technical constitution, the method provided by the present invention is simplified, the reaction conditions are moderated, and the product is produced. The selectivity can be increased and the catalyst can be easily recovered and reused.

本発明において、触媒回収方法として、反応方式が回分式反応方式であることが好ましい場合、反応終了した後に、反応液を濾過し、固体を収集するする方法が好ましく、反応方式は固定床連続反応方式であることが好ましい場合、反応終了した後に、触媒を焼成処理して、触媒を再生活性化することが好ましい。焼成処理温度は、450〜550℃が好ましく、焼成処理時間は3〜5時間であることが好ましい。 In the present invention, when it is preferable that the reaction method is a batch reaction method as the catalyst recovery method, a method of filtering the reaction solution and collecting solids after the reaction is completed is preferable, and the reaction method is a fixed bed continuous reaction. When the method is preferable, it is preferable to regenerate and activate the catalyst by calcining the catalyst after the reaction is completed. The firing treatment temperature is preferably 450 to 550 ° C., and the firing treatment time is preferably 3 to 5 hours.

以下、本発明の技術構成は、本発明の実施例と共に、明確かつ完全に説明される。 Hereinafter, the technical configuration of the present invention will be clearly and completely described together with examples of the present invention.

[実施例1]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量し、2mLの5mol/L硝酸溶液に浸漬し、室温で3時間浸漬し、100℃で3時間乾燥させ、800℃で3時間焼成した。2mLの1.5mol/Lの硝酸ジルコニウム水溶液を調製して、処理されたシリコン・アルミナ酸化物を硝酸ジルコニウム水溶液に8時間浸漬し、次いで100℃で6時間乾燥させ、300℃で6時間焼成し、触媒を得た。
[Example 1]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 5 mol / L nitric acid solution, soak at room temperature for 3 hours, dry at 100 ° C. for 3 hours, and soak at 800 ° C. for 3 Baked for hours. A 2 mL 1.5 mol / L zirconium nitrate aqueous solution was prepared, the treated silicon-alumina oxide was immersed in the zirconium nitrate aqueous solution for 8 hours, then dried at 100 ° C. for 6 hours and fired at 300 ° C. for 6 hours. , Obtained a catalyst.

[実施例2]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量10%)を秤量し、2mLの2mol/L硫酸溶液に浸漬し、室温で8時間浸漬し、100℃で6時間乾燥させ、600℃で5時間焼成した。2mLの1.0mol/Lの硝酸ランタン溶液を調製し、この溶液に処理されたシリコン・アルミナ酸化物を5時間浸漬し、次いで100℃で6時間乾燥させ、800℃で5時間焼成し、触媒を得た。
[Example 2]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 10%), soak in 2 mL of 2 mol / L sulfuric acid solution, soak at room temperature for 8 hours, dry at 100 ° C. for 6 hours, 5 at 600 ° C. Baked for hours. A 2 mL 1.0 mol / L lanthanum nitrate solution was prepared, the treated silicon-alumina oxide was immersed in this solution for 5 hours, then dried at 100 ° C. for 6 hours, calcined at 800 ° C. for 5 hours, and catalyst. Got

[実施例3]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量20%)を秤量し、2mLの3mol/Lリン酸溶液に浸漬し、室温で5時間浸漬し、100℃で4時間乾燥させ、700℃で3時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の酢酸ニオブの濃度は、0.25mol/Lであり、活性塩溶液中の硝酸セリウムの濃度は1mol/Lであった。処理されたシリコン・アルミナ酸化物をこの活性成分の塩溶液中に8時間浸漬した後、100℃で4時間乾燥させ、500℃で5時間焼成し、触媒を得た。
[Example 3]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 20%), soak in 2 mL of 3 mol / L phosphoric acid solution, soak at room temperature for 5 hours, dry at 100 ° C. for 4 hours, at 700 ° C. It was baked for 3 hours. A 2 mL active ingredient salt solution was collected. The concentration of niobium acetate in the active salt solution was 0.25 mol / L, and the concentration of cerium nitrate in the active salt solution was 1 mol / L. The treated silicon-alumina oxide was immersed in a salt solution of this active ingredient for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 500 ° C. for 5 hours to obtain a catalyst.

[実施例4]
2.0gのシリカを秤量し、2mLの5mol/Lモリブデン酸溶液に浸漬し、室温で5時間浸漬し、100℃で3時間乾燥させ、500℃で6時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の硝酸スカンジウム濃度は1mol/Lであり、活性成分塩溶液中の硫酸コバルト濃度は0.4mol/Lであった。処理されたシリカを活性成分塩溶液中に8時間浸漬した後、100℃で4時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 4]
2.0 g of silica was weighed, dipped in 2 mL of 5 mol / L molybdic acid solution, dipped at room temperature for 5 hours, dried at 100 ° C. for 3 hours and calcined at 500 ° C. for 6 hours. A 2 mL active ingredient salt solution was collected. The scandium nitrate concentration in the active ingredient salt solution was 1 mol / L, and the cobalt sulfate concentration in the active ingredient salt solution was 0.4 mol / L. The treated silica was immersed in the active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例5]
2.0gのシリカを秤量し、2mLの5mol/Lリン酸溶液に浸漬して、室温で8時間浸漬して、100℃で3時間乾燥させ、500℃で3時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の硝酸セリウム濃度は1mol/Lであった。処理されたシリカをこの活性成分塩溶液に8時間浸漬した後、100℃で3時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 5]
2.0 g of silica was weighed, immersed in 2 mL of 5 mol / L phosphoric acid solution, immersed at room temperature for 8 hours, dried at 100 ° C. for 3 hours and calcined at 500 ° C. for 3 hours. A 2 mL active ingredient salt solution was collected. The concentration of cerium nitrate in the active ingredient salt solution was 1 mol / L. The treated silica was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 3 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例6]
2.0gのシリカを秤量し、2mLの2mol/L塩酸溶液に浸漬して、室温で8時間浸漬して、100℃で3時間乾燥させ、500℃で3時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の硫酸銅濃度は2mol/L、活性塩溶液中の硝酸ジスプロシウム濃度は0.1mol/Lであった。この活性成分塩溶液に処理されたシリカを8時間浸漬した後、100℃で乾燥させ、600℃で5時間焼成して、触媒を得た。
[Example 6]
2.0 g of silica was weighed, immersed in 2 mL of 2 mol / L hydrochloric acid solution, immersed at room temperature for 8 hours, dried at 100 ° C. for 3 hours and calcined at 500 ° C. for 3 hours. A 2 mL active ingredient salt solution was collected. The copper sulfate concentration in the active salt solution was 2 mol / L, and the dysprosium nitrate concentration in the active salt solution was 0.1 mol / L. After immersing the treated silica in this active ingredient salt solution for 8 hours, it was dried at 100 ° C. and calcined at 600 ° C. for 5 hours to obtain a catalyst.

[実施例7]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量して、2mLの3mol/L酢酸溶液に浸漬し、室温で5時間浸漬し、100℃で5時間乾燥させ、600℃で6時間焼成した。2mLの活性塩溶液を採取した。活性成分塩溶液中の酢酸銅の濃度は0.5mol/Lであり、活性成分塩溶液中の塩化ハフニウムの濃度は0.2mol/Lであり、活性成分塩溶液中の塩化タンタルの濃度は0.1mol/Lであった。この活性成分塩溶液に、処理されたシリコン・アルミナ酸化物を8時間浸漬して、100℃で4時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 7]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 3 mol / L acetic acid solution, soak at room temperature for 5 hours, dry at 100 ° C for 5 hours, at 600 ° C. It was baked for 6 hours. A 2 mL active salt solution was collected. The concentration of copper acetate in the active ingredient salt solution is 0.5 mol / L, the concentration of hafnium chloride in the active ingredient salt solution is 0.2 mol / L, and the concentration of tantalum chloride in the active ingredient salt solution is 0. It was .1 mol / L. The treated silicon-alumina oxide was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例8]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量し、2mLの2mol/Lリン酸溶液に浸漬し、室温で5時間浸漬し、100℃で5時間乾燥し、600℃で6時間焼成した。2mLの活性塩溶液を採取した。活性成分塩溶液中のリン酸カルシウム濃度は0.5mol/Lであり、活性成分塩溶液中の塩化ルテチウム濃度は0.3mol/Lであった。この活性成分塩溶液に、処理されたシリコン・アルミナ酸化物を8時間浸漬した後、100℃で4時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 8]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 2 mol / L phosphoric acid solution, soak at room temperature for 5 hours, dry at 100 ° C. for 5 hours, at 600 ° C. It was baked for 6 hours. A 2 mL active salt solution was collected. The calcium phosphate concentration in the active ingredient salt solution was 0.5 mol / L, and the lutetium chloride concentration in the active ingredient salt solution was 0.3 mol / L. The treated silicon-alumina oxide was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例9]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量し、2mLの5mol/L硫酸溶液に浸漬し、室温で5時間浸漬し、100℃で5時間乾燥させ、600℃で6時間焼成した。2mLの活性塩溶液を採取した。活性成分塩溶液中の硝酸サマリウム濃度は0.1mol/Lであり、活性成分塩溶液中の硝酸第二鉄濃度は0.5mol/Lであった。処理されたシリコン・アルミナ酸化物をこの活性成分塩溶液に8時間浸漬した後、100℃で4時間乾燥させ、400℃で5時間焼成し、触媒を得た。
[Example 9]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 5 mol / L sulfuric acid solution, soak at room temperature for 5 hours, dry at 100 ° C. for 5 hours, 6 at 600 ° C. Baked for hours. A 2 mL active salt solution was collected. The concentration of samarium nitrate in the active ingredient salt solution was 0.1 mol / L, and the concentration of ferric nitrate in the active ingredient salt solution was 0.5 mol / L. The treated silicon-alumina oxide was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例10]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量し、2mLの2mol/L塩酸溶液に浸漬し、室温で5時間浸漬し、100℃で5時間乾燥させ、600℃で6時間焼成した。2mLの活性塩溶液を採取した。活性成分塩溶液中の塩化テルビウム濃度は0.1mol/Lであった。活性成分塩溶液に、処理されたシリコン・アルミナ酸化物を8時間浸漬して、100℃で4時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 10]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 2 mol / L hydrochloric acid solution, soak at room temperature for 5 hours, dry at 100 ° C. for 5 hours, 6 at 600 ° C. Baked for hours. A 2 mL active salt solution was collected. The terbium chloride concentration in the active ingredient salt solution was 0.1 mol / L. The treated silicon-alumina oxide was immersed in the active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例11]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量10%)を秤量し、2mLの1mol/L酢酸溶液に浸漬し、室温で5時間浸漬し、100℃で5時間乾燥させ、600℃で6時間焼成した。2mLの活性塩溶液を採取した。活性成分塩溶液中の硝酸ネオジム濃度は0.1mol/Lであり、活性成分塩溶液中の酢酸亜鉛濃度は0.3mol/Lであった。この活性成分塩溶液に、処理されたシリコン・アルミナ酸化物を8時間浸漬した後、100℃で4時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 11]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 10%), soak in 2 mL of 1 mol / L acetic acid solution, soak at room temperature for 5 hours, dry at 100 ° C. for 5 hours, 6 at 600 ° C. Baked for hours. A 2 mL active salt solution was collected. The concentration of neodymium nitrate in the active ingredient salt solution was 0.1 mol / L, and the concentration of zinc acetate in the active ingredient salt solution was 0.3 mol / L. The treated silicon-alumina oxide was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 4 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例12]
2.0gのシリカを秤量し、2mLの5mol/Lモリブデン酸溶液に浸漬し、室温で5時間浸漬し、100℃で3時間乾燥させ、500℃で6時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の硝酸マグネシウム濃度は1mol/Lであり、活性塩溶液中の硝酸第二鉄濃度は0.2mol/Lであった。この活性成分塩溶液に、処理されたシリカを8時間浸漬した後に、100℃で4時間乾燥させた。400℃で5時間焼成して、触媒を得た。
[Example 12]
2.0 g of silica was weighed, dipped in 2 mL of 5 mol / L molybdic acid solution, dipped at room temperature for 5 hours, dried at 100 ° C. for 3 hours and calcined at 500 ° C. for 6 hours. A 2 mL active ingredient salt solution was collected. The magnesium nitrate concentration in the active salt solution was 1 mol / L, and the ferric nitrate concentration in the active salt solution was 0.2 mol / L. The treated silica was immersed in this active ingredient salt solution for 8 hours and then dried at 100 ° C. for 4 hours. Baking at 400 ° C. for 5 hours gave a catalyst.

[実施例13]
2.0gのシリカを秤量し、2mLの5mol/Lリン酸溶液に浸漬し、室温で8時間浸漬し、100℃で3時間乾燥し、500℃で3時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の硝酸イットリウム濃度は0.1mol/Lであり、活性塩溶液中の硝酸ニッケル濃度は1mol/Lであった。この活性成分塩溶液に、処理されたシリカを8時間浸漬した後に、100℃で3時間乾燥させ、400℃で5時間焼成して、触媒を得た。
[Example 13]
2.0 g of silica was weighed, immersed in 2 mL of 5 mol / L phosphoric acid solution, immersed at room temperature for 8 hours, dried at 100 ° C. for 3 hours and calcined at 500 ° C. for 3 hours. A 2 mL active ingredient salt solution was collected. The concentration of ittrium nitrate in the active salt solution was 0.1 mol / L, and the concentration of nickel nitrate in the active salt solution was 1 mol / L. The treated silica was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 3 hours, and calcined at 400 ° C. for 5 hours to obtain a catalyst.

[実施例14]
2.0gのシリコン・アルミナ酸化物(アルミニウム含有量5%)を秤量し、2mLの1mol/Lリン酸溶液に浸漬し、室温で8時間浸漬し、100℃で3時間乾燥させ、500℃で3時間焼成した。2mLの活性成分塩溶液を採取した。活性成分塩溶液中の酢酸プラセオジム濃度は0.1mol/Lであり、活性成分塩溶液中の硝酸第二鉄濃度は1mol/Lであった。この活性成分塩溶液に処理されたシリコン・アルミナ酸化物を8時間浸漬した後、100℃で3時間乾燥させ、600℃で5時間焼成して、触媒を得た。
[Example 14]
Weigh 2.0 g of silicon-alumina oxide (aluminum content 5%), soak in 2 mL of 1 mol / L phosphoric acid solution, soak at room temperature for 8 hours, dry at 100 ° C. for 3 hours, at 500 ° C. It was baked for 3 hours. A 2 mL active ingredient salt solution was collected. The praseodymium acetate concentration in the active ingredient salt solution was 0.1 mol / L, and the ferric nitrate concentration in the active ingredient salt solution was 1 mol / L. The treated silicon-alumina oxide was immersed in this active ingredient salt solution for 8 hours, dried at 100 ° C. for 3 hours, and calcined at 600 ° C. for 5 hours to obtain a catalyst.

実施例1、3、5、7、9、11、及び13で調製した触媒構造体をキャラクタリゼーションして、Kangta iQ2自動物理化学吸着装置を用いて、77KでN2物理吸着及び脱着実験を行った。結果を、表5に示す。 The catalyst structures prepared in Examples 1, 3, 5, 7, 9, 11, and 13 are characterized, and N 2 physical adsorption and desorption experiments are performed at 77K using the Kangta iQ2 automatic physicochemical adsorption device. It was. The results are shown in Table 5.

キャラクタリゼーションの結果によれば、本発明により製造された触媒材料は、大きな比表面積を有し、メソポーラス及びマクロポーラス構造を有するので、活性部位の均一の分布に有利であり、これにより、反応体の拡散及び吸着能力を増大させて、反応性を向上させることができる。 According to the results of characterization, the catalytic materials produced according to the present invention have a large specific surface area and mesoporous and macroporous structures, which is advantageous for the uniform distribution of active sites, thereby the reactants. The diffusion and adsorption capacity of the material can be increased to improve the reactivity.

実施例1の触媒が、Tecnai G2 F30 S - Twin型高分解能透過型電子顕微鏡によって、透過型電子顕微鏡分析された結果が、図1〜4に示されている。図1〜4の左下隅のスケールは、それぞれ20nm、50nm、100nm及び200nmである。図1から図4から分かるように、金属酸化物粒子は、シリコン・アルミナ酸化物担体に付着している。 The results of the catalyst of Example 1 being analyzed by a transmission electron microscope with a Tecnai G2 F30 S-Twin type high resolution transmission electron microscope are shown in FIGS. 1 to 4. The scales in the lower left corner of FIGS. 1 to 4 are 20 nm, 50 nm, 100 nm, and 200 nm, respectively. As can be seen from FIGS. 1 to 4, the metal oxide particles are attached to the silicon-alumina oxide carrier.

[適用例1]
触媒反応を固定床反応器で行い、イミダゾール系化合物とアルコールをモル比1:10で混合し、イミダゾール系化合物とアルキル化剤とをフィードポンプで固定床反応器に送り込み、気化器により加熱し、気化された原料混合物をキャリアガスN2と共に触媒床中に均一に混合し、触媒の触媒作用下で、アルキル化反応により、得られた混合物を凝縮器で室温まで冷却し、貯蔵タンクに収集した。ここで、触媒は、実施例1で調製した触媒である。イミダゾール系化合物とアルキル化剤との混合物の液体対気速度は、5h-1であった。キャリアガスN2対気速度は600h-1であった。反応温度は200℃であり、反応時間は20℃であり、反応時間は50時間であった。Agilent 5977A/7890B GC - MSガスクロマトグラフ及びAgilent 7890A(30m×0.25mm×0.33μmキャピラリーカラム、水素炎イオン化検出器)を用いて、反応生成物を定性的及び定量的に分析した。反応性能を表6に示す。
[Application example 1]
The catalytic reaction is carried out in a fixed bed reactor, the imidazole compound and alcohol are mixed at a molar ratio of 1:10, and the imidazole compound and the alkylating agent are sent to the fixed bed reactor by a feed pump and heated by a vaporizer. The vaporized raw material mixture was uniformly mixed in the catalyst bed together with the carrier gas N 2 , and the obtained mixture was cooled to room temperature by an alkylation reaction under the catalytic action of the catalyst and collected in a storage tank. .. Here, the catalyst is the catalyst prepared in Example 1. The liquid airspeed of the mixture of the imidazole compound and the alkylating agent was 5h- 1 . The carrier gas N 2 airspeed was 600 h- 1 . The reaction temperature was 200 ° C., the reaction time was 20 ° C., and the reaction time was 50 hours. Reaction products were analyzed qualitatively and quantitatively using an Agilent 5977A / 7890B GC-MS gas chromatograph and an Agilent 7890A (30 m x 0.25 mm x 0.33 μm capillary column, flame ionization detector). The reaction performance is shown in Table 6.

[適用例2]
適用例2の試験は、触媒が実施例2で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application example 2]
The test of Application Example 2 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 2. The reaction performance is shown in Table 6.

[適用例3]
適用例3の試験は、触媒が実施例3で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application example 3]
The test of Application Example 3 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 3. The reaction performance is shown in Table 6.

[適用例4]
適用例4の試験は、触媒が実施例4で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application example 4]
The test of Application Example 4 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 4. The reaction performance is shown in Table 6.

[適用例5]
適用例5の試験は、触媒が実施例5で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application example 5]
The test of Application Example 5 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 5. The reaction performance is shown in Table 6.

[適用例6]
適用例6の試験は、触媒が実施例6で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application example 6]
The test of Application Example 6 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 6. The reaction performance is shown in Table 6.

[適用例7]
適用例7の試験は、触媒が実施例7で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 7]
The test of Application Example 7 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 7. The reaction performance is shown in Table 6.

[適用例8]
適用例8の試験は、触媒が実施例8で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application Example 8]
The test of Application Example 8 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 8. The reaction performance is shown in Table 6.

[適用例9]
適用例9の試験は、触媒が実施例9で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 9]
The test of Application Example 9 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 9. The reaction performance is shown in Table 6.

[適用例10]
適用例10の試験は、触媒が実施例10で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application Example 10]
The test of Application Example 10 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1, except that the catalyst was the catalyst prepared in Example 10. The reaction performance is shown in Table 6.

[適用例11]
適用例11の試験は、触媒が実施例11で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application Example 11]
The test of Application Example 11 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1 except that the catalyst was the catalyst prepared in Example 11. The reaction performance is shown in Table 6.

[適用例12]
適用例12の試験は、触媒が実施例12で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 12]
The test of Application Example 12 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1, except that the catalyst was the catalyst prepared in Example 12. The reaction performance is shown in Table 6.

[適用例13]
適用例13の試験は、触媒が実施例13で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 13]
The test of Application Example 13 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1, except that the catalyst was the catalyst prepared in Example 13. The reaction performance is shown in Table 6.

[適用例14]
適用例14の試験は、触媒が実施例14で調製した触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 14]
The test of Application Example 14 was carried out according to the method of Application Example 1 under the same reaction conditions and product analysis as in Application Example 1, except that the catalyst was the catalyst prepared in Example 14. The reaction performance is shown in Table 6.

[適用例15〜28]
適用例15〜28の試験は、実施例3の触媒2gを秤量し、メタノールを用いて、異なるイミダゾール系化合物(具体的な構造については表5を参照。)のメチル化反応を固定床反応器中で実施した。イミダゾール系化合物とアルコールとの混合物の液体対気速度は5h-1であり、キャリアガスN2液体対気速度は600h-1であった。反応温度は400℃であり、反応時間は50hであった。反応性能を表6に示す。
[Application Examples 15 to 28]
In the tests of Application Examples 15 to 28, 2 g of the catalyst of Example 3 was weighed, and the methylation reaction of different imidazole compounds (see Table 5 for the specific structure) was carried out using methanol in a fixed bed reactor. Conducted inside. The liquid airspeed of the mixture of the imidazole compound and the alcohol was 5h -1 , and the carrier gas N 2 liquid airspeed was 600h -1 . The reaction temperature was 400 ° C. and the reaction time was 50 hours. The reaction performance is shown in Table 6.

[適用例29]
適用例29の試験は、適用例1の反応完了後の触媒を用いて、空気中、500℃で4時間焼成し、活性化して再生して触媒を回収する方法により、回収された触媒であることを除いて、適用例1と同じ反応条件及び生成物分析で、適用例1の方法に従って行った。反応性能を表6に示す。
[Application 29]
The test of Application Example 29 is a catalyst recovered by a method of calcining in air at 500 ° C. for 4 hours, activating and regenerating the catalyst after completion of the reaction of Application Example 1 to recover the catalyst. Except for this, the same reaction conditions and product analysis as in Application Example 1 were performed according to the method of Application Example 1. The reaction performance is shown in Table 6.

表6において、収率計算方法は、収率=実際の目標生成物生成量/理論目標生成物生成量×100%であり、表6における収率と選択率との関係は、収率=転化率×選択率である。 In Table 6, the yield calculation method is yield = actual target product production amount / theoretical target product production amount × 100%, and the relationship between the yield and the selectivity in Table 6 is yield = conversion. Rate x selection rate.

表6の試験結果によれば、本発明によって提供される触媒は様々なイミダゾール系化合物とアルキル化剤との反応を触媒することができる。本発明によって提供される触媒を用いて、N-アルキルイミダゾール系化合物を調製する方法は簡単であり、条件が温和であり、生成物の選択率及び収率は比較的高く、収率が56%〜92%である。かつ、その触媒は活性化して再生し、再使用することができる。 According to the test results in Table 6, the catalyst provided by the present invention can catalyze the reaction of various imidazole compounds with alkylating agents. The method of preparing an N-alkylimidazole compound using the catalyst provided by the present invention is simple, the conditions are mild, the product selectivity and yield are relatively high, and the yield is 56%. ~ 92%. Moreover, the catalyst can be activated, regenerated and reused.

[適用例30]
適用例30の試験は、50mgの実施例1で調製した触媒、5mmol(340mg)のイミダゾール、及び20mmol(640mg)メタノールをそれぞれ秤量し、それらが投入された40mLのマグネチックスターラー付き反応器を密封した後、システム中の空気をH2で3回置換し、加熱して撹拌した。100℃に加熱した後、6時間保持した。反応を停止し、室温までに冷却し、触媒を濾過により反応混合液から回収した。
[Application Example 30]
The test of Application Example 30 weighed 50 mg of the catalyst prepared in Example 1 and 5 mmol (340 mg) of imidazole and 20 mmol (640 mg) of methanol, respectively, and sealed the reactor with a 40 mL magnetic stirrer into which they were charged. After that, the air in the system was replaced with H 2 three times, and the mixture was heated and stirred. After heating to 100 ° C., it was held for 6 hours. The reaction was stopped, cooled to room temperature, and the catalyst was recovered from the reaction mixture by filtration.

Agilent 5977A / 7890B GC - MSガスクロマトグラフ及びAgilent 7890A(30m×0.25mm×0.33μmキャピラリーカラム、水素炎イオン検出器)を用いて、反応生成物を定性的及び定量的に分析した。その結果を表7に示す。 Reaction products were analyzed qualitatively and quantitatively using an Agilent 5977A / 7890B GC-MS gas chromatograph and an Agilent 7890A (30 m x 0.25 mm x 0.33 μm capillary column, flame ion detector). The results are shown in Table 7.

[適用例31]
適用例31の試験は、使用した触媒が実施例2で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application Example 31]
The test of Application Example 31 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 2. The results are shown in Table 7.

[適用例32]
適用例32の試験は、使用した触媒が実施例3で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 32]
The test of Application Example 32 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 3. The results are shown in Table 7.

[適用例33]
適用例32の試験は、使用した触媒が実施例4で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 33]
The test of Application Example 32 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 4. The results are shown in Table 7.

[適用例34]
適用例34の試験は、使用した触媒が実施例5で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 34]
The test of Application Example 34 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 5. The results are shown in Table 7.

[適用例35]
適用例35の試験は、使用した触媒が実施例6で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 35]
The test of Application Example 35 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 6. The results are shown in Table 7.

[適用例36]
適用例36の試験は、使用した触媒が実施例7で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 36]
The test of Application Example 36 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 7. The results are shown in Table 7.

[適用例37]
適用例37の試験は、使用した触媒が実施例8で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 37]
The test of Application Example 37 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 8. The results are shown in Table 7.

[適用例38]
適用例38の試験は、使用した触媒が実施例9で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 38]
The test of Application Example 38 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 9. The results are shown in Table 7.

[適用例39]

適用例39の試験は、使用した触媒が実施例10で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application 39]

The test of Application Example 39 was carried out in the same manner as in Application Example 30, except that the catalyst used was the catalyst prepared in Example 10. The results are shown in Table 7.

[適用例40]
適用例40の試験は、使用した触媒が適用例32で調製した触媒であることを除いて、適用例30と同じ方法で行った。結果を表7に示す。
[Application Example 40]
The test of Application Example 40 was carried out in the same manner as in Application Example 30 except that the catalyst used was the catalyst prepared in Application Example 32. The results are shown in Table 7.

表7において、収率の計算方法は収率=実際の目標生成物生成量/理論目標生成物生成量×100%であり、表7における収率と選択率との関係は、収率=転化率×選択率である。 In Table 7, the method of calculating the yield is yield = actual target product production amount / theoretical target product production amount × 100%, and the relationship between the yield and the selectivity in Table 7 is yield = conversion. Rate x selection rate.

表7の試験結果によれば、本発明により提供される触媒を用いて、N-アルキルイミダゾール系化合物を調製する方法は方法が簡単であり、条件が穏やかであり、かつ生成物の選択率及び収率は高く、収率は55〜93%であった。また、反応終了後、本発明により提供される触媒は、反応液を濾過して、固体を収集して触媒を回収するので、触媒を再利用することができ、良好な性能を有する。 According to the test results in Table 7, the method for preparing an N-alkylimidazole compound using the catalyst provided by the present invention is simple, the conditions are mild, and the product selectivity and product selectivity and The yield was high, with a yield of 55-93%. Further, after the reaction is completed, the catalyst provided by the present invention filters the reaction solution to collect the solid and recovers the catalyst, so that the catalyst can be reused and has good performance.

上述の説明は本発明の好ましい実施形態にすぎず、当業者は本発明の原理から逸脱することなく、いくつかの改良及び修正を行うこともでき、改良及び修正された発明は、本発明の保護範囲とみなされるべきである。 The above description is merely a preferred embodiment of the invention, and one of ordinary skill in the art can make some improvements and modifications without departing from the principles of the invention, the improved and modified inventions of the invention. It should be considered a scope of protection.

Claims (10)

活性成分と酸処理した担体とを含む触媒であり、前記担体はシリコン・アルミナ酸化物及び/またはシリカであり、前記活性成分は金属酸化物を含み、前記金属酸化物中の金属元素は、ジルコニウム、ニオブ、ハフニウム、タンタル、カルシウム、マグネシウム、銅、ニッケル、鉄、コバルト、亜鉛、及び希土類元素のうちの1つ以上を含み、
前記触媒は、N-アルキルイミダゾール系化合物を得るための、イミダゾール系化合物とアルキル化剤とのアルキル化反応に作用する
と、を特徴とする触媒。
A catalyst containing an active ingredient and an acid-treated carrier, wherein the carrier is silicon-alumina oxide and / or silica, the active ingredient comprises a metal oxide, and the metal element in the metal oxide is zirconium. , niobium, seen containing hafnium, tantalum, calcium, magnesium, copper, nickel, iron, cobalt, zinc, and one or more of the rare earth elements,
The catalyst acts on an alkylation reaction between an imidazole compound and an alkylating agent to obtain an N-alkylimidazole compound.
Catalyst and the child, the features.
前記触媒中の活性成分の質量分率は、0.1〜25%であること、を特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the mass fraction of the active ingredient in the catalyst is 0.1 to 25%. 前記担体の比表面積が50m2/gを超え、前記シリコン・アルミナ酸化物のアルミニウム含有量が0を除いて、0〜20%であること、を特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the specific surface area of the carrier exceeds 50 m 2 / g, and the aluminum content of the silicon-alumina oxide is 0 to 20% excluding 0. (1)担体を酸溶液に浸漬した後、順に乾燥、焼成処理して、酸処理した担体を得る工程と、
(2)工程(1)で得られた、酸処理した担体を活性成分塩溶液に浸漬した後、順に乾燥、焼成処理して触媒を得る工程と、
を含むこと、を特徴とする請求項1から3のいずれか一項に記載の触媒を製造する製造方法。
(1) A step of immersing the carrier in an acid solution and then drying and firing the carrier in order to obtain an acid-treated carrier.
(2) A step of immersing the acid-treated carrier obtained in step (1) in an active ingredient salt solution, and then drying and firing in order to obtain a catalyst.
The method for producing a catalyst according to any one of claims 1 to 3, wherein the catalyst is produced.
工程(1)における酸溶液が、塩酸、硫酸、硝酸、リン酸、酢酸及びモリブデン酸の1つ以上を含み、前記酸溶液の濃度が、1〜5mol/Lであること、を特徴とする請求項4に記載の製造方法。 The claim is characterized in that the acid solution in the step (1) contains one or more of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and molybdic acid, and the concentration of the acid solution is 1 to 5 mol / L. Item 4. The manufacturing method according to Item 4. 工程(2)における活性成分塩溶液が、活性成分塩酸塩溶液、活性成分硝酸塩溶液、活性成分硫酸塩溶液、活性成分リン酸塩溶液及び酢酸塩溶液のうちの1つ以上を含み、
前記活性成分塩溶液の濃度が、0.1〜3mol/Lであること、を特徴とする請求項4に記載の製造方法。
The active ingredient salt solution in the step (2) contains one or more of the active ingredient hydrochloride solution, the active ingredient nitrate solution, the active ingredient sulfate solution, the active ingredient phosphate solution and the acetate solution.
The production method according to claim 4, wherein the concentration of the active ingredient salt solution is 0.1 to 3 mol / L.
工程(1)及び工程(2)における乾燥処理の温度は独立して、80〜120℃であり、乾燥処理時間は独立して、3〜6時間であり、焼成処理の温度は独立して300〜800℃であり、焼成処理時間は独立して、3〜6時間であること、を特徴とする請求項4から6のいずれかに記載の製造方法。 The temperature of the drying treatment in the step (1) and the step (2) is independently 80 to 120 ° C., the drying treatment time is independently 3 to 6 hours, and the temperature of the firing treatment is independently 300. The production method according to any one of claims 4 to 6, wherein the temperature is ~ 800 ° C. and the firing treatment time is independently 3 to 6 hours. イミダゾール系化合物とアルキル化剤とが、触媒の作用下でアルキル化反応し、N-アルキルイミダゾール系化合物を得る工程を含むこと、を特徴とするN-アルキルイミダゾール系化合物の製造方法であって、
前記アルキル化反応の温度は100〜400℃であり、前記触媒が、請求項1から3のいずれか一項に記載の触媒、又は請求項4から7のいずれか一項に記載の方法によって製造された触媒である
ことを特徴とする製造方法。
A method for producing an N-alkylimidazole compound, which comprises a step of alkylating an imidazole compound and an alkylating agent under the action of a catalyst to obtain an N-alkylimidazole compound.
The temperature of the alkylation reaction is 100 to 400 ° C., and the catalyst is produced by the catalyst according to any one of claims 1 to 3 or the method according to any one of claims 4 to 7. A manufacturing method characterized by being a catalyst.
前記イミダゾール系化合物とアルキル化剤とのモル比が、1:1〜10であること、を特徴とする請求項8に記載の製造方法。 The production method according to claim 8, wherein the molar ratio of the imidazole compound to the alkylating agent is 1: 1 to 10. イミダゾール系化合物が、式I-1〜式I-3のいずれかで表される構造を有すること、を特徴とする請求項9に記載の製造方法であって、
式I-1中のR1、R2及びR3は、それぞれ独立して、炭素原子1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、ベンジル、ビニル、トリフルオロメチル、2−イミダゾリル、フッ素、塩素、臭素またはヨウ素からなる群から選択され、
前記アルキル化剤は、アルデヒド、ケトンまたはアルコールを含み、
前記アルデヒドは、式II−1〜式II−3のいずれかに示される構造を有し、
前記式II−1において、R1は、炭素数1〜18のアルキル基または水素から選択され、前記式II−2〜式II−3において、R1、R2は、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、前記式II3中、nは1〜4の整数であり、
前記ケトンは、式III−1〜式III−3のいずれかに示される構造を有し、
前記式III-1中のR1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または置換アルキル基から選択され、前記式III-2〜式III-3中、R1、R2及びR3はそれぞれ独立して、炭素数1〜18のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、
前記アルコールは、式IV-1から式IV-12のいずれか1つに示される構造を有し、


前記式IV-1において、R1、R2はそれぞれ独立して、炭素原子1〜18のアルキル基または水素から選択され、前記式IV-6〜式IV-12において、R1は炭素原子1〜18のアルカン、水素、メトキシ基、フェニル基、フェノキシ基、フッ素基、塩素基、臭素基またはヨウ素からなる群から選択され、前記式IV-7〜式IV-9において、R2は、炭素原子1〜18個のアルキル基、水素、メトキシ、フェニル、フェノキシ、フッ素、塩素、臭素またはヨウ素からなる群から選択され、前記式IV−2において、mは1〜6の整数であり、前記式IV-3において、nは2〜8の整数であり、前記式IV-6、式IV-7及び式IV-9において、nは独立して0〜4の整数であることを特徴とする製造方法。
The production method according to claim 9, wherein the imidazole-based compound has a structure represented by any of formulas I-1 to I-3.
R 1 , R 2 and R 3 in Formula I-1 are independently alkyl groups of carbon atoms 1-18, hydrogen, methoxy, phenyl, phenoxy, benzyl, vinyl, trifluoromethyl, 2-imidazolyl, respectively. Selected from the group consisting of fluorine, chlorine, bromine or iodine,
The alkylating agent comprises an aldehyde, a ketone or an alcohol and contains
The aldehyde has a structure represented by any of formulas II-1 to II-3.
In the formula II-1, R 1 is selected from an alkyl group having 1 to 18 carbon atoms or hydrogen, and in the formulas II-2 to II-3, R 1 and R 2 have carbon atoms 1 to 18. Selected from the group consisting of alkyl groups, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine, in Formula II - 3 above, n is an integer of 1-4.
The ketone has a structure represented by any of formulas III-1 to III-3.
R 1 and R 2 in the formula III-1 are independently selected from the alkyl group of the carbon atoms 1 to 18 or the substituted alkyl group, and R 1 and R in the formula III-2 to the formula III - 3 are respectively selected. 2 and R 3 are independently selected from the group consisting of alkyl groups with 1 to 18 carbon atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine.
The alcohol has a structure represented by any one of formulas IV-1 to IV-12.


In the formula IV-1, R 1 and R 2 are independently selected from the alkyl group of carbon atoms 1 to 18 or hydrogen, and in the formulas IV-6 to IV-12, R 1 is carbon atom 1. to 18 alkane, hydrogen, methoxy, phenyl group, a phenoxy group, a fluorine group, chlorine group, selected from the group consisting of bromine group or iodine, in the formula IV-. 7 to formula IV-9, R 2 is carbon It is selected from the group consisting of an alkyl group having 1 to 18 atoms, hydrogen, methoxy, phenyl, phenoxy, fluorine, chlorine, bromine or iodine. In the above formula IV-2, m is an integer of 1 to 6 and the above formula. In IV-3, n is an integer of 2 to 8, and in the formulas IV-6, IV-7 and IV-9, n is independently an integer of 0 to 4. Method.
JP2019127903A 2019-04-28 2019-07-09 Catalyst and method for producing it, method for producing N-alkylimidazole compound Active JP6818094B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910349571.9A CN109985611B (en) 2019-04-28 2019-04-28 Catalyst and preparation method thereof, and preparation method of N-alkyl imidazole compound
CN201910349571.9 2019-04-28

Publications (2)

Publication Number Publication Date
JP2020182929A JP2020182929A (en) 2020-11-12
JP6818094B2 true JP6818094B2 (en) 2021-01-20

Family

ID=67135366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127903A Active JP6818094B2 (en) 2019-04-28 2019-07-09 Catalyst and method for producing it, method for producing N-alkylimidazole compound

Country Status (2)

Country Link
JP (1) JP6818094B2 (en)
CN (1) CN109985611B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231072B (en) * 2021-03-24 2022-04-26 西南化工研究设计院有限公司 Catalyst for preparing isopropanol by acetone hydrogenation and application thereof
CN115894187B (en) * 2022-10-21 2024-02-09 安徽佳先功能助剂股份有限公司 Preparation method of plastic stabilizer stearoyl benzoyl methane

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811696B1 (en) * 1968-09-03 1973-04-14
FR2501676A1 (en) * 1981-03-11 1982-09-17 Rhone Poulenc Spec Chim PROCESS FOR N-ALKYLATION OF ORGANIC NITROGEN COMPOUNDS
SU1659408A1 (en) * 1989-04-24 1991-06-30 Институт органической химии им.Н.Д.Зелинского Method for obtaining n-alkylimidazxoles
JPH07285945A (en) * 1994-04-14 1995-10-31 Kuraray Co Ltd Production of acylimidazole derivative
JPH09169739A (en) * 1995-12-19 1997-06-30 Nippon Synthetic Chem Ind Co Ltd:The Production of n-alkylformylimidazoles
CN1077808C (en) * 1996-07-05 2002-01-16 中国科学院大连化学物理研究所 Catalyst of alkyl benzene with straight chain made by alkylation from benzene and straight chain olefin and its application
CN1869024B (en) * 2006-05-23 2010-05-12 华南理工大学 1-amido-3-alkyl imidozole ionic liquid and its preparation method
DE102006040432A1 (en) * 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Catalyst and process for the preparation of isoolefins
CN101684111B (en) * 2008-09-27 2011-06-22 中国石油天然气股份有限公司 Method for preparing 3-arylbenzofuran ketone compounds
CN102600864B (en) * 2012-02-29 2013-12-25 南京工业大学 Cobalt-based catalyst for Fischer Tropsch synthesis and preparation method thereof
CN104926607A (en) * 2014-03-17 2015-09-23 中国石油化工股份有限公司 Method for preparation of isopropanol through acetone hydrogenation
CN104592115B (en) * 2015-01-13 2017-05-10 郑州西格玛化工有限公司 Preparation method of acridone N-alkylation derivative
CN108160111A (en) * 2018-01-23 2018-06-15 中国科学院过程工程研究所 A kind of alkylation catalyst and its application

Also Published As

Publication number Publication date
JP2020182929A (en) 2020-11-12
CN109985611B (en) 2020-09-29
CN109985611A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
US5599999A (en) Process for preparation for alkanolamine, catalyst used in the process and process for preparation of the catalyst
JP6818094B2 (en) Catalyst and method for producing it, method for producing N-alkylimidazole compound
CN108187746B (en) Application of trisilamide rare earth metal complex in catalyzing reaction of aldehyde and allyl boric acid
US9920008B2 (en) Catalyst for synthesizing ethylenimine as well as preparation method and application thereof
CN104941647B (en) Synthesize the method and loaded catalyst used of N methyl morpholines
KR101858278B1 (en) Process for preparing pseudoionone
MX2012014881A (en) A mixed oxide catalyst and a process for the production of ethylenically unsaturated carboxylic acids or esters.
CN103977839B (en) A kind of ionic organic metal tungstates epoxidation catalyst and preparation method thereof
JP5152895B2 (en) Method for producing cyclic alkyleneimine
CN102026954B (en) Processes for the preparation of esters
JPH07126228A (en) Production of alkanolamine and catalyst used therefor and preparation of catalyst
CN104844539B (en) A kind of preparation method of piperidines
EP3645484B1 (en) Method for preparation of alkylated or fluoro, chloro and fluorochloro alkylated compounds by heterogeneous cobalt catalysis
JP7032666B2 (en) Method for producing α, α-difluoroacetaldehyde hemiacetal
CN109867589B (en) Preparation method of propylene glycol monoalkyl ether
TWI770091B (en) Method for producing aromatic nitrile compound and method for producing carbonate
JP2771465B2 (en) Process for producing alkanolamine and catalyst used therein
EP3135661B1 (en) Method for producing halogenated acrylic acid derivative
JPH0820562A (en) Production of tertiary butyl amine
JP2020132602A (en) Method for producing 2-oxazolidinones
CN109078656B (en) Preparation method of aluminum chloride-loaded methylphenol isomerization catalyst
JP6269384B2 (en) Method for producing tetrahydrofuran compound
CN108912161B (en) Preparation method of cyanohydrinsiloxane compound
EP4115975A1 (en) Catalyst containing activated carbon on which ruthenium complex is adsorbed, and method for producing reduction product using same
EP0641786B1 (en) Process for producing optically active alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6818094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250