JP6815888B2 - Molded vacuum valve - Google Patents

Molded vacuum valve Download PDF

Info

Publication number
JP6815888B2
JP6815888B2 JP2017025872A JP2017025872A JP6815888B2 JP 6815888 B2 JP6815888 B2 JP 6815888B2 JP 2017025872 A JP2017025872 A JP 2017025872A JP 2017025872 A JP2017025872 A JP 2017025872A JP 6815888 B2 JP6815888 B2 JP 6815888B2
Authority
JP
Japan
Prior art keywords
heat transfer
movable side
vacuum valve
mold
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017025872A
Other languages
Japanese (ja)
Other versions
JP2018133193A (en
Inventor
丹羽 芳充
芳充 丹羽
裕希 関森
裕希 関森
康寿 宮内
康寿 宮内
亙 坂口
亙 坂口
昂 大坊
昂 大坊
直紀 浅利
直紀 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017025872A priority Critical patent/JP6815888B2/en
Publication of JP2018133193A publication Critical patent/JP2018133193A/en
Application granted granted Critical
Publication of JP6815888B2 publication Critical patent/JP6815888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明の実施形態は、モールド真空バルブに関する。 Embodiments of the present invention relate to molded vacuum valves.

従来から、遮断器等としてモールド真空バルブが使用されている。モールド真空バルブでは、真空容器内の真空雰囲気中に電極が配設されており、その周囲は絶縁モールドで覆われている。このような構成のモールド真空バルブでは、電極部分などにおいて通電に伴う熱が発生する。しかし、電極の周囲は真空雰囲気であり、その周囲は絶縁モールドで覆われているため、放熱性が悪い。このため、絶縁モールド内に熱伝導性の良い材料からなるパイプ等を埋設して放熱性を高めることが提案されている(例えば、特許文献1参照。)。 Conventionally, a molded vacuum valve has been used as a circuit breaker or the like. In a molded vacuum valve, electrodes are arranged in a vacuum atmosphere inside a vacuum vessel, and the periphery thereof is covered with an insulating mold. In a molded vacuum valve having such a configuration, heat is generated in the electrode portion and the like due to energization. However, since the periphery of the electrode has a vacuum atmosphere and the periphery is covered with an insulating mold, heat dissipation is poor. Therefore, it has been proposed to bury a pipe or the like made of a material having good thermal conductivity in an insulating mold to improve heat dissipation (see, for example, Patent Document 1).

しかしながら、単に絶縁モールド内に熱伝導性の良い材料からなるパイプ等を埋設したとしても、真空雰囲気及び絶縁モールドを通じて電極等からの放熱が行われるため、十分な放熱性を得ることは難しい。このため、通電量を多くした場合、温度の上昇を避けられない。 However, even if a pipe or the like made of a material having good thermal conductivity is simply embedded in the insulating mold, heat is dissipated from the electrodes or the like through the vacuum atmosphere and the insulating mold, so that it is difficult to obtain sufficient heat dissipation. Therefore, when the amount of energization is increased, the temperature cannot be avoided.

実開昭59−4141号公報Jitsukaisho 59-4141

上記のように、モールド真空バルブでは、真空雰囲気中に電極が配設されており、その周囲が絶縁モールドで覆われている構成となっている。このため、通電により発生した熱の放出が難しく、通電量を多くした場合、温度が上昇してしまうという課題があった。 As described above, in the molded vacuum valve, electrodes are arranged in a vacuum atmosphere, and the periphery thereof is covered with an insulating mold. Therefore, it is difficult to release the heat generated by energization, and there is a problem that the temperature rises when the amount of energization is increased.

このため、通電量を多くする場合、電流経路となる導体の断面積を増やし、低抵抗化を図って温度上昇を抑制する必要があり、モールド真空バルブが大型化してしまうという課題があった。 Therefore, when the amount of energization is increased, it is necessary to increase the cross-sectional area of the conductor serving as the current path to reduce the resistance and suppress the temperature rise, and there is a problem that the mold vacuum valve becomes large.

本発明の目的は、モールド真空バルブの大型化を招くことなく、通電に伴う発熱による温度上昇を抑制することのできるモールド真空バルブを提供することにある。 An object of the present invention is to provide a molded vacuum valve capable of suppressing a temperature rise due to heat generation due to energization without causing an increase in size of the molded vacuum valve.

実施形態のモールド真空バルブは、真空容器と、前記真空容器の周囲を囲むように配設された絶縁モールドと、前記真空容器の内部に配設された離接可能な電極と、前記電極のうちの一方と接続された可動側通電軸と、前記電極のうちの他方と接続された固定側通電軸と、前記可動側通電軸と電気的に接続されると共に、前記可動側通電軸が摺動自在とされた平板状の可動側導体とを具備している。さらに、前記平板状の可動側導体の、前記可動側通電軸との摺動部の周囲に、前記絶縁モールドの外周方向に向けて当該平板状の可動側導体が平板状に拡がるように形成された拡張部を具備している。 The molded vacuum valve of the embodiment includes a vacuum container, an insulating mold arranged so as to surround the vacuum container, a detachable electrode arranged inside the vacuum container, and the electrodes. The movable side energizing shaft connected to one of the electrodes, the fixed side energizing shaft connected to the other of the electrodes, and the movable side energizing shaft are electrically connected and the movable side energizing shaft slides. It is provided with a flat plate-shaped movable side conductor that is free. Further, the flat plate-like movable side conductor, around the sliding portion between the movable current-carrying shaft, said insulating the flat-plate-like movable side conductor toward the outer circumferential direction of the mold is formed so as to extend in the flat plate It is equipped with an extension part.

実施形態に係るモールド真空バルブの断面概略構成を示す図。The figure which shows the sectional schematic structure of the mold vacuum valve which concerns on embodiment. 図1のモールド真空バルブの可動側導体の構成を示す図。The figure which shows the structure of the movable side conductor of the mold vacuum valve of FIG. 図1のモールド真空バルブの要部断面構成を示す図。The figure which shows the cross-sectional structure of the main part of the mold vacuum valve of FIG. 拡張部を有しない可動側導体の構成を示す図。The figure which shows the structure of the movable side conductor which does not have an extension part.

以下、実施形態のモールド真空バルブを、図面を参照して説明する。 Hereinafter, the molded vacuum valve of the embodiment will be described with reference to the drawings.

図1は、実施形態に係るモールド真空バルブ100の断面構成を示す図である。図1に示すように、モールド真空バルブ100は、碍管4を具備しており、この碍管4の内部は、真空容器14とされている。真空容器14の内部には、一対の電極1a,1bからなる電極1が配設されている。また、電極1の周囲を囲むように、略円筒状のアークシールド13が配設されている。 FIG. 1 is a diagram showing a cross-sectional configuration of the molded vacuum valve 100 according to the embodiment. As shown in FIG. 1, the mold vacuum valve 100 includes a porcelain tube 4, and the inside of the porcelain tube 4 is a vacuum container 14. Inside the vacuum vessel 14, an electrode 1 composed of a pair of electrodes 1a and 1b is arranged. Further, a substantially cylindrical arc shield 13 is arranged so as to surround the periphery of the electrode 1.

電極1a,1bのうち、図1中上側に位置する電極1aには、固定側通電軸2が取り付けられている。また、図1中下側に位置する電極1bには、可動側通電軸3が取り付けられている。固定側通電軸2と可動側通電軸3は真空容器14の外部に導出されている。可動側通電軸3が真空容器14の外部に導出されている部分には、気密封止のためのベローズ10が配設されている。このベローズ10は、可動側通電軸3を移動可能な状態としつつ、真空容器14内を気密に維持する。 Of the electrodes 1a and 1b, the fixed side energizing shaft 2 is attached to the electrode 1a located on the upper side in FIG. Further, a movable side energizing shaft 3 is attached to the electrode 1b located on the lower side in FIG. The fixed side energizing shaft 2 and the movable side energizing shaft 3 are led out to the outside of the vacuum vessel 14. A bellows 10 for airtight sealing is arranged at a portion where the movable side energizing shaft 3 is led out to the outside of the vacuum container 14. The bellows 10 keeps the inside of the vacuum vessel 14 airtight while making the movable side energizing shaft 3 movable.

真空容器14より、可動側通電軸3側(図1中下側)には、可動側通電軸3と接触し、可動側通電軸3と電気的に接続された可動側導体9が配設されている。可動側通電軸3は、可動側導体9に対して摺動自在とされている。そして、可動側導体9との電気的な接続を維持した状態で、可動側通電軸3が所定方向(図1中上下方向)に移動できるよう構成されている。 From the vacuum vessel 14, on the movable side energizing shaft 3 side (lower side in FIG. 1), a movable side conductor 9 that is in contact with the movable side energizing shaft 3 and is electrically connected to the movable side energizing shaft 3 is arranged. ing. The movable side energizing shaft 3 is slidable with respect to the movable side conductor 9. The movable side energizing shaft 3 is configured to be movable in a predetermined direction (vertical direction in FIG. 1) while maintaining the electrical connection with the movable side conductor 9.

モールド真空バルブ100において、真空容器14の周囲、及び可動側導体9等の周囲は、絶縁モールド5にて覆われている。さらに、絶縁モールド5の表面は、接地電位とされた導電性の接地層6で覆われている。図1の上下方向におけるモールド真空バルブ100の外形は、略円柱状とされており、可動側導体9が、略円柱状の部分から側方に延びた形状とされている。 In the mold vacuum valve 100, the periphery of the vacuum container 14 and the periphery of the movable side conductor 9 and the like are covered with the insulating mold 5. Further, the surface of the insulating mold 5 is covered with a conductive grounding layer 6 having a grounding potential. The outer shape of the molded vacuum valve 100 in the vertical direction in FIG. 1 has a substantially cylindrical shape, and the movable side conductor 9 has a shape extending laterally from the substantially cylindrical portion.

絶縁モールド5内の可動側通電軸3側には、可動部内部空間8が形成されている。可動側通電軸3は、可動部内部空間8内において、絶縁ロッド7の一端に接続されている。絶縁ロッド7の他端は、図示しない操作機構に接続されており、絶縁ロッド7を所定方向(図1中上下方向)に動かすことで、電極1を開閉する。電流は、固定側通電軸2、電極1、可動側通電軸3、可動側導体9の経路で流れる。 A movable portion internal space 8 is formed on the movable side energizing shaft 3 side in the insulating mold 5. The movable side energizing shaft 3 is connected to one end of the insulating rod 7 in the movable portion internal space 8. The other end of the insulating rod 7 is connected to an operation mechanism (not shown), and the electrode 1 is opened and closed by moving the insulating rod 7 in a predetermined direction (vertical direction in FIG. 1). The current flows in the path of the fixed side energizing shaft 2, the electrode 1, the movable side energizing shaft 3, and the movable side conductor 9.

図2に示すように、本実施形態において、可動側導体9の端部には、絶縁モールド5の外周方向に向けて、絶縁モールド5の表面に近付くように可動側導体9の幅方向に拡がる拡張部9aが形成されている。本実施形態において、拡張部9aは、略円板状の形状とされている。そして、この拡張部9aの略中央部に摺動孔9bが形成されている。可動側通電軸3は、この摺動孔9b内に位置するように、摺動可能に配設されている。摺動孔9b内には、例えば、摺動孔9b内壁と可動側導体9の外周部との間に介在するように、バネ状の導体等が配設される。 As shown in FIG. 2, in the present embodiment, the end portion of the movable side conductor 9 extends in the width direction of the movable side conductor 9 so as to approach the surface of the insulating mold 5 toward the outer peripheral direction of the insulating mold 5. The expansion portion 9a is formed. In the present embodiment, the expansion portion 9a has a substantially disk-like shape. A sliding hole 9b is formed in a substantially central portion of the expansion portion 9a. The movable side energizing shaft 3 is slidably arranged so as to be located in the sliding hole 9b. In the sliding hole 9b, for example, a spring-shaped conductor or the like is arranged so as to be interposed between the inner wall of the sliding hole 9b and the outer peripheral portion of the movable side conductor 9.

また、本実施形態において、拡張部9aには、伝熱部材として図1中上側に位置する第1伝熱筒11と、図1中下側に位置する第2伝熱筒12とが配設されている。これらの第1伝熱筒11及び第2伝熱筒12は、円筒状とされており、図3にも示すように、絶縁モールド5の表面から絶縁性を確保することのできる所定距離を隔てて絶縁モールド5の内部に埋設されている。すなわち、第1伝熱筒11及び第2伝熱筒12は、略円筒状の絶縁モールド5の表面(接地層6)に沿うように配設されている。 Further, in the present embodiment, the expansion portion 9a is provided with a first heat transfer cylinder 11 located on the upper side in FIG. 1 and a second heat transfer cylinder 12 located on the lower side in FIG. 1 as heat transfer members. Has been done. The first heat transfer cylinder 11 and the second heat transfer cylinder 12 have a cylindrical shape, and as shown in FIG. 3, they are separated from the surface of the insulation mold 5 by a predetermined distance capable of ensuring insulation. It is embedded inside the insulating mold 5. That is, the first heat transfer cylinder 11 and the second heat transfer cylinder 12 are arranged along the surface (grounding layer 6) of the substantially cylindrical insulating mold 5.

なお、本実施形態では、絶縁モールド5の外形が略円柱状とされており、この形状に合わせて、拡張部9aが円板状とされ、第1伝熱筒11及び第2伝熱筒12は、円筒状とされている。しかしながら、例えば、絶縁モールド5の外形が略四角柱状とされているような場合は、この形状に合わせて、拡張部9aを略四角状とし、第1伝熱筒11及び第2伝熱筒12を四角筒状としてもよい。 In the present embodiment, the outer shape of the insulating mold 5 is substantially cylindrical, and the expansion portion 9a is formed into a disk shape according to this shape, and the first heat transfer cylinder 11 and the second heat transfer cylinder 12 are formed. Is cylindrical. However, for example, when the outer shape of the insulating mold 5 is a substantially square columnar shape, the expansion portion 9a is made substantially square in accordance with this shape, and the first heat transfer cylinder 11 and the second heat transfer cylinder 12 are formed. May be in the shape of a square cylinder.

第1伝熱筒11及び第2伝熱筒12は、絶縁モールド5より熱伝導率が高い材料によって構成されている。このような材料としては、例えば金属を使用することができ、金属の中でも、例えば、銅又はアルミニウム等を使用することができる。第1伝熱筒11及び第2伝熱筒12を、熱伝導率の高い材料によって構成することにより、通電により発生した熱をより効率的に外部に放出することができる。 The first heat transfer cylinder 11 and the second heat transfer cylinder 12 are made of a material having a higher thermal conductivity than the insulating mold 5. As such a material, for example, a metal can be used, and among the metals, for example, copper, aluminum, or the like can be used. By forming the first heat transfer cylinder 11 and the second heat transfer cylinder 12 with a material having high thermal conductivity, the heat generated by energization can be released to the outside more efficiently.

ここで、図4に示す可動側導体90のように、通常の角板状の外形を有し、摺動孔90bの周囲に、外側に向けて延在する、拡張部9aに相当する構成(図4中一点鎖線で示す。)を具備しない場合、可動側導体90の端部と絶縁モールド5の表面(接地層6)との間には広い間隔が空いた状態となる。この場合、可動側導体90に伝わった熱は、厚い絶縁モールド5を伝わってその表面(接地層6)から周囲の大気中に放熱されるため、放熱の効率が悪い。 Here, like the movable side conductor 90 shown in FIG. 4, a configuration corresponding to an expansion portion 9a having a normal square plate-like outer shape and extending outwardly around the sliding hole 90b ( (Indicated by the alternate long and short dash line in FIG. 4) is not provided, a wide space is provided between the end portion of the movable side conductor 90 and the surface (grounding layer 6) of the insulating mold 5. In this case, the heat transferred to the movable side conductor 90 is dissipated from the surface (ground layer 6) of the thick insulating mold 5 to the surrounding atmosphere, resulting in poor heat dissipation efficiency.

一方、本実施形態における可動側導体9のように、拡張部9aを有する場合、可動側導体90の場合と比べて、可動側導体9の端部と絶縁モールド5の表面(接地層6)との間の間隔を狭くすることができる。これによって、電極1や、可動側導体9と可動側通電軸3との摺動部等に通電による発熱があった場合に、拡張部9aに伝わった熱を、拡張部9aの端部から、厚さの薄い絶縁モールド5を介して周辺の大気に効率良く放出することができる。 On the other hand, when the movable side conductor 9 is provided as in the present embodiment, the end portion of the movable side conductor 9 and the surface of the insulating mold 5 (grounding layer 6) are compared with the case of the movable side conductor 90. The spacing between them can be narrowed. As a result, when heat is generated by energization of the electrode 1, the sliding portion between the movable side conductor 9 and the movable side energizing shaft 3, the heat transferred to the expansion portion 9a is transferred from the end portion of the expansion portion 9a. It can be efficiently discharged to the surrounding atmosphere through the thin insulating mold 5.

さらに、本実施形態では、拡張部9aに、伝熱部材として第1伝熱筒11及び第2伝熱筒12が配設されている。これによって、拡張部9aに伝わった熱は、これらの第1伝熱筒11及び第2伝熱筒12に伝わる。そして、第1伝熱筒11及び第2伝熱筒12に伝わった熱を、絶縁モールド5を介して接地層6の周囲の大気中に効率良く放出することができる。 Further, in the present embodiment, the first heat transfer cylinder 11 and the second heat transfer cylinder 12 are arranged as heat transfer members in the expansion portion 9a. As a result, the heat transferred to the expansion portion 9a is transferred to the first heat transfer cylinder 11 and the second heat transfer cylinder 12. Then, the heat transferred to the first heat transfer cylinder 11 and the second heat transfer cylinder 12 can be efficiently released into the atmosphere around the ground layer 6 via the insulating mold 5.

また、図3にも示すように、第2伝熱筒12は、絶縁ロッド7の周囲の可動部内部空間8と接地層6の間の絶縁モールド5内に配設されている。このため、可動側導体9から第2伝熱筒12に伝わった熱は、絶縁モールド5を介して接地層6の周囲の大気中に放出されると共に、可動部内部空間8内にも放出される。これによって、より効率良く熱を放出することができる。 Further, as shown in FIG. 3, the second heat transfer cylinder 12 is arranged in the insulating mold 5 between the movable portion internal space 8 around the insulating rod 7 and the ground contact layer 6. Therefore, the heat transferred from the movable side conductor 9 to the second heat transfer cylinder 12 is released to the atmosphere around the ground layer 6 through the insulating mold 5 and also to the movable portion internal space 8. To. As a result, heat can be released more efficiently.

上記のように、本実施形態のモールド真空バルブ100では、電極1や、可動側導体9と可動側通電軸3との摺動部(摺動孔9bの部分)等に通電による発熱があった場合、この熱が拡張部9aに伝わる。そして、拡張部9aに伝わった熱が、第1伝熱筒11及び第2伝熱筒12に伝わる。このため、第1伝熱筒11及び第2伝熱筒12と拡張部9aとの接続部は、第1伝熱筒11及び第2伝熱筒12の端部全体と拡張部9aとが接続された状態とすることが好ましい。このような構成とすることによって、拡張部9aから第1伝熱筒11及び第2伝熱筒12への熱伝導が促進され、第1伝熱筒11及び第2伝熱筒12から、より効率的に熱を放出することができる。なお、第1伝熱筒11及び第2伝熱筒12と、拡張部9aとの接続部は、例えば、溶接やろう付け等によって接続することが好ましい。 As described above, in the molded vacuum valve 100 of the present embodiment, heat is generated due to energization of the electrode 1, the sliding portion (the portion of the sliding hole 9b) between the movable side conductor 9 and the movable side energizing shaft 3. In this case, this heat is transferred to the expansion portion 9a. Then, the heat transferred to the expansion portion 9a is transferred to the first heat transfer cylinder 11 and the second heat transfer cylinder 12. Therefore, at the connection portion between the first heat transfer cylinder 11 and the second heat transfer cylinder 12 and the expansion portion 9a, the entire end portion of the first heat transfer cylinder 11 and the second heat transfer cylinder 12 and the expansion portion 9a are connected. It is preferable that the state is set. With such a configuration, heat conduction from the expansion portion 9a to the first heat transfer cylinder 11 and the second heat transfer cylinder 12 is promoted, and the heat transfer from the first heat transfer cylinder 11 and the second heat transfer cylinder 12 Heat can be released efficiently. The connection portion between the first heat transfer cylinder 11 and the second heat transfer cylinder 12 and the expansion portion 9a is preferably connected by, for example, welding or brazing.

以上のように、本実施形態のモールド真空バルブ100では、通電電流を大きくして通電発熱量が多くなった場合においても、放熱を促進することによって、温度上昇を抑制することができる。したがって、固定側通電軸2、電極1、可動側通電軸3、可動側導体9等の断面積を増やし、低抵抗化を図って温度上昇を抑制する必要がなく、モールド真空バルブ100が大型化することもない。 As described above, in the molded vacuum valve 100 of the present embodiment, even when the energization current is increased and the energization heat generation amount is increased, the temperature rise can be suppressed by promoting heat dissipation. Therefore, it is not necessary to increase the cross-sectional area of the fixed side energizing shaft 2, the electrode 1, the movable side energizing shaft 3, the movable side conductor 9, etc. to reduce the resistance and suppress the temperature rise, and the mold vacuum valve 100 becomes larger. There is nothing to do.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1(1a,1b)……電極、2……固定側通電軸、3……可動側通電軸、4……碍管、5……絶縁モールド、6……接地層、7……絶縁ロッド、8……可動部内部空間、9……可動側導体、9a……拡張部、9b……摺動孔、10……ベローズ、11……第1伝熱筒、12……第2伝熱筒、13……アークシールド、14……真空容器、100……モールド真空バルブ。 1 (1a, 1b) ... Electrode, 2 ... Fixed side energizing shaft, 3 ... Movable side energizing shaft, 4 ... Vacuum tube, 5 ... Insulation mold, 6 ... Grounding layer, 7 ... Insulation rod, 8 ...... Movable part internal space, 9 ... Movable side conductor, 9a ... Expansion part, 9b ... Sliding hole, 10 ... Bellows, 11 ... 1st heat transfer cylinder, 12 ... 2nd heat transfer cylinder, 13 ... Arc shield, 14 ... Vacuum container, 100 ... Molded vacuum valve.

Claims (7)

真空容器と、
前記真空容器の周囲を囲むように配設された絶縁モールドと、
前記真空容器の内部に配設された離接可能な電極と、
前記電極のうちの一方と接続された可動側通電軸と、
前記電極のうちの他方と接続された固定側通電軸と、
前記可動側通電軸と電気的に接続されると共に、前記可動側通電軸が摺動自在とされた平板状の可動側導体と、
前記平板状の可動側導体の、前記可動側通電軸との摺動部の周囲に、前記絶縁モールドの外周方向に向けて当該平板状の可動側導体が平板状に拡がるように形成された拡張部と、
を具備したことを特徴とするモールド真空バルブ。
With a vacuum container
An insulating mold arranged so as to surround the vacuum vessel and
With the detachable electrodes arranged inside the vacuum vessel,
A movable side energizing shaft connected to one of the electrodes,
A fixed-side energizing shaft connected to the other of the electrodes,
A flat plate-shaped movable side conductor that is electrically connected to the movable side energizing shaft and has the movable side energizing shaft slidable.
Wherein the plate-shaped movable conductor around the sliding portion between the movable current-carrying shaft, said insulating the flat-plate-like movable side conductor toward the outer circumferential direction of the mold is formed in such a manner as to expand into a flat plate shape extended Department and
A molded vacuum valve characterized by being equipped with.
前記拡張部が、略円板状とされていることを特徴とする請求項1記載のモールド真空バルブ。 The molded vacuum valve according to claim 1, wherein the expansion portion has a substantially disk shape. 前記拡張部に配設され、前記絶縁モールドより熱伝導率が高い材料によって構成された伝熱部材を具備したことを特徴とする請求項1又は2記載のモールド真空バルブ。 The mold vacuum valve according to claim 1 or 2, further comprising a heat transfer member disposed in the expansion portion and made of a material having a higher thermal conductivity than the insulating mold. 前記伝熱部材は、略筒状の形状を有することを特徴とする請求項3記載のモールド真空バルブ。 The molded vacuum valve according to claim 3, wherein the heat transfer member has a substantially tubular shape. 前記伝熱部材は、前記拡張部の両面に夫々配設されていることを特徴とする請求項3又は4記載のモールド真空バルブ。 The molded vacuum valve according to claim 3 or 4, wherein the heat transfer member is disposed on both sides of the expansion portion, respectively. 前記伝熱部材を金属から構成したことを特徴とする請求項3〜5いずれか1項記載のモールド真空バルブ。 The molded vacuum valve according to any one of claims 3 to 5, wherein the heat transfer member is made of metal. 前記絶縁モールドの表面に設けられ、接地電位とされた導電性の接地層を具備し、
前記伝熱部材は、前記絶縁モールド内に、前記接地層に沿って設けられていることを特徴とする請求項3〜6いずれか1項記載のモールド真空バルブ。
A conductive grounding layer provided on the surface of the insulating mold and having a grounding potential is provided.
The mold vacuum valve according to any one of claims 3 to 6, wherein the heat transfer member is provided in the insulating mold along the ground layer.
JP2017025872A 2017-02-15 2017-02-15 Molded vacuum valve Active JP6815888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017025872A JP6815888B2 (en) 2017-02-15 2017-02-15 Molded vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017025872A JP6815888B2 (en) 2017-02-15 2017-02-15 Molded vacuum valve

Publications (2)

Publication Number Publication Date
JP2018133193A JP2018133193A (en) 2018-08-23
JP6815888B2 true JP6815888B2 (en) 2021-01-20

Family

ID=63248960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025872A Active JP6815888B2 (en) 2017-02-15 2017-02-15 Molded vacuum valve

Country Status (1)

Country Link
JP (1) JP6815888B2 (en)

Also Published As

Publication number Publication date
JP2018133193A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
TWI445269B (en) A switch unit and a switching device equipped with a switch unit
JP2010062092A (en) Vacuum breaker
JP4989794B1 (en) Gas circuit breaker
JP2012109451A (en) Semiconductor device
CN204946855U (en) A kind of New X ray tube rotating anode arrangement
TWI533344B (en) Switch unit and switch mechanism
JP6815888B2 (en) Molded vacuum valve
JP2009016652A (en) Power electric equipment
CA2954315C (en) Electrical component having an electrically conductive central element
JP2015201560A (en) oil-filled transformer
JP2009207336A (en) Heat conducting structure
US9330867B2 (en) Vacuum switching apparatus, and electrode extension assembly and associated assembly method therefor
JP6245972B2 (en) Vacuum valve and switch using the same
JP6870100B2 (en) Secondary battery with heat pipe and heat pipe
JP5431220B2 (en) Solid insulation switchgear heat dissipation device
EP3185378B1 (en) Heat releasing device for solid-insulated device
EP3109880A1 (en) Medium- or high voltage pole part with at least one heat sink element
JP2008311253A (en) Film capacitor and film capacitor unit
JP5932384B2 (en) Vacuum valve
KR20160039463A (en) Vacuum Interrupter
JP2009129934A (en) Stem for optical semiconductor device
JP2019053876A (en) Insulation coating vacuum valve
US1224150A (en) Arc-suppressing device.
JP6400508B2 (en) Power system equipment
JP2015023008A (en) Vacuum valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171107

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6815888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150