JP6813308B2 - Ultraviolet light emitting element and ultraviolet irradiation module - Google Patents

Ultraviolet light emitting element and ultraviolet irradiation module Download PDF

Info

Publication number
JP6813308B2
JP6813308B2 JP2016169942A JP2016169942A JP6813308B2 JP 6813308 B2 JP6813308 B2 JP 6813308B2 JP 2016169942 A JP2016169942 A JP 2016169942A JP 2016169942 A JP2016169942 A JP 2016169942A JP 6813308 B2 JP6813308 B2 JP 6813308B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
substrate
amount
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016169942A
Other languages
Japanese (ja)
Other versions
JP2018037539A (en
Inventor
陽 吉川
陽 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016169942A priority Critical patent/JP6813308B2/en
Publication of JP2018037539A publication Critical patent/JP2018037539A/en
Application granted granted Critical
Publication of JP6813308B2 publication Critical patent/JP6813308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Description

本発明は、紫外線発光素子及び紫外線照射モジュールに関する。 The present invention relates to an ultraviolet light emitting element and an ultraviolet irradiation module.

紫外線発光素子は、発光層の組成を制御することにより発光波長を制御することができるとともに、寿命が長く信頼性が高い。そのため、照明や計測器用光源、殺菌光源など様々な用途に利用されている。一般的な紫外線発光素子は、基板上に、発光層をp型窒化物半導体とn型窒化物半導体で挟んだPIN構造を有する。
発光素子の発光出力を高めるためは、発光効率を向上させる事が重要である。例えば、特許文献1には、活性層(発光層)とp型窒化物半導体層との間に量子障壁層を形成し、各層のバンドギャップエネルギーを調整する事で、発光効率を向上させる技術が開示されている。
The ultraviolet light emitting element can control the emission wavelength by controlling the composition of the light emitting layer, and has a long life and high reliability. Therefore, it is used for various purposes such as lighting, a light source for measuring instruments, and a sterilization light source. A general ultraviolet light emitting device has a PIN structure in which a light emitting layer is sandwiched between a p-type nitride semiconductor and an n-type nitride semiconductor on a substrate.
In order to increase the light emitting output of the light emitting element, it is important to improve the luminous efficiency. For example, Patent Document 1 describes a technique for improving luminous efficiency by forming a quantum barrier layer between an active layer (light emitting layer) and a p-type nitride semiconductor layer and adjusting the bandgap energy of each layer. It is disclosed.

特開2010−114403号公報Japanese Unexamined Patent Publication No. 2010-114403

紫外線発光素子には、さらなる発光効率の向上が求められている。
本発明の課題は、発光効率を向上させることが可能な紫外線発光素子を提供することである。
The ultraviolet light emitting element is required to further improve the luminous efficiency.
An object of the present invention is to provide an ultraviolet light emitting device capable of improving luminous efficiency.

上記課題を解決するために、本発明の一態様である紫外線発光素子は、下記の構成要件(1) 〜(3) を有する。
(1) 基板と、基板の主面上に形成された窒化物半導体からなる下地層と、下地層上に形成され、導電性を有する窒化物半導体からなる第一クラッド層と、第一クラッド層上に形成され、窒化物半導体からなる発光層と、発光層上に形成され、第一クラッド層とは異なる導電性を有する窒化物半導体からなる第二クラッド層と、を備えている。
(2) 下地層と第一クラッド層との界面はステップ面およびテラス面を有する。
In order to solve the above problems, the ultraviolet light emitting device according to one aspect of the present invention has the following constituent requirements (1) to (3).
(1) A substrate, a base layer made of a nitride semiconductor formed on the main surface of the substrate, a first clad layer made of a conductive nitride semiconductor formed on the base layer, and a first clad layer. It includes a light emitting layer formed on the top and made of a nitride semiconductor, and a second clad layer made of a nitride semiconductor formed on the light emitting layer and having a conductivity different from that of the first clad layer.
(2) The interface between the base layer and the first clad layer has a step surface and a terrace surface.

(3) 第一クラッド層および発光層の結晶欠陥密度が有する結晶欠陥密度のうち、下記の定義1に基づく傾斜欠陥量および下記の定義2に基づく垂直欠陥量が、以下の条件1〜3を満たす。
定義1:基板の主面に対する角度が5°以上50°以下である線欠陥の密度と、基板の主面に対する角度が5°以上50°以下である面欠陥の密度と、の総和を、傾斜欠陥量と定義する。
(3) Of the crystal defect densities of the crystal defect densities of the first clad layer and the light emitting layer, the amount of inclined defects based on the following definition 1 and the amount of vertical defects based on the following definition 2 satisfy the following conditions 1 to 3. Fulfill.
Definition 1: The sum of the density of line defects whose angle with respect to the main surface of the substrate is 5 ° or more and 50 ° or less and the density of surface defects whose angle with respect to the main surface of the substrate is 5 ° or more and 50 ° or less is inclined. Defined as the amount of defects.

定義2:基板の主面に対する角度が75°以上90°以下である線欠陥の密度と、基板の主面に対する角度が75°以上90°以下である面欠陥の密度と、の総和を、垂直欠陥量と定義する。
条件1:第一クラッド層の傾斜欠陥量は1×10cm−2以上1×1010cm−2以下である。
条件2:発光層の傾斜欠陥量は1×10cm−2より小さい。
条件3:発光層の垂直欠陥量は第一クラッド層の垂直欠陥量よりも小さい。
Definition 2: The sum of the density of line defects whose angle with respect to the main surface of the substrate is 75 ° or more and 90 ° or less and the density of surface defects whose angle with respect to the main surface of the substrate is 75 ° or more and 90 ° or less is vertical. Defined as the amount of defects.
Condition 1: The amount of inclination defects of the first clad layer is 1 × 10 8 cm- 2 or more and 1 × 10 10 cm- 2 or less.
Condition 2: The amount of tilt defect of the light emitting layer is smaller than 1 × 10 8 cm- 2 .
Condition 3: The amount of vertical defects in the light emitting layer is smaller than the amount of vertical defects in the first clad layer.

本発明によれば、発光効率を向上させることが可能な紫外線発光素子を提供することができる。 According to the present invention, it is possible to provide an ultraviolet light emitting device capable of improving the luminous efficiency.

〔一態様の紫外線発光素子〕
上述のように、本発明の一態様である紫外線発光素子は、上記構成要件(1) 〜(3) を有するものである。
つまり、一態様の紫外線発光素子は、PIN構造を有する窒化物半導体素子であって、基板と第一クラッド層との間に下地層を有する。そして、この紫外線発光素子では、下地層と第一クラッド層との界面にステップ面およびテラス面を設けることで、第一クラッド層に、基板の主面とのなす角度が5°以上50°以下の線欠陥及び面欠陥を集中させている。これにより、第一クラッド層上に形成される発光層の線欠陥及び面欠陥を低減する事が可能となる。そのため、一態様の紫外線発光素子は、下地層と第一クラッド層との界面がステップ面およびテラス面を有さないものと比較して、発光効率が向上する。
また、一態様の紫外線発光素子は、窒化物半導体からなる層が有する結晶欠陥密度のうち、定義1に基づく傾斜欠陥量および定義2に基づく垂直欠陥量が条件1〜3を満たしていることで、条件1〜3を満たさないものと比較して、発光効率が向上する。
[One aspect of ultraviolet light emitting device]
As described above, the ultraviolet light emitting device according to one aspect of the present invention has the above-mentioned constituent requirements (1) to (3).
That is, the ultraviolet light emitting device of one aspect is a nitride semiconductor device having a PIN structure, and has a base layer between the substrate and the first clad layer. In this ultraviolet light emitting element, by providing a step surface and a terrace surface at the interface between the base layer and the first clad layer, the angle formed by the first clad layer with the main surface of the substrate is 5 ° or more and 50 ° or less. Line defects and surface defects are concentrated. This makes it possible to reduce line defects and surface defects of the light emitting layer formed on the first clad layer. Therefore, in one aspect of the ultraviolet light emitting device, the luminous efficiency is improved as compared with the one in which the interface between the base layer and the first clad layer does not have a step surface and a terrace surface.
Further, in the ultraviolet light emitting device of one aspect, among the crystal defect densities of the layer made of a nitride semiconductor, the amount of inclined defects based on the definition 1 and the amount of vertical defects based on the definition 2 satisfy the conditions 1 to 3. , The luminous efficiency is improved as compared with those which do not satisfy the conditions 1 to 3.

<ステップ面およびテラス面について>
一態様の紫外線発光素子において、「下地層と第一クラッド層との界面がステップ面およびテラス面を有する」とは、「下地層と第一クラッド層との界面に、基板の主面に対して略平行な面が階段状に連なる部分が存在すること」を意味する。そして、基板の主面に対して略平行な面をテラス面と定義し、隣り合うテラス面の間を繋ぐ面をステップ面と定義している。最終的な薄膜の平坦性の観点から、隣り合うテラス面間の段差は1原子層から数十原子層程度である事が好ましい。
<About the step surface and terrace surface>
In one aspect of the ultraviolet light emitting element, "the interface between the base layer and the first clad layer has a step surface and a terrace surface" means "at the interface between the base layer and the first clad layer with respect to the main surface of the substrate". It means that there is a part where substantially parallel surfaces are connected in a staircase pattern. " A surface substantially parallel to the main surface of the substrate is defined as a terrace surface, and a surface connecting adjacent terrace surfaces is defined as a step surface. From the viewpoint of the flatness of the final thin film, it is preferable that the step between adjacent terrace surfaces is about one atomic layer to several tens of atomic layers.

下地層と第一クラッド層との界面がステップ面及びテラス面を有することは、透過型電子顕微鏡(TEM)を用いて、紫外線発光素子の基板の主面に垂直な断面を観察することで確認できる。
また、「基板の主面」とは、基板が有する面のうちの主要な面であって、下地層が形成される面を意味する。基板の主面は平坦な面であってもよく、凹凸を有する面であってもよい。基板の主面が凹凸を有する面である場合には、その代表的な平面を「基板の主面」と見做す。
The fact that the interface between the base layer and the first clad layer has a step surface and a terrace surface is confirmed by observing a cross section perpendicular to the main surface of the substrate of the ultraviolet light emitting element using a transmission electron microscope (TEM). it can.
Further, the "main surface of the substrate" means the main surface of the surfaces of the substrate on which the base layer is formed. The main surface of the substrate may be a flat surface or a surface having irregularities. When the main surface of the substrate is an uneven surface, the typical flat surface is regarded as the "main surface of the substrate".

<結晶欠陥密度の測定方法>
第一クラッド層および発光層が有する結晶欠陥密度のうち、定義1に基づく傾斜欠陥量および定義2に基づく垂直欠陥量は、以下の方法で調べることができる。
先ず、透過型電子顕微鏡(TEM)を用いて、紫外線発光素子の基板の主面に垂直な断面を観察する。具体的には、例えば、紫外線発光素子の基板の主面に垂直な断面を示すTEM画像内の5μm以上を観察幅とする。
<Measurement method of crystal defect density>
Of the crystal defect densities of the first clad layer and the light emitting layer, the amount of inclined defects based on Definition 1 and the amount of vertical defects based on Definition 2 can be examined by the following methods.
First, a transmission electron microscope (TEM) is used to observe a cross section of the ultraviolet light emitting element perpendicular to the main surface of the substrate. Specifically, for example, the observation width is 5 μm or more in the TEM image showing the cross section perpendicular to the main surface of the substrate of the ultraviolet light emitting element.

そして、この観察幅の範囲で、第一クラッド層では、厚さ方向で発光層との界面側の部分(例えば、界面から0.3μmまでの部分)を観察範囲とし、この観察範囲に含まれる所定の欠陥(基板の主面に対する角度が5°〜50°または75°〜90°である面欠陥および線欠陥)を数える。発光層では、厚さ方向で第一クラッド層との界面側の部分(例えば、界面から0.3μmまでの部分)を観察範囲として、この観察範囲に含まれる所定の欠陥を数える。 In the range of this observation width, in the first clad layer, the portion on the interface side with the light emitting layer in the thickness direction (for example, the portion from the interface to 0.3 μm) is set as the observation range and is included in this observation range. Count predetermined defects (surface defects and line defects whose angle to the main surface of the substrate is 5 ° to 50 ° or 75 ° to 90 °). In the light emitting layer, a portion on the interface side with the first clad layer in the thickness direction (for example, a portion up to 0.3 μm from the interface) is set as an observation range, and predetermined defects included in this observation range are counted.

次に、数えた所定の欠陥の数を、観察範囲の面積(例えば、観察幅×0.3μm)で除算する。この除算で得られた値が、観察範囲における傾斜欠陥量(基板の主面に対する角度が5°以上50°以下である線欠陥の密度と、基板の主面に対する角度が5°以上50°以下である面欠陥の密度と、の総和)、および垂直欠陥量(基板の主面に対する角度が75°以上90°以下である線欠陥の密度と、基板の主面に対する角度が75°以上90°以下である面欠陥の密度と、の総和)となる。
この過程を、紫外線発光素子の基板の主面に垂直な断面であって、互いに平行な五つの断面で行い、五つの観察範囲で得られた値の平均値を算出する。得られた平均値を、定義1に基づく傾斜欠陥量および定義2に基づく垂直欠陥量として採用する。
Next, the number of predetermined defects counted is divided by the area of the observation range (for example, observation width × 0.3 μm). The values obtained by this division are the amount of tilt defects in the observation range (the density of line defects whose angle with respect to the main surface of the substrate is 5 ° or more and 50 ° or less, and the angle with respect to the main surface of the substrate is 5 ° or more and 50 ° or less. The sum of the density of surface defects and the amount of vertical defects (the density of line defects whose angle with respect to the main surface of the substrate is 75 ° or more and 90 ° or less and the angle with respect to the main surface of the substrate is 75 ° or more and 90 °). It is the sum of the following surface defect densities).
This process is performed on five cross sections perpendicular to the main surface of the substrate of the ultraviolet light emitting element and parallel to each other, and the average value of the values obtained in the five observation ranges is calculated. The obtained average value is adopted as the amount of inclined defects based on Definition 1 and the amount of vertical defects based on Definition 2.

<各層の形成方法>
一態様の紫外線発光素子を構成する各層は、例えば、有機金属気相成長法(MOCVD法)のようなエピタキシャル成長技術を利用して成膜することができるが、これに限定されない。例えば、ハイドライド気相成長法(HVPE法)や、分子線エピタキシー法(MBE法)などを用いて成膜してもよい。
<Formation method of each layer>
Each layer constituting the ultraviolet light emitting device of one aspect can be formed by using an epitaxial growth technique such as, for example, a metalorganic vapor phase growth method (MOCVD method), but the film is not limited thereto. For example, the film may be formed by using a hydride vapor phase growth method (HVPE method), a molecular beam epitaxy method (MBE method), or the like.

一例として、例えば以下の方法を採用することで、下地層と第一クラッド層の界面にステップ面及びテラス面が連続的に形成された構造を形成することができる。
先ず、基板を1050℃以上の水素分雰囲気下でアニール処理し、この基板上に、基板の表面温度が1100℃以上に保持されて、V/III比が100以下となる条件で、下地層を成長させる。次に、下地層上に、下地層の表面温度が1050℃以上に保持されて、V/III比が500以上となる条件で、第一クラッド層を成長させる。
この方法で用いる基板の一例としては、サファイア基板やAlN基板が挙げられる。また、下地層の材料としてはAlNが一例として挙げられ、第一クラッド層の材料としてはAlGaNが一例として挙げられる。
As an example, by adopting the following method, for example, it is possible to form a structure in which a step surface and a terrace surface are continuously formed at the interface between the base layer and the first clad layer.
First, the substrate is annealed in a hydrogen atmosphere of 1050 ° C. or higher, and a base layer is formed on the substrate under the condition that the surface temperature of the substrate is maintained at 1100 ° C. or higher and the V / III ratio is 100 or lower. Grow. Next, the first clad layer is grown on the base layer under the condition that the surface temperature of the base layer is maintained at 1050 ° C. or higher and the V / III ratio is 500 or higher.
Examples of the substrate used in this method include a sapphire substrate and an AlN substrate. Further, AlN is mentioned as an example of the material of the base layer, and AlGaN is mentioned as an example of the material of the first clad layer.

<紫外線発光素子の形態>
一態様の紫外線発光素子は、樹脂やガラス等で封止されていてもよい。一態様の紫外線発光素子は、一つのパッケージ内に一つだけ配置されていてもよく、複数配置されていてもよい。複数の紫外線発光素子を配置する場合には、各素子間の配線は直列であってもよく、並列であってもよく、あるいは直列と並列とを組み合わせた回路であってもよい。
<Form of ultraviolet light emitting element>
The ultraviolet light emitting element of one embodiment may be sealed with resin, glass, or the like. Only one ultraviolet light emitting element of one embodiment may be arranged in one package, or a plurality of ultraviolet light emitting elements may be arranged. When a plurality of ultraviolet light emitting elements are arranged, the wiring between the elements may be in series, in parallel, or may be a circuit in which series and parallel are combined.

<基板>
一態様の紫外線発光素子を構成する基板の具体例としては、サファイア(Al)、Si、SiC、MgO、Ga、ZnO、GaN、InN、AlN、あるいはこれらの混晶などからなる基板が挙げられる。
GaN、AlN、AlGaN等の窒化物半導体をバルクとする単結晶基板や、基材上にGaN、AlN、AlGaN等の窒化物半導体層が形成された基板(テンプレート基板)を用いると、基板の上側に形成する窒化物半導体層との格子定数差が小さくなり、窒化物半導体層を格子整合系で成長させることで貫通転位を少なくできる。
<Board>
Specific examples of the substrate constituting the ultraviolet light emitting device of one aspect include sapphire (Al 2 O 3 ), Si, SiC, MgO, Ga 2 O 3 , ZnO, GaN, InN, AlN, or a mixed crystal thereof. A substrate can be mentioned.
When a single crystal substrate in which a nitride semiconductor such as GaN, AlN, or AlGaN is bulk is used, or a substrate (template substrate) in which a nitride semiconductor layer such as GaN, AlN, or AlGaN is formed on the substrate, the upper side of the substrate is used. The difference in lattice constant from the nitride semiconductor layer formed in is small, and the penetration dislocation can be reduced by growing the nitride semiconductor layer in a lattice matching system.

また、汎用性が高いという観点からは、サファイア基板を用いることが好ましい。基板には、不純物が混入していてもよい。
基板の裏面は平坦な面であっても凹凸状の面であってもよい。基板の裏面は、基板とは異なる材質の物質を、例えば薄膜状やドット状に有していてもよい。基板の作製方法としては、昇華法やHVPE法等の気相成長法や液相成長法などの一般的な基板成長法が適用できる。
Further, from the viewpoint of high versatility, it is preferable to use a sapphire substrate. Impurities may be mixed in the substrate.
The back surface of the substrate may be a flat surface or an uneven surface. The back surface of the substrate may have a substance made of a material different from that of the substrate, for example, in the form of a thin film or dots. As a method for producing the substrate, a general substrate growth method such as a vapor phase growth method such as a sublimation method or an HVPE method or a liquid phase growth method can be applied.

また、基板の側面からの発光を増加させる観点からは、基板の厚さが100μm以上800μm以下であることが好ましい。
また、基板の側面には凸部または凹部が形成されていてもよい。この凸部の定義は、基板側面の最も面積の大きい面を基準面とし、この基準面から突出する部分であり、凹部の定義は、この基準面から凹んでいる部分である。
Further, from the viewpoint of increasing the light emission from the side surface of the substrate, the thickness of the substrate is preferably 100 μm or more and 800 μm or less.
Further, a convex portion or a concave portion may be formed on the side surface of the substrate. The definition of the convex portion is a portion protruding from the reference surface with the surface having the largest area on the side surface of the substrate as the reference surface, and the definition of the concave portion is a portion recessed from the reference surface.

基板の側面の凸部位置および凹部位置では、基板の側面と外部(例えば空気)との屈折率差が小さくなるため、凸部または凹部を設けることで界面の透過率を向上させることができる。また、基板の側面に凸部または凹部を設けることにより、光の入射角と透過率の関係を変化させ、光取り出し効率を向上させることができる。
凸部の基準面からの突出高さは1μm以上であることが好ましい。凹部の深さ(基準面から底面までの距離)は1μm以上が好ましい。
At the convex and concave positions on the side surface of the substrate, the difference in refractive index between the side surface of the substrate and the outside (for example, air) becomes small, so that the transmittance at the interface can be improved by providing the convex or concave portion. Further, by providing the convex portion or the concave portion on the side surface of the substrate, the relationship between the incident angle of light and the transmittance can be changed, and the light extraction efficiency can be improved.
The protruding height of the convex portion from the reference surface is preferably 1 μm or more. The depth of the recess (distance from the reference surface to the bottom surface) is preferably 1 μm or more.

凸部および凹部の形状は特に制限されず、針状であっても、円錐台であっても、角錐であってもよい。
基板の側面に存在する凸部または凹部の数は一つでも複数でもよいが、光取り出し効率を向上させる観点から複数である方が好ましく、複数の凸部または凹部が基板側面に均等に分散していることがより好ましい。凸部または凹部は、基板の側面のうち少なくとも一つの側面に形成されていればよいが、光取り出し効率を向上させる観点から、基板の全側面に形成されていることが好ましい。
The shapes of the convex portions and the concave portions are not particularly limited, and may be needle-shaped, truncated cones, or pyramids.
The number of convex portions or concave portions existing on the side surface of the substrate may be one or a plurality, but it is preferable that the number of convex portions or concave portions is a plurality from the viewpoint of improving the light extraction efficiency, and the plurality of convex portions or concave portions are evenly dispersed on the side surface of the substrate. Is more preferable. The protrusions or recesses may be formed on at least one side surface of the substrate, but are preferably formed on all side surfaces of the substrate from the viewpoint of improving light extraction efficiency.

<下地層>
一態様の紫外線発光素子を構成する下地層は窒化物半導体からなり、基板の主面上に形成されている。
下地層をなす窒化物半導体は、高い発光効率を実現する観点から、AlN,GaN,InNの混晶であることが望ましい。下地層をなす窒化物半導体には、Nの他に、P、As、SbなどのN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が混入していてもよい。下地層をなす窒化物半導体の導電性は特に限定されない。
<Underground layer>
The base layer constituting the ultraviolet light emitting device of one aspect is made of a nitride semiconductor and is formed on the main surface of the substrate.
The nitride semiconductor forming the base layer is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of achieving high luminous efficiency. In addition to N, the nitride semiconductor forming the base layer may contain Group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. Good. The conductivity of the nitride semiconductor forming the base layer is not particularly limited.

下地層と第一クラッド層との界面はステップ面及びテラス面を有している。
下地層と第一クラッド層は、窒化物半導体の組成が変化する境目を基準として区別することが可能である。組成の変化を観察する方法としては、二次イオン質量分析法(SIMS)やX線光電子分光法(XPS)を用いる事ができる。他の層同士の区別にも同様の方法を用いる事が可能である。
The interface between the base layer and the first clad layer has a step surface and a terrace surface.
The base layer and the first clad layer can be distinguished from each other based on the boundary where the composition of the nitride semiconductor changes. As a method for observing the change in composition, secondary ion mass spectrometry (SIMS) or X-ray photoelectron spectroscopy (XPS) can be used. A similar method can be used to distinguish between other layers.

<第一クラッド層>
一態様の紫外線発光素子を構成する第一クラッド層は、導電性を有する窒化物半導体層からなり、下地層上に形成されている。第一クラッド層が有する結晶欠陥密度のうち、基板の主面とのなす角度が5°以上50°以下である線欠陥の密度と、前記主面とのなす角度が5°以上50°以下である面欠陥の密度と、の総和は、1×10cm−2以上1×1010cm−2以下である。
<First clad layer>
The first clad layer constituting the ultraviolet light emitting device of one embodiment is made of a conductive nitride semiconductor layer and is formed on the base layer. Among the crystal defect densities of the first clad layer, the density of line defects formed by an angle of 5 ° or more and 50 ° or less with the main surface of the substrate and the angle formed by the main surface of the substrate are 5 ° or more and 50 ° or less. The sum of the density of certain surface defects is 1 × 10 8 cm -2 or more and 1 × 10 10 cm -2 or less.

第一クラッド層をなす窒化物半導体は、高い発光効率を実現する観点から、AlN,GaN,InNの混晶であることが望ましい。第一クラッド層をなす窒化物半導体には、Nの他に、P、As、SbなどのN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が混入していてもよい。
また、第一クラッド層と第二クラッド層は、互いに異なる導電性を有する窒化物半導体からなる層である。n型半導体の方がp型半導体より結晶性に優れ、発光層への影響が低いという観点から、第一クラッド層の導電性がn型で、第二クラッド層の導電性がp型である事が好ましい。
The nitride semiconductor forming the first clad layer is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of achieving high luminous efficiency. In addition to N, group V elements other than N such as P, As, and Sb and impurities such as C, H, F, O, Mg, and Si are mixed in the nitride semiconductor forming the first clad layer. You may.
Further, the first clad layer and the second clad layer are layers made of nitride semiconductors having different conductivitys from each other. From the viewpoint that the n-type semiconductor has better crystallinity than the p-type semiconductor and has a lower effect on the light emitting layer, the conductivity of the first clad layer is n-type and the conductivity of the second clad layer is p-type. Things are preferable.

また、紫外線発光素子の発光波長を深紫外領域の波長(280nm以下)としたい場合には、第一クラッド層を形成する材料はAlGaNであることが好ましい。第一クラッド層がAlGaNで形成されることで、深紫外領域のバンドギャップエネルギーに対応する材料を発光層として形成する際に、その結晶性を高め、発光効率を向上させることが可能となる。 Further, when the emission wavelength of the ultraviolet light emitting element is desired to be a wavelength in the deep ultraviolet region (280 nm or less), the material for forming the first clad layer is preferably AlGaN. By forming the first clad layer with AlGaN, when a material corresponding to the bandgap energy in the deep ultraviolet region is formed as a light emitting layer, its crystallinity can be enhanced and the luminous efficiency can be improved.

<発光層>
一態様の紫外線発光素子を構成する発光層は、窒化物半導体からなり、第一クラッド層上に形成されている。発光層が有する結晶欠陥密度のうち、基板の主面とのなす角度が5°以上50°以下である線欠陥の密度と、基板の主面とのなす角度が5°以上50°以下である面欠陥の密度と、の総和は、1×10cm−2より小さい。
<Light emitting layer>
The light emitting layer constituting the ultraviolet light emitting device of one aspect is made of a nitride semiconductor and is formed on the first clad layer. Among the crystal defect densities of the light emitting layer, the density of line defects formed by an angle of 5 ° or more and 50 ° or less with the main surface of the substrate and the angle formed by the main surface of the substrate are 5 ° or more and 50 ° or less. The sum of the density of surface defects is less than 1 × 10 8 cm -2 .

発光層をなす窒化物半導体は、高い発光効率を実現する観点からAlN,GaN,InNの混晶であることが望ましい。発光層には、Nの他に、P、As、SbなどのN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が混入していてもよい。また、量子井戸構造でも単層構造でもよいが、高い発光効率を実現する観点から、少なくとも1つの井戸構造を有していることが望ましい。
また、紫外線発光素子の発光波長を深紫外領域の波長(280nm以下)としたい場合には、発光層をなす窒化物半導体はAlGaNであることが好ましい。また、発光効率を高める観点から、発光層は、AlGaNからなる量子井戸層とAlNからなる電子バリア層とからなる多重量子井戸構造(MQW)を有することが好ましい。
The nitride semiconductor forming the light emitting layer is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of achieving high luminous efficiency. In addition to N, the light emitting layer may contain Group V elements other than N such as P, As, and Sb, and impurities such as C, H, F, O, Mg, and Si. Further, a quantum well structure or a single-layer structure may be used, but it is desirable to have at least one well structure from the viewpoint of achieving high luminous efficiency.
Further, when the emission wavelength of the ultraviolet light emitting device is desired to be a wavelength in the deep ultraviolet region (280 nm or less), the nitride semiconductor forming the light emitting layer is preferably AlGaN. Further, from the viewpoint of increasing the luminous efficiency, the light emitting layer preferably has a multiple quantum well structure (MQW) composed of a quantum well layer made of AlGaN and an electron barrier layer made of AlN.

<第二クラッド層>
一態様の紫外線発光素子を構成する第二クラッド層は、第一クラッド層とは異なる導電性を有する窒化物半導体からなり、発光層上に形成されている。第二クラッド層をなす窒化物半導体は、高い発光効率を実現する観点から、AlN,GaN,InNの混晶であることが望ましい。
第二クラッド層をなす窒化物半導体には、Nの他に、P、As、SbなどのN以外のV族元素や、C、H、F、O、Mg、Siなどの不純物が混入していてもよい。n型半導体の方がp型半導体より結晶性に優れ、発光層への影響が低いという観点から、第一クラッド層の導電性がn型で、第二クラッド層の導電性がp型である事が好ましい。
<Second clad layer>
The second clad layer constituting the ultraviolet light emitting device of one aspect is made of a nitride semiconductor having a conductivity different from that of the first clad layer, and is formed on the light emitting layer. The nitride semiconductor forming the second clad layer is preferably a mixed crystal of AlN, GaN, and InN from the viewpoint of achieving high luminous efficiency.
In addition to N, group V elements other than N such as P, As, and Sb and impurities such as C, H, F, O, Mg, and Si are mixed in the nitride semiconductor forming the second clad layer. You may. From the viewpoint that the n-type semiconductor has better crystallinity than the p-type semiconductor and has a lower effect on the light emitting layer, the conductivity of the first clad layer is n-type and the conductivity of the second clad layer is p-type. Things are preferable.

<電極>
一態様の紫外線発光素子は、さらに電極(n型電極またはp型電極、あるいは両方)を備えていてもよい。
n型電極としては、Al,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zrなどの金属、あるいはこれらの混晶、あるいはITOやGaなどの導電性酸化物等を用いることができる。また、n型電極は、第一クラッド層及び第二クラッド層のうち、導電性がn型の層とコンタクトするように形成される事が好ましい。
<Electrode>
The ultraviolet light emitting device of one embodiment may further include an electrode (n-type electrode, p-type electrode, or both).
Examples of the n-type electrode include metals such as Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Zr, or These mixed crystals, or conductive oxides such as ITO and Ga 2 O 3 can be used. Further, the n-type electrode is preferably formed so that the conductivity of the first clad layer and the second clad layer is in contact with the n-type layer.

p型電極としては、Ni,Au,Pt,Ag,Rh,Pd,Pt,Cuなどの金属、あるいはこれらの混晶、あるいはITOやGaなどの導電性酸化物等を用いることができる。また、p型電極は、第一クラッド層及び第二クラッド層のうち、導電性がp型の層とコンタクトするように形成される事が好ましい。
電極の形成方法としては、抵抗加熱蒸着、電子銃蒸着、スパッタなどが挙げられるが、この限りでは無い。電極は単層でも、積層であってもよく、また層形成後に酸素や窒素、空気雰囲気などで熱処理を行ってもよい。
As the p-type electrode, a metal such as Ni, Au, Pt, Ag, Rh, Pd, Pt, Cu, a mixed crystal thereof, or a conductive oxide such as ITO or Ga 2 O 3 can be used. .. Further, the p-type electrode is preferably formed so that the conductivity of the first clad layer and the second clad layer is in contact with the p-type layer.
Examples of the electrode forming method include, but are not limited to, resistance heating vapor deposition, electron gun vapor deposition, and sputtering. The electrode may be a single layer or a laminated layer, or may be heat-treated with oxygen, nitrogen, an air atmosphere or the like after the layer is formed.

〔紫外線照射モジュール〕
本発明の紫外線照射モジュールは、本発明の紫外線発光素子を備えている。
本発明の紫外線発光素子は、各種の装置に適用可能である。
本発明の紫外線発光素子は、紫外線ランプが用いられている既存のすべての装置に適用・置換可能である。特に、波長280nm以下の深紫外線を用いている装置に適用可能である。
[Ultraviolet irradiation module]
The ultraviolet irradiation module of the present invention includes the ultraviolet light emitting element of the present invention.
The ultraviolet light emitting device of the present invention can be applied to various devices.
The ultraviolet light emitting device of the present invention can be applied to or replaced with all existing devices in which an ultraviolet lamp is used. In particular, it can be applied to an apparatus using deep ultraviolet rays having a wavelength of 280 nm or less.

本発明の紫外線発光素子は、例えば、医療・ライフサイエンス分野、環境分野、産業・工業分野、生活・家電分野、農業分野、その他分野の装置に適用可能である。本発明の紫外線発光素子は、薬品や化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・FPD・PCB・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。 The ultraviolet light emitting element of the present invention can be applied to devices in, for example, medical / life science fields, environmental fields, industrial / industrial fields, living / home appliances fields, agriculture fields, and other fields. The ultraviolet light emitting element of the present invention includes a chemical / chemical substance synthesis / decomposition device, a liquid / gas / solid (container, food, medical device, etc.) sterilizer, a semiconductor cleaning device, and a surface modification of a film / glass / metal. Quality equipment, exposure equipment for manufacturing semiconductors, FPDs, PCBs, and other electronic products, printing / coating equipment, adhesion / sealing equipment, transfer / molding equipment for films / patterns / mockups, banknotes / scratches / blood / chemical substances, etc. It can be applied to the measurement / inspection equipment of.

液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿および貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるが、この限りではない。 Examples of liquid sterilizers include automatic ice makers in refrigerators, ice trays and ice storage containers, water tanks for ice makers, freezers, ice makers, humidifiers, dehumidifiers, cold water tanks for water servers, hot water tanks, and flow paths. Piping, stationary water purifiers, portable water purifiers, water dispensers, water dispensers, wastewater treatment equipment, disposers, toilet drain traps, washing machines, dialysis water sterilization modules, peritoneal dialysis connector sterilizers, disaster water storage systems, etc. It can be mentioned, but this is not the case.

気体殺菌装置の例としては、空気清浄器、エアコン、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるが、この限りではない。
固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるが、この限りではない。
Examples of gas sterilizers include air purifiers, air conditioners, ceiling fans, floor and bedding vacuum cleaners, futon dryers, shoe dryers, washing machines, clothes dryers, indoor germicidal lamps, and storage ventilation. Examples include systems, shoe boxes, and tons, but this is not the case.
Examples of solid sterilizers (including surface sterilizers) include vacuum packers, conveyor belts, hand tool sterilizers for medical / dental / barber / beauty salons, toothbrushes, toothbrush holders, chopstick boxes, cosmetic pouches, etc. Examples include, but are not limited to, drainage ditch lids, toilet bowl local cleaners, toilet bowl lids, etc.

〔実施形態〕
以下、本発明を実施するための形態(以下、「実施形態」と称する。)について説明する。この実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、各部の材質、形状、構造、配置、寸法等を下記のものに特定するものでない。
この実施形態の紫外線発光素子は、基板、下地層、第一クラッド層、発光層、電子ブロック層、第二クラッド層、および二種類の電極を備えている。
[Embodiment]
Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described. This embodiment exemplifies a configuration for embodying the technical idea of the present invention, and does not specify the material, shape, structure, arrangement, dimensions, etc. of each part to the following.
The ultraviolet light emitting device of this embodiment includes a substrate, a base layer, a first clad layer, a light emitting layer, an electron block layer, a second clad layer, and two types of electrodes.

基板はサファイアからなる。下地層は、基板の主面上に形成された層であって、AlN(窒化物半導体)からなる。第一クラッド層は、下地層上に形成された層であって、n型AlGaN(導電性を有する窒化物半導体)からなる。発光層は、第一クラッド層上に形成された層であって、AlGaN/AlNの多重量子井戸構造を有する(窒化物半導体からなる)。電子ブロック層はAlGaNからなる。
第二クラッド層は、発光層上に形成された層であって、p型GaN(第一クラッド層とは異なる導電性を有する窒化物半導体層)からなる。二種類の電極は、n型AlGaNからなる第一クラッド層上に形成されたn型電極と、p型GaNからなる第二クラッド層層上に形成されたp型電極である。
The substrate is made of sapphire. The base layer is a layer formed on the main surface of the substrate and is made of AlN (nitride semiconductor). The first clad layer is a layer formed on the base layer and is made of n-type AlGaN (a conductive nitride semiconductor). The light emitting layer is a layer formed on the first clad layer and has an AlGaN / AlN multiple quantum well structure (composed of a nitride semiconductor). The electron block layer is made of AlGaN.
The second clad layer is a layer formed on the light emitting layer and is made of p-type GaN (nitride semiconductor layer having a conductivity different from that of the first clad layer). The two types of electrodes are an n-type electrode formed on the first clad layer made of n-type AlGaN and a p-type electrode formed on the second clad layer layer made of p-type GaN.

下地層と前記第一クラッド層との界面はステップ面およびテラス面を有する。第一クラッド層の傾斜欠陥量は1×10cm−2以上1×1010cm−2以下であり、発光層の傾斜欠陥量は1×10cm−2より小さく、発光層の垂直欠陥量は第一クラッド層の垂直欠陥量よりも小さく、発光層の前記垂直欠陥量は1×10cm−2以下である。
この実施形態の紫外線発光素子によれば、上述の構成を有することにより、高い発光効率を実現できる。また、汎用性が高いサファイア基板を用いているため、製造コストが低減できる。
The interface between the base layer and the first clad layer has a step surface and a terrace surface. The amount of tilt defects in the first clad layer is 1 × 10 8 cm- 2 or more and 1 × 10 10 cm- 2 or less, the amount of tilt defects in the light emitting layer is smaller than 1 × 10 8 cm- 2 , and vertical defects in the light emitting layer. The amount is smaller than the amount of vertical defects in the first clad layer, and the amount of vertical defects in the light emitting layer is 1 × 10 9 cm- 2 or less.
According to the ultraviolet light emitting device of this embodiment, high luminous efficiency can be realized by having the above-mentioned configuration. Moreover, since a highly versatile sapphire substrate is used, the manufacturing cost can be reduced.

上記実施形態の紫外線発光素子と同じ層構成を有する紫外線発光素子として、以下に示す実施例1〜5および比較例1〜5の紫外線発光素子を作製した。つまり、実施例1〜5、比較例1〜5の紫外線発光素子は、基板、下地層、第一クラッド層、発光層、電子ブロック層、第二クラッド層、および二種類の電極を備えている。
[実施例1]
先ず、厚さが450μmの平板状で、オフ角が0.2°のc面サファイア基板を1050℃以上の水素分雰囲気下でアニール処理した。次に、有機金属気相成長(MOCVD)装置を用い、先ず、このサファイア基板の平板面(主面)上に、厚さ2000nmのAlN層(下地層)を形成した。Al原料としてトリメチルアルミニウム(TMAl)を、N原料としてアンモニア(NH)を用いた。成膜条件は、基板表面温度を1200℃、V/IIIを50、真空度を50hPa、成長レートを0.50μm/hrに設定した。
As the ultraviolet light emitting element having the same layer structure as the ultraviolet light emitting element of the above embodiment, the ultraviolet light emitting elements of Examples 1 to 5 and Comparative Examples 1 to 5 shown below were produced. That is, the ultraviolet light emitting elements of Examples 1 to 5 and Comparative Examples 1 to 5 include a substrate, a base layer, a first clad layer, a light emitting layer, an electron block layer, a second clad layer, and two types of electrodes. ..
[Example 1]
First, a c-plane sapphire substrate having a thickness of 450 μm and an off angle of 0.2 ° was annealed in a hydrogen atmosphere of 1050 ° C. or higher. Next, using an organometallic vapor phase growth (MOCVD) apparatus, first, an AlN layer (underlayer) having a thickness of 2000 nm was formed on the flat plate surface (main surface) of the sapphire substrate. Trimethylaluminum (TMAl) was used as the Al raw material, and ammonia (NH 3 ) was used as the N raw material. The film forming conditions were set to a substrate surface temperature of 1200 ° C., V / III of 50, a degree of vacuum of 50 hPa, and a growth rate of 0.50 μm / hr.

次に、このAlN層上に、第一クラッド層として、Siを不純物として用いたn型AlGaN層(Al=60%)を、厚さ2000nmで形成した。Al原料としてトリメチルアルミニウム(TMAl)を、Ga原料としてトリエチルガリウム(TEGa)を、N原料としてアンモニア(NH)を、Si原料としてモノシラン(SiH)を用いた。成膜条件は、基板表面温度を1100℃、真空度を50hPa、V/III比を3000、成長レートを0.8μm/hrに設定した。 Next, an n-type AlGaN layer (Al = 60%) using Si as an impurity was formed on the AlN layer as the first clad layer at a thickness of 2000 nm. Trimethylaluminum (TMAl) as an Al raw material, triethyl gallium (TEGa) as a Ga material, ammonia (NH 3) as a N raw material were used monosilane (SiH 3) as the Si raw material. The film forming conditions were set to a substrate surface temperature of 1100 ° C., a degree of vacuum of 50 hPa, a V / III ratio of 3000, and a growth rate of 0.8 μm / hr.

次に、このn型AlGaN層上に、AlGaN(量子井戸層)とAlN(電子バリア層)とからなる多重量子井戸構造の発光層を成膜した。具体的には、AlGaN(Al=52%)を厚さ1.5nmで、AlNを厚さ6nmで、交互に三層積層させた。各原料は上記と同じものを用いた。成膜条件は、V/III比を5000、真空度を50hPa、量子井戸層の成長レートを0.18μm/hr、電子バリア層の成長レートを0.15μm/hrに設定した。 Next, a light emitting layer having a multiple quantum well structure composed of AlGaN (quantum well layer) and AlN (electron barrier layer) was formed on the n-type AlGaN layer. Specifically, three layers of AlGaN (Al = 52%) having a thickness of 1.5 nm and AlN having a thickness of 6 nm were alternately laminated. The same raw materials as above were used. The film forming conditions were set to a V / III ratio of 5000, a degree of vacuum of 50 hPa, a growth rate of the quantum well layer of 0.18 μm / hr, and a growth rate of the electron barrier layer of 0.15 μm / hr.

次に、この発光層の上に、AlGaN(Al=85%)からなる電子ブロック層を厚さ10nmで形成した。各原料は上記と同じものを用いた。成膜条件は、基板表面温度を1080℃、真空度を50hPa、V/III比を3000、成長レートを1μm/hrに設定した。
次に、この電子ブロック層の上に、第二クラッド層として、Mgを不純物として用いたp型GaN層を、厚さ200nmで成膜した。Mg原料としてビス(シクロペンタジエニル)マグネシウム(CpMg)を用いた。これ以外の原料は上記と同じものを用いた。成膜条件は、基板表面温度を1040℃、真空度を100hPa、V/III比を4000、成長レートを1.2μm/hrに設定した。
Next, an electron block layer made of AlGaN (Al = 85%) was formed on the light emitting layer with a thickness of 10 nm. The same raw materials as above were used. The film forming conditions were set to a substrate surface temperature of 1080 ° C., a degree of vacuum of 50 hPa, a V / III ratio of 3000, and a growth rate of 1 μm / hr.
Next, a p-type GaN layer using Mg as an impurity was formed as a second clad layer on the electron block layer to a thickness of 200 nm. Bis (cyclopentadienyl) magnesium (Cp 2 Mg) was used as a raw material for Mg. The same raw materials as above were used as the other raw materials. The film forming conditions were set to a substrate surface temperature of 1040 ° C., a degree of vacuum of 100 hPa, a V / III ratio of 4000, and a growth rate of 1.2 μm / hr.

このようにして、サファイア基板に複数の窒化物半導体層が積層された物体(分割により複数の紫外線発光素子とされる物体)を得た。この物体をドライエッチングすることで、n型AlGaN層の一部を露出させ、露出したn型AlGaN層上に、Ti,Al,Ni,Auを含む合金電極(n型電極に相当)を形成した。また、p型GaN層上には、Ni,Auを含む合金電極(p型電極に相当)を形成した。 In this way, an object in which a plurality of nitride semiconductor layers are laminated on a sapphire substrate (an object in which a plurality of ultraviolet light emitting elements are formed by division) is obtained. By dry etching this object, a part of the n-type AlGaN layer was exposed, and an alloy electrode containing Ti, Al, Ni, and Au (corresponding to the n-type electrode) was formed on the exposed n-type AlGaN layer. .. Further, an alloy electrode containing Ni and Au (corresponding to the p-type electrode) was formed on the p-type GaN layer.

次に、サファイア基板の裏面(主面と反対側の平板面)を、厚さが200μmになるように研削した後に、ダイシングにより、基板の平板面に垂直な複数の面で切断した。これにより、紫外線発光素子の小片を複数得た。
得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は2.2mWであった。
Next, the back surface of the sapphire substrate (the flat plate surface opposite to the main surface) was ground to a thickness of 200 μm, and then cut by dicing on a plurality of surfaces perpendicular to the flat plate surface of the substrate. As a result, a plurality of small pieces of the ultraviolet light emitting element were obtained.
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 2.2 mW.

この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、前述の<結晶欠陥密度の測定方法>に従って、定義1に基づく傾斜欠陥量(以下、単に「傾斜欠陥量」と称する。)および定義2に基づく垂直欠陥量(以下、単に「垂直欠陥量」と称する。)を調べたところ、AlN層(下地層)には角度5°以上50°以下の線欠陥及び面欠陥は観察されなかった。つまり、下地層の傾斜欠陥量は0であった。なお、下地層の観察範囲は、厚さ方向で第一クラッド層との界面側の部分とした。
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, according to the above-mentioned <method for measuring crystal defect density>, the amount of inclined defects based on Definition 1 (hereinafter, simply referred to as “inclined defect amount”) and the amount of vertical defects based on Definition 2 (hereinafter, simply “vertical defect amount”). As a result, no line defects or surface defects having an angle of 5 ° or more and 50 ° or less were observed in the AlN layer (underlayer). That is, the amount of inclination defects in the base layer was 0. The observation range of the base layer was the portion on the interface side with the first clad layer in the thickness direction.

n型AlGaN層(第一クラッド層)には、基板主面に対してなす角が5°以上50°以下の線欠陥及び面欠陥が存在し、それらの欠陥密度の総和(傾斜欠陥量)は3×10cm−2であった。また、n型AlGaN層(第一クラッド層)には、基板主面に対してなす角が75°以上90°以下の線欠陥及び面欠陥が存在し、それらの欠陥密度の総和(垂直欠陥量)は7×10cm−2であった。 The n-type AlGaN layer (first clad layer) has line defects and surface defects having an angle of 5 ° or more and 50 ° or less with respect to the main surface of the substrate, and the total defect density (inclination defect amount) is It was 3 × 10 8 cm- 2 . Further, the n-type AlGaN layer (first clad layer) has line defects and surface defects having an angle of 75 ° or more and 90 ° or less with respect to the main surface of the substrate, and the sum of their defect densities (vertical defect amount). ) Was 7 × 10 8 cm- 2 .

発光層(AlGaN/AlNからなる多重量子井戸構造層)には、基板主面に対してなす角が5°以上50°以下の線欠陥及び面欠陥が存在し、それらの欠陥密度の総和(傾斜欠陥量)は1×10cm−2であった。また、発光層には、基板主面に対してなす角が75°以上90°以下の線欠陥密度及び面欠陥密度が存在し、それらの欠陥密度の総和(垂直欠陥量)は3×10cm−2であった。 The light emitting layer (multi-quantum well structure layer made of AlGaN / AlN) has line defects and surface defects having an angle of 5 ° or more and 50 ° or less with respect to the main surface of the substrate, and the sum of the defect densities (inclinations). The amount of defects) was 1 × 10 6 cm- 2 . Further, the light emitting layer has a line defect density and a surface defect density having an angle of 75 ° or more and 90 ° or less with respect to the main surface of the substrate, and the total of these defect densities (vertical defect amount) is 3 × 108. It was cm- 2 .

[実施例2]
AlN層(下地層)の成膜条件の基板表面温度を1230℃、成長レートを0.48μm/hrに設定した。n型AlGaN層(第一クラッド層)の成膜条件のV/III比を5000、成長レートを0.5μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Example 2]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1230 ° C., and the growth rate was set to 0.48 μm / hr. The V / III ratio of the film formation conditions of the n-type AlGaN layer (first clad layer) was set to 5000, and the growth rate was set to 0.5 μm / hr. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は2.8mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は8×10cm−2、垂直欠陥量は5×10cm−2であり、発光層の傾斜欠陥量は3×10cm−2であり、垂直欠陥量は1×10cm−2であった。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 2.8 mW.
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 8 × 10 8 cm- 2 , and the vertical defect. The amount was 5 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 3 × 10 6 cm- 2 , and the amount of vertical defects was 1 × 10 8 cm- 2 .

[実施例3]
AlN層(下地層)の成膜条件の基板表面温度を1270℃、成長レートを0.45μm/hrに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1080℃に、V/III比を1500、成長レートを1.2μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は1.5mWであった。
[Example 3]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1270 ° C., and the growth rate was set to 0.45 μm / hr. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1080 ° C., the V / III ratio was set to 1500, and the growth rate was set to 1.2 μm / hr. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 1.5 mW.

この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は2×10cm−2、垂直欠陥量は8×10cm−2であり、発光層の傾斜欠陥量は1×10cm−2であり、垂直欠陥量は4×10cm−2であった。
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 2 × 10 9 cm- 2 , and the vertical defect. The amount was 8 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 1 × 10 7 cm- 2 , and the amount of vertical defects was 4 × 10 8 cm- 2 .

[実施例4]
AlN層(下地層)の成膜条件の基板表面温度を1300℃、成長レートを0.38μm/hrに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1050℃に、V/III比を1000、成長レートを1.5μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Example 4]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1300 ° C., and the growth rate was set to 0.38 μm / hr. The substrate surface temperature of the n-type AlGaN layer (first clad layer) under the film forming conditions was set to 1050 ° C., the V / III ratio was set to 1000, and the growth rate was set to 1.5 μm / hr. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は1.1mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は6×10cm−2、垂直欠陥量は8×10cm−2であり、発光層の傾斜欠陥量は3×10cm−2であり、垂直欠陥量は6×10cm−2であった。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 1.1 mW.
When a cross section perpendicular to the main surface of the substrate of the ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). A clear macrostep (a structure in which a step surface and a terrace surface were continuously formed) was confirmed.
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 6 × 10 9 cm- 2 , and the vertical defect. The amount was 8 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 3 × 10 7 cm- 2 , and the amount of vertical defects was 6 × 10 8 cm- 2 .

[実施例5]
AlN層(下地層)の成膜条件の基板表面温度を1300℃に、V/III比を30に、成長レートを0.38μm/hrに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1050℃に、V/III比を800に、成長レートを1.6μm/hrに設定した。また、発光層の基板表面温度を1050℃に、V/III比を2000に、量子井戸層の成長レートを0.23μm/hrに、電子バリア層の成長レートを0.18μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Example 5]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1300 ° C., the V / III ratio was set to 30, and the growth rate was set to 0.38 μm / hr. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1050 ° C., the V / III ratio was set to 800, and the growth rate was set to 1.6 μm / hr. Further, the substrate surface temperature of the light emitting layer was set to 1050 ° C., the V / III ratio was set to 2000, the growth rate of the quantum well layer was set to 0.23 μm / hr, and the growth rate of the electron barrier layer was set to 0.18 μm / hr. .. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は0.9mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は8×10cm−2、垂直欠陥量は2×10cm−2であり、発光層の傾斜欠陥量は6×10cm−2であり、垂直欠陥量は1×10cm−2であった。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 0.9 mW.
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, the amount of inclination defects of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defects of the n-type AlGaN layer (first clad layer) was 8 × 10 9 cm- 2 , and vertical defects. The amount was 2 × 10 9 cm- 2 , the amount of tilt defects in the light emitting layer was 6 × 10 7 cm- 2 , and the amount of vertical defects was 1 × 10 9 cm- 2 .

[比較例1]
AlN層(下地層)の成膜条件の基板表面温度を1300℃に、V/III比を30に、成長レートを0.38μm/hrに、真空度を30hPaに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1080℃に、V/III比を300に、成長レートを1.8μm/hrに、真空度を30hPaに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Comparative Example 1]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1300 ° C., the V / III ratio was set to 30, the growth rate was set to 0.38 μm / hr, and the degree of vacuum was set to 30 hPa. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1080 ° C., the V / III ratio was set to 300, the growth rate was set to 1.8 μm / hr, and the degree of vacuum was set to 30 hPa. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は0.6mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 0.6 mW.
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).

また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は3×1010cm−2、垂直欠陥量は4×10cm−2であり、発光層の傾斜欠陥量は2×10cm−2であり、垂直欠陥量は6×10cm−2であった。 Further, the amount of inclination defects of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defects of the n-type AlGaN layer (first clad layer) was 3 × 10 10 cm- 2 , and vertical defects. The amount was 4 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 2 × 10 8 cm- 2 , and the amount of vertical defects was 6 × 10 8 cm- 2 .

[比較例2]
AlN層(下地層)の成膜条件の基板表面温度を1300℃に、V/III比を30に、成長レートを0.38μm/hrに、真空度を30hPaに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1050℃に、V/III比を5000に、成長レートを2.1μm/hrに、真空度を150hPaに設定した。また、発光層の基板表面温度を1050℃に、V/III比を1000に、量子井戸層の成長レートを0.27μm/hrに、電子バリア層の成長レートを0.19μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Comparative Example 2]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1300 ° C., the V / III ratio was set to 30, the growth rate was set to 0.38 μm / hr, and the degree of vacuum was set to 30 hPa. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1050 ° C., the V / III ratio was set to 5000, the growth rate was set to 2.1 μm / hr, and the degree of vacuum was set to 150 hPa. Further, the substrate surface temperature of the light emitting layer was set to 1050 ° C., the V / III ratio was set to 1000, the growth rate of the quantum well layer was set to 0.27 μm / hr, and the growth rate of the electron barrier layer was set to 0.19 μm / hr. .. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は0.4mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 0.4 mW.
When a cross section perpendicular to the main surface of the substrate of the ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). A clear macrostep (a structure in which a step surface and a terrace surface were continuously formed) was confirmed.

また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は2×1010cm−2、垂直欠陥量は5×10cm−2であり、発光層の傾斜欠陥量は1×10cm−2であり、垂直欠陥量は2×10cm−2であった。 Further, the amount of inclination defects of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defects of the n-type AlGaN layer (first clad layer) was 2 × 10 10 cm- 2 , and vertical defects. The amount was 5 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 1 × 10 9 cm- 2 , and the amount of vertical defects was 2 × 10 9 cm- 2 .

[比較例3]
AlN層(下地層)の成膜条件の基板表面温度を1180℃に、成長レートを1.0μm/hrに設定し、膜厚を800nmとした。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1080℃に、V/III比を500に、成長レートを1.6μm/hrに設定した。また、発光層の基板表面温度を1030℃に、V/III比を500に、量子井戸層の成長レートを0.40μm/hrに、電子バリア層の成長レートを0.30μm/hrに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Comparative Example 3]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1180 ° C., the growth rate was set to 1.0 μm / hr, and the film thickness was set to 800 nm. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1080 ° C., the V / III ratio was set to 500, and the growth rate was set to 1.6 μm / hr. Further, the substrate surface temperature of the light emitting layer was set to 1030 ° C., the V / III ratio was set to 500, the growth rate of the quantum well layer was set to 0.40 μm / hr, and the growth rate of the electron barrier layer was set to 0.30 μm / hr. .. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光は確認されなかった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は8×10cm−2、垂直欠陥量は5×10cm−2であり、発光層の傾斜欠陥量は5×10cm−2であり、垂直欠陥量は8×10cm−2であった。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, no light emission with a peak wavelength of 265 nm was confirmed.
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 8 × 10 8 cm- 2 , and the vertical defect. The amount was 5 × 10 9 cm- 2 , the amount of tilt defects in the light emitting layer was 5 × 10 8 cm- 2 , and the amount of vertical defects was 8 × 10 9 cm- 2 .

[比較例4]
AlN層(下地層)の成膜条件の基板表面温度を1130℃に、V/III比を100に、成長レートを0.30μm/hrに、真空度を30hPaに設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は0.6mWであった。
[Comparative Example 4]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1130 ° C., the V / III ratio was set to 100, the growth rate was set to 0.30 μm / hr, and the degree of vacuum was set to 30 hPa. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 0.6 mW.

この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認された。
また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は9×10cm−2、垂直欠陥量は7×10cm−2であり、発光層の傾斜欠陥量は1×10cm−2であり、垂直欠陥量は3×10cm−2であった。
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). Was confirmed to have a clear macrostep (a structure in which a step surface and a terrace surface were continuously formed).
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 9 × 10 7 cm- 2 , and the vertical defect. The amount was 7 × 10 8 cm- 2 , the amount of tilt defects in the light emitting layer was 1 × 10 7 cm- 2 , and the amount of vertical defects was 3 × 10 8 cm- 2 .

[比較例5]
AlN層(下地層)の成膜条件の基板表面温度を1100℃に、V/III比を500に、成長レートを0.35μm/hrに設定した。n型AlGaN層(第一クラッド層)の成膜条件の基板表面温度を1080℃に、V/III比を300に、成長レートを1.8μm/hrに、真空度を30hPaに設定した。また、発光層の基板表面温度を1050℃に設定した。これ以外は実施例1と同じ方法で紫外線発光素子を得た。
[Comparative Example 5]
The substrate surface temperature under the film forming conditions of the AlN layer (underlayer) was set to 1100 ° C., the V / III ratio was set to 500, and the growth rate was set to 0.35 μm / hr. The substrate surface temperature under the film forming conditions of the n-type AlGaN layer (first clad layer) was set to 1080 ° C., the V / III ratio was set to 300, the growth rate was set to 1.8 μm / hr, and the degree of vacuum was set to 30 hPa. Further, the substrate surface temperature of the light emitting layer was set to 1050 ° C. An ultraviolet light emitting device was obtained by the same method as in Example 1 except for this.

得られた紫外線発光素子を電圧7.5V、電流100mAで駆動させたところ、ピーク波長265nmの発光が確認され、その発光強度は0.1mWであった。
この紫外線発光素子の基板の主面に垂直な断面を、透過型電子顕微鏡(TEM)を用いて観察したところ、AlN層(下地層)とn型AlGaN層(第一クラッド層)との界面には、明瞭なマクロステップ(ステップ面及テラス面が連続的に形成された構造)が確認されなかった。
When the obtained ultraviolet light emitting device was driven with a voltage of 7.5 V and a current of 100 mA, light emission with a peak wavelength of 265 nm was confirmed, and the light emission intensity was 0.1 mW.
When a cross section perpendicular to the main surface of the substrate of this ultraviolet light emitting element was observed using a transmission electron microscope (TEM), it was found at the interface between the AlN layer (base layer) and the n-type AlGaN layer (first clad layer). No clear macrostep (a structure in which a step surface and a terrace surface were continuously formed) was confirmed.

また、実施例1と同様に測定したAlN層(下地層)の傾斜欠陥量は0であり、n型AlGaN層(第一クラッド層)の傾斜欠陥量は1×10cm−2、垂直欠陥量は3×10cm−2であり、発光層の傾斜欠陥量は1×10cm−2であり、垂直欠陥量は5×10cm−2であった。
実施例1〜5および比較例1〜5の紫外線発光素子を構成する下地層、第一クラッド層、および発光層の各成膜条件を、下記の表1にまとめて示す。また、実施例1〜5および比較例1〜5の紫外線発光素子を構成する第一クラッド層と発光層が有する傾斜欠陥量と垂直欠陥量、下地層と第一クラッド層との界面にステップ面とテラス面があるかないかと、各紫外線発光素子の発光強度を、下記の表2にまとめて示す。
Further, the amount of inclination defect of the AlN layer (underlayer) measured in the same manner as in Example 1 was 0, the amount of inclination defect of the n-type AlGaN layer (first clad layer) was 1 × 10 6 cm- 2 , and the vertical defect. The amount was 3 × 10 9 cm- 2 , the amount of tilt defects in the light emitting layer was 1 × 10 6 cm- 2 , and the amount of vertical defects was 5 × 10 9 cm- 2 .
The film forming conditions of the base layer, the first clad layer, and the light emitting layer constituting the ultraviolet light emitting elements of Examples 1 to 5 and Comparative Examples 1 to 5 are summarized in Table 1 below. Further, the amount of inclined defects and the amount of vertical defects possessed by the first clad layer and the light emitting layer constituting the ultraviolet light emitting elements of Examples 1 to 5 and Comparative Examples 1 to 5, and the step surface at the interface between the base layer and the first clad layer. Table 2 below shows the emission intensity of each ultraviolet light emitting element, whether or not there is a terrace surface.

Figure 0006813308
Figure 0006813308

Figure 0006813308
Figure 0006813308

表2において、各例の構成のうち構成要件(2)(3)を満たしていない構成に下線を施した。つまり、実施例1〜5は構成要件(1)〜(3)を有する紫外線発光素子であり、比較例1〜4は構成要件(1)と(2)を有するが(3)を有さない紫外線発光素子であり、比較例5は構成要件(1) を有するが(2)と(3)を有さない紫外線発光素子である。
このように、構成要件(1)〜(3)を有する実施例1〜5の紫外線発光素子は、構成要件(2)および(3)のいずれかを有さない比較例1〜5の紫外線発光素子と比較して、発光効率が高くなることで高い発光強度が得られる。
In Table 2, the configurations of each example that do not meet the configuration requirements (2) and (3) are underlined. That is, Examples 1 to 5 are ultraviolet light emitting devices having constituent requirements (1) to (3), and Comparative Examples 1 to 4 have constituent requirements (1) and (2) but do not have (3). It is an ultraviolet light emitting element, and Comparative Example 5 is an ultraviolet light emitting element having the constituent requirement (1) but not having (2) and (3).
As described above, the ultraviolet light emitting devices of Examples 1 to 5 having the constituent requirements (1) to (3) do not have any of the constituent requirements (2) and (3). Higher emission intensity can be obtained by increasing the luminous efficiency as compared with the element.

Claims (8)

基板と、
前記基板の主面上に形成された窒化物半導体からなる下地層と、
前記下地層上に形成され、導電性を有する窒化物半導体からなる第一クラッド層と、
前記第一クラッド層上に形成され、窒化物半導体からなる発光層と、
前記発光層上に形成され、前記第一クラッド層とは異なる導電性を有する窒化物半導体からなる第二クラッド層と、
を備え、
前記下地層と前記第一クラッド層との界面はステップ面およびテラス面を有し、
前記第一クラッド層および前記発光層が有する結晶欠陥密度のうち、下記の定義1に基づく傾斜欠陥量および下記の定義2に基づく垂直欠陥量が、以下の条件1〜3を満たす紫外線発光素子。
定義1:前記主面に対する角度が5°以上50°以下である線欠陥の密度と、前記主面に対する角度が5°以上50°以下である面欠陥の密度と、の総和を、傾斜欠陥量と定義する。
定義2:前記主面に対する角度が75°以上90°以下である線欠陥の密度と、前記主面に対する角度が75°以上90°以下である面欠陥の密度と、の総和を、垂直欠陥量と定義する。
条件1:前記第一クラッド層の前記傾斜欠陥量は1×10cm−2以上1×1010cm−2以下である。
条件2:前記発光層の前記傾斜欠陥量は1×10cm−2より小さい。
条件3:前記発光層の前記垂直欠陥量は前記第一クラッド層の前記垂直欠陥量よりも小さい。
With the board
An underlayer made of a nitride semiconductor formed on the main surface of the substrate and
A first clad layer formed on the base layer and made of a conductive nitride semiconductor,
A light emitting layer formed on the first clad layer and made of a nitride semiconductor,
A second clad layer formed on the light emitting layer and made of a nitride semiconductor having a conductivity different from that of the first clad layer.
With
The interface between the base layer and the first clad layer has a step surface and a terrace surface.
An ultraviolet light emitting device in which, among the crystal defect densities of the first clad layer and the light emitting layer, the amount of inclined defects based on the following definition 1 and the amount of vertical defects based on the following definition 2 satisfy the following conditions 1 to 3.
Definition 1: The sum of the density of line defects whose angle with respect to the main surface is 5 ° or more and 50 ° or less and the density of surface defects whose angle with respect to the main surface is 5 ° or more and 50 ° or less is the amount of tilt defects. Is defined as.
Definition 2: The sum of the density of line defects whose angle with respect to the main surface is 75 ° or more and 90 ° or less and the density of surface defects whose angle with respect to the main surface is 75 ° or more and 90 ° or less is the vertical defect amount. Is defined as.
Condition 1: The amount of the inclination defect of the first clad layer is 1 × 10 8 cm- 2 or more and 1 × 10 10 cm- 2 or less.
Condition 2: The amount of the tilt defect of the light emitting layer is smaller than 1 × 10 8 cm- 2 .
Condition 3: The amount of vertical defects in the light emitting layer is smaller than the amount of vertical defects in the first clad layer.
前記発光層の前記垂直欠陥量は1×10cm−2以下である請求項1記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 1, wherein the amount of vertical defects in the light emitting layer is 1 × 10 9 cm- 2 or less. 前記下地層をなす窒化物半導体はAlNである請求項1または2記載の紫外線発光素子。 The ultraviolet light emitting device according to claim 1 or 2, wherein the nitride semiconductor forming the base layer is AlN. 前記第一クラッド層、前記発光層、および前記第二クラッド層をなす窒化物半導体は、AlおよびGaの少なくとも一つを含む窒化物半導体である請求項1〜3のいずれか一項に記載の紫外線発光素子。 The nitride semiconductor forming the first clad layer, the light emitting layer, and the second clad layer is a nitride semiconductor containing at least one of Al and Ga, according to any one of claims 1 to 3. Ultraviolet light emitting element. 前記第一クラッド層の導電性がn型であり、
前記第二クラッド層の導電性がp型である請求項1〜4の何れか一項に記載の紫外線発光素子。
The conductivity of the first clad layer is n-type,
The ultraviolet light emitting device according to any one of claims 1 to 4, wherein the second clad layer has a p-type conductivity.
前記基板はサファイア基板である請求項1〜5の何れか一項に記載の紫外線発光素子。 The ultraviolet light emitting element according to any one of claims 1 to 5, wherein the substrate is a sapphire substrate. 前記基板の厚さが100μm以上800μm以下である請求項1〜6の何れか一項に記載の紫外線発光素子。 The ultraviolet light emitting device according to any one of claims 1 to 6, wherein the thickness of the substrate is 100 μm or more and 800 μm or less. 請求項1〜7の何れか一項に記載の紫外線発光素子を備える紫外線照射モジュール。 An ultraviolet irradiation module including the ultraviolet light emitting element according to any one of claims 1 to 7.
JP2016169942A 2016-08-31 2016-08-31 Ultraviolet light emitting element and ultraviolet irradiation module Active JP6813308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169942A JP6813308B2 (en) 2016-08-31 2016-08-31 Ultraviolet light emitting element and ultraviolet irradiation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169942A JP6813308B2 (en) 2016-08-31 2016-08-31 Ultraviolet light emitting element and ultraviolet irradiation module

Publications (2)

Publication Number Publication Date
JP2018037539A JP2018037539A (en) 2018-03-08
JP6813308B2 true JP6813308B2 (en) 2021-01-13

Family

ID=61567722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169942A Active JP6813308B2 (en) 2016-08-31 2016-08-31 Ultraviolet light emitting element and ultraviolet irradiation module

Country Status (1)

Country Link
JP (1) JP6813308B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669848B2 (en) * 1998-09-16 2005-07-13 日亜化学工業株式会社 Nitride semiconductor laser device
JP3525773B2 (en) * 1998-12-02 2004-05-10 日亜化学工業株式会社 Nitride semiconductor substrate and nitride semiconductor device using the same
JP2006060164A (en) * 2004-08-24 2006-03-02 National Institute Of Advanced Industrial & Technology Nitride semiconductor device and method of growing nitride semiconductor crystal
TWI649895B (en) * 2010-04-30 2019-02-01 美國波士頓大學信託會 High-efficiency ultraviolet light-emitting diode with variable structure position
JP2014096460A (en) * 2012-11-08 2014-05-22 Panasonic Corp Ultraviolet semiconductor light emitting element and manufacturing method thereof
JP6252092B2 (en) * 2013-10-17 2017-12-27 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting device using the same
JP6408344B2 (en) * 2014-11-04 2018-10-17 Dowaエレクトロニクス株式会社 Group III nitride semiconductor epitaxial substrate and method for manufacturing the same, and group III nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JP2018037539A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US9184344B2 (en) Lighting-emitting device with nanostructured layer and method for fabricating the same
JP7049823B2 (en) Nitride semiconductor light emitting device
JP6813308B2 (en) Ultraviolet light emitting element and ultraviolet irradiation module
US10734225B2 (en) Nitride semiconductor substrate and method for manufacturing same
JP2017112313A (en) Ultraviolet light-emitting device and method of manufacturing ultraviolet light-emitting device
JP6998146B2 (en) Ultraviolet light emitting element and ultraviolet irradiation module
JP2021034509A (en) Ultraviolet light-emitting element
US11637221B2 (en) Nitride semiconductor element, nitride semiconductor light emitting element, ultraviolet light emitting element
JP2020167321A (en) Nitride semiconductor light-emitting device
JP7492885B2 (en) Ultraviolet light emitting device
JP7405554B2 (en) UV light emitting element
JP7388859B2 (en) nitride semiconductor device
JP2017168640A (en) Ultraviolet light-emitting element
JP2022051304A (en) Ultraviolet light-emitting element
JP7489269B2 (en) Ultraviolet light emitting device
WO2023163230A1 (en) Laser diode
JP2017139414A (en) Ultraviolet light-emitting element and device including the same
JP2023141196A (en) Method of manufacturing light-emitting element and light-emitting element
WO2024047917A1 (en) Laser diode
JP2023127193A (en) Ultraviolet light emitting element
JP2020068283A (en) Light receiving/emitting device
JP2023125769A (en) laser diode
JP2022149980A (en) Method for manufacturing laser diode, laser diode
JP2017143144A (en) Nitride semiconductor light-emitting element and ultraviolet irradiation module
JP2017175005A (en) Ultraviolet light-emitting element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201217

R150 Certificate of patent or registration of utility model

Ref document number: 6813308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150