JP6812314B2 - Railway system controls and methods - Google Patents

Railway system controls and methods Download PDF

Info

Publication number
JP6812314B2
JP6812314B2 JP2017141783A JP2017141783A JP6812314B2 JP 6812314 B2 JP6812314 B2 JP 6812314B2 JP 2017141783 A JP2017141783 A JP 2017141783A JP 2017141783 A JP2017141783 A JP 2017141783A JP 6812314 B2 JP6812314 B2 JP 6812314B2
Authority
JP
Japan
Prior art keywords
power storage
storage device
discharge
voltage
ground power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017141783A
Other languages
Japanese (ja)
Other versions
JP2019018824A (en
Inventor
努 宮内
努 宮内
宣克 田端
宣克 田端
加藤 哲也
哲也 加藤
小熊 賢司
賢司 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017141783A priority Critical patent/JP6812314B2/en
Publication of JP2019018824A publication Critical patent/JP2019018824A/en
Application granted granted Critical
Publication of JP6812314B2 publication Critical patent/JP6812314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、変電所などの電力供給設備からの電力供給を受けて動作する鉄道システムの制御装置及び方法に関する。 The present invention relates to a control device and method for a railway system that operates by receiving electric power from a power supply facility such as a substation.

電力の供給を受けて車両が走行するトロリーバスシステムや鉄道システムにおいて、電力の供給を担う電力供給設備の一部が動作不能になった場合、その他の稼働している電力供給設備の負荷が増大することが考えられる。 In a trolleybus system or railway system in which a vehicle runs under the supply of electric power, if a part of the electric power supply equipment responsible for supplying electric power becomes inoperable, the load on other operating electric power supply equipment increases. It is conceivable to do.

このような場合に、電力供給設備である変電所の過負荷状態を判定し、過負荷状態と判定したときに、同一電力網に存在する地上蓄電装置あるいは車両に備えた蓄電装置から放電を行うことで電力供給設備である変電所の保護動作を抑制し、電力供給設備を安定的に稼働させるシステムが、例えば特許文献1により開示されている。 In such a case, the overload state of the substation, which is the power supply facility, is determined, and when the overload state is determined, discharge is performed from the ground power storage device existing in the same power grid or the power storage device provided in the vehicle. For example, Patent Document 1 discloses a system in which the protection operation of a substation, which is a power supply facility, is suppressed and the power supply facility is operated stably.

特開2011−79454号公報Japanese Unexamined Patent Publication No. 2011-79454

しかしながら、特許文献1で述べている手法では、蓄電装置の充電量を見ておらず、蓄電装置の充電量がなくなった場合には、需要を満たせなくなる。特に、稼働している変電所数が、全体の半数以下となる場合には、この可能性は十分にある。その結果として、車両が駅間に停車することとなり、乗客サービスの低下へとつながる。このような事象を避けるために、稼働している電力供給設備および蓄電装置を最大限活用し、同一電力網の駅間に停車している車両全てを隣接の駅まで運ぶことが求められる。 However, in the method described in Patent Document 1, the charge amount of the power storage device is not checked, and when the charge amount of the power storage device is exhausted, the demand cannot be satisfied. This possibility is particularly high when the number of substations in operation is less than half of the total. As a result, the vehicle will stop between stations, leading to a decline in passenger service. In order to avoid such an event, it is required to make maximum use of the power supply equipment and the power storage device in operation and to carry all the vehicles stopped between stations of the same power grid to the adjacent station.

以上のことから本発明においては、電力供給設備の一部が動作不能になった場合に同一路線上の駅間に停車している車両を隣接の駅まで運転することを可能とする鉄道システムの制御装置及び方法を提供することを目的とする。 From the above, in the present invention, when a part of the power supply facility becomes inoperable, a railway system that enables a vehicle stopped between stations on the same line to be driven to an adjacent station. It is an object of the present invention to provide a control device and a method.

以上のことから本発明においては、「複数の変電所と地上蓄電装置から架線を介して車両に給電するための鉄道システムの制御装置であって、複数の変電所の稼働状況と電圧および地上蓄電装置の充電量を管理する電力管理装置と、電力管理装置からの放電電流指令に応じて放電を行う地上蓄電装置を備え、電力管理装置は、複数の変電所の一部が不稼働状態になった時に、地上蓄電装置に最も近い位置の稼働している変電所を抽出し、当該変電所の電圧に応じて地上蓄電装置に与える放電電流指令を定め、地上蓄電装置の放電量を決定することを特徴とする鉄道システムの制御装置」としたものである。 From the above, in the present invention, "a control device for a railway system for supplying power to a vehicle from a plurality of substations and a ground power storage device via an overhead wire, and the operating status, voltage, and ground power storage of the plurality of substations. Equipped with a power management device that manages the amount of charge of the device and a ground power storage device that discharges according to the discharge current command from the power management device, the power management device has some of the multiple substations in an inactive state. At that time, the operating substation closest to the ground power storage device is extracted, the discharge current command given to the ground power storage device is set according to the voltage of the substation, and the discharge amount of the ground power storage device is determined. It is a control device for a railway system characterized by the above.

また本発明においては、「複数の変電所と地上蓄電装置から架線を介して車両に給電するための鉄道システムの制御方法であって、地上蓄電装置は、通常運転状態において架線との間で電力の授受を行うとともに、複数の変電所の一部が不稼働状態になった時に、地上蓄電装置に最も近い位置の稼働している変電所における端子電圧に応じて放電量が決定されることを特徴とする鉄道システムの制御方法。」としたものである。 Further, in the present invention, "a control method for a railway system for supplying power to a vehicle from a plurality of substations and a ground power storage device via an overhead wire, and the ground power storage device is a method for supplying electric power to and from the overhead wire in a normal operation state. And when a part of multiple substations goes out of operation, the amount of discharge is determined according to the terminal voltage of the operating substation closest to the ground power storage device. It is a characteristic railway system control method. "

本発明によれば、同一路線上の駅間に停車している車両を隣接の駅まで運転することが可能となる。 According to the present invention, it is possible to drive a vehicle stopped between stations on the same line to an adjacent station.

本発明の実施例1に係る鉄道システムの制御装置の構成例を示す図。The figure which shows the structural example of the control device of the railroad system which concerns on Example 1 of this invention. 本発明の実施例1に係る電力管理装置105の構成例を示す図。The figure which shows the structural example of the electric power management apparatus 105 which concerns on Example 1 of this invention. 本発明の実施例1に係る電力管理装置内の放電判定部201の処理フロー例を示す図。The figure which shows the processing flow example of the discharge determination part 201 in the power management apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る地上蓄電装置の充電量に対する放電開始電圧VXおよび放電継続判定電圧VCのグラフの例を示す図。The figure which shows the example of the graph of the discharge start voltage VX and the discharge continuation determination voltage VC with respect to the charge amount of the ground power storage device which concerns on Example 1 of this invention. 本発明の実施例1に係る放電電流指令決定部202の処理内容例を示す図。The figure which shows the processing content example of the discharge current command determination part 202 which concerns on Example 1 of this invention. 本発明の制御を鉄道システムに適用した場合の時々刻々の状態を示す図。The figure which shows the state from moment to moment when the control of this invention is applied to a railway system. 本発明の実施例2に係る鉄道システムの制御装置の構成例を示す図。The figure which shows the structural example of the control device of the railway system which concerns on Example 2 of this invention. 本発明の実施例2に係る電力管理装置105の構成例を示す図。The figure which shows the structural example of the electric power management apparatus 105 which concerns on Example 2 of this invention. 本発明の実施例2に係る電力管理装置内の放電判定部201の処理フロー例を示す図。The figure which shows the processing flow example of the discharge determination part 201 in the power management apparatus which concerns on Example 2 of this invention. 本発明の実施例2に係る地上蓄電装置の充電量に対する放電開始電圧VXおよび放電継続判定電圧VCのグラフの例を示す図。The figure which shows the example of the graph of the discharge start voltage VX and the discharge continuation determination voltage VC with respect to the charge amount of the ground power storage device which concerns on Example 2 of this invention.

以下本発明の実施例について図面を用いて詳細に説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

図1は本発明を実現するための鉄道システムの制御装置の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a control device of a railway system for realizing the present invention.

図1の鉄道システムの制御装置は、同一電力網を走行する複数の車両101A、101B、101C(以下、車両101と記載したものはこれらの総称とする)に対して架線102を経由して電力を供給する変電所103A、103B、103C、103D(以下、変電所103と記載したものはこれらの総称とする)および電力の授受を行う地上蓄電装置104と、変電所103A、103B、103C、103Dの状態情報151A、151B、151C、151D(以下、状態情報151と記載したものはこれらの総称とする)、地上蓄電装置104の電圧および充電量情報152を基に、地上蓄電装置104に対する放電電流153を決定する電力管理装置105で構成される。状態情報151には、各変電所103の稼働状態と電圧が含まれる。 The control device of the railway system of FIG. 1 supplies electric power to a plurality of vehicles 101A, 101B, 101C (hereinafter, the term “vehicle 101” is a general term for these) traveling on the same electric power network via an overhead wire 102. Substations 103A, 103B, 103C, 103D to be supplied (hereinafter, the term "substation 103" is a general term for these), a ground power storage device 104 for transmitting and receiving electric power, and substations 103A, 103B, 103C, 103D. Discharge current 153 with respect to the ground power storage device 104 based on the state information 151A, 151B, 151C, 151D (hereinafter, the state information 151 is a general term for these), the voltage and charge amount information 152 of the ground power storage device 104. It is composed of the power management device 105 that determines. The state information 151 includes the operating state and voltage of each substation 103.

なお、図1において、本来は全ての変電所103A、103B、103C、103Dにより複数の車両101A、101B、101Cに対して架線102を経由して電力を供給しているが、ここでは電力網内の何らかの事故により、変電所103C、103Dは停止されて不稼働状態であり、変電所103A、103Bおよび地上蓄電装置104で車両101に対して電力の供給を行う状態を示している。このように鉄道システムでは、架線102の延長上に沿って、架線102の適宜箇所に変電所103が設けられて、架線102に電力供給を行っている。 In FIG. 1, all the substations 103A, 103B, 103C, and 103D originally supply power to a plurality of vehicles 101A, 101B, and 101C via the overhead wire 102, but here, in the power grid. Due to some accident, the substations 103C and 103D are stopped and are in an inactive state, indicating a state in which the substations 103A and 103B and the ground power storage device 104 supply electric power to the vehicle 101. As described above, in the railway system, substations 103 are provided at appropriate positions on the overhead line 102 along the extension of the overhead line 102 to supply electric power to the overhead line 102.

また図1において、地上蓄電装置104は、架線102に接続されて架線102との間で電力の授受を行う。通常状態における地上蓄電装置104の制御は、電力管理装置105からの指令により、あるいは地上蓄電装置104内の制御装置により、適宜、架線102との間で電力の授受を行うものであるが、先に述べた変電所103C、103Dの不稼働状態では、電力管理装置105から不稼働状態に移行したことの指令を受け、以降の制御は電力管理装置105からの制御指令に従う。 Further, in FIG. 1, the ground power storage device 104 is connected to the overhead wire 102 to transfer and receive electric power to and from the overhead wire 102. The control of the ground power storage device 104 in the normal state is to transfer power to and from the overhead wire 102 as appropriate by a command from the power management device 105 or by a control device in the ground power storage device 104. In the non-operating state of the substations 103C and 103D described in the above, the power management device 105 receives a command to shift to the non-operating state, and the subsequent control follows the control command from the power management device 105.

図2は、電力管理装置105の機能について示している。電力管理装置105は変電所103C、103Dの不稼働状態の発生前後でその処理内容が相違していてもよいが、少なくとも発生後は以下のように作動する。図2は、変電所103C、103Dの不稼働状態の発生後における処理機能を示している。 FIG. 2 shows the function of the power management device 105. The processing contents of the power management device 105 may differ before and after the occurrence of the non-operating state of the substations 103C and 103D, but at least after the occurrence, the power management device 105 operates as follows. FIG. 2 shows the processing function after the occurrence of the non-operating state of the substations 103C and 103D.

図2の電力管理装置105は、変電所103の状態情報151と地上蓄電装置104の充電量152を基に、稼働している変電所の中で最も地上蓄電装置104に近い変電所の電圧VSと、地上蓄電装置104から放電するかどうかを判定するための電圧である放電開始電圧VXと、放電開始後、放電を継続するかどうかを判定する電圧である放電継続判定電圧VCと、地上蓄電装置104に対する放電指令254を決定する放電判定部201と、変電所103の電圧VSと記放電開始電圧VXと放電指令254とから地上蓄電装置104に対する放電電流指令153を決定する放電電流指令決定部202とで構成される。 The power management device 105 of FIG. 2 is based on the state information 151 of the substation 103 and the charge amount 152 of the ground power storage device 104, and the voltage VS of the substation closest to the ground power storage device 104 among the operating substations. The discharge start voltage VX, which is a voltage for determining whether or not to discharge from the ground storage device 104, the discharge continuation determination voltage VC, which is a voltage for determining whether or not to continue discharging after the start of discharge, and the ground storage. The discharge determination unit 201 that determines the discharge command 254 for the device 104, and the discharge current command determination unit that determines the discharge current command 153 for the ground power storage device 104 from the voltage VS of the substation 103, the discharge start voltage VX, and the discharge command 254. It is composed of 202.

図3は、電力管理装置105内の放電判定部201の処理フローについて示している。放電判定部201の処理フローの開始を指示する処理ステップS300は、変電所103C、103Dの不稼働状態の発生を基準として行われる。なお変電所の103の不稼働状態の発生は、変電所103からの通信を介しての変電所停止の連絡による検知、変電所停止に伴う通信途絶による検知、変電所103の架線102側端子電圧の低下による検知などにより電力管理装置105での確認が可能であり、この不稼働状態の発生は、そのまま地上蓄電装置104にも転送されるのがよい。 FIG. 3 shows the processing flow of the discharge determination unit 201 in the power management device 105. The processing step S300 for instructing the start of the processing flow of the discharge determination unit 201 is performed with reference to the occurrence of the non-operating state of the substations 103C and 103D. The occurrence of the non-operating state of the substation 103 is detected by the communication of the substation stop via communication from the substation 103, the detection by the communication blackout due to the substation stop, and the terminal voltage on the overhead wire 102 side of the substation 103. It is possible to confirm with the power management device 105 by detecting the decrease in the voltage, and it is preferable that the occurrence of this non-operating state is directly transferred to the ground power storage device 104.

図3に示す電力管理装置105内の放電判定部201の処理フローにおける次の処理ステップS301では、状態情報151を基に、同一電力網上で稼働しつつ地上蓄電装置104に最も近い変電所103Bを選択し、変電所103Bの端子電圧VSを抽出する。なお図3の処理フローの開始条件は、変電所103C、103Dの不稼働状態の発生の確認であることから、地上蓄電装置104に最も近い変電所103として103Bを特定することが可能である。次に処理ステップS302に進む。 In the next processing step S301 in the processing flow of the discharge determination unit 201 in the power management device 105 shown in FIG. 3, the substation 103B closest to the ground power storage device 104 while operating on the same power network is operated based on the state information 151. Select and extract the terminal voltage VS of the substation 103B. Since the start condition of the processing flow of FIG. 3 is confirmation of the occurrence of the non-operating state of the substations 103C and 103D, it is possible to specify 103B as the substation 103 closest to the terrestrial power storage device 104. Next, the process proceeds to process step S302.

なお地上蓄電装置104は、一般的には変電所103内に併設されて設けられることが多く、この場合に併設する変電所自体が不稼働状態である場合と、稼働状態である場合が想定されるが、ここではそのいずれであってもよく、併設する変電所以外の最も近い位置の稼働変電所の端子電圧を監視対象とするものとする。 In general, the ground power storage device 104 is often installed side by side in the substation 103, and in this case, it is assumed that the substation itself to be installed is in a non-operating state or in an operating state. However, any of these may be used here, and the terminal voltage of the operating substation at the nearest position other than the adjacent substation shall be monitored.

処理ステップS302では、地上蓄電装置104の充電量152を基に、放電開始電圧VXと放電開始後、放電を継続するかどうかを判定する電圧である放電継続判定電圧VCを決定する。なお、放電開始電圧VX≦放電継続判定電圧VCが必ず成立する。放電開始電圧VXおよび放電継続判定電圧VCの決定手法について、図4を用いて後述する。次に処理ステップS303に進む。 In the process step S302, the discharge start voltage VX and the discharge continuation determination voltage VC, which are the voltages for determining whether or not to continue the discharge after the start of the discharge, are determined based on the charge amount 152 of the ground power storage device 104. The discharge start voltage VX ≤ discharge continuation determination voltage VC is always established. A method for determining the discharge start voltage VX and the discharge continuation determination voltage VC will be described later with reference to FIG. Next, the process proceeds to process step S303.

処理ステップS303では、処理ステップS301で得られた変電所103Bの電圧VSと処理ステップS302で算出した放電開始電圧VXとを比較し、変電所電圧VS≦放電開始電圧VXを満たしたならば、処理ステップS304に進む。満たさなければ処理ステップS305に進む。 In the processing step S303, the voltage VS of the substation 103B obtained in the processing step S301 is compared with the discharge start voltage VX calculated in the processing step S302, and if the substation voltage VS ≦ the discharge start voltage VX is satisfied, the process is performed. The process proceeds to step S304. If not satisfied, the process proceeds to process step S305.

処理ステップS304では、地上蓄電装置104に対する放電指令254として放電指令を与える。処理ステップS304の処理後は、放電判定部201における一連の処理は以上で終了となる。 In the process step S304, a discharge command is given as a discharge command 254 to the ground power storage device 104. After the processing of the processing step S304, the series of processing in the discharge determination unit 201 is completed.

処理ステップS305では、処理ステップS301で得られた変電所103Bの電圧VSと処理ステップS302で算出した電圧VCとを比較し、電圧VS≧放電継続判定電圧VCを満たしたならば、処理ステップS306に進む。満たさなければ、処理ステップS307に進む。 In the processing step S305, the voltage VS of the substation 103B obtained in the processing step S301 is compared with the voltage VC calculated in the processing step S302, and if the voltage VS ≧ discharge continuation determination voltage VC is satisfied, the processing step S306 is performed. move on. If not satisfied, the process proceeds to process step S307.

処理ステップS306では、地上蓄電装置104に対する放電指令254として放電中止を与える。処理ステップS306の処理後は、放電判定部201における一連の処理は以上で終了となる。 In the process step S306, the discharge stop is given as the discharge command 254 to the ground power storage device 104. After the process of the process step S306, the series of processes in the discharge determination unit 201 is completed.

処理ステップS307では、地上蓄電装置104に対する放電指令254として前回と同じ指令を用いる。処理ステップS307の処理後は、放電判定部201における一連の処理は以上で終了となる。 In the process step S307, the same command as the previous one is used as the discharge command 254 for the ground power storage device 104. After the process of the process step S307, the series of processes in the discharge determination unit 201 is completed.

なお、図3における地上蓄電装置104に対する放電指令254の初期状態は、放電中止とする。 The initial state of the discharge command 254 for the ground power storage device 104 in FIG. 3 is that the discharge is stopped.

図4は、図3の処理ステップS302で使用する地上蓄電装置104の充電量152(以下SOCと表記する)に対する放電開始電圧VXおよび放電継続判定電圧VCのグラフの例である。放電開始電圧VXおよび放電継続判定電圧VCは充電量SOCが小さくなるほど低くすることで充電量SOCに応じた制御が可能となる。放電開始電圧VXの設定方法としては、地上蓄電装置104の使用充電量範囲をSOCa〜SOCb(SOCa<SOCb)とし、変電所の定格出力時の電圧をHV、変電所の200%出力時の電圧をHV2とした場合、以下の(1)(2)(3)式のように設定する方法が考えられる。
[数1]
VX=(HV−HV2)/(SOCb−SOCa)×(充電量−SOCb)+HV
・・・(1)
[数2]
VC=VX+α・・・(2)
[数3]
α=(HV−HV2)/2・・・(3)
なお、HVおよびHV2の値は、駅中間に在線しているすべての車両が隣接駅に到達できるまでの時間、変電所が出力できる領域かつ、HV>HV2であれば任意に変えて良い。例えば、HVを変電所の150%出力時の電圧、HV2を変電所の250%出力時の電圧のようにしても良い。また、連続ではなく所定の充電量刻みに段階的に放電開始電圧VXを変更することでも良い。放電継続判定電圧VCの値を算出するために用いるαに関しても0よりも大きな値であれば任意に設定して良く、また、充電量に応じて変化させても良い。
FIG. 4 is an example of a graph of the discharge start voltage VX and the discharge continuation determination voltage VC with respect to the charge amount 152 (hereinafter referred to as SOC) of the ground power storage device 104 used in the processing step S302 of FIG. By lowering the discharge start voltage VX and the discharge continuation determination voltage VC as the charge amount SOC becomes smaller, control according to the charge amount SOC becomes possible. As a method of setting the discharge start voltage VX, the charge amount range of the ground power storage device 104 is set to SOCa to SOCb (SOCa <SOCb), the voltage at the rated output of the substation is HV, and the voltage at 200% output of the substation. When HV2 is set to, a method of setting as shown in the following equations (1), (2) and (3) can be considered.
[Number 1]
VX = (HV-HV2) / (SOCb-SOCa) × (charge amount-SOCb) + HV
... (1)
[Number 2]
VC = VX + α ... (2)
[Number 3]
α = (HV-HV2) / 2 ... (3)
The values of HV and HV2 may be arbitrarily changed if the time until all the vehicles in the middle of the station can reach the adjacent station, the area where the substation can output, and HV> HV2. For example, the HV may be the voltage at 150% output of the substation, and the HV2 may be the voltage at 250% output of the substation. Further, the discharge start voltage VX may be changed stepwise in steps of a predetermined charge amount instead of continuously. The α used for calculating the value of the discharge continuation determination voltage VC may be arbitrarily set as long as it is a value larger than 0, or may be changed according to the charge amount.

図5は、図2の放電電力指令決定部202で使用する放電電流設定テーブルの一例である。マトリクス上のテーブルの横軸には、今回および前回の放電指令254、電圧VS>放電開始電圧VX、放電電流指令153が示され、マトリクス上のテーブルの縦軸には、4つのケース(ケース1からケース4)ごとに、今回および前回の放電指令254に対応して放電中止および放電指令の区別、電圧VS>放電開始電圧VXに対応してyes、noの区別、放電電流指令153に対応して具体的な大きさを決定する考え方が示されている。 FIG. 5 is an example of a discharge current setting table used by the discharge power command determination unit 202 of FIG. The horizontal axis of the table on the matrix shows the current and previous discharge commands 254, voltage VS> discharge start voltage VX, and discharge current command 153, and the vertical axis of the table on the matrix shows four cases (case 1). In each case 4), the discharge stop and discharge commands are distinguished according to the current and previous discharge commands 254, yes and no are distinguished according to voltage VS> discharge start voltage VX, and the discharge current command 153 is supported. The idea of determining the specific size is shown.

図5に示す放電電流設定テーブルでは、地上蓄電装置104の充電量と電圧補償を両立することを目的としているため、放電電流指令153を制御して電圧VSが放電開始電圧VX近辺となるように作成している。 Since the purpose of the discharge current setting table shown in FIG. 5 is to achieve both the charge amount of the ground storage device 104 and the voltage compensation, the discharge current command 153 is controlled so that the voltage VS is in the vicinity of the discharge start voltage VX. Creating.

具体的に言うと、ケース1では、前回放電指令の状態に係わらず、今回放電指令が放電中止となった状態であり、この時放電指令電流は0とされる。起動当初の状態での制御を表している。 Specifically, in case 1, regardless of the state of the previous discharge command, the discharge command is in the state of being stopped this time, and the discharge command current is set to 0 at this time. Represents control in the initial state of startup.

ケース2では、前回放電指令と今回放電指令254から、今回の放電指令254が初めてONとなった場合、電圧補償が必要となることから放電を行うことになる。この時、地上蓄電装置104からどの程度放電したら効果が分からないため、放電電流指令153を最大放電電流とする。 In case 2, when the current discharge command 254 is turned on for the first time from the previous discharge command and the current discharge command 254, voltage compensation is required, so that discharge is performed. At this time, since the effect cannot be known after discharging from the ground power storage device 104, the discharge current command 153 is set as the maximum discharge current.

またケース3では、前回と今回とで放電指令254がONを継続していて、電圧VSが放電開始電圧VXよりも大きい場合には、放電電流指令153を小さくしても、放電開始電圧VX近辺に保てる可能性があることから放電電流を小さくする。図5に示すテーブルでは、前回の放電電流×0.5倍にしている。 Further, in case 3, when the discharge command 254 continues to be ON in the previous time and this time and the voltage VS is larger than the discharge start voltage VX, even if the discharge current command 153 is reduced, the discharge start voltage VX is near. Reduce the discharge current because it may be kept at. In the table shown in FIG. 5, the previous discharge current is multiplied by 0.5.

ケース4では、前回と今回とで放電指令254がONを継続していて、電圧VSが放電開始電圧VXよりも小さい場合には、放電電流指令153が小さいことから放電電流を可能な限り増大する。図5に示すテーブルでは、min(最大放電電流、前回の放電電流×1.5倍)にしている。なお、電流がある一定未満(例えば10A未満)となった場合に0Aとしても良い。 In case 4, when the discharge command 254 continues to be ON in the previous time and this time and the voltage VS is smaller than the discharge start voltage VX, the discharge current command 153 is small, so that the discharge current is increased as much as possible. .. In the table shown in FIG. 5, it is set to min (maximum discharge current, previous discharge current × 1.5 times). When the current becomes less than a certain value (for example, less than 10A), it may be set to 0A.

図1に示した鉄道システムの状態において、本制御を適用した場合の時々刻々の状態を図6に示す。 In the state of the railway system shown in FIG. 1, the state from moment to moment when this control is applied is shown in FIG.

図6は、4つの状態量を示すグラフであり、横軸は時間である。縦軸の状態量は、上から地上蓄電装置104の充電量、電圧、放電指令の有無、放電電流指令である。上から2番目の電圧では、制御対象とする変電所103Bの電圧、放電開始電圧VXおよび放電継続判定電圧VCを示す。なおすべての列車が隣接駅まで移動を完了した時刻をT11とする。以下、時間経過とともに説明を行う。なお図6では、時刻T0で変電所103C、103Dが停止して不稼働状態となり、変電所103Bの端子電圧が停止し始めた状態から記載している。 FIG. 6 is a graph showing four state quantities, and the horizontal axis is time. The state quantities on the vertical axis are the charge amount, voltage, presence / absence of discharge command, and discharge current command of the ground power storage device 104 from the top. The second voltage from the top indicates the voltage of the substation 103B to be controlled, the discharge start voltage VX, and the discharge continuation determination voltage VC. The time when all trains have completed moving to the adjacent station is T11. Hereinafter, explanation will be given with the passage of time. Note that FIG. 6 shows the state in which the substations 103C and 103D stop at time T0 and become inactive, and the terminal voltage of the substation 103B starts to stop.

時刻T0からT1までは、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所103Bの電圧VSが高いことから、地上蓄電装置104への放電指令は行われず、放電電流指令は0となる。また、地上蓄電装置104の充電量は初期値から変動しない。図5に示したテーブルのケース1がこの状態に対応する。 From time T0 to T1, since the voltage VS of the substation 103B is higher than the discharge start voltage VX determined by the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is not issued and the discharge current command is 0. It becomes. Further, the charge amount of the ground power storage device 104 does not change from the initial value. Case 1 of the table shown in FIG. 5 corresponds to this state.

時刻T1において、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧VSが低くなったことから、地上蓄電装置104への放電指令が行われる。図5に示したテーブルのケース2から、地上蓄電装置104への放電電流は最大放電電流となる。その結果、地上蓄電装置104の充電量が下がる。 At time T1, since the voltage VS of the substation B is lower than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, a discharge command to the ground power storage device 104 is issued. The discharge current from the case 2 of the table shown in FIG. 5 to the ground power storage device 104 is the maximum discharge current. As a result, the charge amount of the ground power storage device 104 decreases.

時刻T2において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T2, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. Halve. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T3において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が低いことから、図5に示したテーブルのケース4から、地上蓄電装置104への放電電流が前回よりも1.5倍に増加する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T3, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is lower than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 4 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. It increases 1.5 times. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T4において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T4, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. Halve. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T5において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が高いことから、図3のフローに従い、地上蓄電装置104への放電指令が中止となる。これに伴い、図5に示したテーブルのケース1から、地上蓄電装置104への放電電流が0となる。以下、状況が変わる時刻T6までは、この状態が継続され、地上蓄電装置104の充電量は時刻T5からT6までの間で変動しない。 At time T5, since the voltage of the substation B is higher than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is canceled according to the flow of FIG. Along with this, the discharge current from the case 1 of the table shown in FIG. 5 to the ground power storage device 104 becomes 0. Hereinafter, this state is continued until the time T6 when the situation changes, and the charge amount of the ground power storage device 104 does not fluctuate between the times T5 and T6.

時刻T6において、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が低くなったことから、地上蓄電装置104への放電指令が行われる。図5に示したテーブルのケース2から、地上蓄電装置104への放電電流は最大放電電流となる。その結果、地上蓄電装置104の充電量が下がる。 At time T6, since the voltage of the substation B became lower than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, a discharge command to the ground power storage device 104 is issued. The discharge current from the case 2 of the table shown in FIG. 5 to the ground power storage device 104 is the maximum discharge current. As a result, the charge amount of the ground power storage device 104 decreases.

時刻T7において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T7, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. Halve. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T8において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T8, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. Halve. Further, since the discharge is performed from the ground power storage device, the charge amount of the ground power storage device 104 is reduced.

時刻T9において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T9, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is halved from the previous time. To do. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T10において、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が低いことから、図3のフローに従い、地上蓄電装置104への放電指令が継続される。また、地上蓄電装置104の充電量から定まる放電開始電圧VXよりも変電所Bの電圧が高いことから、図5に示したテーブルのケース3から、地上蓄電装置104への放電電流が前回よりも半減する。さらに地上蓄電装置104から放電が行われているため地上蓄電装置104の充電量が下がる。 At time T10, since the voltage of the substation B is lower than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is continued according to the flow of FIG. Further, since the voltage of the substation B is higher than the discharge start voltage VX determined from the charge amount of the ground power storage device 104, the discharge current from the table case 3 shown in FIG. 5 to the ground power storage device 104 is larger than the previous time. Halve. Further, since the ground power storage device 104 is discharged, the charge amount of the ground power storage device 104 is reduced.

時刻T11において、すべての車両が隣接駅まで移動し終えたため、変電所Bの電圧が無負荷状態の電圧まで上昇する。この結果、地上蓄電装置104の充電量から定まる放電継続判定電圧VCよりも変電所Bの電圧が高いことから、図3のフローに従い、地上蓄電装置104への放電指令が中止となる。これに伴い、図5に示したテーブルのケース1から、地上蓄電装置104への放電電流が0となる。 At time T11, since all the vehicles have finished moving to the adjacent station, the voltage of the substation B rises to the voltage in the no-load state. As a result, since the voltage of the substation B is higher than the discharge continuation determination voltage VC determined from the charge amount of the ground power storage device 104, the discharge command to the ground power storage device 104 is canceled according to the flow of FIG. Along with this, the discharge current from the case 1 of the table shown in FIG. 5 to the ground power storage device 104 becomes 0.

以上述べたように、稼働している中で最も近い変電所の電圧と地上蓄電装置104の充電量を考慮しながら地上蓄電装置104の放電を行うことで、地上蓄電装置104の充電量を使用範囲内に保った状態ですべての車両を隣接駅まで運ぶことが可能となる。 As described above, the charge amount of the ground power storage device 104 is used by discharging the ground power storage device 104 while considering the voltage of the substation closest to the operating substation and the charge amount of the ground power storage device 104. It is possible to carry all vehicles to the adjacent station while keeping them within range.

実施例1では、電力管理装置105内で自動的に制御する処理を示したが、各種パラメータを電力管理装置の画面にて示し、その結果を基に指令員が、地上蓄電装置へ放電指令を行う構成でも良い。例えば、図6に示した4つのグラフのうち、上部にある2つのグラフを電力管理装置の画面に出力し、指令員が放電指令を行う構成でも良い。 In the first embodiment, the process of automatically controlling in the power management device 105 is shown, but various parameters are shown on the screen of the power management device, and the commander issues a discharge command to the ground power storage device based on the result. It may be configured to be performed. For example, of the four graphs shown in FIG. 6, the upper two graphs may be output to the screen of the power management device, and the commander may issue a discharge command.

実施例2では、実施例1の構成にさらに運行管理装置701を含めて鉄道システムの制御装置を構成している。 In the second embodiment, the control device of the railway system is configured by further including the operation management device 701 in the configuration of the first embodiment.

図7の鉄道システムの制御装置は、同一電力網を走行する複数の車両101A、101B、101C(以下、車両101と記載したものはこれらの総称とする)に対して架線102を経由して電力を供給する変電所103A、103B、103C、103D(以下、変電所103と記載したものはこれらの総称とする)および電力の授受を行う地上蓄電装置104と、車両101の在線状況751を管理する運行管理装置701と、変電所103A、103B、103C、103Dの状態情報151A、151B、151C、151D(以下、状態情報151と記載したものはこれらの総称とする)、地上蓄電装置104の電圧および充電量情報152と前記運行管理装置701が有する在線状況751を基に、地上蓄電装置104に対する放電電流指令153を決定する電力管理装置105で構成される。状態情報151には、各変電所103の稼働状態と電圧が含まれる。 The control device of the railway system of FIG. 7 supplies electric power to a plurality of vehicles 101A, 101B, 101C (hereinafter, the term “vehicle 101” is a general term for these) traveling on the same electric power network via an overhead wire 102. Substations 103A, 103B, 103C, 103D to be supplied (hereinafter, what is described as substation 103 is a general term for these), a ground power storage device 104 that transfers and receives electric power, and an operation that manages the presence status 751 of the vehicle 101. The voltage and charging of the management device 701, the status information 151A, 151B, 151C, 151D of the substations 103A, 103B, 103C, 103D (hereinafter, the term "state information 151" is a general term for these), and the ground power storage device 104. It is composed of a power management device 105 that determines a discharge current command 153 for the ground power storage device 104 based on the amount information 152 and the current status 751 of the operation management device 701. The state information 151 includes the operating state and voltage of each substation 103.

なお、図7において、本来は全ての変電所103A、103B、103C、103Dにより複数の車両101A、101B、101Cに対して架線102を経由して電力を供給しているが、ここでは電力網内の何らかの事故により、変電所103C、103Dは不稼働状態であり、変電所103A、103Bおよび地上蓄電装置104で車両101に対して電力の供給を行う状態を示している。 In FIG. 7, originally, all the substations 103A, 103B, 103C, 103D supply electric power to a plurality of vehicles 101A, 101B, 101C via the overhead wire 102, but here, in the power grid. The substations 103C and 103D are in an inactive state due to some accident, and the substations 103A and 103B and the ground power storage device 104 indicate a state in which electric power is supplied to the vehicle 101.

また図7において、地上蓄電装置104は、架線102に接続されて架線102との間で電力の授受を行う。通常状態における地上蓄電装置104の制御は、電力管理装置105からの指令により、あるいは地上蓄電装置104内の制御装置により、適宜、架線102との間で電力の授受を行うものであるが、先に述べた変電所103C、103Dの不稼働状態では、電力管理装置105から不稼働状態に移行したことの指令を受け、以降の制御は電力管理装置105からの制御指令に従う。なお、図1と同じものについては番号を同一としているため詳細な説明は省略する。 Further, in FIG. 7, the ground power storage device 104 is connected to the overhead wire 102 to transfer and receive electric power to and from the overhead wire 102. The control of the ground power storage device 104 in the normal state is to transfer power to and from the overhead wire 102 as appropriate by a command from the power management device 105 or by a control device in the ground power storage device 104. In the non-operating state of the substations 103C and 103D described in the above, the power management device 105 receives a command to shift to the non-operating state, and the subsequent control follows the control command from the power management device 105. Since the same numbers as those in FIG. 1 have the same numbers, detailed description thereof will be omitted.

図8は、実施例2に係る電力管理装置105の機能について示している。電力管理装置105は変電所103C、103Dの不稼働状態の発生前後でその処理内容が相違していてもよいが、少なくとも発生後は以下のように作動する。図8は、変電所103C、103Dの不稼働状態の発生後における処理機能を示している。 FIG. 8 shows the function of the power management device 105 according to the second embodiment. The processing contents of the power management device 105 may differ before and after the occurrence of the non-operating state of the substations 103C and 103D, but at least after the occurrence, the power management device 105 operates as follows. FIG. 8 shows the processing function after the occurrence of the non-operating state of the substations 103C and 103D.

図8の電力管理装置105は、変電所103の状態情報151と地上蓄電装置104の充電量152を基に、稼働している変電所の中で最も地上蓄電装置104に近い変電所の電圧VSと地上蓄電装置104と在線状況751から放電するかどうかを判定するための電圧である放電開始電圧VXと、放電開始後、放電を継続するかどうかを判定する電圧である放電継続判定電圧VCと、地上蓄電装置104に対する放電指令254を決定する放電判定部801と、変電所103の電圧VSと前記放電開始電圧VXと放電指令254とから地上蓄電装置104に対する放電電流指令153を決定する放電電流指令決定部202とで構成される。 The power management device 105 of FIG. 8 is based on the state information 151 of the substation 103 and the charge amount 152 of the ground power storage device 104, and the voltage VS of the substation closest to the ground power storage device 104 among the operating substations. The discharge start voltage VX, which is a voltage for determining whether or not to discharge from the ground power storage device 104 and the line status 751, and the discharge continuation determination voltage VC, which is a voltage for determining whether or not to continue discharging after the start of discharge. , The discharge determination unit 801 that determines the discharge command 254 for the ground power storage device 104, the discharge current that determines the discharge current command 153 for the ground power storage device 104 from the voltage VS of the substation 103, the discharge start voltage VX, and the discharge command 254. It is composed of a command determination unit 202.

図9は、電力管理装置105内の放電判定部801の処理フローについて示している。放電判定部801の処理フローの開始は、変電所103C、103Dの不稼働状態の発生を基準として行われる。なお変電所の103の不稼働状態の発生は、変電所103からの通信を介しての変電所停止の連絡による検知、変電所停止に伴う通信途絶による検知、変電所103の架線102側端子電圧の低下による検知などにより電力管理装置105での確認が可能であり、この不稼働状態の発生は、そのまま地上蓄電装置104にも転送されるのがよい。 FIG. 9 shows the processing flow of the discharge determination unit 801 in the power management device 105. The processing flow of the discharge determination unit 801 is started based on the occurrence of the non-operating state of the substations 103C and 103D. The occurrence of the non-operating state of the substation 103 is detected by the communication of the substation stop via communication from the substation 103, the detection by the communication blackout due to the substation stop, and the terminal voltage on the overhead wire 102 side of the substation 103. It is possible to confirm with the power management device 105 by detecting the decrease in the voltage, and it is preferable that the occurrence of this non-operating state is directly transferred to the ground power storage device 104.

なお図9では、処理ステップS302が処理ステップS901に置き換わる以外は、図3と同一であるため、同一のステップについては番号を統一するとともに説明を省略する。 Note that FIG. 9 is the same as FIG. 3 except that the processing step S302 is replaced with the processing step S901. Therefore, the numbers of the same steps are unified and the description thereof will be omitted.

図9に示す電力管理装置105内の放電判定部801の処理フローにおける処理ステップS901では、地上蓄電装置104の充電量152と在線状況751を基に、放電開始電圧VXと放電開始後、放電を継続するかどうかを判定する電圧である放電継続判定電圧VCを決定する。なお、放電開始電圧VX≦放電継続判定電圧VCが必ず成立する。処理ステップS901では、放電開始電圧VXおよび放電継続判定電圧VCを決定するために、図10および実施例で使用した図4に示すデータを用いて行う。 In the processing step S901 in the processing flow of the discharge determination unit 801 in the power management device 105 shown in FIG. 9, the discharge start voltage VX and the discharge after the start of the discharge are performed based on the charge amount 152 and the presence status 751 of the ground power storage device 104. The discharge continuation determination voltage VC, which is the voltage for determining whether or not to continue, is determined. The discharge start voltage VX ≤ discharge continuation determination voltage VC is always established. In the processing step S901, in order to determine the discharge start voltage VX and the discharge continuation determination voltage VC, the data shown in FIG. 10 and FIG. 4 used in the examples are used.

図10では、在線状況数に対する放電開始電圧VX2および放電継続判定電圧VC2を示している。放電開始電圧VX2および放電継続判定電圧VC2は在線車両数が小さくなるほど高くすることで在線車両数が多い場合は使用頻度を抑制し、在線車両数が少なくなるほど使用頻度を増やし速やかに移動させる制御が可能となる。放電開始電圧VX2の設定方法としては、在線車両数を0〜MAXTrain(MAXTrain>0)とし、変電所の定格出力時の電圧をHV、変電所の200%出力時の電圧をHV2とした場合、以下の(4)(5)(6)式ように設定する方法が考えられる。
[数4]
VX2=(HV−HV2)/(0−MAXTrain)×(在線車両数−0)+HV
・・・(4)
[数5]
VC2=VX2+α・・・(5)
[数6]
α=(HV−HV2)/2・・・(6)
なお、HVおよびHV2の値は、駅中間に在線しているすべての車両が隣接駅に到達できるまでの時間、変電所が出力できる領域かつ、HV>HV2であれば任意に変えて良い。例えば、HVを変電所の150%出力時の電圧、HV2を変電所の250%出力時の電圧のようにしても良い。また、連続ではなく所定の在線車両数刻みに段階的にVX2を変更するでも良い。VC2の値を算出するために用いるαに関しても0よりも大きな値であれば任意に設定して良く、また、在線車両数に応じて異なる値を設定しても良い。
FIG. 10 shows the discharge start voltage VX2 and the discharge continuation determination voltage VC2 with respect to the number of existing lines. The discharge start voltage VX2 and the discharge continuation judgment voltage VC2 are increased as the number of vehicles on the line decreases, so that the frequency of use is suppressed when the number of vehicles on the line is large, and the frequency of use is increased as the number of vehicles on the line decreases. It will be possible. As a method of setting the discharge start voltage VX2, when the number of vehicles on the line is 0 to MAXTrain (MAXTrain> 0), the voltage at the rated output of the substation is HV, and the voltage at 200% output of the substation is HV2. A method of setting as shown in the following equations (4), (5) and (6) can be considered.
[Number 4]
VX2 = (HV-HV2) / (0-MAXTrain) x (number of vehicles on line-0) + HV
... (4)
[Number 5]
VC2 = VX2 + α ... (5)
[Number 6]
α = (HV-HV2) / 2 ... (6)
The values of HV and HV2 may be arbitrarily changed if the time until all the vehicles in the middle of the station can reach the adjacent station, the area where the substation can output, and HV> HV2. For example, the HV may be the voltage at 150% output of the substation, and the HV2 may be the voltage at 250% output of the substation. Further, the VX2 may be changed stepwise in steps of the number of vehicles on the line instead of continuously. The α used to calculate the value of VC2 may be arbitrarily set as long as it is a value larger than 0, or may be set differently depending on the number of vehicles on the line.

上記のように定めたVX2、VC2と図4で述べたVX、VXの小さい方の値を用いることで、在線車両数および蓄電装置の充電量を考慮した制御が可能となり、この構成においても、実施例1の図6で述べたような効果が得られることとなる。 By using the smaller values of VX2 and VC2 defined as described above and VX and VX described in FIG. 4, control can be performed in consideration of the number of vehicles on the line and the charge amount of the power storage device, and even in this configuration, The effect as described in FIG. 6 of Example 1 can be obtained.

101、101A、101B、101C:車両
102:架線
103、103A、103B、103C、103D:変電所
104:地上蓄電装置
105:電力管理装置
151、151A、151B、151C、151D:変電所の状態情報
152:地上蓄電装置の電圧および充電量情報
153:地上蓄電装置の放電電流
201,801:放電判定部
202:放電電流指令決定部
VS:変電所の電圧
VX:放電開始電圧
254:放電指令
701:運行管理装置
751:在線状況
101, 101A, 101B, 101C: Vehicle 102: Overhead wire 103, 103A, 103B, 103C, 103D: Substation 104: Ground power storage device 105: Power management device 151, 151A, 151B, 151C, 151D: Substation status information 152 : Ground power storage device voltage and charge amount information 153: Ground power storage device discharge current 201,801: Discharge determination unit 202: Discharge current command determination unit VS: Substation voltage VX: Discharge start voltage 254: Discharge command 701: Operation Management device 751: Current status

Claims (7)

複数の変電所と地上蓄電装置から架線を介して車両に給電するための鉄道システムの制御装置であって、
複数の前記変電所の稼働状況と電圧および前記地上蓄電装置の充電量を管理する電力管理装置と、電力管理装置からの放電電流指令に応じて放電を行う地上蓄電装置を備え、
前記電力管理装置は、複数の前記変電所の一部が不稼働状態になった時に、前記地上蓄電装置に最も近い位置の稼働している変電所を抽出し、抽出した変電所の電圧に応じて前記地上蓄電装置に与える放電電流指令を定め、前記地上蓄電装置の放電量を決定することを特徴とする鉄道システムの制御装置。
It is a control device for a railway system for supplying power to rolling stock from multiple substations and ground power storage devices via overhead lines.
It is equipped with a power management device that manages the operating status and voltage of the plurality of substations and the charge amount of the ground power storage device, and a ground power storage device that discharges according to a discharge current command from the power management device.
The power management device extracts an operating substation closest to the ground power storage device when a part of the plurality of substations becomes inactive, and responds to the voltage of the extracted substation. A control device for a railway system, characterized in that a discharge current command to be given to the ground power storage device is determined, and the discharge amount of the ground power storage device is determined.
請求項1に記載の鉄道システムの制御装置であって、
前記変電所からの電力を受けて走行する複数の車両の在線状況を管理する運行管理装置を備え、前記電力管理装置は、複数の前記変電所の一部が不稼働状態になった時に、前記地上蓄電装置に最も近い位置の稼働している変電所を抽出し、当該変電所の電圧と前記運行管理装置が有する車両在線状況に応じて前記地上蓄電装置に与える放電電流指令を定め、前記地上蓄電装置の放電量を調整することを特徴とする鉄道システムの制御装置。
The control device for the railway system according to claim 1.
The operation management device is provided for managing the presence status of a plurality of vehicles traveling by receiving power from the substation, and the power management device is said to be used when a part of the plurality of substations becomes inactive. The operating substation closest to the terrestrial power storage device is extracted, and the discharge current command to be given to the terrestrial power storage device is determined according to the voltage of the substation and the vehicle presence status of the operation management device. A control device for a railway system characterized by adjusting the discharge amount of a power storage device.
請求項2に記載の鉄道システムの制御装置であって、
前記電力管理装置は、複数の変電所の中で稼働かつ前記地上蓄電装置に最も近い変電所の電圧と、前記運行管理装置が有する車両在線状況と、地上蓄電装置の充電量を用いて地上蓄電装置の放電量を調整することを特徴とする鉄道システムの制御装置。
The control device for the railway system according to claim 2.
The power management device uses the voltage of the substation operating in a plurality of substations and closest to the ground power storage device, the vehicle presence status of the operation management device, and the charge amount of the ground power storage device. A control device for a railway system, which is characterized by adjusting the discharge amount of the device.
請求項1から請求項3のいずれか1項に記載の鉄道システムの制御装置であって、
前記電力管理装置は、前記地上蓄電装置が放電を行う閾値である放電開始電圧と、放電を継続するかどうかを判定する放電継続判定電圧を充電量が小さくなるほど低くするように定めることを特徴とする鉄道システムの制御装置。
The control device for a railway system according to any one of claims 1 to 3.
The power management device is characterized in that the discharge start voltage, which is the threshold value at which the ground power storage device discharges, and the discharge continuation determination voltage, which determines whether or not to continue discharging, are set to be lowered as the charge amount becomes smaller. The control device of the railway system.
請求項2または請求項3に記載の鉄道システムの制御装置であって、
記電力管理装置は、前記地上蓄電装置が放電を行う閾値である放電開始電圧と、放電を継続するかどうかを判定する放電継続判定電圧を在線する車両数が少なくなるほど高くするように定めることを特徴とする鉄道システムの制御装置。
The control device for the railway system according to claim 2 or 3.
The power management device sets the discharge start voltage, which is the threshold value at which the ground power storage device discharges, and the discharge continuation determination voltage, which determines whether or not to continue discharging, to be increased as the number of vehicles on the line decreases. A characteristic rail system control device.
請求項4または請求項5に記載の鉄道システムの制御装置であって、
放電開始電圧および放電継続判定電圧は、駅中間に在線しているすべての車両が隣接駅に到達できるまでの時間、蓄電装置が稼働するように定めることを特徴とする鉄道システムの制御装置。
The control device for the railway system according to claim 4 or 5.
A control device for a railway system, characterized in that a discharge start voltage and a discharge continuation determination voltage are set so that a power storage device operates for a period of time until all vehicles in the middle of a station can reach an adjacent station.
複数の変電所と地上蓄電装置から架線を介して車両に給電するための鉄道システムの制御方法であって、
前記地上蓄電装置は、通常運転状態において前記架線との間で電力の授受を行うとともに、複数の前記変電所の一部が不稼働状態になった時に、前記地上蓄電装置に最も近い位置の稼働している変電所における端子電圧に応じて放電量が決定されることを特徴とする鉄道システムの制御方法。
It is a control method of a railway system for supplying power to rolling stock from multiple substations and ground power storage devices via overhead lines.
The terrestrial power storage device transfers power to and from the overhead wire in a normal operation state, and operates at a position closest to the terrestrial power storage device when a part of the plurality of substations becomes inactive. A method for controlling a railway system, characterized in that the amount of discharge is determined according to the terminal voltage at a substation.
JP2017141783A 2017-07-21 2017-07-21 Railway system controls and methods Active JP6812314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141783A JP6812314B2 (en) 2017-07-21 2017-07-21 Railway system controls and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141783A JP6812314B2 (en) 2017-07-21 2017-07-21 Railway system controls and methods

Publications (2)

Publication Number Publication Date
JP2019018824A JP2019018824A (en) 2019-02-07
JP6812314B2 true JP6812314B2 (en) 2021-01-13

Family

ID=65355119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141783A Active JP6812314B2 (en) 2017-07-21 2017-07-21 Railway system controls and methods

Country Status (1)

Country Link
JP (1) JP6812314B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154355A (en) * 2006-12-18 2008-07-03 Hitachi Ltd Accumulation equipment
JP2012105407A (en) * 2010-11-08 2012-05-31 Toshiba Corp Power storage system
JP5735061B2 (en) * 2013-08-12 2015-06-17 株式会社東芝 Train power supply system
JP6293467B2 (en) * 2013-12-03 2018-03-14 株式会社東芝 DC power supply system

Also Published As

Publication number Publication date
JP2019018824A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6552796B2 (en) Power storage control device
EP1591299B1 (en) Auxiliary power supply for vehicle
CN109378879B (en) Charging station power control method and system
US9707862B2 (en) Power management apparatus and power management system
US10144615B2 (en) Jolt-free elevator power transition
JP2016208761A (en) Driving control device having power storage device
JP2008154355A (en) Accumulation equipment
JP6812314B2 (en) Railway system controls and methods
JP2021016243A (en) Charging and discharging system
KR20150015832A (en) Energy storage system for high speed railroad substation
CN114506239A (en) Power distribution method, system, medium and device of charging equipment and charging and replacing power station
KR101877181B1 (en) Elevator operation apparatus including an emergency escape apparatus that transformers used both as control panel and escape apparatus and Control method thereof
WO2013021550A1 (en) Electric vehicle charging system and electric vehicle charging apparatus
JP2008074180A (en) Power storage system
JP2016116428A (en) Autonomous operation system for distributed power source
CN106629298A (en) Elevator emergency control method, device and system
JP2008074183A (en) Regenerative power absorption system for direct current electric railroad system
JP6944388B2 (en) Power coordination control system at multiple stations
JP2012040955A (en) Power system for electric railway
JP6690962B2 (en) Power supply adjustment system for station electrical equipment
JP5952174B2 (en) Mobile power management system
EP2899055A1 (en) Method and a device for controlling the voltage of a catenary supplying electric power to rolling stock
JP2020037321A (en) Power supply system and power supply method
CN112124359B (en) Train control method and device and automatic train monitoring system
JP2015101448A (en) Elevator control system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150