JP6812071B2 - Powder parallel blowing system and powder parallel blowing method - Google Patents

Powder parallel blowing system and powder parallel blowing method Download PDF

Info

Publication number
JP6812071B2
JP6812071B2 JP2016220934A JP2016220934A JP6812071B2 JP 6812071 B2 JP6812071 B2 JP 6812071B2 JP 2016220934 A JP2016220934 A JP 2016220934A JP 2016220934 A JP2016220934 A JP 2016220934A JP 6812071 B2 JP6812071 B2 JP 6812071B2
Authority
JP
Japan
Prior art keywords
powder
blowing
flow rate
valve
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220934A
Other languages
Japanese (ja)
Other versions
JP2018076171A (en
Inventor
芳孝 黒川
芳孝 黒川
孝宏 竹田
孝宏 竹田
康 関口
康 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Engineering Co Ltd
Original Assignee
Diamond Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Engineering Co Ltd filed Critical Diamond Engineering Co Ltd
Priority to JP2016220934A priority Critical patent/JP6812071B2/en
Publication of JP2018076171A publication Critical patent/JP2018076171A/en
Application granted granted Critical
Publication of JP6812071B2 publication Critical patent/JP6812071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、吹込タンクから搬送ガスにより搬送される粉体の並列吹込システム及びその方法に関し、特に、複数台の吹込タンクを用いて粉体を溶鉱炉又は火力発電プラント若しくは化学プラント等のガス化炉等へ供給する際、吹込タンクの切り替え時における粉体の供給量を高精度に制御するための粉体並列吹込システム及び粉体並列吹込方法に関する。 The present invention relates to a parallel blowing system for powder transported from a blowing tank by a transport gas and a method thereof. In particular, the powder is gassed in a smelting furnace, a thermal power generation plant, a chemical plant, or the like using a plurality of blowing tanks. The present invention relates to a powder parallel blowing system and a powder parallel blowing method for controlling the amount of powder supplied at the time of switching the blowing tank with high accuracy.

溶鉱炉設備等に用いる燃焼炉として、吹込タンクを備えた粉体供給装置から供給される微粉炭等の粉体燃料を燃焼する燃焼炉が知られている。この燃焼炉においては、粉体燃料を搬送ガスと共に燃焼炉内に噴射しながら燃焼させる。このような微粉炭を用いた燃焼方式は、石炭自体の燃焼性が高い等の理由から広く普及している。 As a combustion furnace used for a smelting furnace facility or the like, a combustion furnace for burning powder fuel such as pulverized coal supplied from a powder supply device provided with a blowing tank is known. In this combustion furnace, powder fuel is burned while being injected into the combustion furnace together with the conveyed gas. Such a combustion method using pulverized coal is widely used because of the high combustibility of coal itself.

このような粉体供給装置においては、連続して粉体燃料を供給する必要性から、吹込タンクを複数台備え、1台の吹込タンク内の粉体燃料が空になったり、あるいは所定の量よりも少なくなった場合に、他の粉体燃料が十分に充填されている吹込タンクに切り替えて、継続して粉体燃料を供給できるようにしている。 In such a powder supply device, due to the necessity of continuously supplying powder fuel, a plurality of blowing tanks are provided, and the powder fuel in one blowing tank is emptied or a predetermined amount is provided. When the amount becomes less than the above, it is switched to a blow tank that is fully filled with other powder fuel so that the powder fuel can be continuously supplied.

この吹込タンク(以下単に「タンク」という。)切り替えの概念を図1を参照しつつ説明する。図1(A)は1台のタンク(仮に「タンクA」とする。)内の粉体燃料が空になった時に他のタンク(仮に「タンクB」とする。)に切り替える場合を示している。図1(A)から明らかなように、タンクの切り替え時の前後においては供給される粉体燃料の総量は、予め設定した目標値の0%〜100%まで大きく変動するため、安定した操業ができなかった。 The concept of switching the blow tank (hereinafter, simply referred to as “tank”) will be described with reference to FIG. FIG. 1A shows a case of switching to another tank (temporarily referred to as “tank B”) when the powder fuel in one tank (temporarily referred to as “tank A”) becomes empty. There is. As is clear from FIG. 1 (A), the total amount of powder fuel supplied before and after the tank is switched greatly fluctuates from 0% to 100% of the preset target value, so that stable operation can be achieved. could not.

図1(B)は、図1(A)に示したようなタンク切り替え時の問題点を解決するために提案されたタンク切り替え時の制御方法の概念を示したものである。すなわち、タンクA内の粉体燃料が所定の量よりも少なくなった時に、併行してタンクBから徐々に粉体燃料の供給を開始し、タンクA内の粉体燃料が予め設定した下限値に達するまでの所定の期間中(図中の「切替え期間」を指す。)、タンクAからの供給量とタンクBからの供給量との合計が目標値になるように制御を行うものである。
切替え期間の経過後はタンクBによる単独吹込みに移行すると共に、タンクAには図示しない貯蔵タンクから粉体燃料が補充され、次回の切替え時まで待機することになる。以下これを繰り返すことにより、安定した操業を実現するものである。この方法を、以下この明細書においては便宜的に「並列吹込み」と称することとする。
FIG. 1 (B) shows the concept of a control method at the time of tank switching proposed in order to solve the problem at the time of tank switching as shown in FIG. 1 (A). That is, when the amount of powder fuel in tank A becomes less than a predetermined amount, the supply of powder fuel is gradually started from tank B in parallel, and the powder fuel in tank A has a preset lower limit value. During a predetermined period until reaching (referring to the "switching period" in the figure), control is performed so that the total of the supply amount from the tank A and the supply amount from the tank B becomes the target value. ..
After the elapse of the switching period, the tank B is used for single injection, and the tank A is replenished with powder fuel from a storage tank (not shown), and waits until the next switching. By repeating this below, stable operation is realized. This method will be referred to hereinafter as "parallel blowing" for convenience in this specification.

かかる並列吹込みの従来技術について次に説明する。図2は並列吹込みの従来技術の第1例(例えば特許文献1参照)を示す概略図である。
図2の装置の動作は特許文献1に記載されているので詳細な説明は省略するが、タンクを切り替える際に、吹込中のタンク(1−1)の吹込調節弁(7B−1)を規定開度まで徐々に閉じるとともに、待機中のタンク(1−2)の吹込調節弁(7B−2)を吹込流量に応じて徐々に開き、各々のタンクからの吹込流量を監視しつつタンクを切り替えるものである。
The prior art of such parallel blowing will be described below. FIG. 2 is a schematic view showing a first example (see, for example, Patent Document 1) of the prior art of parallel blowing.
Since the operation of the device of FIG. 2 is described in Patent Document 1, detailed description thereof will be omitted, but when switching tanks, the blow control valve (7B-1) of the tank (1-1) being blown is defined. While gradually closing to the opening, the blow control valve (7B-2) of the standby tank (1-2) is gradually opened according to the blow flow rate, and the tank is switched while monitoring the blow flow rate from each tank. It is a thing.

しかし、「各々の微粉炭吹込タンクからの吹込流量を監視しつつ、吹込タンクを切り替える」と記載されているものの、吹込流量に応じてどのようにしてタンク(1−2)の吹込調節弁(7B−2)の開度を制御しつつ切り替えるのかが全く開示されていない。 However, although it is stated that "the blowing tank is switched while monitoring the blowing flow rate from each pulverized coal blowing tank", how is the blowing control valve (1-2) of the tank (1-2) according to the blowing flow rate? It is not disclosed at all whether to switch while controlling the opening degree of 7B-2).

また、特許文献1の段落0009の記載及び(特許文献1の)図3によれば、この従来例は、タンク切り替えの過渡期において、タンク(1−1)の吹込調節弁(7B−1)の開度を100%から50%まで緩やかに閉じ、同時に、待機中のタンク(1−2)の吹込調節弁(7B−2)を開度0%から50%まで緩やかに開き、双方50%になった時にタンク(1−1)の吹込調節弁(7B−1)を全閉し、タンク(1−2)の吹込調節弁(7B−2)を全開とするものである。この場合に、タンク(1−1)、(1−2)からの吹込流量の情報は吹込調節弁(7B−1)、(7B−2)の開度制御には利用されていない。 Further, according to the description in paragraph 0009 of Patent Document 1 and FIG. 3 (Patent Document 1), in this conventional example, the blow control valve (7B-1) of the tank (1-1) is in the transitional period of tank switching. Gently closes the opening from 100% to 50%, and at the same time, gently opens the blow control valve (7B-2) of the standby tank (1-2) from 0% to 50%, both 50%. The blow control valve (7B-1) of the tank (1-1) is fully closed, and the blow control valve (7B-2) of the tank (1-2) is fully opened. In this case, the information on the flow rate of the blown flow from the tanks (1-1) and (1-2) is not used for controlling the opening degree of the blown control valves (7B-1) and (7B-2).

さらに、タンクの切り替え時においては、タンク(1−1)内の粉体の残量が少なくなっているから、吹込調節弁(7B−1)の開度を100%から50%まで緩やかに閉じていったとしても、吹込流量がそれに比例して100%から50%まで漸減するとは限らず、仮に、粉体の量が十分にあるタンク(1−2)の吹込調節弁(7B−2)を開度0%から50%まで緩やかに開いて行き、吹込流量がそれに比例して0%から50%まで漸増したとしても、両者の吹込流量の合計は計算通り100%になるとは限らない。 Furthermore, when the tank is switched, the remaining amount of powder in the tank (1-1) is low, so the opening of the blow control valve (7B-1) is gently closed from 100% to 50%. Even if it does, the blowing flow rate does not always gradually decrease from 100% to 50% in proportion to it, and if the amount of powder is sufficient, the blowing control valve (7B-2) of the tank (1-2) Even if the opening degree is gradually opened from 0% to 50% and the blowing flow rate gradually increases from 0% to 50% in proportion to it, the total of the blowing flow rates of both is not always 100% as calculated.

また、図3は、並列吹込みの従来技術の第2例を示す概略図であり、特許文献2の図1の主要部を示すものである。特許文献1に記載されているような従来技術の第1例の問題点を解決するために為されたものである。
すなわち、タンクの切り替え時に、双方のタンクからの合計の吹込み量(総吹込み量)の実測値に基づいて、一方のタンクについてのみ可変弁4(特許文献1における「吹込調節弁7B」に相当)の開度設定量を補正し、他方のタンクの可変弁4は上記実測値による補正を行わないことを特徴とするものである。
Further, FIG. 3 is a schematic view showing a second example of the prior art of parallel blowing, and shows the main part of FIG. 1 of Patent Document 2. This is done to solve the problem of the first example of the prior art as described in Patent Document 1.
That is, when switching tanks, the variable valve 4 (“blow-in control valve 7B” in Patent Document 1” is used only for one tank based on the measured value of the total blow-in amount (total blow-in amount) from both tanks. The variable valve 4 of the other tank is characterized in that the opening degree setting amount (corresponding to) is corrected, and the correction based on the measured value is not performed.

これを図3を参照しつつ具体的に説明する。図3に示す装置の基本的な流量制御は、タンク1aが単独で吹込みを行っている期間は、流量計10によって測定される粉体流量の実測値に基づいて、流量調節計12が可変弁4aの開度を補正することによって行う。
次に、タンク1a内の粉体の重量が一定値以下になったことを検知すると、流量調節計12は可変弁4aを徐々に閉じて行き、同時にタンク1bの可変弁4bを徐々に開いて行く。そして、流量計10で測定される(総吹込み量の)実測値が設定値になるように、可変弁4a又は4bのいずれか一方のみの開度を補正するものである。補正の対象とする可変弁は、例えば、単位時間あたりに輸送される粉体の量が多い方を選択するようにすればよい。
This will be specifically described with reference to FIG. In the basic flow rate control of the device shown in FIG. 3, the flow rate controller 12 is variable based on the measured value of the powder flow rate measured by the flow meter 10 during the period when the tank 1a is blowing independently. This is done by correcting the opening degree of the valve 4a.
Next, when it is detected that the weight of the powder in the tank 1a has fallen below a certain value, the flow rate regulator 12 gradually closes the variable valve 4a, and at the same time gradually opens the variable valve 4b of the tank 1b. go. Then, the opening degree of only one of the variable valves 4a and 4b is corrected so that the actually measured value (of the total blow amount) measured by the flow meter 10 becomes the set value. As the variable valve to be corrected, for example, the one having a larger amount of powder transported per unit time may be selected.

いずれか一方の可変弁のみを補正する理由は、粉体の量が少なくなると吹込み量が不安定になるため、両タンクの吹込み量のバランスを取る事が難しく、総吹込み量を一定に制御することが困難になるからである。
その後、タンク1a内の粉体量が所定の値より少なくなると、タンク1bによる単独吹込みに移行し、以降同様にこれを繰り返す。
このようにすることで、両タンクの吹込み量のバランスを取る必要がなくなり、総吹込み量を精度良く一定に保つことができるという効果があるとされている。
The reason for correcting only one of the variable valves is that when the amount of powder decreases, the amount of blown air becomes unstable, so it is difficult to balance the amount of air blown into both tanks, and the total amount of air blown is constant. This is because it becomes difficult to control.
After that, when the amount of powder in the tank 1a becomes less than a predetermined value, the process shifts to the single blowing by the tank 1b, and this is repeated thereafter.
By doing so, it is not necessary to balance the blown amounts of both tanks, and it is said that there is an effect that the total blown amount can be kept accurate and constant.

特開平8−295911号公報Japanese Unexamined Patent Publication No. 8-295911 特開平10−338349号公報Japanese Unexamined Patent Publication No. 10-338349

しかしながら、特許文献2に記載の方法は、片方の可変弁のみを補正することで総流量の制御を行うため、可変弁の開閉範囲が広くならざるを得ず、それにより応答性もよくないことから制御性が悪くなるという欠点がある。
また、制御を行う可変弁を条件によって切り替える方法が複雑であり、場合によっては制御性が悪くなる場合がある(特許文献2の段落0022参照)。
さらに、可変弁を高速で頻繁に開閉させることになり、可変弁の摩耗の進行が早まることにもなる。その結果、可変弁の開度設定が数値上は同じでも、摩耗によって実際の開度が異なってきて、タンク切替時の粉体流量の制御に乱れが生ずるおそれがある。
However, in the method described in Patent Document 2, since the total flow rate is controlled by correcting only one variable valve, the opening / closing range of the variable valve must be widened, and therefore the responsiveness is not good. Therefore, there is a drawback that the controllability is deteriorated.
Further, the method of switching the variable valve to be controlled depending on the conditions is complicated, and the controllability may be deteriorated in some cases (see paragraph 0022 of Patent Document 2).
Further, the variable valve is opened and closed frequently at high speed, and the progress of wear of the variable valve is accelerated. As a result, even if the opening degree setting of the variable valve is numerically the same, the actual opening degree may differ due to wear, and the control of the powder flow rate at the time of tank switching may be disturbed.

かかる問題は粉体燃料以外の他の粉体の搬送においても同様に起こり得るものである。
本発明は、上述のような従来技術の問題点に鑑み為されたものであり、吹込タンクを備えた粉体供給装置の切り替え時における粉体の供給量を高精度に制御するための粉体並列吹込システム及び粉体並列吹込方法を提供することを目的とする。
Such a problem can also occur in the transportation of powders other than powder fuels.
The present invention has been made in view of the above-mentioned problems of the prior art, and is a powder for controlling the amount of powder supplied at the time of switching the powder supply device provided with a blowing tank with high accuracy. It is an object of the present invention to provide a parallel blowing system and a powder parallel blowing method.

上記課題を解決するために、本発明に係る粉体並列吹込システムは、内部に粉体が充填される吹込タンクと、該吹込タンク内の粉体の重量を検出する秤量器と、上記吹込タンクの下部付近に設けられた排出口に接続された粉体搬送配管支管と、上記粉体搬送配管支管の途中に設けられ上記排出口から排出される粉体の量を弁の開度により調節可能な可変弁と、上記吹込タンクの内部に加圧されたガスを導入し、上記吹込タンク内の粉体を上記排出口より排出するための加圧ガスの圧力を調整する加圧制御弁とを有する粉体供給装置を複数台と、
搬送ガスが導入され、該搬送ガスにより上記粉体を搬送する粉体搬送配管本管と、該粉体搬送配管本管内を搬送される粉体の総流量を計測する粉体流量計測手段と、上記粉体搬送配管本管内を搬送される粉体の総流量を制御する制御手段とを備え、
上記各粉体供給装置の粉体搬送配管支管が上記粉体搬送配管本管に並列に接続され、上記各粉体供給装置を切り替えあるいは同時稼動させながら連続的に一定量の粉体を搬送供給する粉体並列吹込システムであって、上記制御手段は、
予め設定された弁の開度設定値に基づいて上記各可変弁の開度を制御するとともに、上記粉体流量計測手段で計測された粉体の総流量の実測値が所定の目標値に近づくように上記加圧制御弁を制御するものであり、
上記複数の粉体供給装置のうちの稼動中の一の粉体供給装置(A)の上記吹込タンク内の粉体の重量が所定の値(L1)より多い時は、上記一の粉体供給装置(A)の可変弁を上記目標値に対応した開度設定値に基づいて制御するとともに、
上記稼動中の一の粉体供給装置(A)の上記吹込タンク内の粉体の重量が所定の値(L1)以下となった時は、所定のパターンで上記一の粉体供給装置(A)の可変弁の開度を漸減させ、かつ、待機中の他の粉体供給装置(B)の吹込みを開始するとともに上記他の粉体供給装置(B)の可変弁の開度を所定のパターンで漸増させ、さらに、上記粉体流量計測手段で計測された粉体の総流量の実測値が上記所定の目標値に近づくように上記他の粉体供給装置(B)の上記加圧制御弁を制御することを特徴とする。
In order to solve the above problems, the powder parallel blowing system according to the present invention includes a blowing tank filled with powder, a weighing device for detecting the weight of the powder in the blowing tank, and the blowing tank. The amount of powder transferred from the powder transfer pipe branch pipe connected to the discharge port provided near the lower part of the and the powder transfer pipe branch pipe provided in the middle of the discharge port can be adjusted by the opening degree of the valve. Variable valve and a pressurizing control valve that introduces pressurized gas into the blowing tank and adjusts the pressure of the pressurized gas for discharging the powder in the blowing tank from the discharge port. With multiple powder supply devices
A powder transport pipe main that introduces a transport gas and transports the powder by the transport gas, and a powder flow rate measuring means that measures the total flow rate of the powder that is transported in the powder transport pipe main. The powder transfer pipe is provided with a control means for controlling the total flow rate of the powder transferred in the main pipe.
The powder transfer pipe branch of each powder supply device is connected in parallel to the powder transfer pipe main, and a constant amount of powder is continuously transferred and supplied while switching or simultaneously operating each of the powder supply devices. The above-mentioned control means is a powder parallel blowing system.
The opening degree of each of the variable valves is controlled based on the preset valve opening setting value, and the measured value of the total powder flow rate measured by the powder flow rate measuring means approaches a predetermined target value. As described above, each pressurizing control valve is controlled.
When the weight of the powder in the blowing tank of the operating one powder supply device (A) among the plurality of powder supply devices is heavier than the predetermined value (L1), the one powder supply device is supplied. The variable valve of the device (A) is controlled based on the opening setting value corresponding to the above target value, and is also controlled.
The when the weight of the powder blow tank reaches a predetermined value (L1) below, powder supplying device of the one predetermined pattern of one powder supplying device in the operation (A) (A variable valve opening is gradually reduced in), and starts the blow of another powder supplying device in standby (B), the opening of the variable valve of the other powder supplying device (B) The amount is gradually increased in a predetermined pattern, and the addition of the other powder supply device (B) so that the measured value of the total flow rate of the powder measured by the powder flow rate measuring means approaches the predetermined target value. It is characterized by controlling a pressure control valve.

上記構成により、各粉体供給装置の切り替え時における粉体の供給量を高精度に制御することが可能となる。 With the above configuration, it is possible to control the amount of powder supplied at the time of switching each powder supply device with high accuracy.

粉体並列吹込みの概念を説明するための図である。It is a figure for demonstrating the concept of powder parallel blowing. 並列吹込みの従来技術の第1例を示す概略図である。It is the schematic which shows the 1st example of the prior art of parallel blowing. 並列吹込みの従来技術の第2例を示す概略図である。It is the schematic which shows the 2nd example of the prior art of parallel blowing. 本発明に係る粉体並列吹込システムの構成の実施形態を示す概略図である。It is the schematic which shows the embodiment of the structure of the powder parallel blowing system which concerns on this invention. 制御部の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of a control part. 粉体流量制御部が行う処理の流れを示すフローチャートの一例である。This is an example of a flowchart showing the flow of processing performed by the powder flow rate control unit. タンク切り替え制御部が行う処理の流れを示すフローチャートの一例である。This is an example of a flowchart showing the flow of processing performed by the tank switching control unit. 各粉体供給装置における可変弁の開度の推移の例を示す図である。It is a figure which shows the example of the transition of the opening degree of the variable valve in each powder supply device.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。
図4は、本発明に係る粉体並列吹込システムの構成の実施形態を示す概略図である。
図4において、参照符号1a,1bで示すのは、内部に粉体が充填される吹込タンクA,Bである。粉体の例としては、例えば微粉炭が挙げられる。
参照符号2a、2bで示すのは、吹込タンク1a、1b(以下、aとbを特に区別して説明する場合を除き、単に吹込タンク1という。他の参照符号についても同様)の内部に加圧されたガスを導入し、吹込タンク1内の圧力と後述の粉体搬送配管支管6内の圧力差により吹込タンク1内の粉体を排出口より排出するための加圧ガスの圧力を調整する加圧制御弁である。加圧ガスの例としては、窒素等の不活性ガスや空気等が挙げられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 4 is a schematic view showing an embodiment of the configuration of the powder parallel blowing system according to the present invention.
In FIG. 4, reference numerals 1a and 1b are blown tanks A and B filled with powder. Examples of powders include pulverized coal.
Reference numerals 2a and 2b indicate the pressure inside the blowing tanks 1a and 1b (hereinafter, a and b are simply referred to as blowing tanks 1; the same applies to other reference numerals) unless a and b are particularly distinguished. The gas is introduced, and the pressure of the pressurized gas for discharging the powder in the blowing tank 1 from the discharge port is adjusted by the pressure difference between the pressure in the blowing tank 1 and the pressure difference in the powder transport pipe branch pipe 6 described later. It is a pressure control valve. Examples of the pressurized gas include an inert gas such as nitrogen and air.

参照符号3a、3bで示すのは、排出口の下流側に設けられ、排出口から排出される粉体の量を弁の開度により調節可能な可変弁である。可変弁3の実施例として、本出願人であるダイヤモンドエンジニアリング株式会社製の商品名「可変弁」が利用可能である。
また、参照符号4a、4bで示すのは、吹込タンク1内の粉体の重量を検出する秤量器である。秤量器4の例として、荷重(Load)を電気信号に変換するロードセルがある。
Reference numerals 3a and 3b are variable valves provided on the downstream side of the discharge port and in which the amount of powder discharged from the discharge port can be adjusted by the opening degree of the valve. As an example of the variable valve 3, the trade name "variable valve" manufactured by Diamond Engineering Co., Ltd., which is the applicant of the present application, can be used.
Further, reference numerals 4a and 4b are weighers for detecting the weight of the powder in the blowing tank 1. As an example of the weighing device 4, there is a load cell that converts a load into an electric signal.

参照符号5で示すのは、各弁(加圧制御弁、可変弁、後述の下部弁及び図示しない搬送ガス制御弁等)の開度を制御することにより後述の粉体搬送配管本管8内を搬送される粉体の総流量を制御する制御部であり、制御手段の一形態である。その詳細な機能については後述する。例えば、汎用のパーソナルコンピュータが利用可能である。
参照符号6a、6bで示すのは、吹込タンク1の排出口に接続され、排出口から排出された粉体を後述の粉体搬送配管本管8に導くための粉体搬送配管支管である。
Reference numeral 5 indicates the inside of the powder transfer piping main 8 described later by controlling the opening degree of each valve (pressurization control valve, variable valve, lower valve described later, transfer gas control valve not shown, etc.). It is a control unit that controls the total flow rate of the powder to be conveyed, and is a form of control means. Its detailed function will be described later. For example, a general-purpose personal computer can be used.
Reference numerals 6a and 6b are powder transfer pipe branch pipes connected to the discharge port of the blow tank 1 and for guiding the powder discharged from the discharge port to the powder transfer pipe main 8 described later.

参照符号7a、7bで示すのは、吹込タンク1の密閉を保つための下部弁である。吹込み停止時に加圧ガスの導入を停止し吹込タンク1内の圧力が低下すると、搬送ガスの圧力により粉体搬送配管支管6を介して吹込タンク1内に搬送ガス及び粉体が逆流するので、これを完全に防止するために設けられる。
参照符号8で示すのは、粉体搬送配管支管6が接続され、排出口から排出された粉体を搬送ガスによって炉等へ搬送するための粉体搬送配管本管である。
参照符号9で示すのは、粉体搬送配管本管8内を搬送される粉体の流量を計測する粉体流量計であり、粉体流量計測手段の一形態である。
Reference numerals 7a and 7b indicate a lower valve for keeping the blow tank 1 sealed. When the introduction of the pressurized gas is stopped and the pressure in the blowing tank 1 drops when the blowing is stopped, the conveyed gas and powder flow back into the blowing tank 1 via the powder transfer pipe branch pipe 6 due to the pressure of the transfer gas. , It is provided to prevent this completely.
Reference numeral 8 indicates a powder transfer pipe main to which the powder transfer pipe branch pipe 6 is connected and for transporting the powder discharged from the discharge port to the furnace or the like by the transfer gas.
Reference numeral 9 indicates a powder flow meter for measuring the flow rate of the powder conveyed in the powder transfer piping main pipe 8, which is a form of the powder flow rate measuring means.

本発明に係る粉体並列吹込システムは、上述の吹込タンク1、加圧制御弁2、可変弁3、秤量器4、粉体搬送配管支管6、下部弁7を備えた粉体供給装置を複数台(この説明では2台とする。)備え、その各粉体搬送配管支管6を粉体搬送配管本管8に並列に接続し、粉体搬送配管本管8の下流に設けられた粉体流量計9で計測された粉体流量実測値が予め設定した所定の目標値になるように制御部5が加圧制御弁2と可変弁3を制御することにより、各粉体供給装置を切り替えあるいは同時に稼動させながら、炉に対して一定量(目標値)の粉体を連続的に搬送供給するものである。 The powder parallel blowing system according to the present invention includes a plurality of powder supply devices including the above-mentioned blowing tank 1, pressure control valve 2, variable valve 3, weighing device 4, powder transfer pipe branch pipe 6, and lower valve 7. A table (two units are used in this description) is provided, and each of the powder transfer pipe branch pipes 6 is connected in parallel to the powder transfer pipe main pipe 8 to provide powder downstream of the powder transfer pipe main pipe 8. The control unit 5 controls the pressurizing control valve 2 and the variable valve 3 so that the measured powder flow rate measured by the flow meter 9 becomes a predetermined target value set in advance, thereby switching each powder supply device. Alternatively, a fixed amount (target value) of powder is continuously transported and supplied to the furnace while operating at the same time.

図5は、制御部5の機能構成を示すブロック図である。図5には、この実施形態の特徴に関連する機能を示している。
図5に示す制御部5は、粉体流量取得部51、粉体流量制御部52、タンク切り替え制御部53及び弁開閉制御部54を備える。
FIG. 5 is a block diagram showing a functional configuration of the control unit 5. FIG. 5 shows the functions related to the features of this embodiment.
The control unit 5 shown in FIG. 5 includes a powder flow rate acquisition unit 51, a powder flow rate control unit 52, a tank switching control unit 53, and a valve opening / closing control unit 54.

このうち、粉体流量取得部51は、図示しない外部入力手段から流量の規定量(炉等へ供給する粉体総量の目標値のこと。以下「規定量」という。)を取得して記憶する機能を備えるとともに、粉体流量計9から粉体流量実測値(以下「実測値」という。)を取得する機能を備える。そして、粉体流量取得部51は、粉体流量制御部52、タンク切り替え制御部53及び弁開閉制御部54からの送信要求に応じて、規定量及び/又は実測値を送信する機能を備える。 Of these, the powder flow rate acquisition unit 51 acquires and stores a specified flow rate (target value of the total amount of powder supplied to the furnace or the like; hereinafter referred to as “specified amount”) from an external input means (not shown). In addition to having a function, it also has a function of acquiring a powder flow rate measured value (hereinafter referred to as "measured value") from the powder flow meter 9. Then, the powder flow rate acquisition unit 51 has a function of transmitting a specified amount and / or an actually measured value in response to a transmission request from the powder flow rate control unit 52, the tank switching control unit 53, and the valve opening / closing control unit 54.

また、粉体流量制御部52は、粉体流量取得部51から取得した規定量及び実測値に基づいて、規定量と実測値との差が所定の誤差内に収まるように、弁開閉制御部54に対して加圧制御弁2の制御を指令する機能を備える。
図6は粉体流量制御部52が行う処理の流れを示すフローチャートの一例である。この処理は、タンク切り替え制御部53から流量の目標値を規定量に設定することの指令を受けた時にスタートする。
Further, the powder flow rate control unit 52 is a valve opening / closing control unit so that the difference between the specified amount and the measured value is within a predetermined error based on the specified amount and the measured value acquired from the powder flow rate acquisition unit 51. It has a function of instructing 54 to control the pressurizing control valve 2.
FIG. 6 is an example of a flowchart showing the flow of processing performed by the powder flow rate control unit 52. This process starts when a command is received from the tank switching control unit 53 to set the target value of the flow rate to the specified amount.

制御部5のCPU(不図示)は、粉体流量取得部51から規定量を取得し、目標値を規定量に設定する(S101)。次に、同じタイミングで実測値を取得する(S102)。次に、規定量と実測値との差が所定の誤差(δ)よりも小さいか否かをチェックし、規定量と実測値との差がδ以上の場合は(S103のNO)、加圧制御弁2の開度を調整して実測値を規定量に近づける必要がある。なお、δはシステムの要求に応じて適宜設定可能である。
そこで、実測値が規定量よりも少ない場合は(S104のYES)、加圧制御弁2の開度を上げて吹込タンク1内の圧力を上げ、搬送される粉体の流量を増やす(S105)。なお、加圧制御弁2の開度制御は、上述の通り、粉体流量制御部52が弁開閉制御部54に対して指令することにより行う。そして、ステップS102に戻り、その時の実測値を取得し(S102)、規定量と実測値の差がδよりも小さいか否かをチェックする。
The CPU (not shown) of the control unit 5 acquires a specified amount from the powder flow rate acquisition unit 51 and sets the target value to the specified amount (S101). Next, the measured value is acquired at the same timing (S102). Next, it is checked whether the difference between the specified amount and the measured value is smaller than the predetermined error (δ), and if the difference between the specified amount and the measured value is δ or more (NO in S103), pressurization is performed. It is necessary to adjust the opening degree of the control valve 2 to bring the measured value closer to the specified amount. Note that δ can be appropriately set according to the requirements of the system.
Therefore, when the measured value is less than the specified amount (YES in S104), the opening degree of the pressurizing control valve 2 is increased to increase the pressure in the blowing tank 1 and the flow rate of the conveyed powder is increased (S105). .. The opening degree control of the pressurizing control valve 2 is performed by the powder flow rate control unit 52 instructing the valve open / close control unit 54 as described above. Then, the process returns to step S102, the measured value at that time is acquired (S102), and it is checked whether or not the difference between the specified amount and the measured value is smaller than δ.

また、ステップS104において、実測値が規定量を超えている場合は(S104のNO)、加圧制御弁2の開度を下げて吹込タンク1内の圧力を下げ、搬送される粉体の流量を減らす(S106)。そして、ステップS102に戻り、その時の実測値を取得し(S102)、規定量と実測値の差がδよりも小さいか否かをチェックする(S103)。以下、この処理を繰り返す。 Further, in step S104, when the measured value exceeds the specified amount (NO in S104), the opening degree of the pressurizing control valve 2 is lowered to lower the pressure in the blowing tank 1, and the flow rate of the powder to be conveyed. (S106). Then, the process returns to step S102, the measured value at that time is acquired (S102), and it is checked whether or not the difference between the specified amount and the measured value is smaller than δ (S103). Hereinafter, this process is repeated.

一方、ステップS103において、規定量と実測値との差がδよりも小さい場合は(S103のYES)、タンク切り替え制御部53からの制御対象の加圧制御弁の変更指示がなければ(S107のNO)、ステップS102に戻り、その時の実測値を取得し(S102)、規定量との差がδよりも小さいか否かをチェックする(S103)。
なお、後述のように、並列吹込みが開始された場合は、それまで待機していた粉体供給装置の加圧制御弁の方に制御対象が変更になるので、制御対象の加圧制御弁の変更指示があったときは(S107のYES)、制御対象の加圧制御弁を変更し(S108)、ステップS102に戻り、その時の実測値を取得し、以降の処理を行う。
以上の処理を繰り返すことにより、粉体の流量の実測値を規定量に近づけることができる。
On the other hand, in step S103, if the difference between the specified amount and the measured value is smaller than δ (YES in S103), there is no instruction from the tank switching control unit 53 to change the pressurizing control valve to be controlled (in S107). NO), the process returns to step S102, the measured value at that time is acquired (S102), and it is checked whether or not the difference from the specified amount is smaller than δ (S103).
As will be described later, when parallel injection is started, the control target is changed to the pressurization control valve of the powder supply device that has been waiting until then, so the pressurization control valve to be controlled. When there is an instruction to change (YES in S107), the pressurizing control valve to be controlled is changed (S108), the process returns to step S102, the measured value at that time is acquired, and the subsequent processing is performed.
By repeating the above process, the measured value of the powder flow rate can be brought close to the specified amount.

図5に戻り、タンク切り替え制御部53は、現在稼動中の粉体供給装置A(吹込タンク1aを含む粉体供給装置を表す。以下同様。)の吹込タンク1a内の粉体の残量が所定の値(例えばL1とする。)以下になった時に、所定のパターンで可変弁3aの開度を漸減させつつ、加圧制御弁2aの制御を停止してその時の加圧制御弁2aの開度を維持するとともに、待機中の粉体供給装置Bからの吹込みを開始させ、かつ、可変弁3bの開度を所定のパターンで漸増させながら、粉体流量計9で計測された粉体流量実測値が規定量に近づくように加圧制御弁2bを制御する機能を備える。これが本発明の特徴的な機能である。処理の詳細は後述する。 Returning to FIG. 5, the tank switching control unit 53 indicates that the remaining amount of powder in the blowing tank 1a of the powder supply device A (representing the powder supply device including the blowing tank 1a; the same applies hereinafter) currently in operation. When the value becomes equal to or less than a predetermined value (for example, L1), the control of the pressurizing control valve 2a is stopped while gradually reducing the opening degree of the variable valve 3a in a predetermined pattern, and the pressurizing control valve 2a at that time is stopped. The powder measured by the powder flow meter 9 while maintaining the opening degree, starting the blowing from the standby powder supply device B, and gradually increasing the opening degree of the variable valve 3b in a predetermined pattern. It has a function of controlling the pressurizing control valve 2b so that the measured value of the body flow rate approaches the specified amount. This is a characteristic function of the present invention. The details of the process will be described later.

そして、粉体供給装置Aを所定の条件により吹き込み停止とした後は、粉体供給装置Bが単独で吹込みを継続し、一定量(規定量)の粉体を搬送する機能を備える。
なお、「所定の条件」とは、例えば、吹込タンク1a内の粉体の残量が所定の下限値(例えばL1よりも小さなL2とする。)以下になった時、あるいは、吹込タンク1a内の粉体の残量がL1に到達してから所定の時間(例えば1分程度)経過後とすることが考えられる。
Then, after the powder supply device A is stopped from being blown under a predetermined condition, the powder supply device B is provided with a function of continuing the blowing independently and transporting a constant amount (specified amount) of powder.
The "predetermined condition" is, for example, when the remaining amount of powder in the blowing tank 1a becomes equal to or less than a predetermined lower limit value (for example, L2 smaller than L1), or in the blowing tank 1a. It is conceivable that a predetermined time (for example, about 1 minute) has elapsed after the remaining amount of the powder of No. 1 reaches L1.

また、弁開閉制御部54は、粉体流量制御部52及びタンク切り替え制御部53からの指令に応じて加圧制御弁2の開度を調節したり、加圧制御弁2及び下部弁7の開閉を制御したりする機能を備える。また、粉体流量取得部51から取得した規定値に基づいて、可変弁3の開度を設定したり、予め設定されたパターンによって可変弁の開度を制御したりする機能も備える。
以上、制御部5の機能を分かり易く説明するために各ブロックに分けて説明したが、必ずしも機能ブロックごとに制御プログラムを作成する必要はなく、これらを一つにまとめた一つのプログラムで制御してもよいことは言うまでもない。
Further, the valve open / close control unit 54 adjusts the opening degree of the pressurization control valve 2 in response to commands from the powder flow rate control unit 52 and the tank switching control unit 53, and the pressure control valve 2 and the lower valve 7 It has a function to control opening and closing. Further, it also has a function of setting the opening degree of the variable valve 3 based on the specified value acquired from the powder flow rate acquisition unit 51 and controlling the opening degree of the variable valve according to a preset pattern.
In the above, the functions of the control unit 5 have been described separately for each block in order to explain them in an easy-to-understand manner, but it is not always necessary to create a control program for each functional block, and these are controlled by a single program. Needless to say, it's okay.

図7は、タンク切り替え制御部53が行う処理の流れを示すフローチャートの一例である。なお、制御部5のCPUはマルチタスク処理が可能であることが必要であり、粉体供給装置Aと粉体供給装置Bの制御を同時並行処理するものである。
この処理は、吹込タンク1に粉体を充填した後に、図示しない吹込み開始ボタンをオペレータが押下した時にスタートする。
先に粉体供給装置Aの吹込タンク1aから吹込みを開始する場合を例として説明する。
図7のフローにおいて、粉体供給装置Aに対する処理であるステップS201a〜S218aと粉体供給装置Bに対する処理であるS201b〜S213bは、並行して処理されるものであるが、説明の都合上、先にステップS201a〜S218aを説明し、その後にS201b〜S213bについて説明することとする。
FIG. 7 is an example of a flowchart showing the flow of processing performed by the tank switching control unit 53. The CPU of the control unit 5 needs to be capable of multitasking processing, and controls the powder supply device A and the powder supply device B in parallel.
This process starts when the operator presses a blowing start button (not shown) after filling the blowing tank 1 with powder.
First, the case where the blowing is started from the blowing tank 1a of the powder supply device A will be described as an example.
In the flow of FIG. 7, steps S201a to S218a for the powder supply device A and S201b to S213b for the powder supply device B are processed in parallel, but for convenience of explanation, they are processed in parallel. Steps S201a to S218a will be described first, and then S201b to S213b will be described.

まず、粉体流量制御部52に対して粉体流量(FI)の目標値を規定量に設定するように指令を行う(S200)。
次に、吹込タンク1a内に図示しない貯蔵タンクから粉体を充填して待機する(S201a)。
次に、弁開閉制御部54に対して、可変弁3aを規定量に対応した可変弁開度に設定するよう指令を行う(S202a)。
次に、下部弁7aを開くよう、弁開閉制御部54に対して指令する(S203a)。そうすると吹込みが開始され、秤量器4aの値(WI_A)の監視を開始する(S204a)。
吹込み開始すると、粉体流量制御部52に対して、流量実測値が規定量になるように制御を開始するよう指令する(S205a)。
First, a command is given to the powder flow rate control unit 52 to set a target value of the powder flow rate (FI) to a specified amount (S200).
Next, the blowing tank 1a is filled with powder from a storage tank (not shown) and waits (S201a).
Next, a command is given to the valve opening / closing control unit 54 to set the variable valve 3a to a variable valve opening degree corresponding to a specified amount (S202a).
Next, the valve opening / closing control unit 54 is instructed to open the lower valve 7a (S203a). Then, the blowing is started, and the monitoring of the value (WI_A) of the weighing device 4a is started (S204a).
When the blowing is started, the powder flow rate control unit 52 is instructed to start the control so that the measured flow rate value becomes a specified amount (S205a).

吹込タンク1aからの吹き込み開始後、WI_Aが所定の値(L1)より多い間は(S206aのNO)、そのままの状態(すなわち、可変弁3aの開度設定を変更せずに)で吹き込みを継続する。
その後、WI_AがL1以下となった時に(S206aのYES)、吹込タンク1bとの並列吹込みに移行する。すなわち、粉体供給装置BにおけるステップS203b以降の処理がスタートする。なお、並列吹込みとは、吹込タンク1aからの吹込み量を徐々に減らしつつ、吹込タンク1bからの吹込み量を徐々に増やし、双方の合計の吹込み量が規定量(一定量)になるように制御することである。並列吹込み状態になると、粉体供給装置Bの吹込タンク1bからの吹込みを開始するが、このフローについては後述する。
次に、並列吹込み時は、可変弁3aの開度を所定のパターンで漸減させると共に、加圧制御弁2aを制御を停止し、停止時点における加圧制御弁2aの開度に固定することを弁開閉制御部54に指令する(S207a)。
After the start of blowing from the blowing tank 1a, while WI_A is greater than the predetermined value (L1) (NO in S206a), the blowing is continued in that state (that is, without changing the opening setting of the variable valve 3a). To do.
After that, when WI_A becomes L1 or less (YES in S206a), the process shifts to parallel blowing with the blowing tank 1b. That is, the processing after step S203b in the powder supply device B starts. In parallel blowing, the blowing amount from the blowing tank 1a is gradually reduced, and the blowing amount from the blowing tank 1b is gradually increased, so that the total blowing amount of both becomes a specified amount (constant amount). It is to control so that it becomes. When the parallel blowing state is reached, the blowing from the blowing tank 1b of the powder supply device B is started, and this flow will be described later.
Next, at the time of parallel blowing, the opening degree of the variable valve 3a is gradually reduced in a predetermined pattern, the control of the pressurizing control valve 2a is stopped, and the opening degree of the pressurizing control valve 2a at the time of stopping is fixed. Is commanded to the valve opening / closing control unit 54 (S207a).

なお、上記の「所定のパターンで漸減」の例としては、例えば、次の式1のようなものが考えられる。
可変弁3aの開度(%)=M(%)−kt・・・(式1)
kは比例定数、tは時間、Mは規定量に対応した可変弁の開度(%)である。
As an example of the above-mentioned "gradual decrease in a predetermined pattern", for example, the following equation 1 can be considered.
Opening (%) of variable valve 3a = M (%) -kt ... (Equation 1)
k is a proportionality constant, t is time, and M is the opening degree (%) of the variable valve corresponding to the specified amount.

並列吹込み中に、WI_Aが所定の下限値L2(L2<L1)より大きい間は(S208aのNO)、並列吹込みを継続するが、WI_AがL2以下となった場合は(S208aのYES)、粉体供給装置Aの吹込タンク1aからの吹込みを停止すべく、弁開閉制御部54に対して加圧制御弁2a及び下部弁7aの閉栓を指令する(S209a)。この場合は粉体供給装置Bの単独吹込みに移行するが、この処理については後述する。
加圧制御弁2a及び下部弁7aを閉じると吹込みが停止するので、秤量器4aの値の監視を停止する(S210a)。
粉体供給装置Aからの吹込停止後は、吹込タンク1a内に図示しない貯蔵タンクから粉体を充填して待機する(S211a)。
During parallel blowing, while WI_A is larger than the predetermined lower limit L2 (L2 <L1) (NO in S208a), parallel blowing is continued, but when WI_A becomes L2 or less (YES in S208a). In order to stop the blowing from the blowing tank 1a of the powder supply device A, the valve opening / closing control unit 54 is instructed to close the pressurizing control valve 2a and the lower valve 7a (S209a). In this case, the process shifts to the single blowing of the powder supply device B, and this process will be described later.
When the pressurizing control valve 2a and the lower valve 7a are closed, the blowing is stopped, so that the monitoring of the value of the weighing device 4a is stopped (S210a).
After the blowing from the powder supply device A is stopped, the blowing tank 1a is filled with powder from a storage tank (not shown) and stands by (S211a).

その後、単独吹込み中の粉体供給装置Bの秤量器4bの値(WI_B)がL1以下となったことを検知すると(S212aのYES)、並列吹込みに移行し、可変弁3aの開度を所定のパターンで漸増させると共に、加圧制御弁2aの制御開始を弁開閉制御部54に指令する(S213a)。
なお、上記の「所定のパターンで漸増」の例としては、例えば、次の式2のようなものが考えられる。
可変弁3aの開度(%)=A+kt・・・(式2)
kは比例定数、tは時間である。また、Aは制御開始時の可変弁開度の初期値(%)である。後述の図8は、A=0(%)の場合を示している。
次に、下部弁7aを開くよう、弁開閉制御部54に対して指令する(S214a)。そうすると吹込みが開始され、秤量器4aの値(WI_A)の監視を開始する(S215a)。
吹込み開始すると、粉体流量制御部52に対して、流量実測値が規定量になるように制御を開始するよう指令する(S216a)。
After that, when it is detected that the value (WI_B) of the weighing device 4b of the powder supply device B during the single blowing is L1 or less (YES in S212a), the process shifts to the parallel blowing and the opening degree of the variable valve 3a is opened. Is gradually increased in a predetermined pattern, and the valve opening / closing control unit 54 is instructed to start controlling the pressurizing control valve 2a (S213a).
As an example of the above-mentioned "gradual increase in a predetermined pattern", for example, the following equation 2 can be considered.
Opening (%) of variable valve 3a = A 0 + kt ... (Equation 2)
k is a constant of proportionality and t is time. Further, A 0 is an initial value (%) of the variable valve opening degree at the start of control. FIG. 8 described later shows the case where A 0 = 0 (%).
Next, the valve opening / closing control unit 54 is instructed to open the lower valve 7a (S214a). Then, the blowing is started, and the monitoring of the value (WI_A) of the weighing device 4a is started (S215a).
When the blowing is started, the powder flow rate control unit 52 is instructed to start the control so that the measured flow rate value becomes a specified amount (S216a).

暫く並列吹込みを続けた後、並列吹込み中の粉体供給装置Bの秤量器4bの値(WI_B)が所定の下限値L2以下となったことを検知すると(S217aのYES)、粉体供給装置Aの単独吹込に移行し、弁開閉制御部54に対して、可変弁3aを規定量に対応した可変弁開度に設定(変更)するよう指令を行う(S218a)。
そして、吹込タンク1aからの単独吹き込みへの移行後はステップS206に戻って、それ以降の処理を繰り返す。
After continuing the parallel blowing for a while, when it is detected that the value (WI_B) of the weighing device 4b of the powder supply device B during the parallel blowing is equal to or less than the predetermined lower limit value L2 (YES in S217a), the powder The process shifts to the independent injection of the supply device A, and a command is given to the valve open / close control unit 54 to set (change) the variable valve 3a to the variable valve opening degree corresponding to the specified amount (S218a).
Then, after shifting from the blowing tank 1a to the single blowing, the process returns to step S206, and the subsequent processes are repeated.

次に、粉体供給装置Bに対する処理(S201b〜S213b)であるが、この処理は粉体供給装置Aに対する処理であるS211a〜S218a及びS206a〜S210aまでの処理と同じである。
具体的には、S201b、S202b、S203b、S204b、S205b、S206b、S207b、S208b、S209b、S210b、S211b、S212b及びS213bは、それぞれS211a、S212a、S213a、S214a、S215a、S216a、S217a、S218a、S206a、S207a、S208a、S209a及びS210aに対応している。以下、具体的に説明する。
Next, the processing for the powder supply device B (S201b to S213b) is the same as the processing for the powder supply device A, S211a to S218a and S206a to S210a.
Specifically, S201b, S202b, S203b, S204b, S205b, S206b, S207b, S208b, S209b, S210b, S211b, S212b and S213b are S211a, S212a, S213a, S214a, S215a, S216a, S217a, S218a, respectively. , S207a, S208a, S209a and S210a. Hereinafter, a specific description will be given.

粉体供給装置Bは、吹込タンク1b内に図示しない貯蔵タンクから粉体を充填して待機する(S201b)。
その後、単独吹込み中の粉体供給装置Aの秤量器4aの値(WI_A)がL1以下となったことを検知すると(S202bのYES)、並列吹込みに移行し、可変弁3bの開度を所定のパターンで漸増させると共に、加圧制御弁2bの制御開始を弁開閉制御部54に指令する(S203b)。
なお、上記の「所定のパターンで漸増」の例としては、例えば、上記の式2のようなものが考えられる。
次に、下部弁7bを開くよう、弁開閉制御部54に対して指令する(S204b)。そうすると吹込みが開始され、秤量器4bの値(WI_B)の監視を開始する(S205b)。
吹込み開始すると、粉体流量制御部52に対して、流量実測値が規定量になるように制御を開始するよう指令する(S206b)。
The powder supply device B fills the blowing tank 1b with powder from a storage tank (not shown) and stands by (S201b).
After that, when it is detected that the value (WI_A) of the weighing device 4a of the powder supply device A during the single blowing is L1 or less (YES in S202b), the process shifts to the parallel blowing and the opening degree of the variable valve 3b. Is gradually increased in a predetermined pattern, and the valve opening / closing control unit 54 is instructed to start controlling the pressurizing control valve 2b (S203b).
As an example of the above-mentioned "gradual increase in a predetermined pattern", for example, the above-mentioned equation 2 can be considered.
Next, the valve opening / closing control unit 54 is instructed to open the lower valve 7b (S204b). Then, the blowing is started, and the monitoring of the value (WI_B) of the weighing device 4b is started (S205b).
When the blowing is started, the powder flow rate control unit 52 is instructed to start the control so that the measured flow rate value becomes a specified amount (S206b).

暫く並列吹込みを続けた後、並列吹込み中の粉体供給装置Aの秤量器4aの値(WI_A)が所定の下限値L2以下となったことを検知すると(S207bのYES)、粉体供給装置Bの単独吹込に移行し、弁開閉制御部54に対して、可変弁3bを規定量に対応した可変弁開度に設定(変更)するよう指令を行う(S208b)。
吹込タンク1bからの単独吹き込みへの移行後、WI_Bが所定の値(L1)より多い間は(S209bのNO)、そのままの状態(すなわち、可変弁3bの開度設定を変更せずに)で吹き込みを継続する。
After continuing the parallel blowing for a while, when it is detected that the value (WI_A) of the weighing device 4a of the powder supply device A during the parallel blowing is equal to or less than the predetermined lower limit value L2 (YES in S207b), the powder The process shifts to the independent injection of the supply device B, and a command is given to the valve open / close control unit 54 to set (change) the variable valve 3b to the variable valve opening degree corresponding to the specified amount (S208b).
After the transition from the blow tank 1b to the single blow, while WI_B is more than the predetermined value (L1) (NO in S209b), it remains as it is (that is, without changing the opening setting of the variable valve 3b). Continue blowing.

その後、WI_BがL1以下となった時に(S209bのYES)、吹込タンク1aとの並列吹込みに移行する。すなわち、粉体供給装置AにおけるステップS213a以降の処理がスタートする。並列吹込み状態になると、粉体供給装置Aの吹込タンク1aからの吹込みを開始するが、このフローについては既に説明した。
次に、並列吹込み時は、可変弁3bの開度を所定のパターンで漸減させると共に、加圧制御弁2bを制御を停止し、停止時点における加圧制御弁2bの開度に固定することを弁開閉制御部54に指令する(S210b)。
なお、上記の「所定のパターンで漸減」の例としては、例えば、上記の式1のようなものが考えられる。
After that, when WI_B becomes L1 or less (YES in S209b), the process shifts to parallel blowing with the blowing tank 1a. That is, the processing after step S213a in the powder supply device A starts. When the parallel blowing state is reached, the blowing from the blowing tank 1a of the powder supply device A is started, and this flow has already been described.
Next, at the time of parallel blowing, the opening degree of the variable valve 3b is gradually reduced in a predetermined pattern, the control of the pressurizing control valve 2b is stopped, and the opening degree of the pressurizing control valve 2b at the time of stopping is fixed. Is commanded to the valve opening / closing control unit 54 (S210b).
As an example of the above-mentioned "gradual decrease in a predetermined pattern", for example, the above-mentioned equation 1 can be considered.

並列吹込み中に、WI_Bが所定の下限値L2(L2<L1)より大きい間は(S211bのNO)、並列吹込みを継続するが、WI_BがL2以下となった場合は(S211bのYES)、粉体供給装置Bの吹込タンク1bからの吹込みを停止すべく、弁開閉制御部54に対して加圧制御弁2b及び下部弁7bの閉栓を指令する(S212b)。この場合は粉体供給装置Aの単独吹込みに移行するが、この処理については既に説明した。
加圧制御弁2b及び下部弁7bを閉じると吹込みが停止するので、秤量器4bの値の監視を停止する(S213b)。そして、ステップS201bに戻って、それ以降の処理を繰り返す。
本発明に係る粉体並列吹込システムにより、吹込タンク切替時の粉体流量の総量の規定量に対する精度が、±5%から±3%に向上した。
During parallel blowing, while WI_B is larger than the predetermined lower limit value L2 (L2 <L1) (NO in S211b), parallel blowing is continued, but when WI_B becomes L2 or less (YES in S211b). In order to stop the blowing from the blowing tank 1b of the powder supply device B, the valve opening / closing control unit 54 is instructed to close the pressurizing control valve 2b and the lower valve 7b (S212b). In this case, the process shifts to the single injection of the powder supply device A, but this process has already been described.
When the pressurizing control valve 2b and the lower valve 7b are closed, the blowing is stopped, so that the monitoring of the value of the weighing device 4b is stopped (S213b). Then, the process returns to step S201b, and the subsequent processes are repeated.
With the powder parallel blowing system according to the present invention, the accuracy of the total amount of powder flow rate when switching the blowing tank with respect to the specified amount has been improved from ± 5% to ± 3%.

図8は、本実施例における粉体供給装置A及びBにおける可変弁の開度の推移を示す図である。図において、実線で示すのは粉体供給装置Aの可変弁3aの開度を表し、点線で示すのは粉体供給装置Bの可変弁3bの開度を表している。この図では、上記式2におけるAが0%である場合を示しているが、これに限定されないことは言うまでもない。
図中「WI_A≦L1」等と矢印で示しているのは、「単独吹込」と「並列吹込」との切替のタイミングである。
FIG. 8 is a diagram showing changes in the opening degree of the variable valve in the powder supply devices A and B in this embodiment. In the figure, the solid line shows the opening degree of the variable valve 3a of the powder supply device A, and the dotted line shows the opening degree of the variable valve 3b of the powder supply device B. In this figure, the case where A 0 in the above equation 2 is 0% is shown, but it goes without saying that the present invention is not limited to this.
In the figure, "WI_A ≤ L1" and other arrows indicate the timing of switching between "single injection" and "parallel injection".

以上、粉体供給装置を2台並列に接続した場合を例として説明したが、3台以上の場合でも同様に実施可能である。
例えば、3台(例えば、粉体供給装置A,B,C)の並列処理の場合は、粉体供給装置Cの制御フローは、粉体供給装置Bの制御フローにおいて、BをCに、AをBに置き換えたものと同じになる。その場合、粉体供給装置AのステップS212aの「WI_B」を「WI_C」と、ステップS217aの「WI_B」を「WI_C」と置き換えればよい。
Although the case where two powder supply devices are connected in parallel has been described above as an example, the same can be applied to the case of three or more powder supply devices.
For example, in the case of parallel processing of three units (for example, powder supply devices A, B, C), the control flow of the powder supply device C is such that B is set to C and A is the control flow of the powder supply device B. Is the same as replacing B with B. In that case, "WI_B" in step S212a of the powder supply device A may be replaced with "WI_C", and "WI_B" in step S217a may be replaced with "WI_C".

このようにすることにより、粉体供給装置A,B,Cの切り替え順は、次のようになる。
(1)粉体供給装置Aの単独吹込み
(2)粉体供給装置Aと粉体供給装置Bの並列吹込み
(3)粉体供給装置Bの単独吹込み
(4)粉体供給装置Bと粉体供給装置Cの並列吹込み
(5)粉体供給装置Cの単独吹込み
(6)粉体供給装置Cと粉体供給装置Aの並列吹込み→(1)に戻る。
なお、これらの切り替え順は一例であり、任意に変更は可能である。
By doing so, the switching order of the powder supply devices A, B, and C is as follows.
(1) Single injection of powder supply device A (2) Parallel injection of powder supply device A and powder supply device B (3) Single injection of powder supply device B (4) Single injection of powder supply device B And parallel injection of the powder supply device C (5) Single injection of the powder supply device C (6) Parallel injection of the powder supply device C and the powder supply device A → Return to (1).
The switching order is an example, and can be changed arbitrarily.

以上で実施形態の説明を終了するが、微粉炭以外の他の粉体の例としては、生石灰、脱リン剤(たとえば石灰、酸化鉄、螢石などを混合した粉粒体)、脱硫剤(酸化鉄あるいは酸化亜鉛の粉粒体)等がある。
また、粉体供給装置の具体的な構成、処理の内容、データの構成等は、実施形態で説明したものに限るものではなく、本発明の主旨を損なわない範囲で変更することが可能である。
Although the description of the embodiment is completed above, examples of powders other than pulverized coal include quicklime, a dephosphorizing agent (for example, powders and granules mixed with lime, iron oxide, and talc), and a desulfurizing agent (for example). (Iron oxide or zinc oxide powder) and the like.
Further, the specific configuration of the powder supply device, the content of processing, the configuration of data, etc. are not limited to those described in the embodiments, and can be changed as long as the gist of the present invention is not impaired. ..

例えば、上述の例では、粉体供給装置Aの単独吹込から粉体供給装置Bとの並列吹込に移行した場合に、粉体供給装置Bの加圧制御弁2bを調整することにより全体の総流量を調整するようにしたが、これに限定されず、粉体供給装置Aの加圧制御弁2aを調整することにより全体の総流量を調整するようにしてもよい。
上記実施例において、粉体供給装置Aの単独吹込から粉体供給装置Bとの並列吹込に移行した場合に、粉体供給装置Bの加圧制御弁2bを調整することにより全体の総流量を調整するようにしたのは、その後に粉体供給装置Bの単独吹込みに移行した後も、引き続き粉体供給装置Bの加圧制御弁2bの制御により全体の流量を調節することができるので、制御が簡単になるからである。
For example, in the above example, when the single injection of the powder supply device A is shifted to the parallel injection with the powder supply device B, the pressure control valve 2b of the powder supply device B is adjusted to adjust the total amount of the whole. The flow rate is adjusted, but the present invention is not limited to this, and the total flow rate may be adjusted by adjusting the pressurizing control valve 2a of the powder supply device A.
In the above embodiment, when the single injection of the powder supply device A is shifted to the parallel injection with the powder supply device B, the total flow rate is increased by adjusting the pressurizing control valve 2b of the powder supply device B. The reason for the adjustment is that the overall flow rate can be continuously adjusted by controlling the pressurizing control valve 2b of the powder supply device B even after shifting to the single injection of the powder supply device B. , Because it is easy to control.

1:吹込タンク、2:加圧制御弁、3:可変弁、4:秤量器、5:制御部、6:粉体搬送配管支管、7:下部弁、8:粉体搬送配管本管、9:粉体流量計








1: Blow tank, 2: Pressurized control valve, 3: Variable valve, 4: Weighing device, 5: Control unit, 6: Powder transfer piping branch pipe, 7: Lower valve, 8: Powder transfer piping main, 9 : Powder flow meter








Claims (4)

内部に粉体が充填される吹込タンクと、該吹込タンク内の粉体の重量を検出する秤量器と、前記吹込タンクの下部付近に設けられた排出口に接続された粉体搬送配管支管と、前記粉体搬送配管支管の途中に設けられ前記排出口から排出される粉体の量を弁の開度により調節可能な可変弁と、前記吹込タンクの内部に加圧されたガスを導入し、前記吹込タンク内の粉体を前記排出口より排出するための加圧ガスの圧力を調整する加圧制御弁とを有する粉体供給装置を複数台と、
搬送ガスが導入され、該搬送ガスにより前記粉体を搬送する粉体搬送配管本管と、該粉体搬送配管本管内を搬送される粉体の総流量を計測する粉体流量計測手段と、前記粉体搬送配管本管内を搬送される粉体の総流量を制御する制御手段とを備え、
前記各粉体供給装置の粉体搬送配管支管が前記粉体搬送配管本管に並列に接続され、前記各粉体供給装置を切り替えあるいは同時稼動させながら連続的に一定量の粉体を搬送供給する粉体並列吹込システムであって、
前記制御手段は、
予め設定された弁の開度設定値に基づいて前記各可変弁の開度を制御するとともに、前記粉体流量計測手段で計測された粉体の総流量の実測値が所定の目標値に近づくように前記加圧制御弁を制御するものであり、
前記複数の粉体供給装置のうちの稼動中の一の粉体供給装置(A)の前記吹込タンク内の粉体の重量が所定の値(L1)より多い時は、前記一の粉体供給装置(A)の可変弁を前記目標値に対応した開度設定値に基づいて制御するとともに、
前記稼動中の一の粉体供給装置(A)の前記吹込タンク内の粉体の重量が所定の値(L1)以下となった時は、所定のパターンで前記一の粉体供給装置(A)の可変弁の開度を漸減させ、かつ、待機中の他の粉体供給装置(B)の吹込みを開始するとともに前記他の粉体供給装置(B)の可変弁の開度を所定のパターンで漸増させ、さらに、
前記粉体流量計測手段で計測された粉体の総流量の実測値が前記所定の目標値に近づくように前記他の粉体供給装置(B)の前記加圧制御弁を制御することを特徴とする粉体並列吹込システム。
A blowing tank filled with powder, a weighing device for detecting the weight of the powder in the blowing tank, and a powder transport pipe branch pipe connected to a discharge port provided near the lower part of the blowing tank. , A variable valve provided in the middle of the powder transfer pipe branch and capable of adjusting the amount of powder discharged from the discharge port by the opening degree of the valve, and a pressurized gas are introduced into the inside of the blow tank. A plurality of powder supply devices having a pressurizing control valve for adjusting the pressure of the pressurized gas for discharging the powder in the blowing tank from the discharge port.
A powder transport pipe main that introduces a transport gas and transports the powder by the transport gas, and a powder flow rate measuring means that measures the total flow rate of the powder that is transported in the powder transport pipe main. The powder transfer pipe is provided with a control means for controlling the total flow rate of the powder transferred in the main pipe.
The powder transfer pipe branch of each powder supply device is connected in parallel to the powder transfer pipe main, and a constant amount of powder is continuously transferred and supplied while switching or simultaneously operating each of the powder supply devices. It is a powder parallel blowing system
The control means
The opening degree of each variable valve is controlled based on a preset valve opening opening setting value, and the measured value of the total powder flow rate measured by the powder flow rate measuring means approaches a predetermined target value. As described above, each pressurizing control valve is controlled.
When the weight of the powder in the blowing tank of the operating one powder supply device (A) among the plurality of powder supply devices is heavier than a predetermined value (L1), the one powder supply device is supplied. The variable valve of the device (A) is controlled based on the opening setting value corresponding to the target value, and is also controlled.
Wherein when the weight of the powder blow tank reaches a predetermined value (L1) below, the one powder supplying device in a predetermined pattern of one powder supplying device in the operation (A) (A variable valve opening is gradually reduced in), and starts the blow of another powder supplying device in standby (B), the opening of the variable valve of the other powder supplying device (B) Gradually increase in a predetermined pattern, and then
The pressurization control valve of the other powder supply device (B) is controlled so that the measured value of the total flow rate of the powder measured by the powder flow rate measuring means approaches the predetermined target value. Powder parallel blowing system.
さらに、前記排出口と前記可変弁との間に下部弁を備え、前記吹込タンク内の粉体の重量が前記所定の値(L1)よりも少ない値(L2)以下となった時に、前記加圧制御弁及び前記下部弁を閉じて前記粉体搬送配管支管内への前記粉体の排出を停止することを特徴とする請求項1に記載の粉体並列吹込システム。 Further, when a lower valve is provided between the discharge port and the variable valve and the weight of the powder in the blowing tank becomes less than the predetermined value (L1) (L2) or less, the addition is performed. The powder parallel blowing system according to claim 1, wherein the pressure control valve and the lower valve are closed to stop the discharge of the powder into the powder transfer pipe branch pipe. さらに、前記排出口と前記可変弁の間に下部弁を備え、前記吹込タンク内の粉体の重量が前記所定の値(L1)以下となってから所定の時間経過後に、前記加圧制御弁及び前記下部弁を閉じて前記粉体搬送配管支管内への前記粉体の排出を停止することを特徴とする請求項1に記載の粉体並列吹込システム。 Further, a lower valve is provided between the discharge port and the variable valve, and the pressurizing control valve is provided after a predetermined time has elapsed after the weight of the powder in the blowing tank becomes equal to or less than the predetermined value (L1). The powder parallel blowing system according to claim 1, wherein the lower valve is closed to stop the discharge of the powder into the powder transport pipe branch pipe. 内部に粉体が充填される吹込タンクと、該吹込タンク内の粉体の重量を検出する秤量器と、前記吹込タンクの下部付近に設けられた排出口に接続された粉体搬送配管支管と、前記粉体搬送配管支管の途中に設けられ前記排出口から排出される粉体の量を弁の開度により調節可能な可変弁と、前記吹込タンクの内部に加圧されたガスを導入し、前記吹込タンク内の粉体を前記排出口より排出するための加圧ガスの圧力を調整する加圧制御弁とを有する粉体供給装置を複数台と、
搬送ガスが導入され、該搬送ガスにより前記粉体を搬送する粉体搬送配管本管と、該粉体搬送配管本管内を搬送される粉体の総流量を計測する粉体流量計測手段と、前記粉体搬送配管本管内を搬送される粉体の総流量を制御する制御手段とを備え、
前記各粉体供給装置の粉体搬送配管支管が前記粉体搬送配管本管に並列に接続され、前記各粉体供給装置を切り替えあるいは同時稼動させながら連続的に一定量の粉体を搬送供給する粉体並列吹込方法であって、
前記制御手段は、予め設定された弁の開度設定値に基づいて前記各可変弁の開度を制御するとともに、前記粉体流量計測手段で計測された粉体の総流量の実測値が所定の目標値に近づくように前記加圧制御弁を制御するものであり、
前記複数の粉体供給装置のうちの稼動中の一の粉体供給装置(A)の前記吹込タンク内の粉体の重量が所定の値(L1)より多い時は、前記一の粉体供給装置(A)の可変弁を前記目標値に対応した開度設定値に基づいて制御するステップと、
前記稼動中の一の粉体供給装置(A)の吹込タンク内の粉体の重量が所定の値(L1)以下となった時は、所定のパターンで前記一の粉体供給装置(A)の可変弁の開度を漸減させ、かつ、待機中の他の粉体供給装置(B)の吹込みを開始するとともに前記他の粉体供給装置(B)の可変弁の開度を所定のパターンで漸増させるステップと、
前記粉体流量計測手段で計測された粉体の総流量の実測値が前記所定の目標値に近づくように前記他の粉体供給装置(B)の前記加圧制御弁を制御するステップとを備えたことを特徴とする粉体並列吹込方法。
A blowing tank filled with powder, a weighing device for detecting the weight of the powder in the blowing tank, and a powder transport pipe branch pipe connected to a discharge port provided near the lower part of the blowing tank. , A variable valve provided in the middle of the powder transport pipe branch pipe and capable of adjusting the amount of powder discharged from the discharge port by the opening degree of the valve, and a pressurized gas are introduced into the inside of the blow tank. A plurality of powder supply devices having a pressurizing control valve for adjusting the pressure of the pressurized gas for discharging the powder in the blowing tank from the discharge port.
A powder transport pipe main that introduces a transport gas and transports the powder by the transport gas, and a powder flow rate measuring means that measures the total flow rate of the powder that is transported in the powder transport pipe main. The powder transfer pipe is provided with a control means for controlling the total flow rate of the powder transferred in the main pipe.
The powder transfer pipe branch of each powder supply device is connected in parallel to the powder transfer pipe main, and a constant amount of powder is continuously transferred and supplied while switching or simultaneously operating each of the powder supply devices. This is a parallel powder blowing method.
The control means controls the opening degree of each variable valve based on a preset valve opening degree setting value, and a predetermined measured value of the total powder flow rate measured by the powder flow rate measuring means is determined. Each pressurization control valve is controlled so as to approach the target value of.
When the weight of the powder in the blowing tank of the operating one powder supply device (A) among the plurality of powder supply devices is heavier than a predetermined value (L1), the one powder supply device is supplied. A step of controlling the variable valve of the device (A) based on the opening setting value corresponding to the target value, and
When the weight of the powder in the blowing tank of the one powder supply device (A) in operation becomes a predetermined value (L1) or less, the one powder supply device (A) has a predetermined pattern. The opening degree of the variable valve of the other powder supply device (B) is gradually reduced, the blowing of the other powder supply device (B) on standby is started, and the opening degree of the variable valve of the other powder supply device (B) is determined. Steps to gradually increase with the pattern of
A step of controlling the pressurizing control valve of the other powder supply device (B) so that the measured value of the total flow rate of the powder measured by the powder flow rate measuring means approaches the predetermined target value . A powder parallel blowing method characterized by being equipped with.
JP2016220934A 2016-11-11 2016-11-11 Powder parallel blowing system and powder parallel blowing method Active JP6812071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220934A JP6812071B2 (en) 2016-11-11 2016-11-11 Powder parallel blowing system and powder parallel blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220934A JP6812071B2 (en) 2016-11-11 2016-11-11 Powder parallel blowing system and powder parallel blowing method

Publications (2)

Publication Number Publication Date
JP2018076171A JP2018076171A (en) 2018-05-17
JP6812071B2 true JP6812071B2 (en) 2021-01-13

Family

ID=62150271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220934A Active JP6812071B2 (en) 2016-11-11 2016-11-11 Powder parallel blowing system and powder parallel blowing method

Country Status (1)

Country Link
JP (1) JP6812071B2 (en)

Also Published As

Publication number Publication date
JP2018076171A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP5160292B2 (en) Pressurized powder supply apparatus and operation method thereof
CN104169198B (en) powder supply device and powder supply method
JP6139763B1 (en) Powder parallel blowing system and powder parallel blowing method
JP6812071B2 (en) Powder parallel blowing system and powder parallel blowing method
WO2021029326A1 (en) Continuous ore feeding device
JP2742001B2 (en) Pulverized coal injection control method
JP6157039B1 (en) Powder feeder
WO2021029327A1 (en) Continuous ore-feeding apparatus
JP6139762B1 (en) Powder parallel blowing system and powder parallel blowing method
JP4537953B2 (en) Control method of pulverized coal injection to blast furnace and its control device
CN102317479A (en) Be used for adjusting the method and system of the charging process furnace charge flow velocity of shaft furnace
KR100862773B1 (en) Apparatus for controling pressure and air flow of feed hopper for feeding pulverizer coal
KR20080058639A (en) Apparatus for controlling input of fine coal using air density
KR101435065B1 (en) Transfer device and method of gas
JPH1081908A (en) Method for blowing pulverized coal
KR20110072623A (en) Apparatus for controlling pulverized coal injection
KR100928985B1 (en) Hopper pressure control device and control method for preventing pulverized coal sticking of pulverized coal transfer hopper
JP6686843B2 (en) Powder injection method
JPH08283805A (en) Method for controlling blowing of pulverized coal into blast furnace
JP2018193583A (en) Pulverized coal discharging apparatus and pulverized coal discharging method
JP2014097873A (en) Powder transport method and powder transporting device
KR20100034827A (en) System for supplying pulverized coal of feed-hopper
JPH0711312A (en) Control method for blowing of pulverized coal
JP2004035124A (en) Method of controlling blowing amount for powder blowing tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201215

R150 Certificate of patent or registration of utility model

Ref document number: 6812071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250