JP6803238B2 - A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material. - Google Patents

A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material. Download PDF

Info

Publication number
JP6803238B2
JP6803238B2 JP2017001918A JP2017001918A JP6803238B2 JP 6803238 B2 JP6803238 B2 JP 6803238B2 JP 2017001918 A JP2017001918 A JP 2017001918A JP 2017001918 A JP2017001918 A JP 2017001918A JP 6803238 B2 JP6803238 B2 JP 6803238B2
Authority
JP
Japan
Prior art keywords
sugar
carbon material
producing
porous
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001918A
Other languages
Japanese (ja)
Other versions
JP2018111617A (en
Inventor
敏樹 坪田
敏樹 坪田
林 信行
信行 林
聡 熊谷
聡 熊谷
小野寺 英晴
英晴 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Kyushu Institute of Technology NUC
Seiko Instruments Inc
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Kyushu Institute of Technology NUC
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY, Kyushu Institute of Technology NUC, Seiko Instruments Inc filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2017001918A priority Critical patent/JP6803238B2/en
Publication of JP2018111617A publication Critical patent/JP2018111617A/en
Application granted granted Critical
Publication of JP6803238B2 publication Critical patent/JP6803238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、多孔質炭素材料の製造方法、多孔質活性炭材料の製造方法、及び電極材料の製造方法に関する。 The present invention relates to a method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material.

近年、温室効果ガス排出量の削減のため、バイオマス利用の拡大が求められている。
一方、西日本、特に九州地域では、竹林が無秩序に拡大する竹害が大きな問題となっている。
この問題を解決するため、竹を有効利用する技術開発が行われている。その結果、紙、バイオエタノールなどの木材を原料とする製品を、木材と同等性能を有する竹で代替することが技術的に可能となってきている。
竹や籾殻等の植物廃棄物の活用方法として、これらを加熱炭化して炭素粉末を製造する方法が検討されている。
例えば特許文献1には、米、稲、大麦、小麦、ライ麦、稗、粟、などの籾殻や、葦、茎ワカメなどを材料とし800℃〜1400℃で炭化する、多孔孔質炭素の製造方法が記載されている。
In recent years, expansion of biomass utilization has been required to reduce greenhouse gas emissions.
On the other hand, in western Japan, especially in the Kyushu region, bamboo damage caused by the disorderly expansion of bamboo grove has become a major problem.
In order to solve this problem, technological development is being carried out to make effective use of bamboo. As a result, it has become technically possible to replace wood-based products such as paper and bioethanol with bamboo, which has the same performance as wood.
As a method of utilizing plant wastes such as bamboo and rice husks, a method of heating and carbonizing these to produce carbon powder is being studied.
For example, Patent Document 1 describes a method for producing porous porous carbon, which is carbonized at 800 ° C. to 1400 ° C. using rice husks such as rice, rice, barley, wheat, rye, millet, millet, etc., and reeds, stem wakame, etc. as materials. Is described.

特開2014−94883号公報Japanese Unexamined Patent Publication No. 2014-94883

多くの植物の細胞壁は、セルロース、ヘミセルロース、リグニンを主成分として構成されている。このため植物を加熱すると、分解物の一部は気体となって大気中に放出され、一部は炭化物となって残る。
ヘミセルロースは、高付加価値の糖成分の原料として利用できる。このため、単に植物を加熱すると高付加価値成分までもが分解してしまい、植物成分を有効に利用できないという課題があった。
本発明は上記事情に鑑みてなされたものであって、植物廃棄物を有効活用し、従来の多孔質炭素材料と同等又はそれ以上の容量を有する電気二重層キャパシタや電池などの電気化学セルの電極材料として、また吸着剤として利用できる多孔質炭素材料の製造方法、多孔質活性炭材料の製造方法、及び電極材料の製造方法を提供することを課題とする。
The cell walls of many plants are composed mainly of cellulose, hemicellulose, and lignin. Therefore, when plants are heated, some of the decomposition products become gases and are released into the atmosphere, and some of them remain as carbides.
Hemicellulose can be used as a raw material for high-value-added sugar components. Therefore, if the plant is simply heated, even the high value-added components are decomposed, and there is a problem that the plant components cannot be effectively used.
The present invention has been made in view of the above circumstances, and is used in an electrochemical cell such as an electric double layer capacitor or a battery which effectively utilizes plant waste and has a capacity equal to or larger than that of a conventional porous carbon material. An object of the present invention is to provide a method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material, which can be used as an electrode material and as an adsorbent.

本発明は、以下の[1]〜[7]を包含する。
[1]植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、を備える、多孔質炭素材料の製造方法。
[2]前記糖抽出工程が加圧熱水処理工程である、[1]に記載の多孔質炭素材料の製造方法。
[3]前記加圧熱水処理工程を160℃以上220℃以下で行う、[2]に記載の多孔質炭素材料の製造方法。
[4]前記加熱炭化処理工程を、500℃以上で行う、[1]〜[3]のいずれか1つに記載の多孔質炭素材料の製造方法。
[5]前記植物バイオマスが竹である、[1]〜[4]のいずれか1つに記載の多孔質炭素材料の製造方法。
[6]植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える、多孔質活性炭材料の製造方法。
[7]植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える、電極材料の製造方法。
The present invention includes the following [1] to [7].
[1] A sugar extraction step of extracting hemicellulose-derived sugar from plant biomass, a recovery step of recovering the solid residue produced by extracting the sugar, and a heat carbonization treatment step of heat-carbonizing the solid residue. A method for producing a porous carbon material.
[2] The method for producing a porous carbon material according to [1], wherein the sugar extraction step is a pressurized hot water treatment step.
[3] The method for producing a porous carbon material according to [2], wherein the pressurized hot water treatment step is performed at 160 ° C. or higher and 220 ° C. or lower.
[4] The method for producing a porous carbon material according to any one of [1] to [3], wherein the heat carbonization treatment step is performed at 500 ° C. or higher.
[5] The method for producing a porous carbon material according to any one of [1] to [4], wherein the plant biomass is bamboo.
[6] A sugar extraction step of extracting sugar derived from hemicellulose from plant biomass, a recovery step of recovering the solid residue generated by extracting the sugar, a heat charcoal treatment step of heat-carbonizing the solid residue, and the above-mentioned A method for producing a porous activated carbon material, comprising an activation step of activating the porous carbon material obtained by heat carbonization treatment.
[7] A sugar extraction step of extracting hemicellulose-derived sugar from plant biomass, a recovery step of recovering the solid residue produced by extracting the sugar, a heat carbonization treatment step of heat-carbonizing the solid residue, and the above-mentioned A method for producing an electrode material, comprising an activation step of activating the porous carbon material obtained by heat carbonization treatment.

本発明によれば、植物廃棄物を有効活用し、従来の多孔質炭素材料と同等又はそれ以上の容量を有する電気化学セルの電極材料として、また吸着剤として利用できる多孔質炭素材料の製造方法、多孔質活性炭材料の製造方法、及び電極材料の製造方法を提供することができる。 According to the present invention, a method for producing a porous carbon material that makes effective use of plant waste and can be used as an electrode material for an electrochemical cell having a capacity equal to or larger than that of a conventional porous carbon material and as an adsorbent. , A method for producing a porous activated carbon material, and a method for producing an electrode material can be provided.

抽出した糖のHPAE−PADによる分析結果を示す図である。It is a figure which shows the analysis result by HPAE-PAD of the extracted sugar. 糖生成物の収率と加圧熱水処理条件との関係を示すグラフである。It is a graph which shows the relationship between the yield of a sugar product, and the pressurized hot water treatment condition. 多孔質炭素材料の窒素の吸着・脱着の等温線を示すグラフである。It is a graph which shows the isotherm of the adsorption / desorption of nitrogen of a porous carbon material. 多孔質炭素材料のBET比表面積を示すグラフである。It is a graph which shows the BET specific surface area of a porous carbon material. 多孔質活性炭材料の窒素の吸着・脱着の等温線を示すグラフである。It is a graph which shows the isotherm of the adsorption / desorption of nitrogen of a porous activated carbon material. 多孔質活性炭材料のBET比表面積を示すグラフである。It is a graph which shows the BET specific surface area of a porous activated carbon material. サイクリックボルタンメトリーの結果を示すグラフである。It is a graph which shows the result of cyclic voltammetry. 電気化学セルの断面図の一例である。This is an example of a cross-sectional view of an electrochemical cell. 放電試験の結果を示すグラフである。It is a graph which shows the result of the discharge test.

<多孔質炭素材料の製造方法>
本発明の多孔質炭素材料の製造方法は、植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、を備える。
<Manufacturing method of porous carbon material>
The method for producing a porous carbon material of the present invention includes a sugar extraction step of extracting hemicellulose-derived sugar from plant biomass, a recovery step of recovering the solid residue produced by extracting the sugar, and heating carbonization of the solid residue. A heat carbonization treatment step for treating is provided.

[糖抽出工程]
本実施形態の多孔質炭素材料の製造方法は、まず、原料である植物バイオマスからヘミセルロース由来の糖を抽出する。ヘミセルロースは、植物細胞壁に含まれる、セルロースを除く多糖類の総称である。植物により異なるがヘミセルロースの含有量は10〜30%程度である。ヘミセルロースの主成分であるキシランは、付加価値の高い糖材料であるキシロオリゴ糖の材料である。
糖抽出工程により、付加価値の高い糖材料を抽出し、抽出した糖は食品、ペットや家畜の飼料として利用することができる。
また、加熱炭化処理の前にあらかじめ糖を抽出することにより、糖の抜け痕が多孔質構造を発達させ、より微細な細孔を有する多孔質炭素材料を製造できると考えられる。
植物を加圧熱水処理し、糖をあらかじめ抽出することにより、付加価値の高い糖成分を有効利用できる。さらに、水溶性の無機成分が溶出するため、不純物が少なく、かつロットによるばらつきを抑えた均質な多孔質炭素材料を製造することができる。また、灰になる成分が糖と一緒に抽出されると考えられる。
[Sugar extraction process]
In the method for producing a porous carbon material of the present embodiment, first, sugar derived from hemicellulose is extracted from plant biomass as a raw material. Hemicellulose is a general term for polysaccharides other than cellulose contained in plant cell walls. Although it depends on the plant, the hemicellulose content is about 10 to 30%. Xylan, which is the main component of hemicellulose, is a material for xylooligosaccharide, which is a sugar material with high added value.
A sugar material having high added value is extracted by the sugar extraction step, and the extracted sugar can be used as feed for foods, pets and livestock.
Further, it is considered that by extracting the sugar in advance before the heat carbonization treatment, the scars of the sugar develop a porous structure, and a porous carbon material having finer pores can be produced.
By treating plants with pressurized hot water and extracting sugar in advance, high-value-added sugar components can be effectively used. Further, since the water-soluble inorganic component is eluted, it is possible to produce a homogeneous porous carbon material having few impurities and suppressing variation depending on the lot. In addition, it is considered that the component that becomes ash is extracted together with sugar.

糖抽出工程は、まず、原料の植物バイオマスを細片に粉砕する。原料として利用できる植物バイオマスは、例えば、竹、シイ等の広葉樹、スギ等の針葉樹、稲わら、麦わら、籾殻、ケナフ等の有機物など特に限定されない。本実施形態においては、竹害対策の観点から、植物バイオマスとして竹を用いることが好ましい。 In the sugar extraction step, first, the raw material plant biomass is crushed into small pieces. The plant biomass that can be used as a raw material is not particularly limited, for example, hardwoods such as bamboo and shii, conifers such as cedar, and organic substances such as rice straw, straw, rice husks, and kenaf. In this embodiment, it is preferable to use bamboo as the plant biomass from the viewpoint of measures against bamboo damage.

上記の植物バイオマスを乾式粉砕機や湿式破砕機、ジェットミル、ビーズミル等を用いて細かく粉砕する。粉砕後の細片の大きさは特に限定されないが、加圧熱水処理による糖抽出工程は、数cm以下が好ましく、400μm以下がより好ましく、50μm以下が特に好ましい。粒度を小さくするほど、加圧熱水処理による糖抽出速度や、その残渣を使った、加熱炭化処理速度、賦活処理速度も速く均質な多孔質炭素を製造できる。 The above plant biomass is finely crushed using a dry crusher, a wet crusher, a jet mill, a bead mill or the like. The size of the fine pieces after crushing is not particularly limited, but the sugar extraction step by the pressurized hot water treatment is preferably several cm or less, more preferably 400 μm or less, and particularly preferably 50 μm or less. The smaller the particle size, the faster the sugar extraction rate by the pressurized hot water treatment, the heat carbonization treatment rate, and the activation treatment rate using the residue thereof, and a homogeneous porous carbon can be produced.

本実施形態において、糖抽出は加圧熱水処理により行うことが好ましい。
加圧熱水処理は、酸やアルカリ、酵素などの特殊な薬品を使用せず、水だけを使用する、安全かつ効率よく水溶性糖類を抽出できる方法である。加圧熱水処理を行うことで、植物原料と水だけを使用し、植物に含まれるヘミセルロースを分解させて、ヘミセルロース由来の水溶性糖類を抽出することができる。
In the present embodiment, sugar extraction is preferably performed by pressurized hot water treatment.
Pressurized hot water treatment is a method that can safely and efficiently extract water-soluble sugars by using only water without using special chemicals such as acids, alkalis, and enzymes. By performing the pressurized hot water treatment, hemicellulose-derived water-soluble sugars derived from hemicellulose can be extracted by decomposing hemicellulose contained in the plant using only plant raw materials and water.

加圧熱水処理条件は、140℃以上230℃以下で行うことが好ましく、160℃以上220℃以下がより好ましく、180℃以上210℃以下が特に好ましい。
加圧熱水処理を上記下限値以上で行うことにより、ヘミセルロースの分解が進行し、ヘミセルロース構成糖の成分を効率よく抽出することができる。このとき、リグニンの一部も溶出する。また、加圧熱水処理を上記上限値以下で行うことにより、セルロースの分解等に起因する不純物の混入を抑制し、純度の高いヘミセルロース可溶化物を得ることができる。
上記特定の温度条件で加圧熱水処理を行い、ヘミセルロースと一部のリグニンを抽出することで、それらの除去痕が微細多孔構造を形成し、数nm以下の孔径のより微細な細孔を有する多孔質炭素材料を製造できる。また、加圧熱水処理により水溶性の無機成分が溶出して不純物が少なくかつロットによるばらつきを抑えた均質な多孔質炭素材料を製造することができる。
The pressurized hot water treatment conditions are preferably 140 ° C. or higher and 230 ° C. or lower, more preferably 160 ° C. or higher and 220 ° C. or lower, and particularly preferably 180 ° C. or higher and 210 ° C. or lower.
By performing the pressurized hot water treatment at the above lower limit value or more, the decomposition of hemicellulose proceeds, and the components of the hemicellulose constituent sugars can be efficiently extracted. At this time, a part of lignin is also eluted. Further, by performing the pressurized hot water treatment at the above upper limit value or less, it is possible to suppress the mixing of impurities due to the decomposition of cellulose and the like, and to obtain a highly pure hemicellulose solubilized product.
By performing pressurized hot water treatment under the above specific temperature conditions and extracting hemicellulose and some lignin, the removal marks of them form a microporous structure, and finer pores with a pore size of several nm or less are formed. A porous carbon material having can be produced. In addition, it is possible to produce a homogeneous porous carbon material in which water-soluble inorganic components are eluted by the pressurized hot water treatment and the impurities are small and the variation depending on the lot is suppressed.

加圧熱水処理時間は、処理温度、原料のサイズによって適宜調整すればよく、例えば、温度が高いほど、また、粒径が小さいほど短時間となる。また加圧熱水処理時間は、回分式、パーコレータ式、連続式など、処理方法によっても適宜調整すればよい。例えば、数百ミクロンの竹粒子を回分式で加圧熱水処理する場合、180℃で30分間〜40分間の処理時間とすればよい。パーコレータ式では同条件で1時間〜2時間の処理を行うことがあるが、パーコレータ式の方が収率と純度が高いのが一般的である。 The pressurized hot water treatment time may be appropriately adjusted according to the treatment temperature and the size of the raw material. For example, the higher the temperature and the smaller the particle size, the shorter the time. Further, the pressurized hot water treatment time may be appropriately adjusted depending on the treatment method such as batch type, percolator type, continuous type and the like. For example, in the case of batch-type pressure hot water treatment of bamboo particles of several hundred microns, the treatment time may be 30 to 40 minutes at 180 ° C. In the percolator type, the treatment may be performed for 1 to 2 hours under the same conditions, but the percolator type generally has higher yield and purity.

加圧熱水処理の圧力は「処理温度における飽和水蒸気圧以上」であることが好ましい。その圧力は、一例を挙げると180℃で1.0MPa、200℃で1.55MPa以上となり、実際の処理では機械的な加圧や不活性ガスの充填などの方法で圧力容器内がこれを下回らないように調整する。
竹粉砕物と水の比率は、例えば重量濃度として0.1w/v%以上30w/v%以下が挙げられる。この比率は粒子径によって適宜調整すればよいが、30w/v%以下であると、スラリーの流動性が良好となる。パーコレータ式では閉じ込めた粉砕物に熱水を流し込み同量が流出するので濃度という概念は当てはまらず、リアクタ容積に対しての充填量となる。通常は膨張を考慮してリアクタ容量の約7割の原料粉体を充填すればよい。
The pressure of the pressurized hot water treatment is preferably "greater than or equal to the saturated steam pressure at the treatment temperature". The pressure is 1.0 MPa at 180 ° C and 1.55 MPa or more at 200 ° C, for example, and in actual processing, the pressure inside the pressure vessel is lower than this by mechanical pressurization or filling with an inert gas. Adjust so that there is no.
The ratio of crushed bamboo to water is, for example, 0.1 w / v% or more and 30 w / v% or less as a weight concentration. This ratio may be appropriately adjusted depending on the particle size, but when it is 30 w / v% or less, the fluidity of the slurry becomes good. In the percolator type, hot water is poured into the confined crushed material and the same amount flows out, so the concept of concentration does not apply, and it is the filling amount with respect to the reactor volume. Normally, about 70% of the reactor capacity may be filled with the raw material powder in consideration of expansion.

[回収工程]
糖抽出工程の後、抽出した糖成分と、前記糖を抽出して生じた固体残渣とを分離して回収する。分離する方法は特に限定されず、ろ過や遠心分離等、公知の方法を使用すればよい。
本実施形態により回収されるヘミセルロース由来の糖成分としては、アラビノース、グルコース、キシロース、フルクトース、キシロビオース、キシロトリオース、キシロテトラオース、キシロペンタノース、キシロヘキサノース等が挙げられる。これらのなかでも、キシロースからは付加価値の高い糖材料であるキシロオリゴ糖を製造できるため、植物バイオマス中の成分を有効に活用することができる。
[Recovery process]
After the sugar extraction step, the extracted sugar component and the solid residue produced by extracting the sugar are separated and recovered. The method of separation is not particularly limited, and a known method such as filtration or centrifugation may be used.
Examples of the hemicellulose-derived sugar component recovered by the present embodiment include arabinose, glucose, xylose, fructose, xylobiose, xylotriose, xylotetraose, xylopentanose, and xylhexanose. Among these, xylose can be used to produce xylooligosaccharide, which is a high-value-added sugar material, so that the components in plant biomass can be effectively utilized.

糖抽出工程により、カリウム、ナトリウム等の水溶性の無機成分が溶出し、無機成分の純度が高い固体残渣を得ることができる。そのため、同じ植物でも、産地、部位、年齢等により含有する無機成分のばらつきを低い量で均質化できる。これにより、加熱炭化処理した場合に、灰等の不純物が少ない均質化した多孔質炭素材料をロットによるばらつきを抑制して製造することができる。 By the sugar extraction step, water-soluble inorganic components such as potassium and sodium are eluted, and a solid residue having high purity of the inorganic components can be obtained. Therefore, even in the same plant, the variation of the inorganic components contained depending on the place of origin, site, age, etc. can be homogenized in a low amount. As a result, when heat-carbonized, a homogenized porous carbon material with few impurities such as ash can be produced while suppressing variations depending on the lot.

[加熱炭化処理工程]
回収工程で回収した固体残渣を、加熱炭化処理し、多孔質炭素材料を製造する。本実施形態においては、加熱炭化処理を500℃以上で行うことが好ましい。500℃以上で行うことにより、未炭化の有機物量を少なくできるため好ましい。加熱炭化温度が高いほど賦活後のBET比表面積が大きくなり、吸着させたい物質量が多くなると考えられる。加熱炭化処理の温度の上限値は特に限定されないが、一例を挙げると、1500℃以下、900℃以下、700℃以下が挙げられる。加熱炭化処理の温度が1500℃を超える場合、処理装置の耐熱性を向上させるために装置が高価となることから、処理温度は1500℃以下が好ましい。
[Heat carbonization process]
The solid residue recovered in the recovery step is heat-carbonized to produce a porous carbon material. In the present embodiment, it is preferable to carry out the heat carbonization treatment at 500 ° C. or higher. It is preferable to carry out the operation at 500 ° C. or higher because the amount of uncarbonized organic matter can be reduced. It is considered that the higher the heating carbonization temperature, the larger the BET specific surface area after activation, and the larger the amount of substance to be adsorbed. The upper limit of the temperature of the heat carbonization treatment is not particularly limited, and examples thereof include 1500 ° C. or lower, 900 ° C. or lower, and 700 ° C. or lower. When the temperature of the heat carbonization treatment exceeds 1500 ° C., the treatment device is expensive in order to improve the heat resistance of the treatment device. Therefore, the treatment temperature is preferably 1500 ° C. or lower.

加熱炭化処理工程の時間は、装置によって適宜調整すればよく、例えば0.5時間以上5時間以下が好ましく、1時間以上2.5時間以下がより好ましく、1時間以上2時間以下が特に好ましい。 The time of the heat carbonization treatment step may be appropriately adjusted by an apparatus, for example, 0.5 hours or more and 5 hours or less is preferable, 1 hour or more and 2.5 hours or less is more preferable, and 1 hour or more and 2 hours or less is particularly preferable.

本実施形態においては、ヘミセルロース由来の糖成分をあらかじめ除去していることにより、植物細胞壁中の組成比率が変動するため熱分解挙動が変化すると考えられる。このため、加熱炭素化温度や時間に対する収率や比表面積などの物性の依存性が、糖成分を除去しない場合とは異なる不純物の少ない多孔質材料を製造できると推察される。 In the present embodiment, it is considered that the thermal decomposition behavior changes because the composition ratio in the plant cell wall fluctuates by removing the sugar component derived from hemicellulose in advance. Therefore, it is presumed that a porous material with less impurities can be produced, in which the dependence of physical properties such as yield and specific surface area on the heating carbonization temperature and time is different from that in the case where the sugar component is not removed.

本実施形態においては、糖抽出工程を180℃以上210℃以下の温度で1時間以上2時間以下行い、加熱炭化処理工程を500℃以上で行うことがより好ましい。
糖抽出工程と加熱炭化処理工程を上記の条件の組み合わせで行うことにより、ヘミセルロース由来の糖成分を効率的に抽出し、かつ、電極材料にした場合に容量が大きい多孔質炭素材料を製造することができる。
In the present embodiment, it is more preferable that the sugar extraction step is performed at a temperature of 180 ° C. or higher and 210 ° C. or lower for 1 hour or more and 2 hours or less, and the heat carbonization treatment step is carried out at 500 ° C. or higher.
By performing the sugar extraction step and the heat carbonization treatment step under the combination of the above conditions, a hemicellulose-derived sugar component can be efficiently extracted, and a porous carbon material having a large capacity when used as an electrode material can be produced. Can be done.

<多孔質活性炭材料の製造方法>
本発明の多孔質活性炭材料の製造方法は、植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える。
<Manufacturing method of porous activated carbon material>
The method for producing a porous activated carbon material of the present invention includes a sugar extraction step of extracting sugar derived from hemicellulose from plant biomass, a recovery step of recovering the solid residue produced by extracting the sugar, and heating and carbonizing the solid residue. It includes a heat carbonization treatment step for treating and an activation step for activating the porous carbon material obtained by the heat carbonization treatment.

本発明の多孔質活性炭材料の製造方法において、糖抽出工程と、回収工程と、加熱炭化処理工程に関する説明は、前記本発明の多孔質炭素材料の製造方法における糖抽出工程と、回収工程と、加熱炭化処理工程に関する説明と同様である。 In the method for producing a porous activated carbon material of the present invention, the sugar extraction step, the recovery step, and the heat carbonization treatment step are described in the sugar extraction step, the recovery step, and the recovery step in the method for producing a porous carbon material of the present invention. The same as the description regarding the heat carbonization treatment step.

[賦活工程]
賦活方法は、特に限定されず、ガス賦活法や薬品賦活法を行えばよい。
ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素などと接触反応させることにより活性炭を得る方法である。
薬品賦活法は、加熱炭化処理後の原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水および酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
賦活することで、活性炭を製造でき、電気化学セルの電極として植物成分を有効に活用することができる。
[Activation process]
The activation method is not particularly limited, and a gas activation method or a chemical activation method may be used.
The gas activation method is a method for obtaining activated carbon by contact-reacting with steam, carbon dioxide, oxygen or the like at a high temperature.
The chemical activation method is a method in which a raw material after heat carbonization is impregnated with a known activating chemical and heated in an atmosphere of an inert gas to cause dehydration and oxidation reaction of the activating chemical to obtain activated carbon. Examples of the activator include zinc chloride, sodium hydroxide, potassium hydroxide and the like.
By activating, activated carbon can be produced, and plant components can be effectively utilized as electrodes of an electrochemical cell.

<電極材料の製造方法>
本発明の電極材料の製造方法は、植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、前記糖を抽出して生じた固体残渣を回収する回収工程と、前記固体残渣を加熱炭化処理する加熱炭化処理工程と、前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える。
<Manufacturing method of electrode material>
The method for producing an electrode material of the present invention includes a sugar extraction step of extracting sugar derived from hemicellulose from plant biomass, a recovery step of recovering the solid residue produced by extracting the sugar, and heat carbonation treatment of the solid residue. It includes a heat carbonization treatment step and an activation step of activating the porous carbon material obtained by the heat carbonization treatment.

本発明の電極材料の製造方法において、糖抽出工程と、回収工程と、加熱炭化処理工程、賦活工程に関する説明は、前記本発明の多孔質活性炭材料の製造方法における糖抽出工程と、回収工程と、加熱炭化処理工程、賦活工程に関する説明と同様である。 In the method for producing the electrode material of the present invention, the sugar extraction step, the recovery step, the heat carbonization treatment step, and the activation step are described in the sugar extraction step and the recovery step in the method for producing the porous activated carbon material of the present invention. , The same as the description regarding the heat carbonization treatment step and the activation step.

さらに、得られた多孔質活性炭材料と、導電助剤と、バインダーとを混合し、電極材料を製造することができる。
バインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。
)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
導電助剤としては、グラファイト、アセチレンブラック、ケッチェンブラックなど、使用する電解液に対して腐食がなく、導電性が高いものを挙げることができる。
Further, the obtained porous activated carbon material, the conductive auxiliary agent, and the binder can be mixed to produce an electrode material.
As the binder, a thermoplastic resin can be used.
This thermoplastic resin may be referred to as polyvinylidene fluoride (hereinafter referred to as PVdF).
), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride / propylene hexafluoride / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoropolymer. Fluororesin such as ethylene / perfluorovinyl ether-based copolymer; polyolefin resin such as polyethylene and polypropylene; can be mentioned.
Examples of the conductive auxiliary agent include graphite, acetylene black, Ketjen black, and the like, which are not corroded by the electrolytic solution used and have high conductivity.

<多孔質炭素材料、多孔質活性炭材料、電極材料>
本発明の多孔質炭素材料の製造方法により製造される多孔質炭素材料は、数nm以下の孔径の微細な細孔を有している。また、BET法により算出される比表面積が20m/g以上、300m/g以上、加熱条件によっては600m/g以上である。
また、本発明の多孔質活性炭材料の製造方法により製造される多孔質活性炭材料は、数nm以下の孔径の微細な細孔を有している。また、BET法により算出される比表面積が1000m/g以上、加熱条件によっては2000m/g〜2800m/gである。この比表面積は、静電容量を向上できる観点から電気二重層キャパシタ電極用の炭素材料に適した値である。このため、本発明によれば、竹等の植物バイオマスを利用して電極材料として好適に用いることができる炭素材料を製造することができる。
<Porous carbon material, Porous activated carbon material, Electrode material>
The porous carbon material produced by the method for producing a porous carbon material of the present invention has fine pores having a pore size of several nm or less. The specific surface area calculated by the BET method is 20 m 2 / g or more, 300 m 2 / g or more, and 600 m 2 / g or more depending on the heating conditions.
Further, the porous activated carbon material produced by the method for producing a porous activated carbon material of the present invention has fine pores having a pore size of several nm or less. The specific surface area calculated by BET method 1000 m 2 / g or more, the heating conditions are 2000m 2 / g~2800m 2 / g. This specific surface area is a value suitable for a carbon material for an electric double layer capacitor electrode from the viewpoint of being able to improve the capacitance. Therefore, according to the present invention, it is possible to produce a carbon material that can be suitably used as an electrode material by utilizing plant biomass such as bamboo.

<電気化学セル>
図8は、本実施形態により製造した電極材料を用いた電気化学セルの一例の断面図である。電気化学セルとしては例えば、電気二重層キャパシタやリチウムイオンキャパシタ、二次電池、一次電池等を挙げることができる。
図8に示すように、電気化学セル3は、外装体10と、電解液25とともに外装体10内に収容された電極体20と、を主に備えている。
<Electrochemical cell>
FIG. 8 is a cross-sectional view of an example of an electrochemical cell using the electrode material produced according to the present embodiment. Examples of the electrochemical cell include an electric double layer capacitor, a lithium ion capacitor, a secondary battery, a primary battery and the like.
As shown in FIG. 8, the electrochemical cell 3 mainly includes an exterior body 10 and an electrode body 20 housed in the exterior body 10 together with the electrolytic solution 25.

外装体10は、平面視で円形状に形成されている。具体的に、外装体10は、有底筒状の正極缶11と、ガスケット12を介して正極缶11に組み付けられるとともに、正極缶11との間に収容空間Sを画成する有頂筒状の負極缶13と、を有している。収容空間Sには、電極体20および電解液25が収容される。図示の例において、正極缶11の内径は、負極缶13の外径よりも大きくなっている。正極缶11のうち、収容空間Sに面する部分の全体には、保護膜14が設けられている。保護膜14は、特に電気化学セル3が、正極缶11や負極缶13が電解液25と接触して腐食することにより電気化学セルの性能劣化を促進させることを防止する。特に電圧が高い正極缶11に保護膜14を設けることが好ましい。なお、正極缶11や負極缶13と電解液25との接触による腐食は、使用する材料の種類にもよるが、接触するだけで腐食が発生するおそれがある。加えて、充電電圧や充電電流が大きいほど、充電時間が長いほど腐食が大きくなる。そのため使用する材料や、充電可能な電気化学セルであるか、充電不可能な電気化学セルであるか、充電電圧や充電電流、充電時間などを考慮して保護膜14の有無や厚みを決定する。 The exterior body 10 is formed in a circular shape in a plan view. Specifically, the exterior body 10 is assembled to the positive electrode can 11 via the bottomed tubular positive electrode can 11 and the gasket 12, and has an eclipsed tubular shape that defines a storage space S between the positive electrode can 11. It has a negative electrode can 13 and. The electrode body 20 and the electrolytic solution 25 are housed in the storage space S. In the illustrated example, the inner diameter of the positive electrode can 11 is larger than the outer diameter of the negative electrode can 13. A protective film 14 is provided on the entire portion of the positive electrode can 11 facing the accommodation space S. The protective film 14 prevents the electrochemical cell 3, in particular, from accelerating the deterioration of the performance of the electrochemical cell due to the positive electrode can 11 and the negative electrode can 13 coming into contact with the electrolytic solution 25 and corroding. In particular, it is preferable to provide the protective film 14 on the positive electrode can 11 having a high voltage. Corrosion due to contact between the positive electrode can 11 or the negative electrode can 13 and the electrolytic solution 25 may occur only by contact, although it depends on the type of material used. In addition, the larger the charging voltage and charging current, and the longer the charging time, the greater the corrosion. Therefore, the presence or absence and thickness of the protective film 14 are determined in consideration of the material used, whether it is a rechargeable electrochemical cell or a non-rechargeable electrochemical cell, the charging voltage, the charging current, the charging time, and the like. ..

ガスケット12は、環状とされ、正極缶11の周壁部11a内に嵌合されている。ガスケット12には、負極缶13の周壁部13aを保持する溝部12aが全周に亘って形成されている。負極缶13は、周壁部13aがガスケット12の溝部12a内に保持された状態で、正極缶11の周壁部11aをかしめることで、正極缶11に固定されている。 The gasket 12 has an annular shape and is fitted in the peripheral wall portion 11a of the positive electrode can 11. The gasket 12 is formed with a groove portion 12a that holds the peripheral wall portion 13a of the negative electrode can 13 over the entire circumference. The negative electrode can 13 is fixed to the positive electrode can 11 by crimping the peripheral wall portion 11a of the positive electrode can 11 while the peripheral wall portion 13a is held in the groove portion 12a of the gasket 12.

電極体20は、外装体10の内形に合わせた円板状に形成されている。電極体20は、正極21と、負極22と、正極21と負極22との間に介在するセパレータ23と、を備えている。正極21は、保護膜14を介して、または保護膜14と正極21の間の導電性接着剤(図示しない)を介して正極缶11に積層されて、正極缶11と導通している。負極22は、負極缶13に直接積層、または負極缶13と負極22の間の導電性接着剤(図示しない)を介し、負極缶13と導通している。 The electrode body 20 is formed in a disk shape that matches the inner shape of the exterior body 10. The electrode body 20 includes a positive electrode 21, a negative electrode 22, and a separator 23 interposed between the positive electrode 21 and the negative electrode 22. The positive electrode 21 is laminated on the positive electrode can 11 via the protective film 14 or via a conductive adhesive (not shown) between the protective film 14 and the positive electrode 21, and is electrically connected to the positive electrode can 11. The negative electrode 22 is directly laminated on the negative electrode can 13 or is electrically connected to the negative electrode can 13 via a conductive adhesive (not shown) between the negative electrode can 13 and the negative electrode 22.

以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

<実施例1>
[加圧熱水処理工程]
孟宗竹を粉砕して粒径150μmの粉末とし、得られた粉末を105℃で3時間乾燥し、乾燥粉末を得た。
得られた乾燥粉末5gと蒸留水45gとを密封容器(HU−100、三愛科学)に入れ、プログラム式乾燥機で下記条件1〜8それぞれの条件で加圧熱水処理した。
条件1;160℃、1時間
条件2;160℃、2時間
条件3;180℃、1時間
条件4;180℃、2時間
条件5;200℃、1時間
条件6;200℃、2時間
条件7;220℃、1時間
条件8;220℃、2時間
<Example 1>
[Pressurized hot water treatment process]
Moso bamboo was pulverized to obtain a powder having a particle size of 150 μm, and the obtained powder was dried at 105 ° C. for 3 hours to obtain a dry powder.
5 g of the obtained dry powder and 45 g of distilled water were placed in a sealed container (HU-100, Sanai Kagaku) and treated with pressurized hot water under the following conditions 1 to 8 with a programmable dryer.
Condition 1; 160 ° C, 1 hour Condition 2; 160 ° C, 2 hours Condition 3; 180 ° C, 1 hour Condition 4; 180 ° C, 2 hours Condition 5; 200 ° C, 1 hour Condition 6; 200 ° C, 2 hours Condition 7 220 ° C, 1 hour Condition 8; 220 ° C, 2 hours

[回収工程]
前記加圧熱水処理後、ろ過し、糖を含む液体と固体残渣とを回収した。
[Recovery process]
After the pressurized hot water treatment, the mixture was filtered to recover a liquid containing sugar and a solid residue.

{HPAE−PADによる分析}
前記回収工程で得られた液体を、電気化学検出器を用いた高速陰イオン交換クロマトグラフ(HPAE−PAD)で測定した。具体的な測定条件は下記の通りで、i)ii)iii)の溶液を表1のプログラムでグラジエントをかけ分析し、40分までのデータを示した。
・カラム:Carbopac PA−1
・溶液:i)脱イオン水、ii)0.1M NaOH溶液、iii)1M酢酸ナトリウム 0.1M NaOH溶液
・流速: 1.0mL/min
・測定時間:105min
{Analysis by HPAE-PAD}
The liquid obtained in the recovery step was measured by a high-speed anion exchange chromatograph (HPAE-PAD) using an electrochemical detector. The specific measurement conditions are as follows, and the solutions of i) ii) iii) were subjected to gradient analysis using the program shown in Table 1, and the data up to 40 minutes were shown.
-Column: Carbopac PA-1
-Solution: i) Deionized water, ii) 0.1M NaOH solution, iii) 1M sodium acetate 0.1M NaOH solution-Flow velocity: 1.0 mL / min
-Measurement time: 105 min

Figure 0006803238
Figure 0006803238

HPAE−PADによる分析結果を図1に示す。図1中、各ピーク番号が示す生成物は下記の通りである。
1:アラビノース
2:グルコース
3:キシロース
4:フルクトース
5:キシロビオース
6:キシロトリオース
7:キシロテトラオース
8:キシロペンタノース
9:キシロヘキサノース
The analysis result by HPAE-PAD is shown in FIG. In FIG. 1, the products indicated by each peak number are as follows.
1: Arabinose 2: Glucose 3: Xylose 4: Fructose 5: Xylobiose 6: Xylobiose 7: Xylotetraose 8: Xylopentanose 9: Xylobiose

図1に示す結果から、加圧熱水処理工程を180℃で2時間行った場合(条件4)や、200℃で行った場合(条件5)は、多くの糖が検出された。孟宗竹中のヘミセルロースの加水分解反応が進行したことが確認できた。
220℃(条件7、8)では糖の溶出が少なくなったことから、有機酸、フルフラールへの変換が進行したと考えられる。
From the results shown in FIG. 1, a large amount of sugar was detected when the pressurized hot water treatment step was performed at 180 ° C. for 2 hours (Condition 4) or 200 ° C. (Condition 5). It was confirmed that the hydrolysis reaction of hemicellulose in Moso Takenaka proceeded.
Since the elution of sugar decreased at 220 ° C. (conditions 7 and 8), it is considered that the conversion to organic acid and furfural proceeded.

図2は、糖生成物の収率と加圧熱水処理条件との関係を示すグラフである。図2に示す通り、200℃で1時間、又は200℃で2時間の加圧熱水処理を行った場合に、糖生成物の収率が大きく向上した。 FIG. 2 is a graph showing the relationship between the yield of sugar products and the conditions for treating pressurized hot water. As shown in FIG. 2, the yield of the sugar product was greatly improved when the pressurized hot water treatment was performed at 200 ° C. for 1 hour or 200 ° C. for 2 hours.

[加熱炭化処理工程]
前記加圧熱水処理を条件5(200℃、1時間)行い、前記回収工程で得られた固体残渣を、窒素気流下(0.2L/min)で400℃、600℃、800℃でそれぞれ1時間加熱炭化した。
加熱温度を、400℃、600℃、800℃とした場合に得られた試料について、下記の方法で、N吸脱着等温線を測定した。
・N吸脱着等温線測定方法
試料(約10mg)を減圧下300℃×3時間の条件で加熱処理して吸着ガスを除去後、市販の装置(NOVA4200e, quantachrome製)により測定を行った。
その結果を図3に示す。さらに、得られたN吸脱着等温線に基づき、BET法により比表面積を算出した。その結果を図4に示す。
加熱炭化処理した試料の窒素吸着等温線を測定したところ、図3に示すとおり、IUPAC分類におけるI型等温線であった。I型はマイクロポア(2nm以下の細孔)の存在の可能性を示している。
図4に示すとおり、加熱炭化温度の増大に伴い、BET比表面積が増え、20〜600m/g程度の多孔質炭素を作製できた。
[Heat carbonization process]
The pressurized hot water treatment was carried out under condition 5 (200 ° C., 1 hour), and the solid residue obtained in the recovery step was subjected to a nitrogen stream (0.2 L / min) at 400 ° C., 600 ° C., and 800 ° C., respectively. It was heated and carbonized for 1 hour.
The heating temperature for 400 ° C., 600 ° C., were obtained when the 800 ° C. sample, the following method, was measured N 2 adsorption-desorption isotherms.
· N 2 adsorption-desorption isotherm measurement method sample (approximately 10 mg) was heated under a condition of reduced pressure at 300 ° C. × 3 hours after removal of the adsorbed gas was measured by a commercially available device (NOVA4200e, manufactured by Quantachrome).
The result is shown in FIG. Furthermore, based on N 2 adsorption-desorption isotherms obtained was calculated a specific surface area by the BET method. The result is shown in FIG.
When the nitrogen adsorption isotherm of the heat-carbonized sample was measured, it was an I-type isotherm in the IUPAC classification as shown in FIG. Type I indicates the possibility of the presence of micropores (pores of 2 nm or less).
As shown in FIG. 4, as the heating carbonization temperature increased, the BET specific surface area increased, and a porous carbon of about 20 to 600 m 2 / g could be produced.

[賦活処理工程]
400℃、600℃、800℃でそれぞれ加熱炭化した試料:KOH=1:3の割合で混合し、窒素気流下(0.2L/min)で800℃1時間賦活した。
その後蒸留水に分散させて煮沸後、ろ過して洗浄し、活性炭を得た。
[Activation process]
Samples heat-carbonized at 400 ° C., 600 ° C., and 800 ° C. were mixed at a ratio of KOH = 1: 3, and activated at 800 ° C. for 1 hour under a nitrogen stream (0.2 L / min).
Then, it was dispersed in distilled water, boiled, filtered and washed to obtain activated carbon.

得られた活性炭は同様にBET法により比表面積を算出した。結果を図5、図6に示す。これらの試料も、IUPAC分類におけるI型等温線であった。I型はマイクロポア(2nm以下の細孔)の存在の可能性を示している。加熱炭化温度600℃でBET比表面積が2337m/gの活性炭を製造できた。 The specific surface area of the obtained activated carbon was similarly calculated by the BET method. The results are shown in FIGS. 5 and 6. These samples were also type I isotherms in the IUPAC classification. Type I indicates the possibility of the presence of micropores (pores of 2 nm or less). Activated carbon having a BET specific surface area of 2337 m 2 / g could be produced at a heating carbonization temperature of 600 ° C.

集電極と対極を白金板、参照極をAg/AgCl電極、電解液を1mol/Lの硫酸水溶液とする三極セルとし、サイクリックボルタンメトリー(スキャン速度:1mV/秒)を測定した。結果を図7に示す。
糖を抽出した残渣の炭化温度を400℃、600℃、800℃でそれぞれ加熱し、その後800℃で1時間賦活した活性炭は、すべて長方形に近い形であり、囲う面積も大きく、十分な静電容量を有していることが確認できた。800℃で炭化した活性炭は、若干容量が小さかった。これは図6に示すBET比表面積値と同じ傾向であった。
Cyclic voltammetry (scan speed: 1 mV / sec) was measured using a triode cell in which the collecting electrode and the counter electrode were platinum plates, the reference electrode was an Ag / AgCl electrode, and the electrolytic solution was a 1 mol / L sulfuric acid aqueous solution. The results are shown in FIG.
The activated carbons obtained by heating the carbonization temperature of the sugar-extracted residue at 400 ° C, 600 ° C, and 800 ° C, respectively, and then activating at 800 ° C for 1 hour are all close to a rectangle, have a large surrounding area, and have sufficient capacitance. It was confirmed that it had a capacity. The activated carbon carbonized at 800 ° C. had a slightly smaller capacity. This was the same tendency as the BET specific surface area value shown in FIG.

<実施例2>
[加圧熱水処理工程]
孟宗竹を粉砕して粒径150μmの粉末とし、得られた粉末を105℃で3時間乾燥し、乾燥粉末を得た。
得られた乾燥粉末5gと蒸留水45gとを密封容器(HU−100、三愛科学)に入れ、プログラム式乾燥機により、200℃で1時間加圧熱水処理し、糖を抽出した。
糖を抽出した後の固体残渣を窒素気流下(0.2L/min)で600℃1時間加熱炭化し、多孔質炭素を得た。
多孔質炭素:KOH=1:3の割合で混合し、窒素気流下(0.2L/min)で800℃1時間賦活し、多孔質活性炭材料を得た。
この多孔質活性炭材料のBET比表面積は2337m/gであった。
多孔質活性炭材料:PTFE=9:1の割合で混合し、圧延した後、外径φ5.6mm、厚み0.8mmの活性炭電極を得た。
2つの多孔質活性炭電極をセパレータで対向するよう配置し、プロピレンカーボネートに四フッ化ホウ酸テトラエチルアンモニウムを1mol/L溶かした電解液を用い、図8に示したコイン型電気二重層キャパシタを作成した。
<Example 2>
[Pressurized hot water treatment process]
Moso bamboo was pulverized to obtain a powder having a particle size of 150 μm, and the obtained powder was dried at 105 ° C. for 3 hours to obtain a dry powder.
5 g of the obtained dry powder and 45 g of distilled water were placed in a sealed container (HU-100, San-ai Kagaku) and treated with pressurized hot water at 200 ° C. for 1 hour by a program dryer to extract sugar.
The solid residue after extracting the sugar was carbonized by heating at 600 ° C. for 1 hour under a nitrogen stream (0.2 L / min) to obtain porous carbon.
The mixture was mixed at a ratio of porous carbon: KOH = 1: 3 and activated at 800 ° C. for 1 hour under a nitrogen stream (0.2 L / min) to obtain a porous activated carbon material.
The BET specific surface area of this porous activated carbon material was 2337 m 2 / g.
Porous activated carbon material: PTFE = 9: 1 was mixed and rolled to obtain an activated carbon electrode having an outer diameter of φ5.6 mm and a thickness of 0.8 mm.
Two porous activated carbon electrodes were arranged so as to face each other with a separator, and a coin-type electric double layer capacitor shown in FIG. 8 was prepared using an electrolytic solution in which 1 mol / L of tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate. ..

<比較例1>
孟宗竹を粉砕(糖は未抽出)し、粉砕後の粉末を窒素気流下(0.2L/min)で400℃1時間加熱炭化し、多孔質炭素を得た。
多孔質炭素:KOH=1:3の割合で混合し、窒素気流下(0.2L/min)で800℃1時間賦活し、多孔質活性炭材料を得た。
この多孔質活性炭材料のBET比表面積は2740m/gであった。
多孔質活性炭材料:PTFE=9:1の割合で混合し、圧延した後、外径φ5.6mm、厚み0.8mmの活性炭電極を得た。
2つの多孔質活性炭電極をセパレータで対向するよう配置し、プロピレンカーボネートに四フッ化ホウ酸テトラエチルアンモニウムを1mol/L溶かした電解液を用い、図8に示したコイン型電気二重層キャパシタを作成した。
<Comparative example 1>
Moso bamboo was crushed (sugar was not extracted), and the crushed powder was carbonized by heating at 400 ° C. for 1 hour under a nitrogen stream (0.2 L / min) to obtain porous carbon.
The mixture was mixed at a ratio of porous carbon: KOH = 1: 3 and activated at 800 ° C. for 1 hour under a nitrogen stream (0.2 L / min) to obtain a porous activated carbon material.
The BET specific surface area of this porous activated carbon material was 2740 m 2 / g.
Porous activated carbon material: PTFE = 9: 1 was mixed and rolled to obtain an activated carbon electrode having an outer diameter of φ5.6 mm and a thickness of 0.8 mm.
Two porous activated carbon electrodes were arranged so as to face each other with a separator, and a coin-type electric double layer capacitor shown in FIG. 8 was prepared using an electrolytic solution in which 1 mol / L of tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate. ..

<比較例2>
BET比表面積が2280m/gである市販の活性炭を用いた。
多孔質活性炭材料:PTFE=9:1の割合で混合し、圧延した後、外径φ5.6mm、厚み0.8mmの活性炭電極を得た。
2つの多孔質活性炭電極をセパレータで対向するよう配置し、プロピレンカーボネートに四フッ化ホウ酸テトラエチルアンモニウムを1mol/L溶かした電解液を用い、図8に示したコイン型電気二重層キャパシタを作成した。
<Comparative example 2>
Commercially available activated carbon having a BET specific surface area of 2280 m 2 / g was used.
Porous activated carbon material: PTFE = 9: 1 was mixed and rolled to obtain an activated carbon electrode having an outer diameter of φ5.6 mm and a thickness of 0.8 mm.
Two porous activated carbon electrodes were arranged so as to face each other with a separator, and a coin-type electric double layer capacitor shown in FIG. 8 was prepared using an electrolytic solution in which 1 mol / L of tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate. ..

実施例2、比較例1、比較例2の3種類の電気二重層キャパシタを、充電1.8V、放電0.1mAとし、充電電圧の80%から40%になるまでの放電時間から容量(F)を計算し、2つの活性炭電極体積で除算した。結果を図9に示す。図9において、「1」は実施例2、「2」は比較例1、「3」は比較例2を示す。
実施例2の多孔質活性炭素材料は、比較例1の活性炭や、比較例2の市販の活性炭と同等、又はそれ以上の容量を有していた。
The three types of electric double layer capacitors of Example 2, Comparative Example 1, and Comparative Example 2 are charged at 1.8 V and discharged at 0.1 mA, and the discharge time from the discharge time to 80% to 40% of the charge voltage is changed to the capacity (F). ) Was calculated and divided by the two activated carbon electrode volumes. The results are shown in FIG. In FIG. 9, “1” indicates Example 2, “2” indicates Comparative Example 1, and “3” indicates Comparative Example 2.
The porous activated carbon material of Example 2 had a capacity equal to or higher than that of the activated carbon of Comparative Example 1 and the commercially available activated carbon of Comparative Example 2.

3:電気化学セル、11:正極缶、12:ガスケット、13:負極缶、14:保護膜、20:電極体、21:正極、22:負極、23:セパレータ、25:電解液 3: Electrochemical cell, 11: Positive electrode can, 12: Gasket, 13: Negative electrode can, 14: Protective film, 20: Electrode body, 21: Positive electrode, 22: Negative electrode, 23: Separator, 25: Electrolyte

Claims (4)

植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、
前記糖を抽出して生じた固体残渣を回収する回収工程と、
前記固体残渣を加熱炭化処理する加熱炭化処理工程と、を備える、多孔質炭素材料の製造方法であって、
前記糖抽出工程は、植物バイオマスを粉砕し、粒径が400μm以下の植物バイオマスの細片を得る工程を有し、
前記糖抽出工程が加圧熱水処理工程であり、
前記加圧熱水処理工程を160℃以上220℃以下で行い、
前記加熱炭化処理工程を500℃以上で行う、多孔質炭素材料の製造方法。
A sugar extraction process that extracts hemicellulose-derived sugar from plant biomass,
A recovery step of recovering the solid residue produced by extracting the sugar, and
A method for producing a porous carbon material, comprising a heat carbonization treatment step of heat carbonizing the solid residue.
The sugar extraction step includes a step of crushing the plant biomass to obtain a fragment of the plant biomass having a particle size of 400 μm or less.
The sugar extraction step is a pressurized hot water treatment step.
The pressurized hot water treatment step is performed at 160 ° C. or higher and 220 ° C. or lower.
A method for producing a porous carbon material , wherein the heat carbonization treatment step is performed at 500 ° C. or higher .
前記植物バイオマスが竹である、請求項1に記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 1, wherein the plant biomass is bamboo. 植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、
前記糖を抽出して生じた固体残渣を回収する回収工程と、
前記固体残渣を加熱炭化処理する加熱炭化処理工程と、
前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える、多孔質活性炭材料の製造方法であって、
前記糖抽出工程は、植物バイオマスを粉砕し、粒径が400μm以下の植物バイオマスの細片を得る工程を有し、
前記糖抽出工程が加圧熱水処理工程であり、
前記加圧熱水処理工程を160℃以上220℃以下で行い、
前記加熱炭化処理工程を500℃以上で行う、多孔質活性炭材料の製造方法。
A sugar extraction process that extracts hemicellulose-derived sugar from plant biomass,
A recovery step of recovering the solid residue produced by extracting the sugar, and
A heat carbonization treatment step of heat carbonizing the solid residue and
A method for producing a porous activated carbon material, comprising an activation step of activating the porous carbon material obtained by the heat carbonization treatment .
The sugar extraction step includes a step of crushing the plant biomass to obtain a fragment of the plant biomass having a particle size of 400 μm or less.
The sugar extraction step is a pressurized hot water treatment step.
The pressurized hot water treatment step is performed at 160 ° C. or higher and 220 ° C. or lower.
A method for producing a porous activated carbon material , wherein the heat carbonization treatment step is performed at 500 ° C. or higher .
植物バイオマスからヘミセルロース由来の糖を抽出する糖抽出工程と、
前記糖を抽出して生じた固体残渣を回収する回収工程と、
前記固体残渣を加熱炭化処理する加熱炭化処理工程と、
前記加熱炭化処理によって得られた多孔質炭素材料を賦活する賦活工程と、を備える、電極材料の製造方法であって、
前記糖抽出工程は、植物バイオマスを粉砕し、粒径が400μm以下の植物バイオマスの細片を得る工程を有し、
前記糖抽出工程が加圧熱水処理工程であり、
前記加圧熱水処理工程を160℃以上220℃以下で行い、
前記加熱炭化処理工程を500℃以上で行う、電極材料の製造方法。
A sugar extraction process that extracts hemicellulose-derived sugar from plant biomass,
A recovery step of recovering the solid residue produced by extracting the sugar, and
A heat carbonization treatment step of heat carbonizing the solid residue and
A method for producing an electrode material, comprising an activation step of activating the porous carbon material obtained by the heat carbonization treatment .
The sugar extraction step includes a step of crushing the plant biomass to obtain a fragment of the plant biomass having a particle size of 400 μm or less.
The sugar extraction step is a pressurized hot water treatment step.
The pressurized hot water treatment step is performed at 160 ° C. or higher and 220 ° C. or lower.
A method for producing an electrode material, wherein the heat carbonization treatment step is performed at 500 ° C. or higher .
JP2017001918A 2017-01-10 2017-01-10 A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material. Active JP6803238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001918A JP6803238B2 (en) 2017-01-10 2017-01-10 A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001918A JP6803238B2 (en) 2017-01-10 2017-01-10 A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material.

Publications (2)

Publication Number Publication Date
JP2018111617A JP2018111617A (en) 2018-07-19
JP6803238B2 true JP6803238B2 (en) 2020-12-23

Family

ID=62911759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001918A Active JP6803238B2 (en) 2017-01-10 2017-01-10 A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material.

Country Status (1)

Country Link
JP (1) JP6803238B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079352B (en) * 2019-06-13 2021-12-14 南京林业大学 Preparation method and application of biomass-based porous nitrogen-doped carbon material
KR102286177B1 (en) * 2019-10-30 2021-08-04 한국세라믹기술원 Manufacturing method of porous active carbon, manufacturing method of supercapacitor electrode using the porous active carbon and supercapacitor using the supercapacitor electrode
CN111215031B (en) * 2020-03-18 2022-06-14 重庆三峡学院 Preparation method of high-purity biochar
CN112133572A (en) * 2020-09-08 2020-12-25 扬州大学 Three-dimensional porous biomass carbon material used as supercapacitor and preparation method thereof
KR102440637B1 (en) * 2020-10-30 2022-09-06 한국세라믹기술원 Manufacturing method of porous activated carbon using hydrothermal pretreatment and supercapacitor using the same and method of manufacturing thereof
KR102497078B1 (en) 2020-12-31 2023-02-06 대진대학교 산학협력단 Manufacturing method of carbon material using plant biomass
CN113648966A (en) * 2021-08-10 2021-11-16 南京航空航天大学 Biomass porous carbon material and preparation method and application thereof
CN113800515B (en) * 2021-10-29 2022-12-20 哈尔滨工业大学 Preparation method of nitrogen-doped activated carbon and multi-hydroxide/biomass porous carbon nano composite electrode material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802325B2 (en) * 2000-08-23 2006-07-26 信行 林 Pressurized hydrothermal decomposition method and system for plant biomass
JP5533912B2 (en) * 2007-04-04 2014-06-25 ソニー株式会社 Secondary battery electrode material and manufacturing method thereof, and electric double layer capacitor material and manufacturing method thereof
JP5335490B2 (en) * 2009-03-09 2013-11-06 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2010279255A (en) * 2009-06-02 2010-12-16 Idemitsu Kosan Co Ltd Method for saccharifying biomass

Also Published As

Publication number Publication date
JP2018111617A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6803238B2 (en) A method for producing a porous carbon material, a method for producing a porous activated carbon material, and a method for producing an electrode material.
KR20200042689A (en) Manufacturing Method of Activated Carbon using Kenaf
JP7061107B2 (en) Carbonaceous materials and their manufacturing methods
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
TWI738893B (en) Carbonaceous material and its manufacturing method
CN105645410B (en) 3D network pore structure Supercapacitor carbons and preparation method thereof
TWI760334B (en) Carbonaceous material, method for producing the same, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor containing the carbonaceous material
CN108358203B (en) Preparation method of biomass porous graphene structure activated carbon
CN110300728B (en) Carbonaceous material and electrode material for electric double layer capacitor containing the carbonaceous material
CN107364862A (en) Activated carbon for electric double layer capacitor electrode and its manufacture method
CN113716562A (en) Method for preparing porous carbon material by treating tobacco waste with molten salt
JP2007169117A (en) Activated carbon and electrical double layer capacitor using same
WO2014196888A1 (en) Method for obtaining carbon material for producing capacitor electrodes
KR101903157B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
WO2020096008A1 (en) Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
Veerakumar Biomass Derived Composites for Energy Storage
JP4694271B2 (en) Polarized electrode manufacturing method, polarizable electrode, electric double layer capacitor, and carbonaceous material selection method
JP2024072530A (en) Electrode material for aqueous electric double layer capacitors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6803238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150