JP6803076B2 - A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element. - Google Patents

A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element. Download PDF

Info

Publication number
JP6803076B2
JP6803076B2 JP2017538137A JP2017538137A JP6803076B2 JP 6803076 B2 JP6803076 B2 JP 6803076B2 JP 2017538137 A JP2017538137 A JP 2017538137A JP 2017538137 A JP2017538137 A JP 2017538137A JP 6803076 B2 JP6803076 B2 JP 6803076B2
Authority
JP
Japan
Prior art keywords
power generation
layer
thermoelectric power
holes
generation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017538137A
Other languages
Japanese (ja)
Other versions
JPWO2017038988A1 (en
Inventor
祥子 松下
祥子 松下
あゆみ 鶴岡
あゆみ 鶴岡
翔哉 佐野
翔哉 佐野
完 佐藤
完 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Publication of JPWO2017038988A1 publication Critical patent/JPWO2017038988A1/en
Application granted granted Critical
Publication of JP6803076B2 publication Critical patent/JP6803076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Description

本発明は、熱電発電素子及びそれを含む熱電発電モジュール、並びにそれを用いた熱電発電方法に関する。本発明によれば、熱電発電素子に温度勾配を付与することなしに、熱エネルギーを電気エネルギーに変換することができる。 The present invention relates to a thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the same. According to the present invention, thermal energy can be converted into electrical energy without imparting a temperature gradient to the thermoelectric power generation element.

従来、地熱又は工場の排熱などを利用した熱電発電として、ゼーベック効果を利用した熱電発電が知られており(特許文献1及び2、並びに非特許文献1)熱エネルギーを効率的に利用するために、実用化が期待されている。ゼーベック効果による熱電発電は、金属または半導体に温度勾配を設けると電圧が発生することを利用した発電原理である。具体的には、p型半導体及びn型半導体を結合した熱電変換素子に、温度勾配を付与することによって、熱エネルギーを電気エネルギーに変換する熱電発電システムである。 Conventionally, as thermoelectric power generation using geothermal heat or waste heat of a factory, thermoelectric power generation using the Seebeck effect is known (Patent Documents 1 and 2 and Non-Patent Document 1) in order to efficiently use thermal energy. It is expected to be put into practical use. Thermoelectric power generation by the Seebeck effect is a power generation principle that utilizes the fact that a voltage is generated when a temperature gradient is provided in a metal or semiconductor. Specifically, it is a thermoelectric power generation system that converts thermal energy into electrical energy by applying a temperature gradient to a thermoelectric conversion element in which a p-type semiconductor and an n-type semiconductor are bonded.

この熱電発電システムは、火力発電などで排出される温室効果ガスの発生がない。また、火山の多い地域においては、地熱を熱エネルギーとして利用できることから、有望な発電方法であると考えられている。 This thermoelectric power generation system does not generate greenhouse gases emitted by thermal power generation. Moreover, in areas with many volcanoes, geothermal heat can be used as thermal energy, so it is considered to be a promising power generation method.

特開2010−147236号公報Japanese Unexamined Patent Publication No. 2010-147236 特開2003−219669号公報Japanese Unexamined Patent Publication No. 2003-219669

「リニューワブル・アンド・サスティナブル・エナジー・レビューズ(Renewable and Sustainable Energy Reviews)」(オランダ)2014年、第33巻、p.371"Renewable and Sustainable Energy Reviews" (Netherlands) 2014, Vol. 33, p. 371 濱川圭弘編著「フォトニクスシリーズ3 太陽電池」2004年、コロナ社"Photonics Series 3 Solar Cell" edited by Yoshihiro Hamakawa, 2004, Corona Publishing Co., Ltd.

しかしながら、従来の温度勾配を利用した熱電変換素子は、熱電変換素子を構成する半導体の価格が高いこと、使用温度範囲が狭いこと、及び変換効率が低いことなどの問題がある。更に、発電に温度勾配を必要とするため、設置場所に制限があり、場合によっては、温度勾配のための冷却装置を用いる必要がある。特に、熱電変換モジュールのうち一次元は温度勾配に使われるため、熱源に対し二次元的な利用となり、周囲すべての熱を三次元的に使えず、熱の利用効率が低いという欠点がある。
従って、本発明の目的は、温度勾配を必要としない熱電発電素子及びそれを用いた熱電発電システムを提供することである。
However, the conventional thermoelectric conversion element using the temperature gradient has problems such as high price of the semiconductor constituting the thermoelectric conversion element, narrow operating temperature range, and low conversion efficiency. Furthermore, since power generation requires a temperature gradient, there are restrictions on the installation location, and in some cases, it is necessary to use a cooling device for the temperature gradient. In particular, since one dimension of the thermoelectric conversion module is used for the temperature gradient, it is used two-dimensionally with respect to the heat source, and all the surrounding heat cannot be used three-dimensionally, so that the heat utilization efficiency is low.
Therefore, an object of the present invention is to provide a thermoelectric power generation element that does not require a temperature gradient and a thermoelectric power generation system using the same.

本発明者は、温度勾配を必要としない熱電変換素子及びそれを用いた熱電発電システムについて、鋭意研究した結果、驚くべきことに、熱励起電子及び正孔を生成する熱電変換材料と、電荷輸送イオン対が移動できる固体電解質又は電解質溶液とを組み合わせた熱電発電素子を用いることにより、システムに温度差を与えずとも、システム全体を高温にするだけで、熱エネルギーを電気エネルギーに変換できることを見出した。
本発明は、こうした知見に基づくものである。
従って、本発明は、
[1]熱励起電子及び正孔を生成する熱電変換材料を含む第1層、及び電荷輸送イオン対が移動できる固体電解質または電解質溶液を含む第2層、が積層しており、第1層内の熱励起電子及び正孔を生成する半導体の価電子帯電位が第2層内の前記電荷輸送イオン対の酸化還元電位よりも正であり、第1層と第2層の界面で前記2つのイオンのうち、より酸化されやすいイオンの酸化反応が生じることを特徴とする熱電発電素子、
[2]前記第1層内の熱励起電子及び正孔を生成する熱電変換材料の価電子帯電位と第2層内の前記電荷輸送イオン対の酸化還元電位との差が0.5V以下である、[1]に記載の熱電発電素子、
[3]電子輸送材料を含む第3層が、第1層における第2層との積層面の反対側の面に積層されており、前記第3層内の電子輸送材料の電子伝導帯電位が、前記第1層内の熱励起電子及び正孔を生成する熱電変換材料の伝導帯電位と同じか、又は正である、[1]又は[2]に記載の熱電発電素子、
[4]前記第1層内の熱電子及び正孔を生成する熱電変換材料の伝導帯電位と前記第3層内の電子輸送材料の電子伝導帯電位との差が0.5V以下である、[3]に記載の熱電発電素子、
[5]前記第1層内の熱励起電子及び正孔を生成する熱電変換材料が、熱励起電子とそれに伴って生じる正孔との電位差が0.1V以上を示す熱電変換材料である、[1]〜[4]のいずれかに記載の熱電発電素子、
[6][1]〜[5]のいずれかに記載の熱電発電素子を、前記第1層内の熱励起電子及び正孔を生成する熱電変換材料の熱励起電子密度が1015/mとなる温度以上の環境下に置いて発電する方法、
[7]前記温度が、熱電変換材料の熱励起電子密度が1018/mとなる温度である、[6]に記載の発電方法、
[8][1]〜[5]のいずれかに記載の熱電発電素子を含む熱電発電装置、
[9][1]〜[5]のいずれかに記載の熱電発電素子を含むサーモ電池、
[10][1]〜[5]のいずれかに記載の熱電発電素子を含む熱電発電モジュール、
[11][10]に記載の熱電発電モジュールを熱発生場所に設置する工程、及び熱により前記熱電発電モジュールを加熱し、電力を発生させる工程、を含む、熱電発電方法、及び
[12]前記熱が、地熱又は排熱である、[11]に記載の熱電発電方法に関する。
また、本明細書は、
[13](1)正孔及び電子を生成する熱電変換材料を含む熱電変換層、及び(2)電子輸送材料を含む電子輸送層及び/又は正孔伝達性材料を含む正孔輸送層を含む熱電発電素子、
[14]前記熱電発電素子を含む熱電発電装置、
[15]前記熱電発電素子を含むサーモ電池、
[16]前記熱電発電素子を含む熱電発電モジュール、及び
[17]前記熱電発電モジュールを熱発生場所に設置する工程、及び熱により前記熱電発電モジュールを加熱し、電力を発生させる工程、を含む、熱電発電方法、
を開示する。
As a result of diligent research on a thermoelectric conversion element that does not require a temperature gradient and a thermoelectric power generation system using the same, the present inventor surprisingly finds a thermoelectric conversion material that generates thermoexcited electrons and holes, and charge transport. We found that by using a thermoelectric generation element that combines a solid electrolyte or an electrolyte solution that can move ion pairs, thermal energy can be converted into electrical energy simply by raising the temperature of the entire system without giving a temperature difference to the system. It was.
The present invention is based on these findings.
Therefore, the present invention
[1] A first layer containing a thermoelectric conversion material that generates thermally excited electrons and holes and a second layer containing a solid electrolyte or an electrolyte solution in which charge transport ion pairs can move are laminated, and the inside of the first layer. The valence electron charging position of the semiconductor that generates the thermally excited electrons and holes is more positive than the redox potential of the charge transport ion pair in the second layer, and the two are at the interface between the first layer and the second layer. A thermoelectric power generation element characterized in that an oxidation reaction of ions that are more easily oxidized occurs among the ions.
[2] When the difference between the valence electron charging position of the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer and the oxidation-reduction potential of the charge transport ion pair in the second layer is 0.5 V or less. The thermoelectric power generation element according to [1].
[3] The third layer containing the electron transport material is laminated on the surface of the first layer opposite to the laminated surface with the second layer, and the electron conduction charge position of the electron transport material in the third layer is high. The thermoelectric power generation element according to [1] or [2], which has the same or positive conduction charge position as the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer.
[4] The difference between the conduction charge position of the thermoelectric conversion material that generates thermoelectrons and holes in the first layer and the electron conduction charge position of the electron transport material in the third layer is 0.5 V or less. The thermoelectric power generation element according to [3],
[5] The thermoelectric conversion material that generates thermally excited electrons and holes in the first layer is a thermoelectric conversion material that exhibits a potential difference of 0.1 V or more between the thermally excited electrons and the holes generated accordingly. 1] The thermoelectric power generation element according to any one of [4].
[6] The thermoelectric power generation element according to any one of [1] to [5] has a thermoelectrically excited electron density of 10 15 / m 3 of a thermoelectric conversion material that generates thermally excited electrons and holes in the first layer. How to generate electricity in an environment above the temperature
[7] The power generation method according to [6], wherein the temperature is a temperature at which the thermal excited electron density of the thermoelectric conversion material is 10 18 / m 3 .
[8] A thermoelectric power generation device including the thermoelectric power generation element according to any one of [1] to [5].
[9] A thermo battery including the thermoelectric power generation element according to any one of [1] to [5].
[10] A thermoelectric power generation module including the thermoelectric power generation element according to any one of [1] to [5].
[11] A thermoelectric power generation method including a step of installing the thermoelectric power generation module according to [10] at a heat generating place and a step of heating the thermoelectric power generation module by heat to generate electric power, and [12] the above. The thermoelectric power generation method according to [11], wherein the heat is geothermal heat or exhaust heat.
In addition, this specification
[13] Includes (1) a thermoelectric conversion layer containing a thermoelectric conversion material that generates holes and electrons, and (2) an electron transport layer containing an electron transport material and / or a hole transport layer containing a hole transmissive material. Thermoelectric power generation element,
[14] A thermoelectric power generation device including the thermoelectric power generation element,
[15] A thermo battery including the thermoelectric power generation element,
[16] A thermoelectric power generation module including the thermoelectric power generation element, and [17] a step of installing the thermoelectric power generation module in a heat generation place, and a step of heating the thermoelectric power generation module by heat to generate power. Thermoelectric power generation method,
To disclose.

本発明の熱電発電素子及びそれを含む熱電発電モジュールによれば、システムに温度勾配を与えずに、熱エネルギーを電気エネルギーに変換することができる。すなわち、本発明の熱電発電素子、又は熱電発電モジュールを用いることによりシステムに温度勾配を設けることなしに、地熱、自動車の排熱、工場などの排熱を利用して、熱電発電を行うことができる。
更に、本発明の熱電発電素子及びそれを含む熱電発電モジュールは、周囲の熱エネルギーを電気エネルギーに変換して発電装置または電池として用いる熱電発電装置又はサーモ電池などに用いることが可能であり、簡素な構造の発電装置又は電池を製造することが可能である。
According to the thermoelectric power generation element of the present invention and the thermoelectric power generation module including the thermoelectric power generation element, thermal energy can be converted into electric energy without giving a temperature gradient to the system. That is, by using the thermoelectric power generation element of the present invention or the thermoelectric power generation module, it is possible to perform thermoelectric power generation by utilizing geothermal heat, exhaust heat of an automobile, exhaust heat of a factory, etc. without providing a temperature gradient in the system. it can.
Further, the thermoelectric power generation element of the present invention and the thermoelectric power generation module including the thermoelectric power generation element can be used for a thermoelectric power generation device or a thermo battery which converts ambient heat energy into electric energy and uses it as a power generation device or a battery, and is simple. It is possible to manufacture a power generation device or a battery having a similar structure.

本発明の熱電発電素子を模式的に示した図である。It is a figure which showed typically the thermoelectric power generation element of this invention. β−FeSiの電子密度(計算値)の温度依存性を示した図である。It is a figure which showed the temperature dependence of the electron density (calculated value) of β-FeSi 2 . 熱励起電子及び正孔を生成する熱電変換材料であるβ−FeSiの温度変化に応じた抵抗値の測定値から計算した電気伝導率を示したグラフである。It is a graph which showed the electric conductivity calculated from the measured value of the resistance value corresponding to the temperature change of β-FeSi 2 , which is a thermoelectric conversion material which generates thermally excited electrons and holes. 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、電解質(第2層)としてCuZr(PO、及び、電子輸送材料(第3層)としてn型シリコンを用いた熱電発電素子(実施例1)による温度依存性の発電を示したグラフである。Β-FeSi 2 as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes, CuZr 2 (PO 4 ) 3 as an electrolyte (second layer), and n as an electron transport material (third layer). It is a graph which showed the temperature-dependent power generation by the thermoelectric power generation element (Example 1) using the type silicon. 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、電解質(第2層)としてCuZr(PO、及び、電子輸送材料(第3層)としてn型シリコンを用いた熱電発電素子(実施例1)による600℃での開放電圧を示したグラフである。Β-FeSi 2 as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes, CuZr 2 (PO 4 ) 3 as an electrolyte (second layer), and n as an electron transport material (third layer). It is a graph which showed the open circuit voltage at 600 degreeC by the thermoelectric power generation element (Example 1) using type silicon. 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、電解質(第2層)としてCuZr(PO、及び、電子輸送材料(第3層)としてn型シリコンを用いた熱電発電素子(実施例1)を用いて、室温および600℃にて電気化学インピーダンスを測定した結果を示すグラフである。Β-FeSi 2 as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes, CuZr 2 (PO 4 ) 3 as an electrolyte (second layer), and n as an electron transport material (third layer). It is a graph which shows the result of having measured the electrochemical impedance at room temperature and 600 degreeC using the thermoelectric power generation element (Example 1) using type silicon. 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、電解質(第2層)としてCuZr(PO3、及び、電子輸送材料(第3層)としてn型シリコンを用いた熱電発電素子を、750℃、定圧電流5μAとした場合のセル電圧を示したグラフである(実施例2)。Β-FeSi 2 as a thermoelectric conversion material (first layer) that generates heated electrons and holes, CuZr 2 (PO 4 ) 3 as an electrolyte (second layer) , and n as an electron transport material (third layer). It is a graph which showed the cell voltage when the thermoelectric power generation element using the type silicon was 750 ° C., and the constant pressure current was 5 μA (Example 2). 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、及び電解質(第2層)CuZr(POを用いた熱電発電素子を600℃に維持した場合(実施例3)の開放電圧を示したグラフである。When a thermoelectric power generation element using β-FeSi 2 as a thermoelectric conversion material (first layer) for generating thermally excited electrons and holes and CuZr 2 (PO 4 ) 3 as an electrolyte (second layer) is maintained at 600 ° C. It is a graph which showed the open circuit voltage of (Example 3). 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてゲルマニウム、及び電解質(第2層)として塩化ヘキサアンミンコバルト(III)水溶液を用いた熱電発電素子を80℃に維持した場合(実施例4)の開放電圧を示したグラフである。When a thermoelectric power generation device using germanium as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes and an aqueous solution of hexaamminecobalt (III) chloride as an electrolyte (second layer) is maintained at 80 ° C. ( It is a graph which showed the open circuit voltage of Example 4). 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてゲルマニウム、電解質(第2層)として酸化硫酸バナジウム(IV)n水溶液を用いた熱電発電素子を80℃に維持した場合(実施例5)の開放電圧を示したグラフである。When a thermoelectric power generation device using germanium as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes and an aqueous solution of vanadium (IV) oxide sulfate as an electrolyte (second layer) is maintained at 80 ° C. (implemented) It is a graph which showed the open circuit voltage of Example 5). 熱励起電子及び正孔を生成する熱電変換材料(第1層)としてβ−FeSi、電解質(第2層)としてRbCuCl、電子輸送材料(第3層)としてn−Siを用いた熱電発電素子を190℃に維持した場合(実施例6)の開放電圧を示したグラフである。Thermoelectric power generation using β-FeSi 2 as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes, RbCuCl 2 as an electrolyte (second layer), and n-Si as an electron transport material (third layer). It is a graph which showed the open circuit voltage when the element was maintained at 190 degreeC (Example 6).

〔1〕熱電発電素子
本発明の熱電発電素子は、熱励起電子及び正孔を生成する熱電変換材料を含む第1層、及び電荷輸送イオン対が移動できる固体電解質または電解質溶液を含む第2層、が積層している。そして、第1層内の熱電変換材料の価電子帯電位が第2層内の前記電荷輸送イオン対の酸化還元電位よりも正であり、第1層と第2層の界面で、電荷輸送イオン対のうちより酸化されやすいイオンが酸化されて、他方のイオンとなる。
また、本発明の熱電発電素子は、電子輸送材料を含む第3層を有してもよく、前記第3層は、第1層における第2層との積層面の反対側の面に積層されており、前記電子輸送材料の電子伝導帯電位が、熱励起電子及び正孔を生成する半導体の伝導帯電位と同じか、又は正である。
すなわち、本発明の熱電発電素子は、(A)熱励起電子及び正孔を生成する熱電変換材料を含む第1層、及び、電荷輸送イオン対が移動できる固体電解質または電解質溶液を含む第2層が積層された熱電発電素子、及び(B)熱電変換材料を含む第1層、電荷輸送イオン対が移動できる固体電解質または電解質溶液を含む第2層、及び、第1層に、第2層と反対側に接する電子輸送材料を含む第3層が積層された熱電発電素子の2つの態様を含む。
本明細書において「熱電変換材料」は、熱により熱励起電子及び正孔を生成することのできる材料を意味する。具体的には、熱励起電子及び正孔を生成する半導体を挙げることができる。また、本明細書において「電荷輸送イオン対」は、価数が異なる安定な2つのイオンであり、一方のイオンが酸化または還元されて他方のイオンとなり、電子および正孔を運ぶことができるイオン対を意味する。価数が異なる同じ元素のイオンであっても良い。
前記第1層は正孔及び電子を生成する熱電変換材料を含む熱電変換層でもよく、前記第2層は正孔伝達性材料を含む正孔輸送層でもよく、前記第3層は、電子輸送材料を含む電子輸送層でもよい。前記熱電変換材料は好ましくは半導体であり、前記正孔伝達性材料は好ましくは電解質であり、電子輸送材料は好ましくは半導体又は金属である。
また、本発明の熱電発電素子は、(1)正孔及び電子を生成する熱電変換材料を含む熱電変換層、及び(2)電子輸送材料を含む電子輸送層及び/又は正孔伝達性材料を含む正孔輸送層を含む熱電発電素子でもよい。
[1] Thermoelectric power generation element The thermoelectric power generation element of the present invention has a first layer containing a thermoelectric conversion material that generates thermally excited electrons and holes, and a second layer containing a solid electrolyte or an electrolyte solution in which charge transport ion pairs can move. , Are laminated. Then, the valence charge position of the thermoelectric conversion material in the first layer is more positive than the redox potential of the charge transport ion pair in the second layer, and the charge transport ions are at the interface between the first layer and the second layer. The more easily oxidized ion of the pair is oxidized to the other ion.
Further, the thermoelectric power generation element of the present invention may have a third layer containing an electron transporting material, and the third layer is laminated on the surface opposite to the laminated surface with the second layer in the first layer. The electron conduction charge position of the electron transport material is the same as or positive as the conduction charge position of the semiconductor that generates thermally excited electrons and holes.
That is, the thermoelectric generation element of the present invention has (A) a first layer containing a thermoelectric conversion material that generates thermoexcited electrons and holes, and a second layer containing a solid electrolyte or an electrolyte solution in which charge transport ion pairs can move. A thermoelectric power generation element in which two layers are laminated, and (B) a first layer containing a thermoelectric conversion material, a second layer containing a solid electrolyte or an electrolyte solution capable of moving charge transport ion pairs, and a second layer on the first layer. It comprises two aspects of a thermoelectric generator in which a third layer containing an electron transport material abutting the opposite side is laminated.
As used herein, the term "thermoelectric conversion material" means a material capable of generating thermally excited electrons and holes by heat. Specific examples thereof include semiconductors that generate thermally excited electrons and holes. Further, in the present specification, the "charge transport ion pair" is two stable ions having different valences, and one ion is oxidized or reduced to become the other ion, which can carry electrons and holes. Means a pair. Ions of the same element with different valences may be used.
The first layer may be a thermoelectric conversion layer containing a thermoelectric conversion material that generates holes and electrons, the second layer may be a hole transport layer containing a hole transmissible material, and the third layer may be an electron transport layer. It may be an electron transport layer containing a material. The thermoelectric conversion material is preferably a semiconductor, the hole transmissible material is preferably an electrolyte, and the electron transport material is preferably a semiconductor or metal.
Further, the thermoelectric power generation element of the present invention includes (1) a thermoelectric conversion layer containing a thermoelectric conversion material that generates holes and electrons, and (2) an electron transport layer and / or a hole transmissive material containing an electron transport material. A thermoelectric power generation element including a hole transport layer including the holes may be used.

基本的には、それぞれの態様の熱電発電素子に正極電極及び負極電極を設け、熱を付与することにより、熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成している状態となり、正極電極及び負極電極に電位差が生じて、電圧を発生させることができる。一般的な半導体の例として、図2に示すβ−FeSiの励起電子密度の温度依存性で判るように、半導体の励起電子密度は、温度上昇とともに増加する。発電に十分な熱励起電子及び正孔の数とは、実際には単位体積当たりの電子密度で表されるが、太陽電池に用いられる半導体における光励起電子数と同程度あれば良く、例えば、太陽電池に用いられるアモルファスシリコンでの光励起電子密度である1015/m(非特許文献2)が挙げられる。すなわち、本発明に用いる熱電変換材料において、熱励起電子密度が1015/m以上となる条件で、発電を行うことができる。実際には、この条件に加えて、熱電変換材料の価電子帯電位と第2層内の電荷輸送イオン対の酸化還元電位との電位差、第1層内での電子移動速度、及び第2層内での各電荷輸送イオンの移動し易さ(電子輸送材料を含む第3層が積層された熱電発電素子の場合は、さらに、熱電変換材料の伝導帯電位と第3層内の電子輸送材料の電子伝導帯電位との電位差、第3層内での電子移動速度)が関係し発生電流の大きさが決定される。しかしながら、熱励起電子密度が1015/mとなる温度が重要であり、そして熱電変換材料の励起熱電子及び正孔の数がある値以上であることが重要である。具体的には、実施例4及び5において、第1層に熱電変換材料としてゲルマニウムを含む熱電発電素子を80℃に置くことによって発生電流が確認されたが、80℃におけるゲルマニウムの熱励起電子及び正孔は約1018/mである。また、実施例6においては、第1層に熱電変換材料としてβ−FeSiを含む熱電発電素子を190℃に置くことによって発生電流が確認されたが、190℃におけるβ−FeSiの熱励起電子及び正孔は約1021/mである。ここに記載した熱励起電子及び正孔数は、以下の計算式を用いて計算したものである。
ここでN、Nはそれぞれ伝導帯・価電子帯の有効状態密度、Eはバンドギャップ、kはボルツマン定数、Tは温度である。
本発明の熱電発電素子が実際に発電する温度は、第1層内の熱電変換材料の発電に十分な数の熱励起電子及び正孔を生じる温度であることのほか、材料固有の電子移動のし易さや、第2層(または第2層及び第3層)との組み合わせによる第1層との界面で電子移動のし易さによって決まる。
Basically, the thermoelectric power generation element of each embodiment is provided with a positive electrode and a negative electrode, and heat is applied so that the thermoelectric conversion material generates a sufficient number of thermoexcited electrons and holes for power generation. Therefore, a potential difference is generated between the positive electrode and the negative electrode, and a voltage can be generated. As an example of a general semiconductor, as can be seen from the temperature dependence of the excited electron density of β-FeSi 2 shown in FIG. 2, the excited electron density of the semiconductor increases with increasing temperature. The number of thermally excited electrons and holes sufficient for power generation is actually expressed by the electron density per unit volume, but it may be about the same as the number of optically excited electrons in the semiconductor used in the solar cell, for example, the sun. Examples thereof include 10 15 / m 3 (Non-Patent Document 2), which is the photoexcited electron density of amorphous silicon used in a battery. That is, in the thermoelectric conversion material used in the present invention, power generation can be performed under the condition that the thermal excited electron density is 10 15 / m 3 or more. Actually, in addition to this condition, the potential difference between the valence charge position of the thermoelectric conversion material and the oxidation-reduction potential of the charge transport ion pair in the second layer, the electron transfer rate in the first layer, and the second layer Ease of movement of each charge transport ion within (in the case of a thermoelectric power generation element in which a third layer containing an electron transport material is laminated, further, the conduction charge position of the thermoelectric conversion material and the electron transport material in the third layer The magnitude of the generated current is determined in relation to the potential difference from the electron conduction charge position and the electron transfer rate in the third layer. However, the temperature at which the thermal excited electron density is 10 15 / m 3 is important, and it is important that the number of excited thermions and holes in the thermoelectric conversion material is above a certain value. Specifically, in Examples 4 and 5, the generated current was confirmed by placing a thermoelectric power generation element containing germanium as a thermoelectric conversion material in the first layer at 80 ° C., but the thermally excited electrons of germanium at 80 ° C. and The holes are about 10 18 / m 3 . Further, in Example 6, the generated current was confirmed by placing a thermoelectric power generation element containing β-FeSi 2 as a thermoelectric conversion material in the first layer at 190 ° C., but the thermal excitation of β-FeSi 2 at 190 ° C. was confirmed. The number of electrons and holes is about 10 21 / m 3 . The number of thermally excited electrons and holes described here is calculated using the following formula.
Here, N c and N v are the effective state densities of the conduction band and the valence band, E g is the band gap, k is the Boltzmann constant, and T is the temperature.
The temperature at which the thermoelectric power generation element of the present invention actually generates power is a temperature at which a sufficient number of thermally excited electrons and holes are generated for power generation of the thermoelectric conversion material in the first layer, and also the electron transfer peculiar to the material. It is determined by the ease of electron transfer at the interface with the first layer in combination with the second layer (or the second layer and the third layer).

《第1層》
本発明の熱電発電素子を構成する第1層は、熱電変換材料を含む。第1層は、熱電変換材料が、適当な温度を付与されることにより発電に十分な数の熱励起電子及び正孔を生成できる限りにおいて、熱電変換材料以外の成分を含むことができる。前記成分としては、限定されるものではないが、熱電変換材料を結合させるバインダー(ポリビニルアルコール、メチルセルロース、アクリル樹脂、寒天など)、熱電変換材料の成形を助ける焼結助剤(酸化マグネシウム、酸化イットリウム、酸化カルシウムなど)などを挙げることができる。また、製造工程で用いる溶媒が残存していても良い。本発明に用いる第1層は実質的に熱電変換層として機能するものである。
<< 1st layer >>
The first layer constituting the thermoelectric power generation element of the present invention contains a thermoelectric conversion material. The first layer can contain components other than the thermoelectric conversion material as long as the thermoelectric conversion material can generate a sufficient number of thermally excited electrons and holes for power generation when an appropriate temperature is applied. The components include, but are not limited to, binders (polyvinyl alcohol, methyl cellulose, acrylic resin, agar, etc.) that bind thermoelectric conversion materials, and sintering aids (magnesium oxide, yttrium oxide) that assist in molding the thermoelectric conversion materials. , Calcium oxide, etc.). Further, the solvent used in the manufacturing process may remain. The first layer used in the present invention substantially functions as a thermoelectric conversion layer.

第1層は、例えばスキージ法、スクリーン印刷法、放電プラズマ焼結法、圧縮成形法、スパッタリング法、真空蒸着法、又はスピンコート法によって作製することができる。スピンコート法を用いる場合、β−FeSiをアセトンなどの極性溶媒に分散し、その溶液を、第3層又は第2層にスピンコートすることにより、第1層を作製することができる。また、別の方法としてβ−FeSiを放電プラズマ焼結法により作製し、得られたβ−FeSiの粉体と導電性バインダー(例えば、高温導電コーティング)とを第3層又は第2層にスキージしてもよい。The first layer can be produced by, for example, a squeegee method, a screen printing method, a discharge plasma sintering method, a compression molding method, a sputtering method, a vacuum deposition method, or a spin coating method. When the spin coating method is used, the first layer can be prepared by dispersing β-FeSi 2 in a polar solvent such as acetone and spin coating the solution on the third layer or the second layer. As another method, β-FeSi 2 is produced by a discharge plasma sintering method, and the obtained β-FeSi 2 powder and a conductive binder (for example, a high-temperature conductive coating) are formed into a third layer or a second layer. You may squeeze.

(熱電変換材料)
第1層に含まれる熱電変換材料は、適当な温度を付与されることにより熱励起電子及び正孔を生成できる限りにおいて、特に限定されるものではないが、例えば、金属半導体、テルル化合物半導体、シリコンゲルマニウム(Si-Ge)化合物半導体、シリサイド化合物半導体、スクッテルダイト化合物半導体、クラスレート化合物半導体、ホイスラー化合物半導体、ハーフホイスラー化合物半導体、金属酸化物半導体、有機半導体及びその他の半導体を挙げることができる。本発明に用いる半導体は熱電変換材料として機能するものである。
金属半導体としては、Si半導体、Ge半導体を挙げることができる。
テルル化合物半導体としては、Bi−Te化合物(例えば、BiTe、SbTe、CsBiTe、BiSe、Bi0.4Sb1.6Te、Bi(Se,Te)、(Bi,Sb)(Te,Se)、(Bi,Sb)Te、又はBiTe2.95Se0.05)、Pb−Te化合物(例えば、PbTe、又はPb1−xSnTe)、SnTe、Ge−Te、AgSbTe、Ag−Sb−Ge−Te化合物(例えば、GeTe−AgSbTe(TAGS))、GaTe、(Ga1−xInTe、TlTe−AgTe、TlTe−CuTe、TlTe−SbTe、TlTe−BiTe、TiTe−GeTe、AgTlTe、AgTlTe、TlBiTe、TlSbTe、TlCuTe、TlSnTe、TlPbTe、又はTl0.02Pb0.98Teを挙げることができる。
シリコンゲルマニウム(Si-Ge)化合物半導体としては、SiGe1−x、又はSiGe−GaPを挙げることができる。
シリサイド化合物半導体としては、β−FeSi化合物(例えば、β−FeSi、Fe1−xMnSi、Fe0.95Mn0.05Si(2−y)Al、FeSi(2−y)Al、Fe1−yCoSi)、MgSi、MnSi1.75−x、BaSi46、BaGa16Si30、又はCrSiを挙げることができる。
スクッテルダイト化合物半導体としては、式TX(式中、TはCo、Fe、Ru、Os、Rh、及びIrからなる群から選択される遷移金属であり、XはP、As、及びSbからなる群から選択されるプニクトゲンである)で表される化合物、前記化合物の派生物である式RM12(式中、RはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群から選択される希土類であり、MはFe、Ru、Os、及びCoからなる群から選択され、XはP、As、及びSbからなる群から選択される)で表される化合物、YbFe4−xCoSb12、(CeFeCoSb121−x(MoO又は(CeFeCoSb121−x(WOを挙げることができる。
クラスレート化合物半導体としては、式M46(Mは、Ca、Sr、Ba、及びEuからなる群から選択され、XはSi、Ge、及びSnからなる群から選択される)で表される化合物、前記化合物の派生物である式(II)(III)16(IV)30(式中、IIはII族元素であり、IIIはIII族元素であり、IVはIV属元素である)で表される化合物を挙げることができる。前記式(II)(III)16(IV)30の化合物としては、例えばBaGaGe46−x、Ba8−x(Sr,Eu)AuGe40、又はBa8−xEuCuSi40)を挙げることができる。
ホイスラー化合物半導体としては、FeVAl、(Fe1−xReVAl、又はFe(V1−x−yTiTa)Alを挙げることができる。
ハーフホイスラー化合物半導体としては、式MSiSn(式中、MはTi、Zr、及びHfからなる群から選択される)で表される化合物、式MNiSn(式中、MはTi又はZrである)で表される化合物、式MCoSb(式中、MはTi、Zr、及びHfからなる群から選択される)で表される化合物、又は式LnPdX(式中、LnはLa、Gd、及びErからなる群から選択され、XはBi又はSbである)で表される化合物を挙げることができる。
金属酸化物半導体としては、In−SnO、(CaBi)MnO、Ca(Mn、In)O、Na、V、ZnMnGaOおよびその派生物、LaRhO、LaNiO、SrTiO、SrTiO:Nb、BiSrCo、NaCoO、NaCo、CaPd、式Ca Co Ag(式中、MはNa、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Bi、Yおよび希土類から成る群から選択される一種または二種以上の元素であり、Mは、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb、TaおよびBiから成る群から選択される一種または二種の元素であり、2.2≦a≦3.6、0≦b≦0.8、2≦c≦4.5、0≦d≦2、0≦e≦0.8、8≦f≦10である)で表される化合物、ZnO、Na(Co,Cu)、ZnAlO、Zn1−xAlO、又はLa1.98Sr0.02CuOを挙げることができる。
有機半導体としては、有機ペロブスカイト、ポリアニリン、ポリアセチレン、ポリチオフェン、ポリアルキルチオフェン、又はポリピロールを挙げることができる。
その他の熱電変換化合物としては、Co及びSbを含む合金(例えば、CoSb、CeFeCoSb12、CeFeCoSb12、又はYbCoSb12)、Zn及びSbを含む合金(例えば、ZnSb、ZnSb、又はZnSb)、Bi及びSbを含む合金(例えば、Bi88Sb12)、CeInCu、(Cu,Ag)Se、GdSe、CeRhAs、又はCeFeSb12、Li7.9105、BaB、SrB、CaB、AlPdRe化合物(例えば、Al71Pd20(Re1−xFe)、AlCuFe準結晶、Al82.6−xRe17.4Si1/1−立法近似結晶、YbAl、YbMnAl、β−CuAgSe、BC/BaC、(Ce1−xLa)Ni、又は(Ce1−xLa)Inを挙げることができる。
(Thermoelectric conversion material)
The thermoelectric conversion material contained in the first layer is not particularly limited as long as it can generate thermally excited electrons and holes when an appropriate temperature is applied, but for example, a metal semiconductor, a tellurium compound semiconductor, and the like. Examples thereof include silicon germanium (Si-Ge) compound semiconductors, VDD compound semiconductors, scutterdite compound semiconductors, clathrate compound semiconductors, Whistler compound semiconductors, half-Whisler compound semiconductors, metal oxide semiconductors, organic semiconductors and other semiconductors. .. The semiconductor used in the present invention functions as a thermoelectric conversion material.
Examples of metal semiconductors include Si semiconductors and Ge semiconductors.
Tellurium compound semiconductors include Bi-Te compounds (eg, Bi 2 Te 3 , Sb 2 Te 3 , CsBi 4 Te 6 , Bi 2 Se 3 , Bi 0.4 Sb 1.6 Te 3 , Bi 2 (Se, Te). ) 3 , (Bi, Sb) 2 (Te, Se) 3 , (Bi, Sb) 2 Te 3 , or Bi 2 Te 2.95 Se 0.05 ), Pb-Te compound (eg PbTe, or Pb 1) -x Sn x Te), SnTe, GeTe, AgSbTe 2, Ag-Sb-GeTe compound (e.g., GeTe-AgSbTe 2 (TAGS) ), Ga 2 Te 3, (Ga 1-x In x) 2 Te 3 , Tl 2 Te-Ag 2 Te, Tl 2 Te-Cu 2 Te, Tl 2 Te-Sb 2 Te 3 , Tl 2 Te-Bi 2 Te 3 , Ti 2 Te-Ge Te, Ag 8 Tl 2 Te 5 , Ag 9 TlTe 5 , Tl 9 BiTe 6 , Tl 9 SbTe 6 , Tl 9 CuTe 5 , Tl 4 SnTe 3 , Tl 4 PbTe 3 , or Tl 0.02 Pb 0.98 Te can be mentioned.
Examples of the silicon germanium (Si-Ge) compound semiconductor include Si x Ge 1-x and SiGe-GaP.
The silicide compound semiconductor, β-FeSi 2 compound (e.g., β-FeSi 2, Fe 1 -x Mn x Si 2, Fe 0.95 Mn 0.05 Si (2-y) Al y, FeSi (2-y ) Al y, Fe 1-y Co y Si 2), Mg 2 Si, may be mentioned MnSi 1.75-x, Ba 8 Si 46, Ba 8 Ga 16 Si 30, or CrSi 2.
The scutterdite compound semiconductor is a transition metal selected from the group consisting of formula TX 3 (in the formula, T is Co, Fe, Ru, Os, Rh, and Ir, and X is from P, As, and Sb. A compound represented by (a pnictogen selected from the group consisting of), a derivative of the compound, formula RM 4 X 12 (where R is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, It is a rare earth selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, M is selected from the group consisting of Fe, Ru, Os, and Co, and X is P, as, and compounds represented by the composed is selected from the group) from Sb, Yb y Fe 4-x Co x Sb 12, (CeFe 3 CoSb 12) 1-x (MoO 2) x or (CeFe 3 CoSb 12) 1-x (WO 2 ) x can be mentioned.
The class rate compound semiconductor is represented by the formula M 8 X 46 (M is selected from the group consisting of Ca, Sr, Ba, and Eu, and X is selected from the group consisting of Si, Ge, and Sn). Compound, which is a derivative of the above compound Formula (II) 8 (III) 16 (IV) 30 (In the formula, II is a Group II element, III is a Group III element, and IV is a Group IV element. ) Can be mentioned. Examples of the compound of the formula (II) 8 (III) 16 (IV) 30 include Ba 8 Ga x Ge 46-x , Ba 8-x (Sr, Eu) x Au 6 Ge 40 , or Ba 8-x Eu. x Cu 6 Si 40 ) can be mentioned.
Examples of the Whisler compound semiconductor include Fe 2 VAL, (Fe 1-x Re x ) 2 VAL, and Fe 2 (V 1-x-y Ti x T y ) Al.
The half-Whisler compound semiconductor is a compound represented by the formula MSiSn (in the formula, M is selected from the group consisting of Ti, Zr, and Hf) and the formula MNiSn (in the formula, M is Ti or Zr). The compound represented, the compound represented by the formula MCoSb (in the formula, M is selected from the group consisting of Ti, Zr, and Hf), or the formula LnPdX (in the formula, Ln consists of La, Gd, and Er). A compound selected from the group and represented by (X is Bi or Sb) can be mentioned.
Examples of the metal oxide semiconductor include In 2 O 3- SnO 2 , (CaBi) MnO 3 , Ca (Mn, In) O 3 , Na x V 2 O 5 , V 2 O 5 , ZnMnGaO 4 and its derivatives, LaRhO. 3, LaNiO 3, SrTiO 3, SrTiO 3: Nb, Bi 2 Sr 2 Co 2 O y, Na x CoO 2, NaCo 2 O 4, CaPd 3 O 4, wherein Ca a M 1 b Co c M 2 d Ag e during O f (wherein, M 1 is selected Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, from the group consisting of Y and rare earth One or more elements, M 2 is one or two selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, Ta and Bi. It is an element, and in 2.2 ≦ a ≦ 3.6, 0 ≦ b ≦ 0.8, 2 ≦ c ≦ 4.5, 0 ≦ d ≦ 2, 0 ≦ e ≦ 0.8, 8 ≦ f ≦ 10. Examples thereof include compounds represented by (is), ZnO, Na (Co, Cu) 2 O 4 , ZnAlO, Zn 1-x Al x O, or La 1.98 Sr 0.02 CuO 4 .
Examples of the organic semiconductor include organic perovskite, polyaniline, polyacetylene, polythiophene, polyalkylthiophene, and polypyrrole.
Other thermoelectric conversion compounds include alloys containing Co and Sb (eg, CoSb 3 , CeFe 3 CoSb 12 , CeFe 4 CoSb 12 , or YbCo 4 Sb 12 ), alloys containing Zn and Sb (eg, ZnSb, Zn 3). Sb 2 or Zn 4 Sb 3 ), an alloy containing Bi and Sb (eg, Bi 88 Sb 12 ), CeInCu 2 , (Cu, Ag) 2 Se, Gd 2 Se 3 , CeRhAs, or CeFe 4 Sb 12 , Li 7.9 B 105 , BaB 6 , SrB 6 , CaB 6 , AlPdRe compound (eg, Al 71 Pd 20 (Re 1-x Fe x ) 9 ), AlCuFe quasicrystal, Al 82.6-x Re 17.4 Si x 1/1-1 cubic approximation crystal, YbAl 3 , YbMn x Al 3 , β-CuAgSe, B 4 C / Ba 3 C, (Ce 1-x La x ) Ni 2 , or (Ce 1-x La x ) In 3 can be mentioned.

熱電変換材料に付与する温度は、それぞれの熱電変換材料において発電に十分な数の熱励起電子及び正孔を生成する温度を適宜選択することができる。換言すれば、本発明においては、熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成する温度を熱電変換材料に付与することにより、熱電発電素子に電圧を発生させることができる。発電に十分な熱励起電子及び正孔の数とは、実際には電子密度で表され、太陽電池に用いられる半導体における光励起電子数と同程度あれば良く、例えば、太陽電池に用いられるアモルファスシリコンでの光励起電子数である1016/mが挙げられる。すなわち、本発明に用いる熱電変換材料において、熱励起電子密度が1015/m以上となる温度で、発電に十分な数の熱励起電子及び正孔を生成することが可能であり、その温度以上で発電を行うことができる。
一般的な半導体の例として、図2に示すβ−FeSiの励起電子密度の温度依存性から判るように、半導体の励起電子密度は、温度上昇とともに増加する。特定温度における励起電子密度すなわち熱励起電子及び正孔の数は、前記の「熱励起電子数」を求める計算式から材料固有の値として求まる。従って、当業者であれば、本発明の属する分野の技術常識と本明細書の記載から、「熱励起電子密度が1015/m以上となる温度」を計算することができる。
例えば、実施例4および5で熱電変換材料として用いているゲルマニウムは、発電が起こる80℃で約1018/mの熱励起電子及び正孔を生成する。一方、半導体であるβ−CuAgSeは、10℃で、約1018/mの熱励起電子及び正孔を生成する。このことから、β−CuAgSeを熱電変換材料として用いれば、室温によっても発電する可能性がある。
それぞれの熱電変換材料に付与する温度の上限は、特に限定されるものではない。熱電変換材料は、温度の上昇により熱励起電子及び正孔の生成数が増加する。従って、熱電変換材料に付与する温度の上限は、熱変換材料の融点、又はそれを用いた熱電発電装置、サーモ電池、若しくは熱電発電モジュールの物理的な上限温度によって規定される。
As the temperature applied to the thermoelectric conversion material, a temperature at which a sufficient number of thermally excited electrons and holes are generated in each thermoelectric conversion material for power generation can be appropriately selected. In other words, in the present invention, a voltage can be generated in the thermoelectric power generation element by giving the thermoelectric conversion material a temperature at which the thermoelectric conversion material generates a sufficient number of thermally excited electrons and holes for power generation. .. The number of thermally excited electrons and holes sufficient for power generation is actually represented by the electron density, and may be about the same as the number of optically excited electrons in the semiconductor used in the solar cell. For example, amorphous silicon used in the solar cell. The number of photoexcited electrons in is 10 16 / m 3 . That is, in the thermoelectric conversion material used in the present invention, it is possible to generate a sufficient number of thermally excited electrons and holes for power generation at a temperature at which the thermal excited electron density is 10 15 / m 3 or more, and that temperature. With the above, power generation can be performed.
As an example of a general semiconductor, as can be seen from the temperature dependence of the excited electron density of β-FeSi 2 shown in FIG. 2, the excited electron density of the semiconductor increases with increasing temperature. The excited electron density at a specific temperature, that is, the number of thermally excited electrons and holes can be obtained as a material-specific value from the above-mentioned calculation formula for obtaining the "number of thermally excited electrons". Therefore, a person skilled in the art can calculate "a temperature at which the thermal excited electronic density is 10 15 / m 3 or more" from the common general technical knowledge in the field to which the present invention belongs and the description in the present specification.
For example, germanium is used as a thermoelectric conversion material in Examples 4 and 5, to produce a thermally excited electrons and holes about 10 18 / m 3 at 80 ° C. the power generation takes place. On the other hand, β-CuAgSe a semiconductor, at 10 ° C., to produce a thermally excited electrons and holes about 10 18 / m 3. From this, if β-CuAgSe is used as a thermoelectric conversion material, there is a possibility that power generation may occur even at room temperature.
The upper limit of the temperature applied to each thermoelectric conversion material is not particularly limited. In thermoelectric conversion materials, the number of thermally excited electrons and holes generated increases as the temperature rises. Therefore, the upper limit of the temperature given to the thermoelectric conversion material is defined by the melting point of the heat conversion material or the physical upper limit temperature of the thermoelectric power generation device, the thermo battery, or the thermoelectric power generation module using the melting point.

また、熱電変換材料が熱励起電子及び正孔を生成できる温度範囲は、実験によって特定することもできる。本発明に用いる熱電変換材料と熱電発電素子の使用温度は、用いる半導体固有の当該温度における熱励起電子及び正孔数に依るが、その選択は、抵抗値または電気伝導率を測定することで、求めることができる。具体的には、参考例1に示すように、例えばβ−FeSiを加熱することによって、β−FeSiの温度を上昇させ、β−FeSiの抵抗値を測定することで温度範囲を特定してもよい。図3に示すように、β−FeSiの電気伝導率は190℃を超えると、急激に上昇する。電気伝導率が急激に上昇することから、この温度近傍で発電に十分な数の熱励起電子及び正孔が生成されることがわかる。従って、当業者は、参考例1の実験を行うことにより、その熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成できるか否かを特定することが可能であり、更に熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成する温度範囲を特定することが可能である。The temperature range in which the thermoelectric conversion material can generate thermally excited electrons and holes can also be specified experimentally. The operating temperature of the thermoelectric conversion material and the thermoelectric power generation element used in the present invention depends on the number of thermally excited electrons and holes at the temperature peculiar to the semiconductor to be used, but the selection is made by measuring the resistance value or the electric conductivity. Can be sought. Specifically, as shown in Reference Example 1, for example, by heating the beta-FeSi 2, raises the temperature of the beta-FeSi 2, identify the temperature range by measuring the resistance of the beta-FeSi 2 You may. As shown in FIG. 3, the electric conductivity of β-FeSi 2 rises sharply when it exceeds 190 ° C. Since the electrical conductivity rises sharply, it can be seen that a sufficient number of thermally excited electrons and holes are generated in the vicinity of this temperature for power generation. Therefore, those skilled in the art can specify whether or not the thermoelectric conversion material can generate a sufficient number of heated electrons and holes for power generation by performing the experiment of Reference Example 1, and further, thermoelectricity can be specified. It is possible to identify the temperature range in which the conversion material produces a sufficient number of thermally excited electrons and holes for power generation.

《第2層》
本発明の熱電発電素子を構成する第2層は、固体電解質または電解質溶液を含む。
《Second layer》
The second layer constituting the thermoelectric power generation device of the present invention contains a solid electrolyte or an electrolyte solution.

第2層は電荷輸送イオン対が移動できる限りにおいて限定されるものではない。すなわち、第2層は、熱電変換材料で生成された正孔を輸送できる限りにおいて、限定されるものではなく、固体電解質または電解質溶液以外の成分を含むことができる。前記成分としては、限定されるものではないが、例えば第2層を作製する場合に電解質を溶解又は分散する極性溶媒(水、メタノール、トルエン、テトラヒドロフランなど)、電解質を結合させるバインダー(ポリビニルアルコール、メチルセルロース、アクリル樹脂、寒天など)、正孔伝達性材料の成形を助ける焼結助剤(酸化マグネシウム、酸化イットリウム、酸化カルシウムなど)などを挙げることができる。本発明に用いる第2層は実質的に正孔輸送層として機能するものである。
なお、「電荷輸送イオン対」は価数が異なる安定な2つのイオンであり、一方のイオンが酸化または還元されて他方のイオンとなり、電子と正孔を運ぶことができる。更に、第2層は、電荷輸送イオン対以外のイオンを含んでもよい。
The second layer is not limited as long as the charge transport ion pair can move. That is, the second layer is not limited as long as it can transport the holes generated by the thermoelectric conversion material, and may contain components other than the solid electrolyte or the electrolyte solution. The components are not limited, but are, for example, a polar solvent (water, methanol, toluene, tetrahydrofuran, etc.) that dissolves or disperses the electrolyte when the second layer is prepared, and a binder (polyvinyl alcohol, etc.) that binds the electrolyte. Methyl cellulose, acrylic resin, agar, etc.), sintering aids (magnesium oxide, yttrium oxide, calcium oxide, etc.) that help form hole-transmitting materials can be mentioned. The second layer used in the present invention substantially functions as a hole transport layer.
The "charge transport ion pair" is two stable ions having different valences, and one ion is oxidized or reduced to become the other ion, which can carry electrons and holes. Further, the second layer may contain ions other than the charge transport ion pair.

第2層は、例えばスキージ法、スクリーン印刷法、スパッタリング法、真空蒸着法、ゾルゲル法、又はスピンコート法によって作製することができる。例えば、後述のCuZr(POはゾルゲル法によって作製し、得られたゾルをスキージ法を用いて、層状の第2層を調製した。
また、電解質が電解質溶液(液体電解質)の場合、第2層は液相となる。第2層が液相の場合、熱電発電素子における第2層は、熱電発電装置やサーモ電池、又は熱電発電モジュールの作製時に調製することが好ましい。すなわち、電解質溶液(液体電解質)を保持するための槽を設けることによって、第2層を作製することができる。
The second layer can be produced, for example, by a squeegee method, a screen printing method, a sputtering method, a vacuum deposition method, a sol-gel method, or a spin coating method. For example, CuZr 2 (PO 4 ) 3 , which will be described later, was prepared by the sol-gel method, and the obtained sol was used by the squeegee method to prepare a layered second layer.
When the electrolyte is an electrolyte solution (liquid electrolyte), the second layer becomes a liquid phase. When the second layer is a liquid phase, the second layer in the thermoelectric power generation element is preferably prepared at the time of manufacturing the thermoelectric power generation device, the thermo battery, or the thermoelectric power generation module. That is, the second layer can be produced by providing a tank for holding the electrolyte solution (liquid electrolyte).

(電解質)
電解質としては、固体電解質又は電解質溶液を含む。電解質は、電荷輸送イオン対の2つのイオンを輸送できる限りにおいて限定されるものではない。
すなわち、第2層に用いる電解質は、熱電発電素子に使用される熱電変換材料の価電子帯電位に対して、酸化還元電位が適当な位置にあり、電荷輸送イオン対が電解質内を行き来できる限りにおいて、特に限定されるものではない。なお、電解質は、熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成する温度において、物理的及び化学的に安定であるものが好ましい。
(Electrolytes)
The electrolyte includes a solid electrolyte or an electrolyte solution. The electrolyte is not limited as long as it can transport two ions of a charge transport ion pair.
That is, as long as the electrolyte used for the second layer has an oxidation-reduction potential at an appropriate position with respect to the valence electron charging position of the thermoelectric conversion material used for the thermoelectric power generation element, and the charge transport ion pair can move back and forth in the electrolyte. Is not particularly limited. The electrolyte is preferably one that is physically and chemically stable at a temperature at which the thermoelectric conversion material generates a sufficient number of thermally excited electrons and holes for power generation.

電解質としては、その態様の違いにより、固体電解質、又は電解質溶液(液体電解質)であってよい。ここで、電解質は温度の違いにより、電解質溶液(液体電解質)の態様であったり、固体電解質の態様であったりする。すなわち、電解質溶液(液体電解質)に含まれる化合物と固体電解質に含まれる化合物とは、重複するものである。また、電解質は、溶融塩、イオン液体、又は深共晶溶媒などを含む。溶融塩とは、陽イオンと陰イオンからなる塩で、溶融状態にあるものを意味するが、溶融塩の中でも比較的融点の低いもの(例えば、100℃以下のもの、又は150℃以下のもの)をイオン液体と称するが、本明細書では、溶融塩も固体の状態のものは固体電解質とし、溶液状のものは電解質溶液(液体電解質)とする。以下に電解質溶液(液体電解質)、固体電解質、及び溶融塩について、具体的に例示するが、これらは重複することがある。
電解質溶液は、第1層内の熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成する温度において、溶液(液体)の状態のものを使用する。具体的には、電解質溶液として、限定されるものではないが、メトキシドイオン、水素イオン、アンモニウムイオン、ピリジニウムイオン、リチウムイオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、鉄イオン、銅イオン、亜鉛イオン、コバルトイオン、フッ素イオン、シアン化物イオン、チオシアン酸イオン、塩化物イオン、酢酸イオン、硫酸イオン、炭酸イオン、リン酸イオン、炭酸水素イオン、臭素イオンを挙げることができる。
固体電解質は、第1層内の熱電変換材料が発電に十分な数の熱励起電子及び正孔を生成する温度において、電荷輸送イオン対が内部を移動できる固体状態のものを使用する。高温固体電解質を用いることにより、高温で熱励起電子及び正孔を生成する熱電発電素子体を用いる熱電発電素子に用いることができる。具体的には、固体電解質としては、限定されるものではないが、ナトリウムイオン伝導体、銅イオン伝導体、リチウムイオン伝導体、銀イオン伝導体、水素イオン伝導体、ストロンチウムイオン伝導体、アルミニウムイオン伝導体、フッ素イオン伝導体、塩素イオン伝導体、又は酸化物イオン伝導体などを挙げることができる。具体的な固体電解質としては、例えばRbAg、LiN、NaO・11Al、Sr−βアルミナ、Al(WO、PbF、PbCl、(ZrO0.9(Y0.1、(Bi0.75(Y0.25、CuZr(PO、CuTi(PO、CuNb1−xTi1+x(PO、H0.5Cu0.5Zr(PO、Cu1+xCrTi2−x(PO、Cu0.5TiZr(PO、CuCrZr(PO、CuScZr(PO、CuSn(PO、CuHf(PO、LiLaZr12、LiLaZr2−xNb12、LiLaZr2−xTaxO12、LiLaTa12、Li0.33La0.55TiO、Li1.5Al0.5Ge1.512、Li1.3Al0.3Ti1.712、LiPO(LiPON)、LiSiO−LiPO、LiSiO、又はLiBOなどを挙げることができる。
また、固体電解質又は電解質溶液として、溶融塩を用いることができる。比較的低温で用いる熱電発電素子の場合、イオン液体を用いることも可能である。イオン液体として、深共晶溶媒(Deep Eutectic Solvents:DES)を用いることができる。
溶融塩としては、イミダゾリウムカチオン、ピリジニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ホスホニウムカチオン、モルフォリニウムカチオン、スルホニウムカチオン及びアンモニウムカチオンからなる群から選択される少なくとも1つのカチオン、及びカルボン酸アニオン、スルホン酸アニオン、ハロゲンアニオン、テトラフルオロボレート、ヘキサフルオロホスフェート、ビス(トリフルオロメタンスルホニル)イミド、及びビス(フルオロスルホニル)イミドからなる群から選択される少なくとも1つのアニオンを含むものを挙げることができる。本発明における電解質は、正孔伝達性材料として機能するものである。
The electrolyte may be a solid electrolyte or an electrolyte solution (liquid electrolyte) depending on the mode thereof. Here, the electrolyte may be in the form of an electrolyte solution (liquid electrolyte) or in the form of a solid electrolyte, depending on the difference in temperature. That is, the compound contained in the electrolyte solution (liquid electrolyte) and the compound contained in the solid electrolyte overlap. The electrolyte also contains a molten salt, an ionic liquid, a deep eutectic solvent, and the like. The molten salt means a salt composed of cations and anions and in a molten state, but among the molten salts, those having a relatively low melting point (for example, those having a temperature of 100 ° C. or lower or those having a temperature of 150 ° C. or lower). ) Is referred to as an ionic liquid, but in the present specification, the molten salt in a solid state is a solid electrolyte, and the solution in a solution state is an electrolyte solution (liquid electrolyte). The electrolyte solution (liquid electrolyte), solid electrolyte, and molten salt will be specifically exemplified below, but these may overlap.
As the electrolyte solution, a solution (liquid) state is used at a temperature at which the thermoelectric conversion material in the first layer generates a sufficient number of thermally excited electrons and holes for power generation. Specifically, the electrolyte solution is not limited, but is not limited to methoxydo ion, hydrogen ion, ammonium ion, pyridinium ion, lithium ion, sodium ion, potassium ion, calcium ion, magnesium ion, aluminum ion, and iron ion. , Copper ion, zinc ion, cobalt ion, fluorine ion, cyanide ion, thiocyanate ion, chloride ion, acetate ion, sulfate ion, carbonate ion, phosphate ion, hydrogen carbonate ion, bromine ion.
As the solid electrolyte, a solid electrolyte is used in which the charge transport ion pair can move inside at a temperature at which the thermoelectric conversion material in the first layer generates a sufficient number of thermally excited electrons and holes for power generation. By using a high-temperature solid electrolyte, it can be used in a thermoelectric power generation device that uses a thermoelectric power generation device that generates thermally excited electrons and holes at a high temperature. Specifically, the solid electrolyte is not limited, but is limited to sodium ion conductor, copper ion conductor, lithium ion conductor, silver ion conductor, hydrogen ion conductor, strontium ion conductor, and aluminum ion. Examples thereof include a conductor, a fluorine ion conductor, a chlorine ion conductor, and an oxide ion conductor. Specific solid electrolytes include, for example, RbAg 4 I 5 , Li 3 N, Na 2 O ・ 11 Al 2 O 3 , Sr-β alumina, Al (WO 4 ) 3 , PbF 2 , PbCl 2 , (ZrO 2 ) 0. .9 (Y 2 O 3 ) 0.1 , (Bi 2 O 3 ) 0.75 (Y 2 O 3 ) 0.25 , CuZr 2 (PO 4 ) 3 , CuTi 2 (PO 4 ) 3 , Cu x Nb 1-x Ti 1 + x (PO 4 ) 3 , H 0.5 Cu 0.5 Zr 2 (PO 4 ) 3 , Cu 1 + x Cr x Ti 2-x (PO 4 ) 3 , Cu 0.5 TiZr (PO 4 ) 3 , CuCr 2 Zr (PO 4 ) 3 , Cu 2 ScZr (PO 4 ) 3 , CuSn 2 (PO 4 ) 3 , CuHf 2 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 7 La 3 Zr 2-x Nb x O 12 , Li 7 La 3 Zr 2-x TaxO 12 , Li 5 La 3 Ta 2 O 12 , Li 0.33 La 0.55 TIO 3 , Li 1.5 Al 0.5 Ge 1. 5 P 3 O 12 , Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , Li 3 PO 4 (LiPON), Li 4 SiO 4 − Li 3 PO 4 , Li 4 SiO 4 or Li 3 BO 3 and the like can be mentioned.
Further, a molten salt can be used as the solid electrolyte or the electrolyte solution. In the case of a thermoelectric power generation element used at a relatively low temperature, it is also possible to use an ionic liquid. Deep Eutectic Solvents (DES) can be used as the ionic liquid.
The molten salt includes at least one cation selected from the group consisting of an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a phosphonium cation, a morpholinium cation, a sulfonium cation and an ammonium cation, and a carboxylic acid. Examples include those containing at least one anion selected from the group consisting of anions, sulfonic acid anions, halogen anions, tetrafluoroborates, hexafluorophosphates, bis (trifluoromethanesulfonyl) imides, and bis (fluorosulfonyl) imides. it can. The electrolyte in the present invention functions as a hole transmissible material.

《第1層及び第2層の界面でのイオンの酸化反応》
本発明においては、第1層内の熱電材料の価電子帯電位が第2層(電解質)内の電荷輸送イオン対の酸化還元電位よりも正である。従って、本発明の第1層及び第2層の界面では、電荷輸送イオン対のうちより酸化されやすいイオンが酸化され、他方のイオンとなる。電解質内の電荷輸送イオン対の酸化還元電位と熱電変換材料の価電子帯電位との電位差は、本発明の効果が得られる限りにおいて限定されるものではないが、好ましくは0〜1.0Vであり、より好ましくは0.05〜0.5Vであり、更に好ましくは0.05〜0.3Vである。例えば、β−FeSiの価電子帯電位に対するCuZr(PO(Cusicon、銅イオン伝導体)の酸化還元電位の電位差は約0.05Vである。
電荷輸送イオン対の酸化還元電位及び熱電変換材料の価電子帯電位が測定されているものについては、当業者はそれらの酸化還元電位及び価電子帯電位の値に従って、熱電変換材料に対する適当なイオンを適宜選択し、当該イオンが移動可能な電解質を選択することができる。また、熱電変換材料の価電子帯電位及び電荷輸送イオン対の酸化還元電位が不明な材料については、熱電変換材料の価電子帯電位及びイオンの酸化還元電位を測定することが可能である。従って、当業者であれば選択された熱電変換材料に応じて、適切な電荷輸送イオン対電解質を適宜選択することができる。
また、「第1層内の熱電変換材料の価電子帯電位が第2層(電解質)内の電荷輸送イオン対の酸化還元電位よりも正である」とは、「熱電変換材料の価電子帯電位に対して、酸化還元電位が適当な位置にある」ことを意味する。
<< Oxidation reaction of ions at the interface between the first layer and the second layer >>
In the present invention, the valence electron charging position of the thermoelectric material in the first layer is more positive than the redox potential of the charge transport ion pair in the second layer (electrolyte). Therefore, at the interface between the first layer and the second layer of the present invention, the more easily oxidized ion of the charge transport ion pair is oxidized and becomes the other ion. The potential difference between the redox potential of the charge transport ion pair in the electrolyte and the valence electron charging position of the thermoelectric conversion material is not limited as long as the effect of the present invention can be obtained, but is preferably 0 to 1.0 V. Yes, more preferably 0.05 to 0.5 V, still more preferably 0.05 to 0.3 V. For example, the potential difference of the redox potential of CuZr 2 (PO 4 ) 3 (Cusicon, copper ion conductor) with respect to the valence electron charging position of β-FeSi 2 is about 0.05 V.
For those for which the redox potential of the charge transport ion pair and the valence electron charging position of the thermoelectric conversion material have been measured, those skilled in the art will be able to obtain appropriate ions for the thermoelectric conversion material according to their redox potential and valence electron charging position values. Can be appropriately selected to select an electrolyte in which the ions can move. Further, for a material in which the valence electron charging position of the thermoelectric conversion material and the redox potential of the charge transport ion pair are unknown, it is possible to measure the valence electron charging position of the thermoelectric conversion material and the redox potential of the ion. Therefore, those skilled in the art can appropriately select an appropriate charge transport ion vs. electrolyte depending on the thermoelectric conversion material selected.
Further, "the valence electron charging position of the thermoelectric conversion material in the first layer is more positive than the redox potential of the charge transport ion pair in the second layer (electrolyte)" means "the valence electron charging of the thermoelectric conversion material". The redox potential is at an appropriate position with respect to the position. "

《第3層》
本発明の熱電発電素子は、第1層に積層された第3層を有することができる。第3層は第1層及び第2層の積層面(界面)の反対側に積層される。第3層は、電子輸送材料を含む。第3層は、熱電変換材料で生成された熱励起電子を輸送できる限りにおいて、電子輸送材料以外の成分を含むことができる。前記成分としては、限定されるものではないが、電子輸送材料を結合させるバインダー(ポリビニルアルコール、メチルセルロース、アクリル樹脂、寒天など)、電子輸送材料の成形を助ける焼結助剤(酸化マグネシウム、酸化イットリウム、酸化カルシウムなど)などを挙げることができる。また、製造工程で用いる溶媒が残存していても良い。本発明に用いる第3層は実質的に電子輸送層として機能するものである。
本発明の熱電発電素子においては、前記電子輸送材料の電子伝導帯電位が第1層内の熱電変換材料の伝導帯電位と同じであるか、又は正である。従って、電子輸送材料は熱励起電子を輸送することができる。
《Third layer》
The thermoelectric power generation element of the present invention can have a third layer laminated on the first layer. The third layer is laminated on the opposite side of the laminated surface (interface) of the first layer and the second layer. The third layer contains an electron transport material. The third layer can contain components other than the electron transporting material as long as it can transport the thermally excited electrons generated by the thermoelectric conversion material. The components include, but are not limited to, binders (polyvinyl alcohol, methyl cellulose, acrylic resin, agar, etc.) that bind electron-transporting materials, and sintering aids (magnesium oxide, yttrium oxide) that assist in molding the electron-transporting materials. , Calcium oxide, etc.). Further, the solvent used in the manufacturing process may remain. The third layer used in the present invention substantially functions as an electron transport layer.
In the thermoelectric power generation device of the present invention, the electron conduction charge position of the electron transport material is the same as or positive as the conduction charge position of the thermoelectric conversion material in the first layer. Therefore, the electron transport material can transport thermally excited electrons.

第3層は、例えばスキージ法、スクリーン印刷法、スパッタリング法、真空蒸着法、単結晶成長法、又はスピンコート法によって作製することができる。スピンコート法を用いる場合、オキサジアゾール誘導体をアセトンなどの極性溶媒に溶解し、その溶液を、基板又は第1層などにスピンコートすることにより、第3層を作製することができる。例えば、後述のn型シリコンの第3層は単結晶成長法によって得ることができ、このn型シリコンの第3層を基板として、第1層を積層することができる。 The third layer can be produced by, for example, a squeegee method, a screen printing method, a sputtering method, a vacuum deposition method, a single crystal growth method, or a spin coating method. When the spin coating method is used, the third layer can be prepared by dissolving the oxadiazole derivative in a polar solvent such as acetone and spin coating the solution on the substrate or the first layer. For example, the third layer of n-type silicon described later can be obtained by a single crystal growth method, and the first layer can be laminated using the third layer of n-type silicon as a substrate.

(電子輸送材料)
第3層に用いる電子輸送材料は、その電子伝導帯電位が、第1層内の熱電変換材料の伝導帯電位に対して、同じであるか又は正である限りにおいて特に限定されるものではない。第3層内の電子輸送材料の電子伝導帯電位と第1層内の熱電変換材料の伝導帯電位との電位差は、本発明の効果が得られる限りにおいて限定されるものではないが、好ましくは0.01〜1Vであり、より好ましくは0.01〜0.5Vであり、更に好ましくは0.01〜0.3Vであり、最も好ましくは0.05〜0.2Vである。例えば、β−FeSiの伝導帯電位に対するn型シリコンの伝導帯電位、すなわち電子伝導帯電位の電位差は約0.01Vである。
熱電変換材料の伝導帯電位及び電子輸送材料の電子伝導帯電位が測定されているものについて、当業者は、それらの電位の値に従って、第1層内の熱電変換材料に対する適切な電子輸送材料を適宜選択することができる。また、半導体の伝導帯電位及び電子輸送材料の電子伝導帯電位が不明な材料については、それらの電位を、例えば電気化学測定や逆光電子分光法XPSによって、測定することが可能である。従って、当業者であれば熱電発電素子に用いる第1層内の熱電変換材料に応じて、適切な電子輸送材料を適宜選択することができる。
(Electronic transport material)
The electron transport material used in the third layer is not particularly limited as long as its electron conduction charge position is the same as or positive with respect to the conduction charge position of the thermoelectric conversion material in the first layer. .. The potential difference between the electron conduction charge position of the electron transport material in the third layer and the conduction charge position of the thermoelectric conversion material in the first layer is not limited as long as the effect of the present invention can be obtained, but is preferable. It is 0.01 to 1V, more preferably 0.01 to 0.5V, still more preferably 0.01 to 0.3V, and most preferably 0.05 to 0.2V. For example, the potential difference between the conduction charge position of β-FeSi 2 and the conduction charge position of n-type silicon, that is, the electron conduction charge position is about 0.01 V.
For those whose conduction charge position of the thermoelectric conversion material and electron conduction charge position of the electron transport material have been measured, those skilled in the art can obtain an appropriate electron transport material for the thermoelectric conversion material in the first layer according to the value of their potential. It can be selected as appropriate. Further, for a material whose conductive charge position of the semiconductor and the electron conductive charge position of the electron transport material are unknown, their potentials can be measured by, for example, electrochemical measurement or back-photoelectron spectroscopy XPS. Therefore, a person skilled in the art can appropriately select an appropriate electron transport material according to the thermoelectric conversion material in the first layer used for the thermoelectric power generation element.

電子輸送材料としては、半導体又は金属を挙げることができる。具体的な電子輸送材料としては、例えばニオブ、チタン、亜鉛、錫、バナジウム、インジウム、タングステン、タンタル、ジルコニウム、モリブデン及びマンガンからなる群から選択される少なくとも1種を含むN型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、又は電子輸送性有機物を挙げることができる。より具体的にはたとえば、酸化チタン、酸化タングステン、酸化亜鉛、酸化ニオブ、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛または、SrTiOを挙げることができる。また、電子輸送性有機物としては、N型導電性高分子、N型低分子有機半導体、π電子共役化合物、界面活性剤、具体的にはたとえばオキサジアゾール誘導体、トリアゾール誘導体、ペリレン誘導体、又はキノリノール金属錯体、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、フラーレンおよびその誘導体、フェニレンビニレン系ポリマー、ペリレンテトラカルボン酸イミド誘導体を挙げることができる。半導体としては、前記「第1層」の項に記載の「半導体」を電子輸送材料として用いることができる。Examples of the electron transport material include semiconductors and metals. Specific electron transport materials include, for example, N-type metal oxides containing at least one selected from the group consisting of niobium, titanium, zinc, tin, vanadium, indium, tungsten, tantalum, zirconium, molybdenum and manganese, N. Examples thereof include type metal sulfides, alkali metals halides, alkali metals, and electron-transporting organic substances. More specifically, for example, titanium oxide, tungsten oxide, zinc oxide, niobium oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, or SrTIO 3 can be mentioned. Examples of electron-transporting organic substances include N-type conductive polymers, N-type low-molecular-weight organic semiconductors, π-electron-conjugated compounds, surfactants, specifically, for example, oxadiazole derivatives, triazole derivatives, perylene derivatives, or quinolinols. Metal complex, cyano group-containing polyphenylene vinylene, boron-containing polymer, vasocuproin, vasofenantrene, hydroxyquinolinatoaluminum, oxadiazole compound, benzoimidazole compound, naphthalenetetracarboxylic acid compound, perylene derivative, phosphine oxide compound, phosphine sulfide compound, fluoro Examples thereof include group-containing phthalocyanine, fullerene and its derivatives, phenylene vinylene-based polymers, and perylene tetracarboxylic acid imide derivatives. As the semiconductor, the "semiconductor" described in the "first layer" section can be used as the electron transport material.

《熱電発電素子》
本発明の熱電発電素子の構成及びその発電のメカニズムを、図1を用いて説明する。熱電発電素子には、熱電変換材料を含む第1層を挟んで、電子輸送材料を含む第3層及び電解質を含む第2層が存在する。第3層に電極(負極)を設け、第2層に電極(正極)を設け、そしてそれぞれの電極を接続し負荷をかけることによって、負極から正極に電子が流れる。
具体的には、熱電変換材料は、一定の温度以上で発電に十分な数の熱励起電子及び正孔を生成することができる物質である。従って、熱電変換材料に適当な温度が付与されると、発電に十分な数の熱励起電子及び正孔が生成する。第1層に隣接する第3層に含まれる電子輸送材料の電子伝導帯電位は、熱電変換材料の伝導帯電位に対して電位が正にあるため、電子が第1層から第3層に移動し、更に電極に移動する。一方、第1層に隣接する第2層に含まれる電解質の酸化還元電位は、第1層内の熱電変換材料の価電子帯電位に対して電位が負にあるため、正孔が第1層から電極(正極)に運ばれる。すなわち、電解質において、イオンの酸化還元が起こり、電子が電極から第1層に運ばれ、正孔が第1層から電極(正極)に運ばれる。このようなメカニズムにより、負極から正極に電子が移動し、電気を発生させることができる。従って、このような条件を満足する熱電変換材料、電子輸送材料、及び電解質を組み合わせることによって、増感型熱電発電素子を作製することができる。
<< Thermoelectric power generation element >>
The configuration of the thermoelectric power generation element of the present invention and the mechanism of power generation thereof will be described with reference to FIG. The thermoelectric power generation element has a first layer containing a thermoelectric conversion material, a third layer containing an electron transporting material, and a second layer containing an electrolyte. Electrodes flow from the negative electrode to the positive electrode by providing an electrode (negative electrode) in the third layer, providing an electrode (positive electrode) in the second layer, and connecting the respective electrodes to apply a load.
Specifically, the thermoelectric conversion material is a substance capable of generating a sufficient number of thermally excited electrons and holes for power generation at a certain temperature or higher. Therefore, when an appropriate temperature is applied to the thermoelectric conversion material, a sufficient number of thermally excited electrons and holes are generated for power generation. Since the electron conduction charge position of the electron transport material contained in the third layer adjacent to the first layer has a positive potential with respect to the conduction charge position of the thermoelectric conversion material, electrons move from the first layer to the third layer. Then move to the electrode. On the other hand, the redox potential of the electrolyte contained in the second layer adjacent to the first layer has a negative potential with respect to the valence electron charging position of the thermoelectric conversion material in the first layer, so that holes are present in the first layer. Is carried to the electrode (positive electrode). That is, in the electrolyte, redox of ions occurs, electrons are carried from the electrode to the first layer, and holes are carried from the first layer to the electrode (positive electrode). By such a mechanism, electrons can move from the negative electrode to the positive electrode to generate electricity. Therefore, a sensitized thermoelectric power generation element can be manufactured by combining a thermoelectric conversion material, an electron transport material, and an electrolyte that satisfy such conditions.

《第1層及び第2層による発電の機構》
実施例3に示すように、第3層が欠如している第1層及び第2層のみでも、発電することが可能である。第1層及び第2層による発電の場合、第1層の熱電変換材料から、直接、電極に電子が輸送されることによって、発電する。
<< Mechanism of power generation by the first and second layers >>
As shown in Example 3, it is possible to generate electricity only in the first layer and the second layer in which the third layer is lacking. In the case of power generation by the first layer and the second layer, power is generated by directly transporting electrons from the thermoelectric conversion material of the first layer to the electrodes.

〔2〕発電方法
本発明の発電方法は、前記熱電発電素子を、前記第1層内の熱励起電子及び正孔を生成する熱電変換材料の熱励起電子密度が1015/mとなる温度以上の環境下に置いて発電する。
本発明の発電方法において、熱励起電子密度は好ましくは1015/m以上であり、より好ましくは1018/m以上であり、更に好ましくは1020/m以上であり、最も好ましくは1022/m以上である。熱励起電子密度が高いほど、高い発電効率を得ることができる。熱励起電子密度は熱電変換材料によって異なるが、熱励起電子密度は、前記「〔1〕熱電発電素子」の項に記載の式によって計算することができる。
また、本発明の発電方法における温度は、熱励起電子密度が好ましくは1015/mとなる温度であり、より好ましくは1018/m以上となる温度であり、更に好ましくは1020/m以上となる温度であり、最も好ましくは1022/m以上となる温度である。発電の温度は、基本的には熱電変換材料によって異なるが、前記の熱励起電子密度の計算、及び/又は前記「〔1〕熱電発電素子」の項に記載の「熱電変換材料が熱励起電子及び正孔を生成できる温度範囲」を実験によって測定することによって、決定することができる。
すなわち、当業者であれば、本発明の属する分野の技術常識と本明細書の記載から、発電の温度を適宜決定することができる。また、本発明の発電方法の発電温度は、好ましくは電荷輸送イオン対が電解質内を行き来できる温度である。
具体的な温度としては、限定されるものではないが、例えば50℃以上であり、好ましくは60℃以上であり、より好ましくは80℃以上であり、更に好ましくは100℃以上である。温度の上限も電荷輸送イオン対が電解質内を行き来できる温度である限りにおいて、特に限定されるものではないが、例えば1500℃以下であり、好ましくは1000℃以下である。
なお、本発明の熱電発電素子が実際に発電する温度は、第1層内の熱電変換材料の発電に十分な数の熱励起電子及び正孔を生じる温度であることのほか、材料固有の電子移動のし易さや、第2層(または第2層及び第3層)との組み合わせによる第1層との界面で電子移動のし易さによって決まるが、これらの条件は適宜検討することが可能である。
[2] Power Generation Method In the power generation method of the present invention, the temperature at which the thermoelectric power generation element has a thermal excited electron density of 10 15 / m 3 of the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer. Generate electricity in the above environment.
In the power generation method of the present invention, the thermal excited electron density is preferably 10 15 / m 3 or more, more preferably 10 18 / m 3 or more, still more preferably 10 20 / m 3 or more, and most preferably. It is 10 22 / m 3 or more. The higher the thermal excited electron density, the higher the power generation efficiency can be obtained. The thermoexcited electron density differs depending on the thermoelectric conversion material, but the thermoexcited electron density can be calculated by the formula described in the above section "[1] Thermoelectric power generation element".
The temperature in the power generation method of the present invention is preferably a temperature at which the thermal excited electronic density is preferably 10 15 / m 3 , more preferably 10 18 / m 3 or more, and further preferably 10 20 /. It is a temperature of m 3 or more, and most preferably a temperature of 10 22 / m 3 or more. The temperature of power generation basically differs depending on the thermoelectric conversion material, but the calculation of the thermal excited electronic density and / or the above-mentioned "[1] Thermoelectric power generation element" described in the section "The thermoelectric conversion material is a thermoexcited electron". And the temperature range in which holes can be generated ”can be determined experimentally.
That is, a person skilled in the art can appropriately determine the temperature of power generation from the common general technical knowledge in the field to which the present invention belongs and the description in the present specification. Further, the power generation temperature of the power generation method of the present invention is preferably a temperature at which charge transport ion pairs can move back and forth in the electrolyte.
The specific temperature is not limited, but is, for example, 50 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher. The upper limit of the temperature is not particularly limited as long as the charge transport ion pair can move back and forth in the electrolyte, but is, for example, 1500 ° C. or lower, preferably 1000 ° C. or lower.
The temperature at which the thermoelectric power generation element of the present invention actually generates power is a temperature at which a sufficient number of thermally excited electrons and holes are generated for power generation of the thermoelectric conversion material in the first layer, and also the electrons unique to the material. It depends on the ease of movement and the ease of electron transfer at the interface with the first layer in combination with the second layer (or the second and third layers), but these conditions can be considered as appropriate. Is.

〔3〕熱電発電装置、サーモ電池及び熱電発電モジュール
本発明の熱電発電装置は、本発明の熱電発電素子を含み、好ましくは正極電極及び/又は負極電極を含む。また、本発明のサーモ電池は、本発明の熱電発電素子を含み、好ましくは正極電極及び/又は負極電極を含む。更に、本発明の熱電発電モジュールは、本発明の熱電発電素子を含み、好ましくは正極電極及び/又は負極電極を含む。本発明の熱電発電装置、サーモ電池及び熱電発電モジュールにおいて用いる熱電発電素子の第3層が負極電極の役割を担うことが可能であり、第2層が正極電極の役割を担うことが可能である。但し、熱電発電装置、サーモ電池及び熱電発電モジュールにおいては、正極電極及び負極電極を有することが好ましい。
本明細書において「サーモ電池」とは、本発明の熱電発電素子を含み、熱電発電素子の半導体(熱電変換材料)に、熱励起電子及び正孔を生成できる温度が付与されることにより、発電する電池を意味する。すなわち、サーモ電池とは、「熱源があれば発電する電池」であり、従来の「高温部と低温部により発電する電池」とは異なる。
[3] Thermoelectric power generation device, thermo battery and thermoelectric power generation module The thermoelectric power generation device of the present invention includes the thermoelectric power generation element of the present invention, and preferably includes a positive electrode and / or a negative electrode. Further, the thermo-battery of the present invention includes the thermoelectric power generation element of the present invention, and preferably includes a positive electrode and / or a negative electrode. Further, the thermoelectric power generation module of the present invention includes the thermoelectric power generation element of the present invention, preferably including a positive electrode and / or a negative electrode. The third layer of the thermoelectric power generation element used in the thermoelectric power generation device, the thermo battery and the thermoelectric power generation module of the present invention can play the role of the negative electrode, and the second layer can play the role of the positive electrode. .. However, the thermoelectric power generation device, the thermo battery, and the thermoelectric power generation module preferably have a positive electrode and a negative electrode.
In the present specification, the "thermo battery" includes the thermoelectric power generation element of the present invention, and power is generated by imparting a temperature capable of generating thermally excited electrons and holes to the semiconductor (thermoelectric conversion material) of the thermoelectric power generation element. Means a battery that can be used. That is, the thermo battery is a "battery that generates electricity if there is a heat source", and is different from the conventional "battery that generates electricity by a high temperature portion and a low temperature portion".

《電極》
正極電極及び負極電極は、電子を輸送できる限りにおいて限定されるものではないが、例えば、チタン、金、白金、銀、銅、錫、タングステン、ニオブ、タンタル、ステンレス、アルミニウム、グラフェン、モリブデン、インジウム、バナジウム、ロジウム、ニオビウム、クロム、ニッケル、カーボン、それらの合金又はそれらの組合せを挙げることができる。なお、正極電極及び負極電極に、同じ材料を用いてもよい。
正極電極及び負極電極は、導線の態様で設けてもよく、また、正極電極層又は負極電極層として、設けてもよい。正極電極層又は負極電極層の場合、真空蒸着法又はスピンコート法などによって、製造することができる。正極電極を熱電発電素子の第3層側に負極電極を設け、第2層側に正極電極を設けることにより、負極から正極に電子が移動し、電気を発生させることができる。
"electrode"
The positive electrode and the negative electrode are not limited as long as they can transport electrons, but for example, titanium, gold, platinum, silver, copper, tin, tungsten, niobium, tantalum, stainless steel, aluminum, graphene, molybdenum, and indium. , Vanadium, rhodium, niobium, chromium, nickel, carbon, alloys thereof or combinations thereof. The same material may be used for the positive electrode and the negative electrode.
The positive electrode and the negative electrode may be provided in the form of a conducting wire, or may be provided as a positive electrode layer or a negative electrode layer. In the case of a positive electrode layer or a negative electrode layer, it can be produced by a vacuum deposition method, a spin coating method, or the like. By providing the positive electrode on the third layer side of the thermoelectric power generation element and providing the positive electrode on the second layer side, electrons can move from the negative electrode to the positive electrode to generate electricity.

〔4〕熱電発電方法
本発明の熱電発電方法は、前記熱電発電モジュールを熱発生場所に設置する工程、及び熱により前記熱電発電モジュールを加熱し、電力を発生させる工程、を含む。
[4] Thermoelectric Power Generation Method The thermoelectric power generation method of the present invention includes a step of installing the thermoelectric power generation module at a heat generation place and a step of heating the thermoelectric power generation module with heat to generate electric power.

《熱電発電モジュール設置工程》
熱電発電モジュール設置工程においては、本発明の熱電発電モジュールを熱発生場所に設置する。
熱発生場所は、熱電変換材料において、発電に十分な数の励起電子及び正孔を生成する温度以上の熱を発生する場所であれば、特に限定されない。しかしながら、効率的に発電できることから、比較的高い温度の場所が好ましく、従って熱発生場所としては、例えば地熱発生場所、又は工場などの排熱発生場所を挙げることができる。
地熱は、土壌中の熱に限るものではなく、地熱によって温められた熱水又は蒸気を含む。更に、地熱には、地熱によって温められた海、湖、又は河川などの熱水又は蒸気を含む。
排熱は、特に限定されるものではないが、例えば、鉄鋼炉、ごみ焼却場、変電所、地下鉄、又は自動車などの排熱を挙げることができる。特に、大きなエネルギーを有する鉄鋼炉、またごみ焼却場の排熱は、そのエネルギーを利用することなく放出されており、本発明の熱電発電方法により再利用することが好ましい。
<< Thermoelectric power generation module installation process >>
In the thermoelectric power generation module installation process, the thermoelectric power generation module of the present invention is installed at a heat generation location.
The heat generation location is not particularly limited as long as it is a location in the thermoelectric conversion material that generates heat at a temperature higher than the temperature at which a sufficient number of excited electrons and holes are generated for power generation. However, since it is possible to generate electricity efficiently, a place having a relatively high temperature is preferable. Therefore, as a heat generation place, for example, a geothermal heat generation place or an exhaust heat generation place such as a factory can be mentioned.
Geothermal energy is not limited to heat in soil, but includes hot water or steam heated by geothermal energy. Further, geothermal energy includes hot water or steam such as seas, lakes, or rivers heated by geothermal energy.
The exhaust heat is not particularly limited, and examples thereof include exhaust heat from steel furnaces, waste incinerators, substations, subways, automobiles, and the like. In particular, the exhaust heat of a steel furnace having a large energy and a waste incinerator is released without using the energy, and it is preferable to reuse it by the thermoelectric power generation method of the present invention.

《電力発生工程》
電力発生工程においては、本発明の熱電発電モジュールを加熱することにより、電力を発生させる。前記熱発生場所から発生する熱により、熱電発電モジュールの熱電変換材料が、発電に十分な数の励起電子及び正孔を発生する温度以上で加熱されることにより、熱電発電モジュールから電力を発生させることができる。
《Power generation process》
In the electric power generation process, electric power is generated by heating the thermoelectric power generation module of the present invention. The heat generated from the heat generation location heats the thermoelectric conversion material of the thermoelectric power generation module at a temperature higher than a temperature at which a sufficient number of excited electrons and holes are generated for power generation, thereby generating electric power from the thermoelectric power generation module. be able to.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but these do not limit the scope of the present invention.

《参考例1》
β−FeSi焼結体(0.8cm角、厚み2mm)をホットプレート上に設置し、四端子法にて抵抗値の温度依存性を測定した。昇温と共に抵抗値の減少が確認され、その値から計算される電気伝導率の上昇が確認された(図3)。また、190℃を超えると、電気導電率が急激に増加した。この減少の急激な変化は、190℃を超えた時点で、β−FeSi焼結体において、数多くの熱励起電子及び正孔が発生したことを意味している。
<< Reference example 1 >>
A β-FeSi 2 sintered body (0.8 cm square, thickness 2 mm) was placed on a hot plate, and the temperature dependence of the resistance value was measured by the four-terminal method. It was confirmed that the resistance value decreased with the temperature rise, and the increase in electrical conductivity calculated from the value was confirmed (Fig. 3). Moreover, when it exceeded 190 degreeC, the electric conductivity increased sharply. This rapid change in decrease means that a large number of thermally excited electrons and holes were generated in the β-FeSi 2 sintered body when the temperature exceeded 190 ° C.

《実施例1》
1.68gのα−FeSi粉末を250kgfで1min一軸加圧することでφ15mmの成形体を作製し、800℃、30min、55MPaの条件でSPS焼結を行いβ−FeSiを得た。また、CuO、ZrOCl・8HO、(NH)HPOを化学量論比になるように秤量し、蒸留水、CuOに関してはHNO水溶液に溶解させたのちに混合、撹拌させた。80℃で1日半乾燥させたのちに、800℃で8h加熱しCuZr(PO(Cusicon、銅イオン伝導体)を得た。
1.0cm×1.0cm角に切断したn型シリコン(n−Si)(100)(ρ=1−10Ω)を5分間HF処理した後、SPS焼結法により得られたβ−FeSiを粉砕した粉末0.0309gを導電性バインダー(パイロダクト597)0.0785gと混合して接着させた。その後室温で2h、93℃で2h乾燥させた後、20mmΦの金型にCusiconを入れたのちに、β−FeSiとn−Siとをβ−FeSiが下になるように設置し、50MPaで3min加圧した。余分なCusiconを取り除いたところ、Cusiconは0.1929gとなった。得られた試料を400℃で6時間焼結した。昇温、降温速度は2℃/minとした。
焼結した試料は、Cusicon側、n−Si側に電極として導電性Agペーストを用いてPt線を取り付けた。スライドガラスで挟み、絶縁性接着剤アロンセラミックスで補強した。同様に室温、93℃で2hずつ乾燥させた。
電気炉内に作製した試料を設置した。Cusicon側を作用電極、n−Si側を対極としたところ、室温での自然電位は0.035Vであり、電圧を自然電位としたときの電流変化を、2端子法により測定した。昇温速度は5℃/minとした。600℃まで昇温した。温度に依存した整流性のある発生電流が確認された(図4)。
CV曲線は、600℃に保持した状態で測定した。Scan rateは10mV/secとした。その結果、第3層/第1層/第2層で電池特性を得ることができた(図5)。
また、上記接続にて、室温および600℃にて電気化学インピーダンス測定を行った(図6)。600℃において抵抗値の減少が確認された。
<< Example 1 >>
1.68 g of α-Fe 2 Si 5 powder was uniaxially pressurized at 250 kgf for 1 min to prepare a molded product having a diameter of 15 mm, and SPS sintering was performed under the conditions of 800 ° C., 30 min and 55 MPa to obtain β-FeSi 2 . Further, CuO, ZrOCl · 8H 2 O, and (NH 4 ) H 2 PO 4 were weighed so as to have a chemical ratio, and distilled water and CuO were dissolved in an aqueous solution of HNO 3 and then mixed and stirred. .. After drying at 80 ° C. for one and a half days, the mixture was heated at 800 ° C. for 8 hours to obtain CuZr 2 (PO 4 ) 3 (Cusicon, copper ion conductor).
After HF treatment of n-type silicon (n-Si) (100) (ρ = 1-10Ω) cut into 1.0 cm × 1.0 cm squares for 5 minutes, β-FeSi 2 obtained by the SPS sintering method was used. 0.0309 g of the pulverized powder was mixed with 0.0785 g of a conductive binder (pyroduct 597) and adhered. Then, after drying for 2 hours at room temperature and 2 hours at 93 ° C., Cusicon was placed in a 20 mmΦ mold, and then β-FeSi 2 and n-Si were placed so that β-FeSi 2 was on the bottom, and 50 MPa. Pressurized for 3 minutes. When the excess Cuscion was removed, the Cusonic was 0.1929 g. The obtained sample was sintered at 400 ° C. for 6 hours. The rate of temperature increase and decrease was 2 ° C./min.
In the sintered sample, a Pt wire was attached to the Cusicon side and the n-Si side using a conductive Ag paste as an electrode. It was sandwiched between slide glasses and reinforced with an insulating adhesive, Aron Ceramics. Similarly, it was dried at room temperature and 93 ° C. for 2 hours each.
The prepared sample was placed in an electric furnace. When the Cusicon side was the working electrode and the n-Si side was the counter electrode, the natural potential at room temperature was 0.035 V, and the current change when the voltage was the natural potential was measured by the two-terminal method. The heating rate was 5 ° C./min. The temperature was raised to 600 ° C. A temperature-dependent rectifying generated current was confirmed (Fig. 4).
The CV curve was measured while being held at 600 ° C. The Scan rate was set to 10 mV / sec. As a result, battery characteristics could be obtained in the third layer / first layer / second layer (FIG. 5).
In addition, the electrochemical impedance was measured at room temperature and 600 ° C. with the above connection (FIG. 6). A decrease in resistance was confirmed at 600 ° C.

《実施例2》
1.0cm×0.5cm角に切断したn−Si(100)(ρ=1−10Ω)を5分間HF処理した後、導電性Agペースト0.0785gを塗布し、実施例1と同じ工程のSPS焼結法により得られたβ−FeSiを粉砕した粉末0.0309gを接着させた。その後室温で2h、93℃で2h乾燥させた後、20mmΦの金型にβ−FeSiと、n−Siとを、β−FeSiが上になるように設置したのちに実施例1と同じ工程で作製したCusiconを入れ、50MPaで3min加圧した。余分なCusiconを取り除いたところ、Cusiconは0.1929gとなった。得られた試料を400℃で6時間焼結した。昇温、降温速度は2℃/minとした。
焼結した試料は、Cusicon側、n−Si側に電極としてAgペーストを用いてPt線を取り付けた。スライドガラスで挟み、絶縁性接着剤アロンセラミックスで補強した。同様に室温、93℃で2hずつ乾燥させた。
電気炉内に作製した試料を設置した。Cusicon側を作用電極、n−Si側を対極とし、昇温速度は5℃/minとして600℃まで加熱した。600℃に保持した状態で、電流を100nAに固定して電圧の経時変化の測定を行い、この系で、一定電流で6時間以上発電が続くことを確認した(図7)。その後、Scan rate 10mV/secで0.1Vから−0.1VまでCV測定を行った。その結果、第3層/第1層/第2層で電池特性を得ることができた。
<< Example 2 >>
After HF treatment of n-Si (100) (ρ = 1-10Ω) cut into 1.0 cm × 0.5 cm squares for 5 minutes, 0.0785 g of conductive Ag paste was applied, and the same steps as in Example 1 were applied. 0.0309 g of powder obtained by crushing β-FeSi 2 obtained by the SPS sintering method was adhered. Then, after drying for 2 hours at room temperature and 2 hours at 93 ° C., β-FeSi 2 and n-Si were placed in a 20 mmΦ mold so that β-FeSi 2 was on top, and then the same as in Example 1. The Cusicon produced in the process was added and pressurized at 50 MPa for 3 min. When the excess Cuscion was removed, the Cusonic was 0.1929 g. The obtained sample was sintered at 400 ° C. for 6 hours. The rate of temperature increase and decrease was 2 ° C./min.
For the sintered sample, Pt wire was attached to the Cuscion side and the n-Si side using Ag paste as an electrode. It was sandwiched between slide glasses and reinforced with an insulating adhesive, Aron Ceramics. Similarly, it was dried at room temperature and 93 ° C. for 2 hours each.
The prepared sample was placed in an electric furnace. The working electrode was on the Cusicon side and the counter electrode was on the n—Si side, and the heating rate was 5 ° C./min and the temperature was raised to 600 ° C. While the temperature was maintained at 600 ° C., the current was fixed at 100 nA and the change over time of the voltage was measured, and it was confirmed that power generation continued for 6 hours or more at a constant current in this system (FIG. 7). Then, CV measurement was performed from 0.1V to −0.1V at Scan rate 10 mV / sec. As a result, battery characteristics could be obtained in the third layer / first layer / second layer.

《実施例3》
第1層及び第2層の組合せの実施例として、β−FeSi及びCusiconでの測定結果を示す。
10mmΦの金型に実施例1と同じ工程のSPS焼結法により得られたβ−FeSiを粉砕した粉末0.0797を入れ、タッピングを行ってなだらかにした後に、実施例1と同じ工程で作製したCusiconを0.2356gを入れ、100MPaで5分間加圧した。得られた試料を400℃で6時間焼結した。昇温、降温速度は2℃/minとした。
焼結した試料は、Cusicon側、β−FeSi側に電極として導電性Agペーストを用いてPt線を取り付けた。さらに、スライドガラスで挟み、絶縁性接着剤アロンセラミックスで補強した後に室温、93℃で時間ずつ乾燥させた。
電気炉内に作製した試料を設置し、600℃で保持した状態で、Cusicon側を作用電極、β−FeSi側を対極として、電位走査速度10mV/secでCV測定を行った(図8)。その結果、第1層/第2層で600℃で電池特性を得ることができた。
<< Example 3 >>
As an example of the combination of the first layer and the second layer, the measurement results with β-FeSi 2 and Cusonic are shown.
The powder 0.0797 obtained by crushing β-FeSi 2 obtained by the SPS sintering method in the same step as in Example 1 was placed in a 10 mmΦ mold, tapped to make it gentle, and then in the same step as in Example 1. 0.2356 g of the prepared Cusicon was added, and the mixture was pressurized at 100 MPa for 5 minutes. The obtained sample was sintered at 400 ° C. for 6 hours. The rate of temperature increase and decrease was 2 ° C./min.
For the sintered sample, a Pt wire was attached to the Cusicon side and the β-FeSi 2 side using a conductive Ag paste as an electrode. Further, it was sandwiched between slide glasses, reinforced with an insulating adhesive Aron ceramics, and then dried at room temperature and 93 ° C. for each time.
A sample prepared in an electric furnace was placed and held at 600 ° C., and CV measurement was performed at a potential scanning speed of 10 mV / sec with the working electrode on the Cusicon side and the counter electrode on the β-FeSi 2 side (FIG. 8). .. As a result, battery characteristics could be obtained at 600 ° C. in the first layer / second layer.

《実施例4》
本実施例では、半導体(第1層)としてゲルマニウム、電解質(第2層)として塩化ヘキサアンミンコバルト(III)水溶液を用いて、熱電発電素子を作製した。
25×15×0.5mmのゲルマニウム半導体に直径6mm孔をもつカプトンテープ(12.5×15×0.1mm厚)のスペーサーを接着し、脱気した(0.15M硫酸ナトリウム+4mMヘキサアンミンコバルト)水溶液を2.4mL滴下し、25×15mmのITO透明電極で挟み込んだ。スペーサーは高温耐性粘着テープであるため、挟み込むだけで電池ができあがった。露出した透明電極の導電面には白金をスパッタした。できあがった電池をホットプレート上に設置し、全体が80℃になった後、80℃に保持して、作用極をゲルマニウム半導体、対極を透明電極として、電位走査速度100mV/secで測定した(図9)。開放電圧は0.68Vであった。
<< Example 4 >>
In this example, a thermoelectric power generation device was produced using germanium as the semiconductor (first layer) and an aqueous solution of hexaamminecobalt (III) chloride as the electrolyte (second layer).
A spacer of Kapton tape (12.5 x 15 x 0.1 mm thick) with a diameter of 6 mm was adhered to a 25 x 15 x 0.5 mm germanium semiconductor and degassed (0.15 M sodium sulfate + 4 mM hexaamminecobalt). 2.4 mL of the aqueous solution was added dropwise and sandwiched between 25 × 15 mm ITO transparent electrodes. Since the spacer is a high temperature resistant adhesive tape, the battery was completed just by sandwiching it. Platinum was sputtered on the conductive surface of the exposed transparent electrode. The completed battery was placed on a hot plate, and after the temperature reached 80 ° C., the temperature was maintained at 80 ° C., and the working electrode was a germanium semiconductor and the counter electrode was a transparent electrode, and the measurement was performed at a potential scanning speed of 100 mV / sec (Fig.). 9). The open circuit voltage was 0.68V.

《実施例5》
本実施例では、半導体(第1層)としてゲルマニウム、電解質(第2層)として酸化硫酸バナジウム(IV)n水和物水溶液を用いて、熱電発電素子を作製した。
酸化硫酸バナジウムVOSO・nHO(n=3〜4)0.0570gを1Mの硫酸水溶液に溶かし、得られた0.05Mのバナジウム溶液を脱気した。上面積半分にPtスパッタを施したITO基板(1.5×2.5cm)を硫酸洗浄した後、残り半分に直径6mmの孔が空いた絶縁テープを貼り、その孔にバナジウム水溶液を2.4μL滴下した。ITO基板と同じサイズの、硫酸洗浄したゲルマニウムウェハーを孔の上にかぶせ、80℃に保持して、作用電極をゲルマニウム、対極電極をPt側として、電位走査速度は100mV/secでCV測定を行った(図10)。開放電圧は0.23Vであった。
<< Example 5 >>
In this example, a thermoelectric power generation device was produced using germanium as the semiconductor (first layer) and vanadium (IV) oxide n-hydrate aqueous solution as the electrolyte (second layer).
0.0570 g of vanadium oxide sulfate VOSO 4 · nH 2 O (n = 3-4) was dissolved in a 1 M aqueous sulfuric acid solution, and the obtained 0.05 M vanadium solution was degassed. After washing an ITO substrate (1.5 x 2.5 cm) with Pt sputtering on the upper half of the area with sulfuric acid, an insulating tape with a diameter of 6 mm is attached to the other half, and 2.4 μL of an aqueous vanadium solution is applied to the holes. Dropped. A sulfuric acid-cleaned germanium wafer of the same size as the ITO substrate is placed over the holes and held at 80 ° C., the working electrode is germanium, the counter electrode is on the Pt side, and the potential scanning speed is 100 mV / sec for CV measurement. (Fig. 10). The open circuit voltage was 0.23V.

《実施例6》
本実施例では、半導体(第1層)としてβ−FeSi、電解質(第2層)としてRbCuCl、電子輸送材料(第3層)としてn−Siを用いて、熱電発電素子を作製した。
10×10×0.525mmのn−Siを5分間フッ酸処理した。n−Si上に銀ペーストを用いて、実施例1と同じ工程のSPS焼結法により得られたβ−FeSi粉末を接着し、室温、93℃で2時間ずつ乾燥させた。直径10mmΦ、厚さ15mmのRbCuCl成形体を、n−Si/β−FeSi接合体のβ−FeSi上に設置して、スライドガラスで挟み、絶縁性接着剤を用いることで固定し、電池とした。n−Si側には銀ペーストを塗布することで、RbCuCl側には白金をスパッタすることで電極とし、白金線を用いて測定装置に繋げた。できあがった電池を電気炉内に設置し、190℃に保持した状態で、作用極をn−Si、対極をRbCuClとして、電位走査速度10mV/secで測定した(図11)。開放電圧は0.25Vであった。
<< Example 6 >>
In this example, a thermoelectric power generation device was produced using β-FeSi 2 as the semiconductor (first layer), RbCuCl 2 as the electrolyte (second layer), and n-Si as the electron transport material (third layer).
10 × 10 × 0.525 mm n—Si was hydrofluoric acid treated for 5 minutes. Using a silver paste on n-Si, β-FeSi 2 powder obtained by the SPS sintering method in the same step as in Example 1 was adhered and dried at room temperature and 93 ° C. for 2 hours each. Diameter 10 mm [phi, the RbCuCl 2 shaped body having a thickness of 15 mm, and placed on the n-Si / β-FeSi 2 conjugate beta-FeSi 2, sandwiched between a slide glass and fixed by using an insulating adhesive, It was a battery. A silver paste was applied to the n-Si side, and platinum was sputtered on the RbCuCl 2 side to form an electrode, which was connected to the measuring device using a platinum wire. The completed battery was placed in an electric furnace and held at 190 ° C., and the working electrode was n—Si and the counter electrode was RbCuCl 2 , and the measurement was performed at a potential scanning speed of 10 mV / sec (FIG. 11). The open circuit voltage was 0.25V.

本発明の熱電発電素子及びそれを含む熱電発電モジュールは、電池、小型携帯用発電装置、地熱発電、自動車の排熱を利用した熱電発電、及び変電所、鉄鋼炉、又はごみ焼却場などの廃熱(排熱)を利用した熱電発電などに用いることが可能である。
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変法や改良は本発明の範囲に含まれる。
The thermoelectric power generation element of the present invention and the thermoelectric power generation module including the same include batteries, small portable power generation devices, geothermal power generation, thermoelectric power generation using exhaust heat of automobiles, and abolition of substations, steel furnaces, waste incineration plants, etc. It can be used for thermoelectric power generation using heat (exhaust heat).
Although the present invention has been described above according to a specific aspect, modifications and improvements that are obvious to those skilled in the art are included in the scope of the present invention.

Claims (12)

熱励起電子及び正孔を生成する半導体を含む第1層、及び
電荷輸送イオン対が移動できる固体電解質または電解質溶液を含む第2層、
が積層しており、第1層内の熱励起電子及び正孔を生成する半導体の価電子帯電位が第2層内の前記電荷輸送イオン対の酸化還元電位よりも正であり、第1層と第2層の界面で前記2つのイオンのうち、より酸化されやすいイオンの酸化反応が生じることを特徴とする温度勾配を必要としない熱電発電素子。
A first layer containing semiconductors that generate thermally excited electrons and holes, and a second layer containing a solid electrolyte or electrolyte solution to which charge transport ion pairs can move.
The valence electron charging position of the semiconductor that generates thermally excited electrons and holes in the first layer is more positive than the redox potential of the charge transport ion pair in the second layer, and the first layer A thermoelectric power generation element that does not require a temperature gradient, characterized in that an oxidation reaction of an ion that is more easily oxidized occurs at the interface between the two ions and the second layer.
前記第1層内の熱励起電子及び正孔を生成する半導体の価電子帯電位と第2層内の前記電荷輸送イオン対の酸化還元電位との差が0.5V以下である、請求項1に記載の温度勾配を必要としない熱電発電素子。 Claim 1 that the difference between the valence electron charging position of the semiconductor that generates thermally excited electrons and holes in the first layer and the oxidation-reduction potential of the charge transport ion pair in the second layer is 0.5 V or less. A thermoelectric power generation element that does not require the temperature gradient described in 1. 電子輸送材料を含む第3層が、第1層における第2層との積層面の反対側の面に積層されており、前記第3層内の電子輸送材料の電子伝導帯電位が、前記第1層内の熱励起電子及び正孔を生成する半導体の伝導帯電位と同じか、又は正である、請求項1又は2に記載の温度勾配を必要としない熱電発電素子。 The third layer containing the electron transport material is laminated on the surface of the first layer opposite to the laminated surface with the second layer, and the electron conduction charge position of the electron transport material in the third layer is the first. The thermoelectric power generation element that does not require the temperature gradient according to claim 1 or 2, which is the same as or positive in the conduction charge position of the semiconductor that generates thermally excited electrons and holes in one layer. 前記第1層内の熱電子及び正孔を生成する半導体の伝導帯電位と前記第3層内の電子輸送材料の電子伝導帯電位との差が0.5V以下である、請求項3に記載の温度勾配を必要としない熱電発電素子。 The third aspect of claim 3, wherein the difference between the conduction charge position of the semiconductor that generates thermoelectrons and holes in the first layer and the electron conduction charge position of the electron transport material in the third layer is 0.5 V or less. A thermoelectric power generation element that does not require a temperature gradient . 前記第1層内の熱励起電子及び正孔を生成する半導体が、熱励起電子とそれに伴って生じる正孔との電位差が0.1V以上を示す半導体である、請求項1〜4のいずれか一項に記載の温度勾配を必要としない熱電発電素子。 Any of claims 1 to 4, wherein the semiconductor that generates thermally excited electrons and holes in the first layer is a semiconductor that exhibits a potential difference of 0.1 V or more between the thermally excited electrons and the holes generated accordingly. A thermoelectric power generation element that does not require the temperature gradient described in item 1. 請求項1〜5のいずれか一項に記載の熱電発電素子を、前記第1層内の熱励起電子及び正孔を生成する半導体の熱励起電子密度が1015/mとなる温度以上の環境下に置いて発電する方法。 The thermoelectric power generation element according to any one of claims 1 to 5 has a temperature or higher at which the temperature of the semiconductor that generates thermally excited electrons and holes in the first layer is 10 15 / m 3. How to generate electricity in an environment. 前記温度が、半導体の熱励起電子密度が1018/mとなる温度である、請求項6に記載の発電方法。 The power generation method according to claim 6, wherein the temperature is a temperature at which the thermal excited electronic density of the semiconductor is 10 18 / m 3 . 請求項1〜5のいずれか一項に記載の熱電発電素子を含む熱電発電装置。 A thermoelectric power generation device including the thermoelectric power generation element according to any one of claims 1 to 5. 請求項1〜5のいずれか一項に記載の熱電発電素子を含むサーモ電池。 A thermo battery including the thermoelectric power generation element according to any one of claims 1 to 5. 請求項1〜5のいずれか一項に記載の熱電発電素子を含む熱電発電モジュール。 A thermoelectric power generation module including the thermoelectric power generation element according to any one of claims 1 to 5. 請求項10に記載の熱電発電モジュールを熱発生場所に設置する工程、及び
熱により前記熱電発電モジュールを加熱し、電力を発生させる工程、
を含む、熱電発電方法。
A step of installing the thermoelectric power generation module according to claim 10 in a heat generating place, and a step of heating the thermoelectric power generation module by heat to generate electric power.
Thermoelectric power generation methods, including.
前記熱が、地熱又は排熱である、請求項11に記載の熱電発電方法。 The thermoelectric power generation method according to claim 11, wherein the heat is geothermal heat or exhaust heat.
JP2017538137A 2015-09-04 2016-09-02 A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element. Active JP6803076B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015175037 2015-09-04
JP2015175037 2015-09-04
PCT/JP2016/075856 WO2017038988A1 (en) 2015-09-04 2016-09-02 Thermoelectric power generation element, thermoelectric power generation module including same, and thermoelectric power generation method using same

Publications (2)

Publication Number Publication Date
JPWO2017038988A1 JPWO2017038988A1 (en) 2018-06-21
JP6803076B2 true JP6803076B2 (en) 2021-01-06

Family

ID=58187721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017538137A Active JP6803076B2 (en) 2015-09-04 2016-09-02 A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element.

Country Status (3)

Country Link
JP (1) JP6803076B2 (en)
TW (1) TWI739759B (en)
WO (1) WO2017038988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481775B1 (en) 2023-12-04 2024-05-13 WhiteLab株式会社 Smart Ring

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431676A (en) * 2017-03-16 2019-11-08 琳得科株式会社 Thermo-electric conversion module electrode material and the thermo-electric conversion module for using it
CN110462913B (en) * 2017-03-30 2023-09-15 Tdk株式会社 Solid electrolyte and all-solid lithium ion secondary battery
US11855253B2 (en) * 2017-03-30 2023-12-26 Tdk Corporation Solid electrolyte and all-solid secondary battery
TWI803679B (en) * 2018-08-06 2023-06-01 國立大學法人東京工業大學 Thermoelectric power generation battery and method for generating thermoelectric power using the same
CN109167080B (en) * 2018-09-12 2022-06-14 哈尔滨工业大学(威海) High-voltage lithium thermal battery
JP7300267B2 (en) * 2018-12-28 2023-06-29 三桜工業株式会社 Thermal power generation module
JP7389426B2 (en) * 2018-12-28 2023-11-30 三桜工業株式会社 Thermoelectric power generation battery, method for manufacturing a thermoelectric power generation battery, and method for manufacturing a thermoelectric generation body
JP2021005651A (en) * 2019-06-26 2021-01-14 三桜工業株式会社 Power generation module utilizing heat
JP2021005649A (en) * 2019-06-26 2021-01-14 三桜工業株式会社 Power generation module utilizing heat and thermoelectric power generation device including the same
JP2021005964A (en) 2019-06-26 2021-01-14 三桜工業株式会社 Thermoelectric power generation device
JP7374624B2 (en) * 2019-06-26 2023-11-07 三桜工業株式会社 thermal power generation device
JP2021005650A (en) * 2019-06-26 2021-01-14 三桜工業株式会社 Power generation module utilizing heat
US11963448B2 (en) 2020-03-23 2024-04-16 Proterial, Ltd. Method for producing thermoelectric conversion element
JPWO2021241635A1 (en) * 2020-05-29 2021-12-02
CN111640853B (en) * 2020-07-17 2022-08-09 四川大学 By Sb and Cu 2 Method for improving thermoelectric performance of n-type PbTe by Te co-doping
JP2022038262A (en) * 2020-08-26 2022-03-10 東京エレクトロン株式会社 Thermoelectric effect element, heat transfer device, semiconductor manufacturing equipment and method for controlling thermoelectric effect element
CN112735852B (en) * 2020-11-27 2022-06-14 南京航空航天大学 Thermoelectric conversion and electricity storage integrated system and method based on hybrid supercapacitor
CN112838157B (en) * 2021-02-22 2023-08-01 桂林电子科技大学 SnTe Ge-doped thermoelectric material and preparation method thereof
JPWO2022191101A1 (en) * 2021-03-08 2022-09-15
JP2023037269A (en) 2021-09-03 2023-03-15 三桜工業株式会社 Heat utilization power generation module and manufacturing method for the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190572A (en) * 1990-11-26 1992-07-08 Nippon Telegr & Teleph Corp <Ntt> Temperature difference battery
JP3444501B2 (en) * 1992-11-13 2003-09-08 睦子 長谷川 Thermoelectric generator
JP3815745B2 (en) * 1995-05-02 2006-08-30 仁一郎 長谷川 Thermoelectric generator
JPH11126917A (en) * 1997-10-23 1999-05-11 Fuji Photo Film Co Ltd Optoelectric conversion element and light-reproducing type photo electrochemical battery
WO2001071822A1 (en) * 2000-03-24 2001-09-27 Shin-Etsu Chemical Co., Ltd. Thermoelectric generator
US8053947B2 (en) * 2005-12-14 2011-11-08 Kriisa Research, Inc. Device for converting thermal energy into electrical energy
JP5360549B2 (en) * 2009-02-02 2013-12-04 国立大学法人 香川大学 Dye-sensitized solar cell and method for producing titanium dioxide nanoparticles used therefor
JP5988172B2 (en) * 2011-04-12 2016-09-07 国立大学法人 筑波大学 Thermoelectric conversion method and thermoelectric conversion element using redox reaction
JP2014170617A (en) * 2013-03-01 2014-09-18 Rohm Co Ltd Dye-sensitized solar cell, manufacturing method of the same and electronic apparatus
JP5964780B2 (en) * 2013-05-13 2016-08-03 大日本印刷株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP6551849B2 (en) * 2014-02-18 2019-07-31 国立大学法人九州大学 Semiconductor single crystal and power generation method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481775B1 (en) 2023-12-04 2024-05-13 WhiteLab株式会社 Smart Ring

Also Published As

Publication number Publication date
JPWO2017038988A1 (en) 2018-06-21
TW201725765A (en) 2017-07-16
TWI739759B (en) 2021-09-21
WO2017038988A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6803076B2 (en) A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element.
Walia et al. MnO2-based thermopower wave sources with exceptionally large output voltages
Dupont et al. Thermo-electrochemical cells for waste heat harvesting–progress and perspectives
Selvan et al. Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators
Wakasugi et al. Effect of gold layer on interface resistance between lithium metal anode and Li6. 25Al0. 25La3Zr2O12 solid electrolyte
Salah et al. A comprehensive simulation study of hybrid halide perovskite solar cell with copper oxide as HTM
Na et al. Preparation of bismuth telluride films with high thermoelectric power factor
JP5988172B2 (en) Thermoelectric conversion method and thermoelectric conversion element using redox reaction
Li et al. Effects of annealing and doping on nanostructured bismuth telluride thick films
Van Toan et al. Thermoelectric generators for heat harvesting: From material synthesis to device fabrication
Scimeca et al. Rapid stoichiometry control in Cu2Se thin films for room-temperature power factor improvement
Matsushita et al. Redox reactions by thermally excited charge carriers: towards sensitized thermal cells
Kanas et al. All-oxide thermoelectric module with in situ formed non-rectifying complex p–p–n junction and transverse thermoelectric effect
JP2024014924A (en) Thermoelectric power generation battery, method for manufacturing a thermoelectric power generation battery, and method for manufacturing a thermoelectric generation body
JP2014179375A (en) Thermoelectric conversion element
JP7329517B2 (en) Heat utilization power generation battery and heat utilization power generation method using the same
CN114026706A (en) Heat utilization power generation module
WO2020121799A1 (en) Thermal battery
Kumar et al. Investigation of the cobalt-additive role in improving the performance of formamidium lead triiodide based solar cells
Kanas et al. Time-enhanced performance of oxide thermoelectric modules based on a hybrid p–n junction
JPWO2014171146A1 (en) Solar power module
WO2022191101A1 (en) Thermoelectric power generating element, thermoelectric power generating battery, and power generation stabilizing method
US20240164215A1 (en) Thermoelectric power generating element, thermoelectric power generating battery, and power generation stabilizing method
Sathiyamoorthy et al. Design and optimization of thermoelectric devices toward geometric aspects and a promising electrode for room-temperature wearable applications
JPWO2015019385A1 (en) Thermal power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6803076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250