JP6801891B2 - Semiconductor-insulator reversible change thin film and its manufacturing method - Google Patents

Semiconductor-insulator reversible change thin film and its manufacturing method Download PDF

Info

Publication number
JP6801891B2
JP6801891B2 JP2018503373A JP2018503373A JP6801891B2 JP 6801891 B2 JP6801891 B2 JP 6801891B2 JP 2018503373 A JP2018503373 A JP 2018503373A JP 2018503373 A JP2018503373 A JP 2018503373A JP 6801891 B2 JP6801891 B2 JP 6801891B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
insulator
reversible change
change thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503373A
Other languages
Japanese (ja)
Other versions
JPWO2017150617A1 (en
Inventor
伸子 福田
伸子 福田
東京 陳
東京 陳
貴明 森本
貴明 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2017150617A1 publication Critical patent/JPWO2017150617A1/en
Application granted granted Critical
Publication of JP6801891B2 publication Critical patent/JP6801891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Description

本発明は、半導体−絶縁体間の可逆的変化を与える無機酸化物からなる薄膜及びその製造方法に関し、特に、半導体−絶縁体間の可逆的変化を与えるIn−Ga−Zn−O系酸化物からなるアモルファス薄膜及びその製造方法に関する。 The present invention relates to a thin film made of an inorganic oxide that gives a reversible change between a semiconductor and an insulator and a method for producing the thin film, and in particular, an In-Ga-Zn-O oxide that gives a reversible change between the semiconductor and the insulator. The present invention relates to an amorphous thin film composed of and a method for producing the same.

金属酸化物半導体としてのIn−Ga−Zn−O酸化物半導体を活性層に用いた薄膜トランジスタが知られている。この活性層には、In−Ga−Zn−O酸化物を単結晶、多結晶、又はアモルファスの各相からなる薄膜として用いることが提案されている。 A thin film transistor using an In-Ga-Zn-O oxide semiconductor as a metal oxide semiconductor as an active layer is known. It has been proposed to use In-Ga-Zn-O oxide as a thin film composed of single crystal, polycrystalline, or amorphous phases for this active layer.

例えば、特許文献1では、アモルファス相の酸化物半導体膜からなる活性層を備えた薄膜トランジスタ及びその気相法による製造方法が開示されている。ここでは、酸素ガスを導入した雰囲気中でスパッタリング法によりIn−Ga−Zn−O酸化物を成膜するとキャリア濃度が酸素分圧に依存し変化することを述べている。また、In及びZnの原子組成比率として、In/(In+Zn)が30原子%以上45原子%以下となるアモルファス酸化物を用いることで、チャネル層を有したTFTに対して、特に、移動度が大きくDCストレスに対する影響の小さなTFTを実現することができるとしている。 For example, Patent Document 1 discloses a thin film transistor provided with an active layer made of an amorphous phase oxide semiconductor film and a method for producing the thin film transistor by the vapor phase method. Here, it is stated that when an In-Ga-Zn-O oxide is formed by a sputtering method in an atmosphere in which oxygen gas is introduced, the carrier concentration changes depending on the oxygen partial pressure. Further, by using an amorphous oxide in which In / (In + Zn) is 30 atomic% or more and 45 atomic% or less as the atomic composition ratio of In and Zn, the mobility is particularly high with respect to the TFT having a channel layer. It is said that it is possible to realize a TFT that has a large effect on DC stress.

また、特許文献2では、アモルファス相の酸化物半導体膜からなる活性層を備えた薄膜トランジスタ及びその液相法による製造方法が開示されている。ここでは、半導体膜を形成するための金属元素を含む金属アルコキシドや有機酸塩などの金属有機化合物と溶媒とを含む原料溶液をスピンコート法などの液相法により基板上に塗布して酸化物前駆体を成膜し、例えば400℃以上などの金属有機化合物の熱分解温度以上、かつ、金属元素の拡散の少ない600℃以下で加熱し、In−Ga−Zn−O酸化物を成膜している。 Further, Patent Document 2 discloses a thin film transistor provided with an active layer made of an amorphous phase oxide semiconductor film and a method for producing the thin film transistor by a liquid phase method. Here, a raw material solution containing a metal organic compound such as a metal alkoxide or an organic acid salt containing a metal element for forming a semiconductor film and a solvent is applied onto a substrate by a liquid phase method such as a spin coat method to form an oxide. A precursor is formed and heated at a temperature equal to or higher than the thermal decomposition temperature of a metal organic compound such as 400 ° C. or higher and at 600 ° C. or lower where the diffusion of metal elements is small to form an In-Ga-Zn-O oxide. ing.

特許文献3では、多結晶相の酸化物半導体からなる無機結晶性配向膜及びその液相法による製造方法が開示されている。ここでは、酸化物層状結晶構造を有する無機結晶粒子及び有機溶媒を含む原料液によりInGaZnO等の非単結晶膜を成膜し、これを加熱して結晶化させている。無機結晶粒子が層状結晶構造を有することで結晶相の積層される積層面の面方位に配向しやすく、フレキシブル基板やガラス基板等のアモルファス基板上であっても配向性を付与できるとしている。Patent Document 3 discloses an inorganic crystalline alignment film made of a polycrystalline phase oxide semiconductor and a method for producing the same by a liquid phase method. Here, a non-single crystal film such as InGaZnO 4 is formed by a raw material solution containing inorganic crystal particles having an oxide layered crystal structure and an organic solvent, and this is heated and crystallized. Since the inorganic crystal particles have a layered crystal structure, they can be easily oriented in the plane orientation of the laminated surface on which the crystal phases are laminated, and the orientation can be imparted even on an amorphous substrate such as a flexible substrate or a glass substrate.

特開2008−53356号公報Japanese Unexamined Patent Publication No. 2008-53356 特開2014−3244号公報Japanese Unexamined Patent Publication No. 2014-3244 特開2009−167087号公報JP-A-2009-167087

上記したように、In−Ga−Zn−O系酸化物は半導体素子として広範に利用されているが、半導体−絶縁体間の可逆的変化を与えるIn−Ga−Zn−O系酸化物によれば半導体素子だけでなく記憶装置など、より広範な応用用途が期待される。 As described above, In-Ga-Zn-O-based oxides are widely used as semiconductor devices, but In-Ga-Zn-O-based oxides that give reversible changes between semiconductors and insulators are used. For example, it is expected to have a wider range of applications such as storage devices as well as semiconductor devices.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、In−Ga−Zn−O系酸化物における半導体特性の可逆変化薄膜及びその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reversible change thin film of semiconductor properties in an In-Ga-Zn-O-based oxide and a method for producing the same. There is.

本発明による半導体−絶縁体可逆変化薄膜は、In−Ga−Zn−O系酸化物からなる半導体−絶縁体可逆変化薄膜であって、In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするアモルファス薄膜であり、可視光よりも短波長の光照射によってn型半導体から絶縁体に変化し、少なくとも室温以上に加熱してn型半導体に戻ることを特徴とする。 The semiconductor-insulator reversible change thin film according to the present invention is a semiconductor-insulator reversible change thin film composed of an In-Ga-Zn-O-based oxide, and the element ratio of In, Ga, Zn is [In]> [Zn]. ]> [Ga], which is an amorphous thin film, characterized in that it changes from an n-type semiconductor to an insulator by irradiation with light having a wavelength shorter than that of visible light, and is heated to at least room temperature or higher to return to the n-type semiconductor.

かかる発明によれば、半導体特性が可逆的に変化するIn−Ga−Zn−O系酸化物薄膜を得られる。 According to such an invention, an In-Ga-Zn-O-based oxide thin film whose semiconductor properties are reversibly changed can be obtained.

上記した発明において、5>[In]/[Zn]>1、且つ、5>[Zn]/[Ga]>1であることを特徴としてもよい。かかる発明によれば、比較的安定して半導体特性が可逆的に変化するIn−Ga−Zn−O系酸化物薄膜を得られる。 The above invention may be characterized in that 5> [In] / [Zn]> 1 and 5> [Zn] / [Ga]> 1. According to such an invention, an In-Ga-Zn-O-based oxide thin film in which the semiconductor characteristics are reversibly changed relatively stably can be obtained.

また、本発明による半導体−絶縁体可逆変化薄膜の製造方法は、In−Ga−Zn−O系酸化物からなる半導体−絶縁体可逆変化薄膜の製造方法であって、前記導体−絶縁体可逆変化薄膜は、可視光よりも短波長の光照射によってn型半導体から絶縁体に変化し、少なくとも室温以上に加熱してn型半導体に戻る、In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするアモルファス薄膜であり、In,Ga,Znの金属塩を溶媒に加えて基板に塗布し加熱処理して得られることを特徴とする。 Further, the method for producing a semiconductor-insulator reversible change thin film according to the present invention is a method for producing a semiconductor-insulator reversible change thin film made of an In-Ga-Zn-O-based oxide, and the conductor-insulator reversible change. The thin film changes from an n-type semiconductor to an insulator by irradiation with light having a wavelength shorter than that of visible light, and returns to the n-type semiconductor by heating to at least room temperature or higher. The element ratios of In, Ga, and Zn are [In]> [ It is an amorphous thin film in which Zn]> [Ga], and is characterized in that it is obtained by adding a metal salt of In, Ga, Zn to a solvent, applying it to a substrate, and heat-treating it.

かかる発明によれば、光照射及び加熱によって半導体特性が可逆的に変化するIn−Ga−Zn−O系酸化物薄膜を得られる。 According to such an invention, an In-Ga-Zn-O oxide thin film whose semiconductor characteristics are reversibly changed by light irradiation and heating can be obtained.

上記した発明において、前記金属塩は硝酸塩であることを特徴としてもよい。また、上記した発明において、前記溶媒は、アルコール系混合溶媒であることを特徴としてもよい。かかる発明によれば、比較的安定して半導体特性が可逆的に変化するIn−Ga−Zn−O系酸化物薄膜を得られる。 In the above invention, the metal salt may be characterized as being a nitrate. Further, in the above invention, the solvent may be characterized by being an alcohol-based mixed solvent. According to such an invention, an In-Ga-Zn-O-based oxide thin film in which the semiconductor characteristics are reversibly changed relatively stably can be obtained.

本発明による薄膜を用いた薄膜トランジスタの回路図である。It is a circuit diagram of the thin film transistor using the thin film by this invention. 伝達特性の測定結果を示す図である。It is a figure which shows the measurement result of the transmission characteristic. 伝達特性の測定結果を示す図である。It is a figure which shows the measurement result of the transmission characteristic. 吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of the absorption spectrum.

本発明者は、In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするIn−Ga−Zn−O系酸化物からなるアモルファス薄膜において、可視光よりも短波長の光照射によりn型半導体から絶縁体に変化し、室温以上の加熱によってn型半導体に戻ることを発見した。 The present inventor has an amorphous thin film made of an In-Ga-Zn-O oxide having an element ratio of In, Ga, Zn of [In]> [Zn]> [Ga], which has a shorter wavelength than visible light. It was discovered that the n-type semiconductor changes to an insulator by light irradiation and returns to the n-type semiconductor when heated above room temperature.

かかるIn−Ga−Zn−O系酸化物からなるアモルファス薄膜は、In,Ga,Znの金属塩を溶媒に加えて基板に塗布し加熱処理して得られる。 The amorphous thin film made of such an In-Ga-Zn-O oxide is obtained by adding a metal salt of In, Ga, Zn to a solvent, applying it to a substrate, and heat-treating it.

[実施例1]
以下、上記したアモルファス薄膜を用いた薄膜トランジスタを製作したので、その製造方法について図1を参照しつつ詳細に説明する。
[Example 1]
Hereinafter, a thin film transistor using the above-mentioned amorphous thin film has been manufactured, and the manufacturing method thereof will be described in detail with reference to FIG.

まず、In,Ga,Znの金属塩を溶媒に加える。詳細には、硝酸インジウム、硝酸ガリウム及び硝酸亜鉛を、金属イオン濃度を0.1Mとするように溶媒に溶解させて十分に攪拌し前駆体塗布液を得る。ここで、In,Ga,Znの各イオンのモル比は6:1:3とした。溶媒としては、例えば、2−メトキシエタノールと2,2,2−トリフルオロメタノールを8:2で混合させたアルコール系混合溶媒を用い得る。 First, metal salts of In, Ga and Zn are added to the solvent. Specifically, indium nitrate, gallium nitrate and zinc nitrate are dissolved in a solvent so as to have a metal ion concentration of 0.1 M and sufficiently stirred to obtain a precursor coating solution. Here, the molar ratio of each ion of In, Ga, and Zn was set to 6: 1: 3. As the solvent, for example, an alcohol-based mixed solvent in which 2-methoxyethanol and 2,2,2-trifluoromethanol are mixed at a ratio of 8: 2 can be used.

なお、上記したようにアモルファス薄膜は、In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするが、5>[In]/[Zn]>1、且つ、5>[Zn]/[Ga]>1とすることが好ましい。また、[In]+[Ga]+[Zn]=1.0とすると、[In]+[Ga]=0.7(70%)、且つ、0.7>[In]≧0.6の場合に、半導体特性を可逆的に変化させ得るアモルファス薄膜3を比較的安定して得られる。本実施例においては、上記したように[In]:[Zn]:[Ga]を6:3:1としている。 As described above, in the amorphous thin film, the element ratio of In, Ga, Zn is [In]> [Zn]> [Ga], but 5> [In] / [Zn]> 1 and 5>. It is preferable that [Zn] / [Ga]> 1. Further, assuming that [In] + [Ga] + [Zn] = 1.0, [In] + [Ga] = 0.7 (70%) and 0.7> [In] ≥ 0.6. In this case, the amorphous thin film 3 capable of reversibly changing the semiconductor characteristics can be obtained relatively stably. In this example, [In]: [Zn]: [Ga] is set to 6: 3: 1 as described above.

続いて、かかる前駆体塗布液を基板に塗布する。基板としては、図1に示すように、Si層1の上に酸化膜2を有するシリコンウエハを用いた。塗布方法はスピンコート法を用い得るが、その他の液相法であってもよい。 Subsequently, the precursor coating liquid is applied to the substrate. As a substrate, as shown in FIG. 1, a silicon wafer having an oxide film 2 on the Si layer 1 was used. The coating method may be a spin coating method, but other liquid phase methods may also be used.

次いで、これをホットプレートで250℃に加熱し60分間保持した。これにより、半導体−絶縁体の間で半導体特性が可逆的に変化するIn−Ga−Zn−O系酸化物からなるアモルファス薄膜3を得られる。 This was then heated to 250 ° C. on a hot plate and held for 60 minutes. As a result, an amorphous thin film 3 made of an In-Ga-Zn-O-based oxide whose semiconductor characteristics reversibly change between the semiconductor and the insulator can be obtained.

さらに、基板上に成膜されたアモルファス薄膜3の上に、2つのAl電極を蒸着によって作製し、それぞれソース電極4及びドレイン電極5とした。さらに、基板のSi層1をゲートとし、図1に示す回路を形成させて、これに接続された薄膜トランジスタ10とした。 Further, two Al electrodes were formed by vapor deposition on the amorphous thin film 3 formed on the substrate, and used as a source electrode 4 and a drain electrode 5, respectively. Further, the Si layer 1 of the substrate was used as a gate, and the circuit shown in FIG. 1 was formed to form a thin film transistor 10 connected to the circuit.

このようにして得られた薄膜トランジスタ10を用い、アモルファス薄膜3の半導体特性の変化についての確認試験を行った。かかる確認試験について、図1乃至図3を用いて説明する。 Using the thin film transistor 10 thus obtained, a confirmation test was conducted on changes in the semiconductor characteristics of the amorphous thin film 3. Such a confirmation test will be described with reference to FIGS. 1 to 3.

図1に示す薄膜トランジスタ10において、ドレイン電圧を40Vとし、ゲート電圧を−40〜80Vまで変化させてドレイン電流Idを電流計で計測して、伝達特性(Id−Vg特性)の測定を行う。なお、ソース電圧はアースされており0Vである。 In the thin film transistor 10 shown in FIG. 1, the drain voltage is set to 40 V, the gate voltage is changed from -40 to 80 V, the drain current Id is measured with an ammeter, and the transmission characteristic (Id-Vg characteristic) is measured. The source voltage is grounded and is 0V.

ここで、図2に示すように、アモルファス薄膜3に下記のa〜eの5つの条件で紫外線の照射と加熱とを行った上で伝達特性を測定し、その変化を調べた。紫外線は、波長172nmの紫外線を照射できるエキシマランプを用いて強度12mW/cmにて照射した。紫外線の照射はそれぞれ、a:照射なし、b:1分間、c:5分間、d:10分間、e:10分間とし、eについてはさらに250℃で30分間加熱した。 Here, as shown in FIG. 2, the amorphous thin film 3 was irradiated with ultraviolet rays and heated under the following five conditions a to e, and then the transfer characteristics were measured and the changes were investigated. The ultraviolet rays were irradiated at an intensity of 12 mW / cm 2 using an excimer lamp capable of irradiating ultraviolet rays having a wavelength of 172 nm. The irradiation of ultraviolet rays was a: no irradiation, b: 1 minute, c: 5 minutes, d: 10 minutes, e: 10 minutes, and e was further heated at 250 ° C. for 30 minutes.

その結果、紫外線を照射しなかった「a」ではn型半導体としての半導体特性を有しているが、紫外線の照射時間の増加につれてゲート電流は小さくなり、10分間紫外線を照射した「d」においてn型半導体としての半導体特性を完全に消失し、絶縁体としての特性が現れた。さらに、10分間紫外線を照射した後に加熱を行った「e」では、「a」とほぼ同等のn型半導体としての半導体特性が現れた。すなわち、アモルファス薄膜3は、紫外線の照射によりn型半導体としての半導体特性を失って絶縁体となり、加熱によってn型半導体としての半導体特性を再び得るのである。つまり、半導体−絶縁体の間で半導体特性が可逆的に変化することが示された。 As a result, "a" which was not irradiated with ultraviolet rays had semiconductor characteristics as an n-type semiconductor, but the gate current became smaller as the irradiation time of ultraviolet rays increased, and in "d" which was irradiated with ultraviolet rays for 10 minutes. The semiconductor characteristics as an n-type semiconductor were completely lost, and the characteristics as an insulator appeared. Further, in "e" which was heated after being irradiated with ultraviolet rays for 10 minutes, the semiconductor characteristics as an n-type semiconductor which were almost the same as those of "a" appeared. That is, the amorphous thin film 3 loses the semiconductor characteristics as an n-type semiconductor by irradiation with ultraviolet rays and becomes an insulator, and the semiconductor characteristics as an n-type semiconductor are obtained again by heating. That is, it was shown that the semiconductor characteristics change reversibly between the semiconductor and the insulator.

図3に示すように、アモルファス薄膜3に下記のe’〜gの3つの条件で紫外線の照射と加熱とを行った上で伝達特性の変化を調べた。紫外線の照射は10分間、加熱は250℃で30分とし、それぞれ、e’:紫外線照射→加熱、f:紫外線照射→加熱→紫外線照射、g:紫外線照射→加熱→紫外線照射→加熱、とした。その他は上記と同様である。 As shown in FIG. 3, the amorphous thin film 3 was irradiated with ultraviolet rays and heated under the following three conditions e'to g, and then changes in transmission characteristics were investigated. UV irradiation was performed for 10 minutes, and heating was performed at 250 ° C. for 30 minutes. E': UV irradiation → heating, f: UV irradiation → heating → UV irradiation, g: UV irradiation → heating → UV irradiation → heating. .. Others are the same as above.

その結果、上記した「e」と同様に紫外線の照射と加熱とを行った「e’」では、n型半導体としての半導体特性を得ており、これに対してさらに紫外線照射を行った「f」ではn型半導体としての半導体特性を失って絶縁体となり、これに対してさらに加熱を行った「g」ではn型半導体としての半導体特性を再び得ている。つまり、紫外線の照射と加熱とを繰り返すことで、半導体−絶縁体の間での半導体特性の可逆的な変化を繰り返し与え得ることが示された。 As a result, "e'", which was irradiated with ultraviolet rays and heated in the same manner as "e" described above, obtained semiconductor characteristics as an n-type semiconductor, and was further irradiated with ultraviolet rays "f". In "", the semiconductor characteristics as an n-type semiconductor are lost to become an insulator, and in "g", which is further heated, the semiconductor characteristics as an n-type semiconductor are obtained again. That is, it was shown that the reversible change in the semiconductor characteristics between the semiconductor and the insulator can be repeatedly given by repeating the irradiation and heating of ultraviolet rays.

なお、上記したアモルファス薄膜3のX線回折(XRD)を測定したところ、どの角度においてもピークは得られなかった。つまりアモルファス薄膜3は非晶質な構造であることが判る。なお、本実施例においては250℃の加熱によって成膜しているが、これより高い温度で成膜した場合には結晶相が観察され得る。 When the X-ray diffraction (XRD) of the above-mentioned amorphous thin film 3 was measured, no peak was obtained at any angle. That is, it can be seen that the amorphous thin film 3 has an amorphous structure. In this example, the film is formed by heating at 250 ° C., but when the film is formed at a temperature higher than this, a crystal phase can be observed.

また、紫外線照射を行って絶縁体となったアモルファス薄膜3においてもX線回折の測定においてピークは得られず、さらに加熱を行ってn型半導体としての半導体特性を再び得てもX線回折の測定においてピークは得られなかった。つまり、アモルファス薄膜3は、紫外線の照射及び加熱のいずれによっても非晶質な構造を維持していることが判る。 Further, even in the amorphous thin film 3 which was irradiated with ultraviolet rays and became an insulator, no peak was obtained in the measurement of X-ray diffraction, and even if the semiconductor characteristics as an n-type semiconductor were obtained again by further heating, the X-ray diffraction No peak was obtained in the measurement. That is, it can be seen that the amorphous thin film 3 maintains an amorphous structure by both irradiation with ultraviolet rays and heating.

[実施例2]
ここでは、上記した実施例1と同様の製造方法にて、合成石英基板の表面にアモルファス薄膜3を成膜した。かかるアモルファス薄膜3について、紫外光と可視光の吸収スペクトルを測定した。その結果、3eV付近を吸収端として紫外光領域に吸収を有することが判った。つまり、可視光領域においてアモルファス薄膜3は透明である。
[Example 2]
Here, the amorphous thin film 3 was formed on the surface of the synthetic quartz substrate by the same manufacturing method as in Example 1 described above. The absorption spectra of ultraviolet light and visible light were measured for the amorphous thin film 3. As a result, it was found that the ultraviolet light region had absorption with the absorption end near 3 eV. That is, the amorphous thin film 3 is transparent in the visible light region.

次に、図4に示すように、このアモルファス薄膜3に、下記のh、i、j、k、mの5つの条件で紫外線の照射と加熱とを行った上で、紫外光と可視光の吸収スペクトルを測定した。紫外線の照射は、h:照射なし、i:1分間、j:5分間、k:10分間、m:10分間とし、mはさらに250℃で30分間加熱した。その他は上記と同様である。 Next, as shown in FIG. 4, the amorphous thin film 3 is irradiated with ultraviolet rays and heated under the following five conditions of h, i, j, k, and m, and then exposed to ultraviolet light and visible light. The absorption spectrum was measured. Irradiation of ultraviolet rays was h: no irradiation, i: 1 minute, j: 5 minutes, k: 10 minutes, m: 10 minutes, and m was further heated at 250 ° C. for 30 minutes. Others are the same as above.

その結果、1分間以上の紫外線の照射をした「i」「j」「k」においては、紫外線を照射しなかった「h」に比べて3eV以上の紫外光領域での吸収が減少し、さらに加熱を行った「m」においては、ほぼ「h」と同等の状態に戻った。 As a result, in "i", "j", and "k" which were irradiated with ultraviolet rays for 1 minute or more, absorption in the ultraviolet light region of 3 eV or more was reduced as compared with "h" which was not irradiated with ultraviolet rays, and further. At the heated "m", the state returned to almost the same as that of "h".

以上のように、In−Ga−Zn−O系酸化物からなるアモルファス薄膜3は、可視光よりも短波長の光照射と室温以上250℃以下の加熱とにより、半導体−絶縁体の間で半導体特性を可逆的に変化させる。 As described above, the amorphous thin film 3 made of In-Ga-Zn-O oxide is a semiconductor between the semiconductor and the insulator by irradiation with light having a wavelength shorter than that of visible light and heating at room temperature or more and 250 ° C. or less. Reversibly change the properties.

このようなアモルファス薄膜3であれば、高分子材料などの融点より低い温度において、成膜と半導体特性の変化のための加熱とを行うことができるので、このような高分子材料からなる可撓性を有する基板上に成膜して使用することができる。 With such an amorphous thin film 3, film formation and heating for changing semiconductor characteristics can be performed at a temperature lower than the melting point of a polymer material or the like, so that the flexible thin film 3 is made of such a polymer material. It can be used by forming a film on a substrate having a property.

また、上記したアモルファス薄膜を成膜した上で、例えばマスクを使用するなどして絶縁体としたい部位にだけ紫外線の照射を行うだけで、基板上に成膜した半導体から必要な形状の半導体をパターニングできる。つまり、従来のような成膜した半導体の一部を取り除くための工程を不要とするのである。また、製造工程において従来のような真空中での工程も含まない。 Further, after forming the above-mentioned amorphous thin film, the semiconductor having the required shape can be obtained from the semiconductor formed on the substrate by irradiating only the part to be an insulator with ultraviolet rays, for example, by using a mask. Can be patterned. That is, the conventional step of removing a part of the formed semiconductor is not required. In addition, the manufacturing process does not include the conventional process in vacuum.

さらに、上記したアモルファス薄膜の素子をアレイ状に配置し配線することで、紫外線の照射された素子のみを特定できるので、紫外線による画像の記録装置やその他の記録装置としても使用し得る。なお、図2に示したように、紫外線の1分間の照射によってゲート電流は照射前に比べて1/1000程度に低下しており、短い露光時間による紫外線の照射を大きな電流差として検出し得る。 Further, by arranging and wiring the above-mentioned amorphous thin film elements in an array, only the elements irradiated with ultraviolet rays can be identified, so that the elements can be used as an image recording device or other recording devices by ultraviolet rays. As shown in FIG. 2, the gate current is reduced to about 1/1000 by irradiation with ultraviolet rays for 1 minute as compared with that before irradiation, and irradiation with ultraviolet rays with a short exposure time can be detected as a large current difference. ..

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the examples according to the present invention and the modifications based on the present invention have been described above, the present invention is not necessarily limited to this, and those skilled in the art deviate from the gist of the present invention or the appended claims. Without doing so, various alternative and modified examples could be found.

1 Si層
2 酸化膜
3 アモルファス薄膜
1 Si layer 2 Oxidation film 3 Amorphous thin film

Claims (10)

In−Ga−Zn−O系酸化物からなる半導体−絶縁体可逆変化薄膜であって、
In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするアモルファス薄膜であり、可視光よりも短波長の光照射によってn型半導体から絶縁体に変化し、少なくとも室温以上に加熱してn型半導体に戻ることを特徴とする半導体−絶縁体可逆変化薄膜。
A semiconductor-insulator reversible change thin film made of In-Ga-Zn-O oxide.
It is an amorphous thin film in which the element ratio of In, Ga, Zn is [In]>[Zn]> [Ga]. It changes from an n-type semiconductor to an insulator by irradiation with light having a wavelength shorter than that of visible light, and at least at room temperature or higher. A semiconductor-insulator reversible change thin film characterized by being heated to an n-type semiconductor.
5>[In]/[Zn]>1、且つ、5>[Zn]/[Ga]>1
であることを特徴とする請求項1記載の半導体−絶縁体可逆変化薄膜。
5> [In] / [Zn]> 1 and 5> [Zn] / [Ga]> 1
The semiconductor-insulator reversible change thin film according to claim 1.
前記光照射は紫外線照射によることを特徴とする請求項2記載の半導体−絶縁体可逆変化薄膜。 The semiconductor-insulator reversible change thin film according to claim 2, wherein the light irradiation is performed by ultraviolet irradiation. [In]:[Zn]:[Ga]を6:3:1とすることを特徴とする請求項3記載の半導体−絶縁体可逆変化薄膜。 The semiconductor-insulator reversible change thin film according to claim 3, wherein [In]: [Zn]: [Ga] is 6: 3: 1. In−Ga−Zn−O系酸化物からなる半導体−絶縁体可逆変化薄膜の製造方法であって、
前記半導体−絶縁体可逆変化薄膜は、可視光よりも短波長の光照射によってn型半導体から絶縁体に変化し、少なくとも室温以上に加熱してn型半導体に戻る、In,Ga,Znの元素比を[In]>[Zn]>[Ga]とするアモルファス薄膜であり、
In,Ga,Znの金属塩を溶媒に加えて基板に塗布し加熱処理して得られることを特徴とする半導体−絶縁体可逆変化薄膜の製造方法。
A method for producing a semiconductor-insulator reversible change thin film made of an In-Ga-Zn-O oxide.
The semiconductor-insulator reversible change thin film changes from an n-type semiconductor to an insulator by irradiation with light having a wavelength shorter than that of visible light, and is heated to at least room temperature or higher to return to the n-type semiconductor. In, Ga, Zn elements It is an amorphous thin film having a ratio of [In]>[Zn]> [Ga].
A method for producing a semiconductor-insulator reversible change thin film, which is obtained by adding a metal salt of In, Ga, Zn to a solvent, applying it to a substrate, and heat-treating it.
前記金属塩は硝酸塩であることを特徴とする請求項5記載の半導体−絶縁体可逆変化薄膜の製造方法。 The method for producing a semiconductor-insulator reversible change thin film according to claim 5, wherein the metal salt is a nitrate. 前記溶媒は、アルコール系混合溶媒であることを特徴とする請求項5記載の半導体−絶縁体可逆変化薄膜の製造方法。 The method for producing a semiconductor-insulator reversible change thin film according to claim 5, wherein the solvent is an alcohol-based mixed solvent. 5>[In]/[Zn]>1、且つ、5>[Zn]/[Ga]>1
であることを特徴とする請求項5記載の半導体−絶縁体可逆変化薄膜の製造方法。
5> [In] / [Zn]> 1 and 5> [Zn] / [Ga]> 1
The method for producing a semiconductor-insulator reversible change thin film according to claim 5.
前記光照射は紫外線照射によることを特徴とする請求項8記載の半導体−絶縁体可逆変化薄膜の製造方法。 The method for producing a semiconductor-insulator reversible change thin film according to claim 8, wherein the light irradiation is performed by ultraviolet irradiation. [In]:[Zn]:[Ga]を6:3:1とすることを特徴とする請求項9記載の半導体−絶縁体可逆変化薄膜の製造方法。

The method for producing a semiconductor-insulator reversible change thin film according to claim 9, wherein [In]: [Zn]: [Ga] is 6: 3: 1.

JP2018503373A 2016-03-02 2017-03-01 Semiconductor-insulator reversible change thin film and its manufacturing method Active JP6801891B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016040508 2016-03-02
JP2016040508 2016-03-02
PCT/JP2017/008122 WO2017150617A1 (en) 2016-03-02 2017-03-01 Semiconductor/insulator reversible-change thin film and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017150617A1 JPWO2017150617A1 (en) 2018-12-27
JP6801891B2 true JP6801891B2 (en) 2020-12-16

Family

ID=59744134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503373A Active JP6801891B2 (en) 2016-03-02 2017-03-01 Semiconductor-insulator reversible change thin film and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6801891B2 (en)
WO (1) WO2017150617A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10902914B2 (en) * 2018-06-11 2021-01-26 Cyberswarm, Inc. Programmable resistive memory element and a method of making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116225B2 (en) * 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP5121478B2 (en) * 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト Optical sensor element, imaging device, electronic device, and memory element
JP5489844B2 (en) * 2010-04-27 2014-05-14 富士フイルム株式会社 Electronic equipment
JP5979781B2 (en) * 2012-06-07 2016-08-31 パナソニック液晶ディスプレイ株式会社 Display device and manufacturing method of display device

Also Published As

Publication number Publication date
JPWO2017150617A1 (en) 2018-12-27
WO2017150617A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
US8202365B2 (en) Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
Lim et al. Wafer‐scale, homogeneous MoS2 layers on plastic substrates for flexible visible‐light photodetectors
US9761446B2 (en) Methods for the synthesis of arrays of thin crystal grains of layered semiconductors SnS2 and SnS at designed locations
JP5401572B2 (en) Method for manufacturing field effect transistor
JP2022137143A (en) Manufacturing method of oxide semiconductor film
JP5126730B2 (en) Method for manufacturing field effect transistor
JP5647900B2 (en) Solution processing type high mobility inorganic thin film transistor
US20100117071A1 (en) Field-effect transistor, and process for producing field-effect transistor
KR101284587B1 (en) P-type transparent oxide semiconductor, transistor having the same, and manufacture method of the same
Yoo et al. Sub-second photo-annealing of solution-processed metal oxide thin-film transistors via irradiation of intensely pulsed white light
KR20070116889A (en) Vapor deposition method of amorphous oxide thin film
Saxena et al. Polycrystalline silicon thin-film transistor using Xe flash-lamp annealing
Choi et al. Low-temperature solution-based In 2 O 3 channel formation for thin-film transistors using a visible laser-assisted combustion process
KR101759495B1 (en) Oxide Transistor and the controlling Method thereof
JP6801891B2 (en) Semiconductor-insulator reversible change thin film and its manufacturing method
Campbell et al. Optimisation of processing conditions during CVD growth of 2D WS 2 films from a chloride precursor
Kim et al. 14‐4L: Late‐News Paper: Self‐Pattern Process of InZnO Thin‐Film Transistors using Photosensitive Precursors
TWI408840B (en) Method for fabricating and repairing organic thin film transistor
KR102031481B1 (en) Manufacturing method for electronic member having metal chalcogenide thin film and electronic device including electronic member having metal chalcogenide thin film manufactured by the same
RU2333567C2 (en) Method of making thin crystal silicon films for semiconductor devices
Krishnan et al. Room temperature photo-induced, Eu 3+-doped IGZO transparent thin films fabricated using sol–gel method
KR102635418B1 (en) High crystalline two-dimensional material manufacturing method and highly crystalline two-dimensional material manufactured thereby
Das et al. Structural, photoluminescence and optical properties of chemically deposited (Cd 1− x Bi x) S thin films as a function of dopant concentration
KR20230123128A (en) Crystallization method for oxide semiconductor layer at low temperature using non-carbon material, semiconductor device and preparation method thereof, applying the same
Divya et al. Studies on physical properties with the effect of heat treatment on sol-gel ZnO thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6801891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250