JP6801842B2 - Water quality management system and water quality management method - Google Patents

Water quality management system and water quality management method Download PDF

Info

Publication number
JP6801842B2
JP6801842B2 JP2017134380A JP2017134380A JP6801842B2 JP 6801842 B2 JP6801842 B2 JP 6801842B2 JP 2017134380 A JP2017134380 A JP 2017134380A JP 2017134380 A JP2017134380 A JP 2017134380A JP 6801842 B2 JP6801842 B2 JP 6801842B2
Authority
JP
Japan
Prior art keywords
water
water quality
flow rate
measuring means
quality management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017134380A
Other languages
Japanese (ja)
Other versions
JP2019013896A (en
Inventor
聰 畑中
聰 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2017134380A priority Critical patent/JP6801842B2/en
Publication of JP2019013896A publication Critical patent/JP2019013896A/en
Application granted granted Critical
Publication of JP6801842B2 publication Critical patent/JP6801842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水道水の水質管理システム及び水質管理方法に関する。特に、本発明は、配水流量による水質劣化予測型の水質管理システム及び水質管理方法に関するものである。 The present invention relates to a water quality management system for tap water and a water quality management method. In particular, the present invention relates to a water quality management system and a water quality management method that predict water quality deterioration based on the distribution flow rate.

水道事業においては、浄水場で浄水された水道水は配水池に送水され、配水管網を経由して各需要者の給水栓へ配水されている。水道水の水質管理においては、水道法施行規則第17条に基づき給水栓水における遊離残留塩素濃度を0.1mg/L以上とする必要があるため、従前から浄水場出口や配水池における残留塩素濃度を0.5〜1.0mg/Lとして配水が行われている。 In the water supply business, tap water purified at a water purification plant is sent to a distribution reservoir and distributed to each consumer's water tap via a distribution pipeline network. In water quality management of tap water, it is necessary to set the free residual chlorine concentration in the faucet water to 0.1 mg / L or more based on Article 17 of the Enforcement Regulations of the Waterworks Law, so the residual chlorine at the water purification plant outlet and the distribution reservoir has been used. Water is distributed at a concentration of 0.5 to 1.0 mg / L.

例えば、特許文献1には、浄水池から配水池及び配水管網に順次配水する構成において、浄水池から検出した残留塩素濃度と配水池から検出した残留塩素濃度から、配水管網での必要最小限の塩素量が確保できるように塩素注入量を演算により決定し、塩素注入を行う配水中の残留塩素濃度制御装置が記載されている。また、特許文献1には、配水管網中に配水の各種水質、残留塩素濃度などを検知する配水水質モニタ局を設け、当該配水水質モニタ局は、配水の濁度、色度、残塩量、pH、紫外線吸光度、導電率、水温、水圧を測定することが記載されている。 For example, in Patent Document 1, in a configuration in which water is sequentially distributed from a water purification reservoir to a distribution reservoir and a distribution pipe network, the minimum required amount in the distribution pipe network is obtained from the residual chlorine concentration detected from the water purification reservoir and the residual chlorine concentration detected from the distribution reservoir. Described is a residual chlorine concentration control device in water distribution that determines the chlorine injection amount by calculation so that the limit chlorine amount can be secured and performs chlorine injection. Further, in Patent Document 1, a water distribution water quality monitoring station for detecting various water qualities of water distribution, residual chlorine concentration, etc. is provided in the water distribution pipe network, and the water distribution water quality monitoring station provides turbidity, chromaticity, residual salt amount of water distribution. , PH, UV absorbance, conductivity, water temperature, water pressure are described.

特開平6−320166号公報Japanese Unexamined Patent Publication No. 6-320166

従来の水質を監視するシステムでは、配水管網末端において水質を測定し、その測定値に基づき塩素注入量を算出し、水質を監視、制御している。しかし、水質を測定するシステムを配水管網末端に直接設置することができない場合があり、配水管網末端における水質の監視、制御ができないという問題がある。 In the conventional water quality monitoring system, the water quality is measured at the end of the water distribution pipe network, the chlorine injection amount is calculated based on the measured value, and the water quality is monitored and controlled. However, there are cases where a system for measuring water quality cannot be installed directly at the end of the water pipe network, and there is a problem that the water quality cannot be monitored or controlled at the end of the water pipe network.

そこで、本発明の課題は、水道水の水質管理において、配水管網末端の水質を制御するための新たな水質管理システム及び水質管理方法を提供することである。 Therefore, an object of the present invention is to provide a new water quality management system and a water quality management method for controlling the water quality at the end of the distribution pipe network in the water quality management of tap water.

本発明者は、上記の課題について鋭意検討した結果、配水管網内における水道水の滞留時間の変化により、残留塩素濃度等の水質が変動することに着目した。そして、配水管網の上流の水道管路において流量を測定し、この測定値から配水管網内の水質を予測することにより、配水管網内の水質を高度に管理することが可能となることを見出した。
すなわち、本発明は、以下の水質管理システム及び水質管理方法である。
As a result of diligent studies on the above problems, the present inventor has focused on changes in water quality such as residual chlorine concentration due to changes in the residence time of tap water in the distribution pipe network. Then, by measuring the flow rate in the water pipe upstream of the distribution pipe network and predicting the water quality in the distribution pipe network from this measured value, it becomes possible to highly manage the water quality in the distribution pipe network. I found.
That is, the present invention is the following water quality management system and water quality management method.

上記課題を解決するための本発明の水質管理システムは、浄水場又は配水池から水道管路を介して配水管網末端まで配水する配水システムに用いる水質管理システムであって、水質調整手段と、前記水道管路上に設置された流量測定手段と、を備え、前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測し、前記水質調整手段により前記流量測定手段よりも下流側の領域の水質を調整することを特徴とする。 The water quality management system of the present invention for solving the above problems is a water quality management system used for a water distribution system that distributes water from a water purification plant or a distribution reservoir to the end of a water distribution pipe network via a water pipe, and includes water quality adjusting means and A water flow measuring means installed on the water pipe is provided, and the water quality in a region downstream of the flow measuring means is predicted from the flow measured by the flow measuring means, and the water quality is measured by the water quality adjusting means. It is characterized by adjusting the water quality in the area downstream of the means.

この水質管理システムによれば、水道管路内の流量を測定する流量測定手段を設け、かつ得られた流量から流量測定手段よりも下流側の領域の水質を予測し、予測した水質の結果に基づき水質調整手段を制御して水質を管理することができる。これにより、配水管網末端の水質を測定することができない場合においても、高度な水質管理が可能となる。 According to this water quality management system, a flow rate measuring means for measuring the flow rate in the water pipe is provided, and the water quality in the region downstream of the flow rate measuring means is predicted from the obtained flow rate, and the predicted water quality result is obtained. Based on this, the water quality can be controlled by controlling the water quality adjusting means. As a result, even when the water quality at the end of the distribution pipe network cannot be measured, advanced water quality management becomes possible.

更に、本発明の水質管理システムの一実施態様としては、水質調整手段は、配水システムから捨水する捨水手段であることを特徴とする。
この特徴によれば、薬剤の添加によらない水質調整手段とすることで、水質の劣化防止やコスト削減が可能となる。
Further, one embodiment of the water quality management system of the present invention is characterized in that the water quality adjusting means is a water disposal means for discharging water from the water distribution system.
According to this feature, it is possible to prevent deterioration of water quality and reduce costs by using a water quality adjusting means that does not depend on the addition of chemicals.

更に、本発明の水質管理システムの一実施態様としては、捨水手段は、水道管路内の水圧を測定する水圧測定手段と、水道管路内の水質を測定する水質測定手段と、を備え、前記水圧測定手段及び前記水質測定手段により得られた測定結果に基づいて捨水量を制御することを特徴とする。
この特徴によれば、流量測定手段による水質予測以外にも、水質に関するデータ取得が可能な構成を加えることにより、捨水手段による捨水量をより精度高く制御することが可能となる。
Further, as one embodiment of the water quality management system of the present invention, the water disposal means includes a water pressure measuring means for measuring the water pressure in the water pipeline and a water quality measuring means for measuring the water quality in the water pipeline. It is characterized in that the amount of waste water is controlled based on the measurement results obtained by the water pressure measuring means and the water quality measuring means.
According to this feature, it is possible to control the amount of water discarded by the water disposal means with higher accuracy by adding a configuration capable of acquiring data on water quality in addition to the water quality prediction by the flow rate measuring means.

更に、本発明の水質管理システムの一実施態様としては、浄水場又は配水池内の残留塩素濃度を測定する残留塩素濃度測定手段を備え、前記残留塩素濃度測定手段から得られた測定結果と、前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測することを特徴とする。
この特徴によれば、季節などの条件によって変動する浄水場又は配水池内の残留塩素濃度の変動分を加味した水質調整を行うことが可能となる。
Further, as one embodiment of the water quality management system of the present invention, a residual chlorine concentration measuring means for measuring the residual chlorine concentration in the water purification plant or the distribution reservoir is provided, and the measurement result obtained from the residual chlorine concentration measuring means and the said It is characterized in that the water quality in a region downstream of the flow rate measuring means is predicted from the flow rate measured by the flow rate measuring means.
According to this feature, it is possible to adjust the water quality in consideration of the fluctuation of the residual chlorine concentration in the water purification plant or the distribution reservoir, which fluctuates depending on the conditions such as the season.

更に、本発明の水質管理システムの一実施態様としては、前記水道管路内の水温を測定する温度測定手段を備え、前記温度測定手段により得られた測定結果と、前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測することを特徴とする。
この特徴によれば、水道管路の配設環境や外気温などにより変動しやすい水温に関するデータを取得して水質予測のパラメータに加えることにより、より精度の高い水質予測が可能となる。
Further, as one embodiment of the water quality management system of the present invention, a temperature measuring means for measuring the water temperature in the water pipeline is provided, and the measurement result obtained by the temperature measuring means and the flow measuring means are used for measurement. It is characterized in that the water quality in a region downstream of the flow rate measuring means is predicted from the flow rate.
According to this feature, more accurate water quality prediction becomes possible by acquiring data on water temperature that is liable to fluctuate depending on the arrangement environment of water pipes and outside air temperature and adding it to the parameters of water quality prediction.

また、上記課題を解決するための本発明の水質管理方法は、浄水場又は配水池から水道管路を介して配水管網末端まで配水する工程における水質管理方法であって、前記水道管路上に設置された流量測定手段により、水道管路内の流量を測定する流量測定工程と、前記流量測定工程で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測する水質予測工程と、水質調整手段により前記流量測定手段よりも下流側の領域の水質を調整する水質調整工程と、を備えたことを特徴とする。
この本発明の水質管理方法によれば、水道管路内の流量を測定する流量測定手段により得られた流量を用いて、流量測定手段よりも下流側の領域の水質を予測することで、配水管網内の滞留時間をパラメータとして用いた水質予測を行い、この予測した水質の結果に基づき、前記流量測定手段よりも下流側の領域の水質が所定の水質となるように水質調整手段を制御することにより、配水管網末端の水質を測定することができない場合においても、高度な水質管理が可能となる。
Further, the water quality management method of the present invention for solving the above problems is a water quality management method in a step of distributing water from a water purification plant or a distribution reservoir to the end of a water distribution pipe network via a water pipe, and is on the water pipe. A flow measurement step of measuring the flow rate in a water pipe by an installed flow rate measuring means, and a water quality prediction step of predicting the water quality in a region downstream of the flow rate measuring means from the flow rate measured in the flow rate measuring step. It is characterized by including a water quality adjusting step of adjusting the water quality in a region downstream of the flow rate measuring means by the water quality adjusting means.
According to the water quality management method of the present invention, the water quality in the region downstream of the flow rate measuring means is predicted by using the flow rate obtained by the flow rate measuring means for measuring the flow rate in the water pipeline. Water quality is predicted using the residence time in the water pipe network as a parameter, and based on the predicted water quality result, the water quality adjusting means is controlled so that the water quality in the region downstream of the flow rate measuring means becomes a predetermined water quality. By doing so, even when the water quality at the end of the distribution pipe network cannot be measured, advanced water quality management becomes possible.

本発明によれば、浄水場又は配水池から水道管路内を介して配水管網末端まで配水するシステムにおいて、水道管路内において水質調整手段と流量測定手段とを設け、その配水流量により流量測定手段以降の水質劣化状況を予測し、予測した結果を用いた水質制御を行うことで、配水管網内の水質を高度に管理することが可能となった。 According to the present invention, in a system for distributing water from a water purification plant or a distribution reservoir to the end of a water distribution pipe network via a water pipe, a water quality adjusting means and a flow rate measuring means are provided in the water pipe, and the flow rate is determined by the water distribution flow rate. By predicting the state of water quality deterioration after the measuring means and controlling the water quality using the predicted results, it has become possible to highly control the water quality in the distribution pipe network.

本発明の水質管理システムの構成を示す全体概略図である。It is an overall schematic diagram which shows the structure of the water quality management system of this invention. 本発明の第1の実施形態の水質管理システムの構成を示す全体概略図である。It is an overall schematic which shows the structure of the water quality management system of 1st Embodiment of this invention. 本発明の第1の実施形態の水質管理システムの構成の一部を示す概略図である。It is the schematic which shows a part of the structure of the water quality management system of 1st Embodiment of this invention. 本発明の第2の実施形態の水質管理システムの構成を示す全体概略図である。It is an overall schematic which shows the structure of the water quality management system of the 2nd Embodiment of this invention. 本発明の第3の実施形態の水質管理システムの構成を示す全体概略図である。It is an overall schematic which shows the structure of the water quality management system of 3rd Embodiment of this invention.

以下に、本発明について図面を参照しながら説明する。なお、本発明の水質管理方法については、以下の水質管理システムの構成及び作動の説明に置き換えるものとする。また、この実施形態は、本発明を限定するものではない。 Hereinafter, the present invention will be described with reference to the drawings. The water quality management method of the present invention shall be replaced with the following description of the configuration and operation of the water quality management system. Moreover, this embodiment does not limit the present invention.

本発明の水質管理システムは、浄水場や配水池から配水管網を経由して各需要者の給水栓に配水される水道水の水質管理に使用される。 The water quality management system of the present invention is used for water quality management of tap water distributed from a water purification plant or a distribution reservoir to a water tap of each consumer via a distribution pipe network.

[水質管理システム]
図1は、本発明の水質管理システム10の構成を示す概略図である。
本発明の水質管理システム10は、配水池から配水管網を経由して各需要者の給水栓に配水される水道水を水質管理するものであり、図1に示すように、配水池1から配水管網2に水道管路3を介して水道水を供給する配水システムにおいて、水質調整手段20と、流量測定手段30と、を備えている。
なお、図1には、水道水の供給元として配水池を記載しているが、水道事業の規模によっては浄水場の浄水池から直接配水管網内に配水する構成であってもよい。
[Water quality management system]
FIG. 1 is a schematic view showing the configuration of the water quality management system 10 of the present invention.
The water quality management system 10 of the present invention manages the quality of tap water distributed from a distribution reservoir to a water tap of each consumer via a distribution pipe network, and as shown in FIG. 1, from the distribution reservoir 1. A water distribution system that supplies tap water to a water distribution pipe network 2 via a water pipe 3 includes a water quality adjusting means 20 and a flow rate measuring means 30.
Although a distribution reservoir is shown as a source of tap water in FIG. 1, depending on the scale of the water supply business, water may be distributed directly from the purification reservoir of the water purification plant into the distribution pipe network.

ここで、水質調整手段20は、配水管網末端における水質を改善するための構成であり、例えば、水道水中の残留塩素濃度が法定基準を満たすように水質を調整するための構成である。水質を調整するための具体的構成としては、薬剤添加手段や捨水手段等が挙げられる。なお、水質調整手段は、配水管網2に設けてもよい。 Here, the water quality adjusting means 20 is configured to improve the water quality at the end of the water distribution pipe network, and is, for example, configured to adjust the water quality so that the residual chlorine concentration in tap water satisfies the legal standard. Specific configurations for adjusting the water quality include chemical addition means, water disposal means, and the like. The water quality adjusting means may be provided in the water distribution pipe network 2.

また、水質管理システム10は、図示しないが、残留塩素濃度測定計、水温計、pH計など、水質に関する各種データを測定する手段を設けてもよい。これらの水質パラメータを確認することにより、より高度な水質管理が可能となる。なお、水質を測定する手段は、配水池1、配水管網2、水道管路3等、いずれの位置に設けてもよい。 Further, although not shown, the water quality management system 10 may be provided with means for measuring various data related to water quality, such as a residual chlorine concentration meter, a water temperature meter, and a pH meter. By confirming these water quality parameters, more advanced water quality management becomes possible. The means for measuring the water quality may be provided at any position such as the distribution reservoir 1, the distribution pipe network 2, and the water pipe 3.

流量測定手段30は、流量を計測するための流量計31を有するものであり、水道管路3に設置されることを特徴とする。流量計31により得られた測定値と、流量計31の下流側の配水管網2の容積から、流量計31の下流側流域の滞留時間が算出でき、滞留時間が長くなると水道水中の残留塩素濃度が減少することから、流量から水質の劣化についての予測が可能となる。 The flow rate measuring means 30 has a flow meter 31 for measuring the flow rate, and is characterized in that it is installed in the water pipe 3. The residence time in the downstream basin of the flow meter 31 can be calculated from the measured value obtained by the flow meter 31 and the volume of the water distribution pipe network 2 on the downstream side of the flow meter 31, and when the residence time becomes long, the residual chlorine in tap water can be calculated. Since the concentration decreases, it is possible to predict the deterioration of water quality from the flow rate.

本発明の水質管理システム10は、流量測定手段30で測定した流量から求めた水質劣化の予測結果に基づき、水質調整手段20を制御するように構成されている。これにより、配水管網末端における水質を測定することなく、配水管網2内の高度な水質管理が可能となる。 The water quality management system 10 of the present invention is configured to control the water quality adjusting means 20 based on the prediction result of water quality deterioration obtained from the flow rate measured by the flow rate measuring means 30. As a result, advanced water quality management in the water distribution pipe network 2 becomes possible without measuring the water quality at the end of the water distribution pipe network.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

〔第1の実施形態〕
図2は、本発明の第1の実施形態の水質管理システム11の構成を示す概略図である。
また、図3は、本発明の第1の実施形態の水質管理システム11における構成の一部分を示す拡大概略図である。
[First Embodiment]
FIG. 2 is a schematic view showing the configuration of the water quality management system 11 according to the first embodiment of the present invention.
Further, FIG. 3 is an enlarged schematic view showing a part of the configuration in the water quality management system 11 of the first embodiment of the present invention.

本実施形態の水質管理システム11は、図2に示すように、配水池1から配水管網2に水道管路3を介して水道水を供給する配水システムにおいて、水質調整手段20と、流量測定手段30と、電算部40と、制御部50とを備えている。 As shown in FIG. 2, the water quality management system 11 of the present embodiment is a water distribution system that supplies tap water from the distribution reservoir 1 to the distribution pipe network 2 via the water pipe 3, and the water quality adjusting means 20 and the flow rate measurement. The means 30, the computer unit 40, and the control unit 50 are provided.

(流量測定手段)
流量測定手段30は、水道管路3上に設けられる流量計31を有し、水道管路3中の水道水の流量を測定するものである。流量計31の測定値は、流量計31の下流側流域の滞留時間を算出するための電算部40に入力される。
(Flow rate measuring means)
The flow rate measuring means 30 has a flow meter 31 provided on the water pipe 3 and measures the flow rate of tap water in the water pipe 3. The measured value of the flow meter 31 is input to the computer unit 40 for calculating the residence time in the downstream basin of the flow meter 31.

さらに、流量測定手段30は、水道水の流向が一定となる水道管路3に設置されている。
複数の分岐を伴う配水管網2における水道水の流向は、それぞれの配水管末端(給水栓)における水道使用量が常に変化し続けることから、配水管網末端近傍の配水管網2内では局所的に逆流が生じる場合がある。このような箇所で流量を測定すると、流量計31の測定値が異常値を示すこととなる結果、実際には水質などに異常はないにもかかわらず、対応が必要となることが考えられる。そのため、流向が一定方向に安定している水道管路3に流量測定手段30を設けることにより、正確な水質管理を実行することができる。
Further, the flow rate measuring means 30 is installed in the water pipe 3 where the flow direction of tap water is constant.
The flow direction of tap water in the distribution pipe network 2 with a plurality of branches is local in the distribution pipe network 2 near the end of the distribution pipe network because the amount of water used at each distribution pipe end (water faucet) is constantly changing. Backflow may occur. When the flow rate is measured at such a location, the measured value of the flow meter 31 shows an abnormal value, and as a result, it is considered that measures are required even though there is actually no abnormality in the water quality or the like. Therefore, accurate water quality management can be performed by providing the flow rate measuring means 30 in the water pipe 3 whose flow direction is stable in a certain direction.

(電算部)
電算部40は、流量計31で測定された値から、流量測定手段よりも下流領域における残留塩素濃度を予測するものである。水道水中の残留塩素濃度は、滞留時間が長くなると減少することから、滞留時間から残留塩素濃度を予測することができる。そして、滞留時間は、流量計31で測定された値と、流量計31の下流側の配水管網2の容積から算出可能である。すなわち、電算部40は、流量計31で測定された値と、流量計31の下流側の配水管網2の容積から滞留時間を算出し、次に、算出された滞留時間と、滞留時間と残留塩素濃度の低下に関する関係式から残留塩素濃度を予測するものである。なお、電算部40は、例えば算出や予測に必要なプログラムをCPU等のプロセッサにより実行する計算装置である。
(Computer Department)
The computer unit 40 predicts the residual chlorine concentration in the region downstream of the flow rate measuring means from the value measured by the flow meter 31. Since the residual chlorine concentration in tap water decreases as the residence time increases, the residual chlorine concentration can be predicted from the residence time. The residence time can be calculated from the value measured by the flow meter 31 and the volume of the water distribution pipe network 2 on the downstream side of the flow meter 31. That is, the computer unit 40 calculates the residence time from the value measured by the flow meter 31 and the volume of the water distribution pipe network 2 on the downstream side of the flow meter 31, and then the calculated residence time and the residence time The residual chlorine concentration is predicted from the relational expression regarding the decrease in the residual chlorine concentration. The computer unit 40 is, for example, a calculation device that executes a program necessary for calculation or prediction by a processor such as a CPU.

(水質調整手段)
水質調整手段20は、水質を調整するための手段として、捨水手段21を備えている。近年、給水人口の減少により、配水管網2及び水道管路3における水道水の滞留時間が増加している。そのため、配水管網2及び水道管路3中における残留塩素濃度の低下等の水質の劣化が生じる。捨水手段21によれば、管理排水を行うことにより、配水管網2及び水道管路3中の水道水の水質を改善することができる。
(Water quality adjustment means)
The water quality adjusting means 20 includes a water disposal means 21 as a means for adjusting the water quality. In recent years, due to the decrease in the water supply population, the residence time of tap water in the distribution pipe network 2 and the water pipe 3 has increased. Therefore, deterioration of water quality such as a decrease in residual chlorine concentration in the water distribution pipe network 2 and the water pipe 3 occurs. According to the water disposal means 21, the quality of tap water in the distribution pipe network 2 and the water pipe 3 can be improved by performing controlled drainage.

また、捨水手段21は、流量測定手段30の上流側に設けられていることが好ましい。捨水手段21が流量測定手段30より下流側に設置されると、流量測定手段による流量値から滞留時間を算出する際に、捨水手段21における捨水量も考慮して算出する必要がある。そのため、計算が複雑化したり、予測の正確性が低下したりするなどの原因となるおそれがある。よって、捨水手段21を、流量測定手段30の上流側に設けることより、配水管網2内の高度な水質管理が可能となる。 Further, it is preferable that the water disposal means 21 is provided on the upstream side of the flow rate measuring means 30. When the water disposal means 21 is installed on the downstream side of the flow rate measuring means 30, it is necessary to consider the amount of water discarded by the water disposal means 21 when calculating the residence time from the flow rate value by the flow rate measuring means. Therefore, there is a risk that the calculation will be complicated and the accuracy of the prediction will be reduced. Therefore, by providing the water disposal means 21 on the upstream side of the flow rate measuring means 30, advanced water quality management in the water distribution pipe network 2 becomes possible.

図3に示すように、第1の実施形態の捨水手段21は、水道管路3から分岐させた排水管4に設けられている。
捨水手段21は、排水管4に設けられた電動弁24を有し、この電動弁24の開閉により水道管路3の水道水を配水システム外に排出する。なお、電動弁24は、電磁弁、エアー弁、油圧弁等の他の自動弁に置き換えることが可能である。
As shown in FIG. 3, the water disposal means 21 of the first embodiment is provided in the drain pipe 4 branched from the water pipe 3.
The water disposal means 21 has an electric valve 24 provided in the drain pipe 4, and the tap water in the water pipe 3 is discharged to the outside of the water distribution system by opening and closing the electric valve 24. The electric valve 24 can be replaced with another automatic valve such as a solenoid valve, an air valve, or a hydraulic valve.

また、捨水手段21は、水質測定手段23を備えており、水質測定手段23の測定値に基づき、電動弁24の開閉による捨水量の制御を行う。残留塩素濃度等の水質は、気温等の環境変化等によって変動することから、捨水手段21に水質測定手段23を設けることにより、水道管路3の水質をより正確に管理することができる。 Further, the water disposal means 21 includes a water quality measuring means 23, and controls the amount of waste water by opening and closing the electric valve 24 based on the measured value of the water quality measuring means 23. Since the water quality such as the residual chlorine concentration fluctuates due to environmental changes such as air temperature, the water quality of the water pipe 3 can be managed more accurately by providing the water quality measuring means 23 in the water disposal means 21.

水質測定手段23は、水道管路3から排水管4内に導入された水道水の水質を検出するためのものである。例えば、図3に示すように、排水管4から分岐したサンプリング管28上に残留塩素計26及び導電率計27を有する。 The water quality measuring means 23 is for detecting the water quality of tap water introduced into the drain pipe 4 from the water pipe 3. For example, as shown in FIG. 3, a residual chlorine meter 26 and a conductivity meter 27 are provided on a sampling pipe 28 branched from the drain pipe 4.

残留塩素計26は、水道管路3からサンプリング管28内に導入された水道水の残留塩素濃度を検出する。例えば、残留塩素濃度が低下した際に、塩素の消毒効果が薄れて水質が低下したと判断することができる。 The residual chlorine meter 26 detects the residual chlorine concentration of tap water introduced into the sampling pipe 28 from the water pipe 3. For example, when the residual chlorine concentration decreases, it can be determined that the disinfecting effect of chlorine diminishes and the water quality deteriorates.

導電率計27は、水道管路3からサンプリング管28内に導入された水道水の導電率を検出する。例えば、導電率が上昇した際に、電解性の不純物が増加して水質が低下したと判断することができる。 The conductivity meter 27 detects the conductivity of tap water introduced into the sampling pipe 28 from the water pipe 3. For example, when the conductivity increases, it can be determined that the electrolytic impurities increase and the water quality deteriorates.

また、捨水手段21は、水圧測定手段22を備えており、水圧測定手段22の測定値に基づき、電動弁24の開閉による捨水量の制御を行う。水圧測定手段22は、排水管4に設けられた水圧計25を有し、排水管4内の水圧を検出するものである。震災等により水道管路内の水漏れが生じているとき等に捨水を行うと、水道管路内の水圧が過度に低下する可能性がある。このように水道管路内の水圧が過度に低下すると、水道水を安定して供給できなくなるおそれがある。水圧測定手段22により水圧情報をモニタリングすることにより、水道管路内の水圧の過度な低下を防止し、水道水の安定した供給を実現することができる。 Further, the water disposal means 21 includes a water pressure measuring means 22, and controls the amount of waste water by opening and closing the electric valve 24 based on the measured value of the water pressure measuring means 22. The water pressure measuring means 22 has a water pressure gauge 25 provided in the drain pipe 4 and detects the water pressure in the drain pipe 4. If water is discarded when water leaks in the water pipe due to an earthquake or the like, the water pressure in the water pipe may drop excessively. If the water pressure in the water pipe is excessively lowered in this way, tap water may not be supplied stably. By monitoring the water pressure information with the water pressure measuring means 22, it is possible to prevent an excessive drop in the water pressure in the water pipe and realize a stable supply of tap water.

(制御部)
制御部50は、電算部40及び水質調整手段20内に設けられた水圧測定手段22や水質測定手段23などにより得られた水道管路3内の水道水に係るデータに基づき、捨水手段21による捨水量を制御するための構成である。
図3に示すように、制御部50は、電算部40と、水圧測定手段22における水圧計25と、水質測定手段23における残留塩素計26及び導電率計27に入力可能に接続されるとともに、捨水手段21の電動弁24に出力可能に接続される。なお、制御部50は例えばPLC(Programmable Logic Controller)等の制御装置である。
(Control unit)
The control unit 50 uses the water disposal means 21 based on the data related to tap water in the water pipe 3 obtained by the water pressure measuring means 22 and the water quality measuring means 23 provided in the computer unit 40 and the water quality adjusting means 20. It is a configuration for controlling the amount of water discharged by.
As shown in FIG. 3, the control unit 50 is connected to the computer unit 40, the water pressure gauge 25 in the water pressure measuring means 22, and the residual chlorine meter 26 and the conductivity meter 27 in the water quality measuring means 23 so as to be input. It is connected to the electric valve 24 of the water waste means 21 so as to be output. The control unit 50 is, for example, a control device such as a PLC (Programmable Logic Controller).

制御部50における制御の一例としては、流量計31により検出された流量を用いて、電算部40により算出される配水管網2内の滞留時間、及び水質劣化状況(残留塩素濃度の低減等)の予測に基づき、捨水手段21の電動弁24を開き、捨水を開始する。そして、想定される水質劣化状況が改善する程度まで捨水を行い、その後捨水を停止し、制御を終了する。なお、この際に、水質測定手段23による実際の水質測定結果を加味して、水質劣化状況を予測するものとしてもよい。 As an example of control in the control unit 50, the residence time in the water distribution pipe network 2 calculated by the computer unit 40 using the flow rate detected by the flow meter 31, and the water quality deterioration status (reduction of residual chlorine concentration, etc.) Based on the prediction of the above, the electric valve 24 of the water disposal means 21 is opened and water disposal is started. Then, the water is discarded to the extent that the assumed water quality deterioration condition is improved, and then the water disposal is stopped and the control is terminated. At this time, the actual water quality measurement result by the water quality measuring means 23 may be taken into consideration to predict the water quality deterioration state.

また、制御部50における制御の他の一例としては、水質測定手段23における残留塩素計26により検出された残留塩素濃度が下限値以下である場合、捨水手段21の電動弁24を開き、捨水を開始する。そして、水圧計25により検出された水圧が下限値よりも大きいかを判断し、水圧が下限値よりも大きい場合には、残留塩素濃度が基準値よりも大きいかを判断する。残留塩素濃度が基準値より大きい場合には水道管路3内の水質が改善したものと判断し、捨水を停止し、制御を終了する。なお、残留塩素濃度の下限値は0.35mg/Lとし、残留塩素濃度の基準値は前記下限値に所定の余裕量を加算した値であり、例えば0.4mg/Lとする。また、水圧の下限値は水道水を安定供給するために最低限度必要とされる水圧以上とする。 Further, as another example of the control in the control unit 50, when the residual chlorine concentration detected by the residual chlorine meter 26 in the water quality measuring means 23 is not more than the lower limit value, the electric valve 24 of the water disposal means 21 is opened and discarded. Start water. Then, it is determined whether the water pressure detected by the water pressure gauge 25 is larger than the lower limit value, and if the water pressure is larger than the lower limit value, it is determined whether the residual chlorine concentration is larger than the reference value. If the residual chlorine concentration is higher than the reference value, it is determined that the water quality in the water pipe 3 has improved, the water disposal is stopped, and the control is terminated. The lower limit of the residual chlorine concentration is 0.35 mg / L, and the reference value of the residual chlorine concentration is a value obtained by adding a predetermined margin to the lower limit, for example, 0.4 mg / L. In addition, the lower limit of water pressure shall be equal to or higher than the minimum water pressure required for stable supply of tap water.

〔第2の実施形態〕
図4は本発明の第2の実施形態の水処理装置の構成を示す概略図である。
第2の実施形態の水質管理システム12は、図4に示すように、配水池1に残留塩素濃度測定手段60を設け、この残留塩素濃度の測定結果を、電算部40に入力可能に接続し、水質予測のパラメータとするものである。そして、この水質予測に基づき、制御部50に接続された捨水手段21による捨水量を制御するものである。
[Second Embodiment]
FIG. 4 is a schematic view showing the configuration of the water treatment apparatus according to the second embodiment of the present invention.
As shown in FIG. 4, the water quality management system 12 of the second embodiment is provided with the residual chlorine concentration measuring means 60 in the distribution reservoir 1, and the measurement result of the residual chlorine concentration is connected to the computer unit 40 so as to be inputtable. , It is a parameter for water quality prediction. Then, based on this water quality prediction, the amount of water discarded by the water disposal means 21 connected to the control unit 50 is controlled.

したがって、水質管理システム12では、季節などの条件によって変動する給水元(配水池1)の残留塩素濃度も水質予測のパラメータとして用いることができ、さらに水質予測精度を向上させることが可能となる。 Therefore, in the water quality management system 12, the residual chlorine concentration of the water supply source (distribution reservoir 1), which fluctuates depending on the conditions such as the season, can be used as a parameter for water quality prediction, and the water quality prediction accuracy can be further improved.

〔第3の実施形態〕
図5は本発明の第3の実施形態の水処理装置の構成を示す概略図である。
第3の実施形態の水質管理システム13は、図5に示すように、水道管路3内に温度測定手段70として水温計71を設け、この水温計71の測定結果を、電算部40に入力可能に接続し、水質予測のパラメータとするものである。例えば、水温が上昇した際に、水道管内の残留塩素濃度が低減して水質が低下すると判断することができる。
そして、この水質予測に基づき、制御部50に接続された捨水手段21による捨水量を制御するものである。
[Third Embodiment]
FIG. 5 is a schematic view showing the configuration of the water treatment apparatus according to the third embodiment of the present invention.
As shown in FIG. 5, the water quality management system 13 of the third embodiment provides a water temperature gauge 71 as a temperature measuring means 70 in the water pipe 3, and inputs the measurement result of the water temperature gauge 71 to the computer unit 40. It is possible to connect and use it as a parameter for water quality prediction. For example, when the water temperature rises, it can be determined that the residual chlorine concentration in the water pipe is reduced and the water quality is lowered.
Then, based on this water quality prediction, the amount of water discarded by the water disposal means 21 connected to the control unit 50 is controlled.

したがって、水質管理システム13では、水道管路3の配設環境や外気温等によって変動する水温も水質予測のパラメータとして用いることができ、さらに水質予測精度を向上させることが可能となる。 Therefore, in the water quality management system 13, the water temperature that fluctuates depending on the arrangement environment of the water pipe 3 and the outside air temperature can be used as a parameter for water quality prediction, and the water quality prediction accuracy can be further improved.

なお、上述した実施形態は水質管理システムの一例を示すものである。本発明に係る水質管理システムは、上述した実施形態に限られるものではなく、請求項に記載した要旨を変更しない範囲で、上述した実施形態に係る水質管理システムを変形し、又は他のものに適用したものであってもよい。 The above-described embodiment shows an example of a water quality management system. The water quality management system according to the present invention is not limited to the above-described embodiment, and the water quality management system according to the above-described embodiment is modified or changed to another without changing the gist described in the claims. It may be applied.

例えば、水質測定手段23において、残留塩素濃度及び導電率を測定するものとしているが、これらに限定されるものではない。例えば、濁度、pH、色度、臭気等、水質に関するさまざまなパラメータを測定するための構成を用いてもよい。 For example, the water quality measuring means 23 is supposed to measure the residual chlorine concentration and the conductivity, but is not limited thereto. For example, a configuration for measuring various parameters related to water quality such as turbidity, pH, chromaticity, and odor may be used.

また、制御部50において、電算部40、水圧測定手段22及び水質測定手段23から入力されたデータの数値があらかじめ設定した数値を超える異常値を示した場合や、電動弁24の動作に異常がある場合に、異常を通知する異常通知手段を設けてもよい。なお、異常通知手段は、アラーム音を発するものであってもよいし、通信回線等を介して外部に異常を通知するものであってもよい。 Further, in the control unit 50, when the numerical value of the data input from the computer unit 40, the water pressure measuring means 22 and the water quality measuring means 23 shows an abnormal value exceeding a preset value, or when the operation of the motorized valve 24 is abnormal. In some cases, an abnormality notification means for notifying the abnormality may be provided. The abnormality notification means may be one that emits an alarm sound, or may be one that notifies the abnormality to the outside via a communication line or the like.

本発明の水質管理システム及び水質管理方法は、水道水の水質管理に特に好適に利用することができる。 The water quality management system and the water quality management method of the present invention can be particularly preferably used for water quality management of tap water.

1…配水池、2…配水管網、3…水道管路、4…排水管、10、11、12、13…水質管理システム、20…水質調整手段、21…捨水手段、22…水圧測定手段、23…水質測定手段、24…電動弁、25…水圧計、26…残留塩素計、27…導電率計、28…サンプリング管、30…流量測定手段、31…流量計、40…電算部、50…制御部、60…残留塩素濃度測定手段、70…温度測定手段、71…水温計 1 ... Reservoir, 2 ... Water distribution network, 3 ... Water pipe, 4 ... Drain pipe, 10, 11, 12, 13 ... Water quality management system, 20 ... Water quality adjusting means, 21 ... Water disposal means, 22 ... Water pressure measurement Means, 23 ... Water quality measuring means, 24 ... Electric valve, 25 ... Water pressure gauge, 26 ... Residual chlorine meter, 27 ... Conductivity meter, 28 ... Sampling pipe, 30 ... Flow measuring means, 31 ... Flow meter, 40 ... Computer unit , 50 ... Control unit, 60 ... Residual chlorine concentration measuring means, 70 ... Temperature measuring means, 71 ... Water temperature gauge

Claims (5)

浄水場又は配水池から水道管路を介して配水管網末端まで配水する配水システムに用いる水質管理システムであって、
水質調整手段と、前記水道管路上に設置された流量測定手段と、を備え、
前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測し、前記水質調整手段により前記流量測定手段よりも下流側の領域の水質を調整すること
前記水質調整手段は、配水システムから捨水する捨水手段であること、及び、
前記捨水手段は、前記流量測定手段の上流側に設けられていることを特徴とする、水質管理システム。
A water quality management system used for a water distribution system that distributes water from a water purification plant or distribution reservoir to the end of a distribution pipe network via a water pipe.
It is provided with a water quality adjusting means and a flow rate measuring means installed on the water pipe.
Predicting the water quality in the region downstream of the flow rate measuring means from the flow rate measured by the flow rate measuring means, and adjusting the water quality in the region downstream of the flow rate measuring means by the water quality adjusting means .
The water quality adjusting means is a water disposal means for discharging water from the water distribution system, and
A water quality management system characterized in that the water disposal means is provided on the upstream side of the flow rate measuring means .
前記捨水手段は、
水道管路内の水圧を測定する水圧測定手段と、
水道管路内の水質を測定する水質測定手段と、を備え、
前記水圧測定手段及び前記水質測定手段により得られた測定結果に基づいて捨水量を制御することを特徴とする、請求項に記載の水質管理システム。
The water disposal means
Water pressure measuring means for measuring water pressure in water pipes,
Equipped with a water quality measuring means for measuring the water quality in the water pipe,
The water quality management system according to claim 1 , wherein the amount of waste water is controlled based on the water pressure measuring means and the measurement results obtained by the water quality measuring means.
前記浄水場又は配水池内の残留塩素濃度を測定する残留塩素濃度測定手段を備え、
前記残留塩素濃度測定手段から得られた測定結果と、前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測することを特徴とする、請求項1又は2に記載の水質管理システム。
A means for measuring the residual chlorine concentration in the water purification plant or the distribution reservoir is provided.
Claim 1 or 2 is characterized in that the water quality in a region downstream of the flow rate measuring means is predicted from the measurement result obtained from the residual chlorine concentration measuring means and the flow rate measured by the flow rate measuring means. Water quality management system described in.
前記水道管路内の水温を測定する温度測定手段を備え、
前記温度測定手段により得られた測定結果と、前記流量測定手段で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測することを特徴とする、請求項1〜のいずれか一項に記載の水質管理システム。
A temperature measuring means for measuring the water temperature in the water pipe is provided.
Any of claims 1 to 3 , wherein the water quality in the region downstream of the flow rate measuring means is predicted from the measurement result obtained by the temperature measuring means and the flow rate measured by the flow rate measuring means. The water quality management system described in item 1.
浄水場又は配水池から水道管路を介して配水管網末端まで配水する工程における水質管理方法であって、
前記水道管路上に設置された流量測定手段により、水道管路内の流量を測定する流量測定工程と、
前記流量測定工程で測定した流量から、前記流量測定手段よりも下流側の領域の水質を予測する水質予測工程と、
水質調整手段により前記流量測定手段よりも下流側の領域の水質を調整する水質調整工程と、
を備え
前記水質調整手段は、配水システムから捨水する捨水手段であること、及び、
前記捨水手段は、前記流量測定手段の上流側に設けられていることを特徴とする、水質管理方法。
It is a water quality management method in the process of distributing water from a water purification plant or a distribution reservoir to the end of a distribution pipe network via a water pipe.
A flow rate measuring step of measuring the flow rate in the water pipe by the flow rate measuring means installed on the water pipe, and
A water quality prediction step that predicts the water quality in a region downstream of the flow rate measuring means from the flow rate measured in the flow rate measuring step.
A water quality adjusting step of adjusting the water quality in a region downstream of the flow rate measuring means by the water quality adjusting means,
Equipped with a,
The water quality adjusting means is a water disposal means for discharging water from the water distribution system, and
A water quality management method, characterized in that the water disposal means is provided on the upstream side of the flow rate measuring means .
JP2017134380A 2017-07-10 2017-07-10 Water quality management system and water quality management method Active JP6801842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017134380A JP6801842B2 (en) 2017-07-10 2017-07-10 Water quality management system and water quality management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134380A JP6801842B2 (en) 2017-07-10 2017-07-10 Water quality management system and water quality management method

Publications (2)

Publication Number Publication Date
JP2019013896A JP2019013896A (en) 2019-01-31
JP6801842B2 true JP6801842B2 (en) 2020-12-16

Family

ID=65358249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134380A Active JP6801842B2 (en) 2017-07-10 2017-07-10 Water quality management system and water quality management method

Country Status (1)

Country Link
JP (1) JP6801842B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050833B2 (en) * 2020-02-21 2022-04-08 株式会社栗本鐵工所 Automatic drainage device
CN115564192A (en) * 2022-09-20 2023-01-03 厦门市政水务集团有限公司 Water supply pipeline water quality risk assessment method and computer readable storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320166A (en) * 1993-05-10 1994-11-22 Meidensha Corp Controlling apparatus for residual chlorine in distributed water
JP3451959B2 (en) * 1998-09-17 2003-09-29 株式会社日立製作所 Tap water quality management system
JP4850195B2 (en) * 2008-02-06 2012-01-11 メタウォーター株式会社 Residual chlorine concentration control method
JP5529803B2 (en) * 2011-05-12 2014-06-25 住重環境エンジニアリング株式会社 Water quality control device, water quality management system, water quality management device, and water quality management method.

Also Published As

Publication number Publication date
JP2019013896A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US10579075B2 (en) Low flow detection during period of no flow
CA2989452C (en) Process and device for the treatment of a fluid containing a contaminant
JP5529803B2 (en) Water quality control device, water quality management system, water quality management device, and water quality management method.
US8580121B2 (en) Method for monitoring and controlling a process for treatment of a treatable fluid
US20120234398A1 (en) Method and Device for Automatic Flushing
US8430112B2 (en) Slurry feed system and method
JP2012521504A (en) Equipment and methods for water quality monitoring in drinking water networks
JP6801842B2 (en) Water quality management system and water quality management method
US20090107921A1 (en) Chemical treatment system and method
KR102458172B1 (en) Automatic drain system according to water quality of water pipe
JP2009041333A (en) Water supply system and water supplying method
KR101707282B1 (en) Trenchless type unceasingly measuring device using the sluice valve
KR20110097342A (en) Intelligent operation system and method for distributing reservoir
JP4850195B2 (en) Residual chlorine concentration control method
KR101928816B1 (en) Cooling Water Control System And Control Method Of Cooling Water
JP4906799B2 (en) Automatic operation control system
JP2009192397A (en) System for monitoring pressure regulator, gas meter, and mobile terminal
WO2021247975A1 (en) Real time monitoring of drinking water chlorination
KR101659422B1 (en) Auto-discharge system and method for stagnant water in water distribution system
JP6779815B2 (en) Water distribution management support system
JP7441746B2 (en) Cooling water monitoring device for laser processing machines
KR20070119111A (en) Auto control apparatus of inactivation ration in chlorination process thereof
CZ308414B6 (en) System for optimizing drinking water quality
CN110088559B (en) Cooling tower adjusting method and system
KR102536794B1 (en) Automatic Chlorine Injection Device using Artificial Intelligence and Automatic Chlorine Injection Method using the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6801842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350