JP6798681B2 - Operation mechanism of underground work equipment and how to use underground work equipment - Google Patents

Operation mechanism of underground work equipment and how to use underground work equipment Download PDF

Info

Publication number
JP6798681B2
JP6798681B2 JP2016142014A JP2016142014A JP6798681B2 JP 6798681 B2 JP6798681 B2 JP 6798681B2 JP 2016142014 A JP2016142014 A JP 2016142014A JP 2016142014 A JP2016142014 A JP 2016142014A JP 6798681 B2 JP6798681 B2 JP 6798681B2
Authority
JP
Japan
Prior art keywords
fluid
cylinder chamber
flow path
side cylinder
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016142014A
Other languages
Japanese (ja)
Other versions
JP2018012944A (en
Inventor
山崎 一雄
一雄 山崎
荒井 昌彦
昌彦 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Kizai Co Ltd
Original Assignee
Sanwa Kizai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Kizai Co Ltd filed Critical Sanwa Kizai Co Ltd
Priority to JP2016142014A priority Critical patent/JP6798681B2/en
Publication of JP2018012944A publication Critical patent/JP2018012944A/en
Application granted granted Critical
Publication of JP6798681B2 publication Critical patent/JP6798681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Actuator (AREA)

Description

本発明は、掘削作業等を行う地中作業用装置の作動機構および地中作業用装置の使用方法に係るものである。 The present invention relates to an operating mechanism of an underground work device for performing excavation work and the like and a method of using the underground work device.

従来、下端に掘削刃を有するヘッドロッドに拡大翼の基部を回動自在に取付け、拡大翼を油圧シリンダにより格納位置と拡開位置との間回動するようにした構成は、公知である(特許文献1) Conventionally, a configuration is known in which the base of an expansion blade is rotatably attached to a head rod having an excavation blade at the lower end, and the expansion blade is rotated between a storage position and an expansion position by a hydraulic cylinder ( Patent Document 1)

特開2014−114587号公報Japanese Unexamined Patent Publication No. 2014-114587

前記公知例は、拡大翼を拡縮させる流体シリンダのピストンロッドを伸縮させるにあたり、タンクの流体を、流体ポンプにより流体シリンダの一方側シリンダ室または他方側シリンダ室に送ると、拡大翼を拡縮させるが、一方側シリンダ室または他方側シリンダ室に送られた流体は、夫々のシリンダ室内および一方側流路または他方側流路内に留まり循環することがない。
そのため、公知例の流体シリンダでは、流体シリンダを分解して流体中のエアーや異物の除去を行っていたので、面倒であるという課題がある。
即ち、流体カプラの接続を繰り返す等に起因して、流体シリンダを作動させる流体中にエアーや異物が混入するという課題があり、しかも、エアーや異物の除去のため、装置および装置に付属する流体シリンダを分解してメンテナンスしなければならず、メンテナンス作業が面倒となっていたのである。
本願は、流体シリンダを含めた作動機構を工夫し、エアーや異物除去のメンテナンス作業の容易化を図ったものである。
In the above-mentioned known example, when the piston rod of the fluid cylinder for expanding / contracting the expansion blade is expanded / contracted, when the fluid in the tank is sent to one side cylinder chamber or the other side cylinder chamber of the fluid cylinder by a fluid pump, the expansion blade is expanded / contracted. The fluid sent to the one-sided cylinder chamber or the other-side cylinder chamber stays in each cylinder chamber and in the one-sided flow path or the other-side flow path and does not circulate.
Therefore, the fluid cylinder of a known example has a problem that it is troublesome because the fluid cylinder is disassembled to remove air and foreign substances in the fluid.
That is, there is a problem that air and foreign matter are mixed into the fluid that operates the fluid cylinder due to repeated connection of the fluid coupler, and moreover, the fluid attached to the device and the device for removing the air and foreign matter. The cylinder had to be disassembled for maintenance, which made the maintenance work troublesome.
The present application has devised an operating mechanism including a fluid cylinder to facilitate maintenance work for removing air and foreign matter.

請求項1の発明は、作業用装置の地中作業である、地中に拡大穴を掘削する拡大翼5を備えた拡大ヘッドHを設け、流体の圧力により前記拡大翼5を拡翼状態と閉翼状態とに作動させる流体シリンダ2を設け、該流体シリンダ2は、シリンダチューブ12と、該シリンダチューブ12内に挿入したピストンロッド11を取付けたピストンヘッド13と、シリンダチューブ12内に設けた一方側シリンダ室15と他方側シリンダ室16とを有して構成し、流体シリンダ2の一方側シリンダ室15と他方側シリンダ室16の夫々に流体を送る流体ポンプ20と、一方側シリンダ室15と他方側シリンダ室16の夫々に送る流体を貯留するタンク22とを有して構成した流体回路中に、タンク22から出た流体がタンク22に戻るように流体回路内を流体が循環して流れるようにする循環手段30を設けて構成し、該循環手段30は、前記一方側シリンダ室15と前記他方側シリンダ室16とを所定条件にて連通させる連通手段31を設けて構成し、該連通手段31は、前記一方側シリンダ室15と前記他方側シリンダ室16とを連通させる圧力制御弁32をピストンヘッド13内に内蔵して構成し、前記流体ポンプ20と流体シリンダ2との間に、流体を前記ピストンロッド11を伸縮させる流路と循環用の流路とに切り替える伸縮循環切替バルブ24と、一方側シリンダ室15と他方側シリンダ室16との何れかに流路を切替える切替バルブ19と、ピストンロッド11を伸縮させるために前記圧力制御弁32を非連通状態に保持するように流体回路内の流体圧力を設定する伸縮圧力設定バルブ25とを設け、流体シリンダ2からタンク22へ流体を戻す戻し流路23に除去手段39を設け、前記拡大翼5が拡翼状態と閉翼状態との間の何れの位置においても、一方側シリンダ室15および他方側シリンダ室16内を含めてタンク22から出た流体がタンク22に戻るように循環して流れるように構成した地中作業用装置の作動機構としたものである。
請求項2の発明は、地中作業用装置のヘッドロッド3の外周にヘッドロッド3と平行な閉翼状態とヘッドロッド3に対して交差する拡翼状態とに拡縮する拡大翼5を、流体シリンダ2のシリンダチューブ12の一方側シリンダ室15と他方側シリンダ室16との夫々に流体ポンプ20により伸縮圧力設定バルブ25を通してピストンヘッド13に内蔵された循環手段30の圧力制御弁32の設定圧より低く減圧させてタンク22から流体を送って、ピストンロッド11を伸縮させることにより拡縮させて地中作業を行い、次に、地中作業中の拡大翼5の回転を停止させ、拡大翼5が拡翼あるいは閉翼の間の何れかの姿勢状態で、伸縮循環切替バルブ24を切り替えて、流体ポンプ20によりタンク22内の流体を流路21から伸縮圧力設定バルブ25を通さずに、流体シリンダ2のピストンヘッド13を移動させるよりも高圧の流体を流路切替えバルブ19へ通し、流路切替えバルブ19から他方側流路18を通って他方側シリンダ室16に流入させ、他方側シリンダ室16内の流体圧により、ピストンヘッド13に内蔵された循環手段30の圧力制御弁32を開き、他方側シリンダ室16と一方側シリンダ室15とを連通させ、他方側シリンダ室16から一方側シリンダ室15への流体の移動を許容し、一方側シリンダ室15から一方側流路17を介して戻し流路23を通してタンク22に戻る循環が行われ、この戻し流路23に設けた除去手段39により循環中の流体から異物を除去する地中作業用装置の使用方法としたものである。
The invention of claim 1 is to provide an expansion head H provided with an expansion wing 5 for excavating an expansion hole in the ground, which is an underground work of a work device, and the expansion wing 5 is brought into a wing expansion state by the pressure of a fluid. A fluid cylinder 2 that operates in a closed wing state is provided, and the fluid cylinder 2 is provided in a cylinder tube 12, a piston head 13 to which a piston rod 11 inserted in the cylinder tube 12 is attached, and a cylinder tube 12. A fluid pump 20 having a one-side cylinder chamber 15 and a other-side cylinder chamber 16 and sending fluid to each of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 of the fluid cylinder 2, and the one-side cylinder chamber 15 The fluid circulates in the fluid circuit so that the fluid discharged from the tank 22 returns to the tank 22 in the fluid circuit composed of the tank 22 and the tank 22 for storing the fluid sent to each of the cylinder chamber 16 on the other side. The circulation means 30 for flowing is provided and configured, and the circulation means 30 is configured by providing a communication means 31 for communicating the one-side cylinder chamber 15 and the other-side cylinder chamber 16 under predetermined conditions. The communication means 31 has a pressure control valve 32 built in the piston head 13 for communicating the one-side cylinder chamber 15 and the other-side cylinder chamber 16, and is configured between the fluid pump 20 and the fluid cylinder 2. , A telescopic circulation switching valve 24 that switches the fluid between a flow path for expanding and contracting the piston rod 11 and a flow path for circulation, and a switching valve that switches the flow path to either one side cylinder chamber 15 or the other side cylinder chamber 16. 19 and a telescopic pressure setting valve 25 for setting the fluid pressure in the fluid circuit so as to hold the pressure control valve 32 in a non-communication state for expanding and contracting the piston rod 11 are provided, and the fluid cylinder 2 is provided with the tank 22. A removing means 39 is provided in the return flow path 23 for returning the fluid, and the expanding blade 5 includes the inside of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 at any position between the expanded blade state and the closed blade state. This is an operating mechanism of an underground work device configured so that the fluid discharged from the tank 22 circulates and flows so as to return to the tank 22 .
The invention of claim 2 is to fluidize an expanding wing 5 that expands and contracts on the outer periphery of the head rod 3 of an underground work device into a closed wing state parallel to the head rod 3 and an expanded wing state intersecting the head rod 3. The set pressure of the pressure control valve 32 of the circulation means 30 built in the piston head 13 is passed through the expansion / contraction pressure setting valve 25 by the fluid pump 20 in each of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 of the cylinder tube 12 of the cylinder 2. The pressure is reduced to a lower level, fluid is sent from the tank 22, and the piston rod 11 is expanded and contracted to perform underground work. Next, the rotation of the expansion blade 5 during the underground work is stopped, and the expansion blade 5 is stopped. The expansion / contraction circulation switching valve 24 is switched in either the expansion or closure position, and the fluid pump 20 allows the fluid in the tank 22 to flow from the flow path 21 without passing through the expansion / contraction pressure setting valve 25. A fluid having a pressure higher than that for moving the piston head 13 of the cylinder 2 is passed through the flow path switching valve 19, and flows from the flow path switching valve 19 through the other side flow path 18 into the other side cylinder chamber 16 to flow into the other side cylinder chamber 16. The pressure control valve 32 of the circulation means 30 built in the piston head 13 is opened by the fluid pressure in 16, the other side cylinder chamber 16 and the one side cylinder chamber 15 are communicated with each other, and the other side cylinder chamber 16 to the one side cylinder. Circulation is performed from the one-side cylinder chamber 15 to the tank 22 through the return flow path 23 via the one-side flow path 17 by allowing the fluid to move to the chamber 15, and the removing means 39 provided in the return flow path 23. it is obtained by the use of underground working apparatus for removing foreign matter from a fluid in circulation by.

請求項1の発明では、作動機構の流体回路中に循環手段30を設けているので、タンク22の流体は流体シリンダ2を通ってタンク22に戻るように循環して、循環中の流体からエアーや異物の除去ができ、メンテナンス作業を容易にでき、循環手段30は、一方側シリンダ室15と他方側シリンダ室16とを連通手段31により連通させた状態で、流体を循環させることにより異物除去のメンテナンス作業を容易にでき、また、拡大翼5が拡翼状態と閉翼状態との間の何れの位置においても、循環させられるので、一層、操作性および作業性を向上させられることができる。
請求項2の発明では、作動機構の流体回路中に循環手段30により、タンク22の流体が流体回路中を循環させるので、装置や流体シリンダ2を分解せずに、エアーや異物除去のメンテナンス作業を容易にできる
In the invention of claim 1, since the circulation means 30 is provided in the fluid circuit of the operating mechanism, the fluid in the tank 22 circulates so as to return to the tank 22 through the fluid cylinder 2 and air from the circulating fluid. And foreign matter can be removed, and maintenance work can be facilitated. The circulation means 30 removes foreign matter by circulating a fluid in a state where the one-side cylinder chamber 15 and the other-side cylinder chamber 16 are communicated by the communication means 31. Since the maintenance work of the above can be easily performed and the expansion blade 5 is circulated at any position between the expanded blade state and the closed blade state, the operability and workability can be further improved. ..
In the invention of claim 2, since the fluid of the tank 22 is circulated in the fluid circuit by the circulating means 30 in the fluid circuit of the operating mechanism, maintenance work for removing air and foreign matter without disassembling the device and the fluid cylinder 2 Can be easily done .

地中作業用装置の拡大翼の拡開状態側面図。A side view of the expanded wing of the underground work device in the expanded state. 流体回路図。Fluid circuit diagram. (A)流体シリンダの伸長状態の流体回路図。 (B)流体シリンダの縮小状態の流体回路図。 (C)流体循環状態の流体回路図。(A) A fluid circuit diagram of a fluid cylinder in an extended state. (B) The fluid circuit diagram in the reduced state of the fluid cylinder. (C) Fluid circuit diagram in a fluid circulation state. 他の実施形態の流体回路図。Fluid schematics of other embodiments. 他の実施形態の、 (A)流体シリンダの伸長状態の流体回路図。 (B)流体シリンダの縮小状態の流体回路図。 (C)流体循環状態の流体回路図。(A) A fluid circuit diagram of an extended state of a fluid cylinder according to another embodiment. (B) The fluid circuit diagram in the reduced state of the fluid cylinder. (C) Fluid circuit diagram in a fluid circulation state. (A)他の実施形態の流体回路図。 (B)他の実施形態の流体回路図。(A) Fluid circuit diagram of another embodiment. (B) Fluid circuit diagram of another embodiment. 他の地中作業用装置の拡大翼の格納状態断面図。Cross-sectional view of the retracted state of the enlarged wing of other underground work equipment. 同一部拡大図。Enlarged view of the same part. 同拡大翼の拡開状態断面図。Cross-sectional view of the expanded wing in the expanded state. 他の地中作業用装置の側面図。Side view of other underground work equipment. 同作動状態横断面図。Cross-sectional view of the same operating state. 他の地中作業用装置の側面図。Side view of other underground work equipment.

本発明の一実施形態を図面により説明すると、本願は地中作業用装置1の各部を水・油等の流体圧力により作動させる流体シリンダ2により作動させ、図1の地中作業用装置1では、地盤に拡大穴を掘削する拡大ヘッドHを有して構成している。
拡大ヘッドHのヘッドロッド3の下端には掘削ヘッド4を設ける。掘削ヘッド4は地盤に縦坑を形成するものであり、ヘッドロッド3の径より大径に形成している。掘削ヘッド4の形状は本願の要件ではなく、任意形状のものでよい。
掘削ヘッド4より上方の所定位置のヘッドロッド3には、ヘッドロッド3と略平行の格納位置と掘削ヘッド4の掘削径よりも先端が外側に開いた拡開位置との間移動する一対の拡大翼5を設けており、この拡大翼5を流体シリンダ2により拡縮させる。
Explaining one embodiment of the present invention with reference to the drawings, in the present application, each part of the underground work device 1 is operated by a fluid cylinder 2 operated by a fluid pressure such as water or oil, and the underground work device 1 of FIG. , It is configured to have an expansion head H for excavating an expansion hole in the ground.
An excavation head 4 is provided at the lower end of the head rod 3 of the expansion head H. The excavation head 4 forms a vertical shaft in the ground, and is formed to have a diameter larger than the diameter of the head rod 3. The shape of the excavation head 4 is not a requirement of the present application, and may be an arbitrary shape.
The head rod 3 at a predetermined position above the excavation head 4 has a pair of enlargements that move between a storage position substantially parallel to the head rod 3 and an expansion position whose tip is open outward from the excavation diameter of the excavation head 4. A wing 5 is provided, and the expansion wing 5 is expanded or contracted by a fluid cylinder 2.

図2は、流体シリンダ2のピストンロッド11を伸縮させるための、流体シリンダ2の模式図および流体回路を示し、流体シリンダ2のシリンダチューブ12内に前記ピストンロッド11の基部を取付けたピストンヘッド13を挿入する。ピストンロッド11と反対側のシリンダチューブ12には一方側シリンダ室15を形成し、ピストンヘッド13を挟んで反対側のシリンダチューブ12内には他方側シリンダ室16を形成する。前記一方側シリンダ室15には一方側流路17の一端を接続する。前記他方側シリンダ室16には他方側流路18の一端を接続し、一方側流路17および他方側流路18の中間部には流路切替えバルブ19を設け、流路切替えバルブ19には流体ポンプ20と流路21により連結する。 FIG. 2 shows a schematic view of the fluid cylinder 2 and a fluid circuit for expanding and contracting the piston rod 11 of the fluid cylinder 2, and the piston head 13 in which the base of the piston rod 11 is mounted in the cylinder tube 12 of the fluid cylinder 2. To insert. A one-sided cylinder chamber 15 is formed in the cylinder tube 12 on the opposite side of the piston rod 11, and the other-side cylinder chamber 16 is formed in the cylinder tube 12 on the opposite side with the piston head 13 interposed therebetween. One end of the one-sided flow path 17 is connected to the one-sided cylinder chamber 15. One end of the other side flow path 18 is connected to the other side cylinder chamber 16, a flow path switching valve 19 is provided at an intermediate portion between the one side flow path 17 and the other side flow path 18, and the flow path switching valve 19 is provided. It is connected to the fluid pump 20 by a flow path 21.

22はタンク、23は戻し流路、24は伸縮循環切替バルブ、25は伸縮圧力設定バルブ、26は伸縮循環切替バルブ24から伸縮圧力設定バルブ25へ至る流体シリンダ2の伸縮用流路、27は伸縮圧力設定バルブ25により所定圧の流体を流路21に流す所定圧流路、28は所定圧流路27に設けた逆止弁、29は戻し流路である。 22 is a tank, 23 is a return flow path, 24 is a telescopic circulation switching valve, 25 is a telescopic pressure setting valve, 26 is a telescopic flow path for the fluid cylinder 2 from the telescopic circulation switching valve 24 to the telescopic pressure setting valve 25, and 27 is a telescopic flow path. A predetermined pressure flow path for flowing a fluid of a predetermined pressure through the flow path 21 by the expansion / contraction pressure setting valve 25, 28 is a check valve provided in the predetermined pressure flow path 27, and 29 is a return flow path.

しかして、流体シリンダ2には、流体ポンプ20によりタンク22から送られた流体が流体シリンダ2の一方側シリンダ室15と他方側シリンダ室16の何れか一方から何れか他方に流れてタンク22に戻るように、流体回路中の流体を循環させる循環手段30を流体回路中に設ける。
従来では、タンク22の流体は、流体ポンプ20により一方側シリンダ室15または他方側シリンダ室16に送られると、シリンダチューブ12とピストンヘッド13とを相対的に移動させて拡大翼5を拡縮させるが、一方側シリンダ室15または他方側シリンダ室16に送られた流体は一方側流路17または他方側流路18内に夫々留まり、循環することがなく、流体中のエアーや異物の除去は流体シリンダ2を分解して行っていた。
Then, in the fluid cylinder 2, the fluid sent from the tank 22 by the fluid pump 20 flows from either one of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 of the fluid cylinder 2 to the other to the tank 22. A circulation means 30 for circulating the fluid in the fluid circuit is provided in the fluid circuit so as to return.
Conventionally, when the fluid in the tank 22 is sent to the one-side cylinder chamber 15 or the other-side cylinder chamber 16 by the fluid pump 20, the cylinder tube 12 and the piston head 13 are relatively moved to expand or contract the expansion blade 5. However, the fluid sent to the one-side cylinder chamber 15 or the other-side cylinder chamber 16 stays in the one-side flow path 17 or the other-side flow path 18, respectively, and does not circulate, so that air and foreign matter in the fluid can be removed. The fluid cylinder 2 was disassembled.

本願は、流体シリンダ2内の一方側シリンダ室15と他方側シリンダ室16内の流体が循環手段30により流体回路内を循環可能に構成することにより、流体シリンダ2を分解することなく、流体中のエアーや異物の除去を可能にしている。
循環手段30の構成は任意であるが、例えば、一方側シリンダ室15と他方側シリンダ室16とを所定条件にて連通させる連通手段31により構成する。連通手段31は、一方側シリンダ室15または他方側シリンダ室16内の流体圧が所定圧以上になると、一方側シリンダ室15または他方側シリンダ室16の何れか他方への流体の移動を許容する構成とする。
本願の連通手段31は、一方側シリンダ室15内の流体圧が所定圧以上になると作動する圧力制御弁32をピストンヘッド13内に設けて構成している。
33はピストンヘッド13の入口流路、34は同出口流路、35は弾性体である。
In the present application, the fluid in the one-side cylinder chamber 15 and the other-side cylinder chamber 16 in the fluid cylinder 2 is configured to be able to circulate in the fluid circuit by the circulation means 30, so that the fluid cylinder 2 is not decomposed in the fluid. It enables the removal of air and foreign matter.
The configuration of the circulation means 30 is arbitrary, but for example, the circulation means 31 is configured to communicate the one-side cylinder chamber 15 and the other-side cylinder chamber 16 under predetermined conditions. The communication means 31 allows the fluid to move to either the one-side cylinder chamber 15 or the other-side cylinder chamber 16 when the fluid pressure in the one-side cylinder chamber 15 or the other-side cylinder chamber 16 becomes a predetermined pressure or higher. It is configured.
The communication means 31 of the present application is configured by providing a pressure control valve 32 in the piston head 13 that operates when the fluid pressure in the cylinder chamber 15 on one side becomes equal to or higher than a predetermined pressure.
33 is an inlet flow path of the piston head 13, 34 is an outlet flow path, and 35 is an elastic body.

しかして、流体回路の流体ポンプ20の流体送出圧力を、例えば、仮に20MPaとし、圧力制御弁32の通過圧を15MPaとし、伸縮圧力設定バルブ25の通過圧を10MPaと設定した場合、図3(A)のように、流体ポンプ20が送出する流体は伸縮圧力設定バルブ25により一部は戻し流路29を通ってタンク22に戻り、伸縮圧力設定バルブ25により10MPaとなった流体が所定圧流路27により逆止弁28を通過して一方側流路17に入り、一方側流路17からシリンダチューブ12の一方側シリンダ室15に送られてピストンロッド11を伸長させる。反対に、図3(B)のように、流路切替えバルブ19を切り替えて、伸縮圧力設定バルブ25により
10MPaとなった流体は所定圧流路27と逆止弁28を通って、流路切替えバルブ19により他方側流路18を通ってシリンダチューブ12の他方側シリンダ室16に入って、ピストンロッド11を圧縮(縮小)させる。
この場合、圧力制御弁32の通過圧は15MPaなので、10MPaの流体は圧力制御弁32を通過せず、流体シリンダ2を確実に伸縮作動させる。
When the fluid delivery pressure of the fluid pump 20 of the fluid circuit is set to, for example, 20 MPa, the passing pressure of the pressure control valve 32 is set to 15 MPa, and the passing pressure of the expansion / contraction pressure setting valve 25 is set to 10 MPa, FIG. As in A), the fluid delivered by the fluid pump 20 is partially returned to the tank 22 through the expansion / contraction pressure setting valve 25 through the return flow path 29, and the fluid whose volume is 10 MPa by the expansion / contraction pressure setting valve 25 is the predetermined pressure flow path. 27 passes through the check valve 28, enters the one-sided flow path 17, and is sent from the one-sided flow path 17 to the one-sided cylinder chamber 15 of the cylinder tube 12 to extend the piston rod 11. On the contrary, as shown in FIG. 3B, the flow path switching valve 19 is switched, and the fluid that has become 10 MPa by the expansion / contraction pressure setting valve 25 passes through the predetermined pressure flow path 27 and the check valve 28, and the flow path switching valve. 19 enters the other side cylinder chamber 16 of the cylinder tube 12 through the other side flow path 18 and compresses (reduces) the piston rod 11.
In this case, since the passing pressure of the pressure control valve 32 is 15 MPa, the fluid of 10 MPa does not pass through the pressure control valve 32, and the fluid cylinder 2 is reliably expanded and contracted.

次に、伸縮循環切替バルブ24を循環用に切り替えると、図3(C)のように、流体ポンプ20からの20MPaの流体は伸縮循環切替バルブ24により、伸縮用流路26を通らずに流路21と一方側流路17を通って一方側シリンダ室15に入る。
そのため、伸縮圧力設定バルブ25により減圧されていないので、一方側シリンダ室15内の流体は循環手段(連通手段31(圧力制御弁32))30を通過して他方側シリンダ室16に入り、他方側シリンダ室16から他方側流路18と流路切替えバルブ19と戻し流路23を通ってタンク22に戻り循環する。
そして、流路切替えバルブ19からタンク22に戻る戻し流路23にエアー抜きおよび異物を除去する除去手段(フィルタ)39を設け(図2〜図6)、循環して戻し流路23を通る流体は除去手段39によりエアーおよび異物が除去される。
Next, when the expansion / contraction circulation switching valve 24 is switched for circulation, as shown in FIG. 3C, the 20 MPa fluid from the fluid pump 20 flows by the expansion / contraction circulation switching valve 24 without passing through the expansion / contraction flow path 26. It enters the one-sided cylinder chamber 15 through the road 21 and the one-sided flow path 17.
Therefore, since the pressure is not reduced by the expansion / contraction pressure setting valve 25, the fluid in the cylinder chamber 15 on one side passes through the circulation means (communication means 31 (pressure control valve 32)) 30 and enters the cylinder chamber 16 on the other side, and the other It returns to the tank 22 from the side cylinder chamber 16 through the other side flow path 18, the flow path switching valve 19, and the return flow path 23, and circulates.
Then, a removing means (filter) 39 for bleeding air and removing foreign matter is provided in the return flow path 23 returning from the flow path switching valve 19 to the tank 22 (FIGS. 2 to 6), and the fluid circulates and passes through the return flow path 23. Air and foreign matter are removed by the removing means 39.

なお、圧力制御弁32は、ピストンヘッド13に一つ設ければ、連通手段31として成立するが、圧力制御弁32の入口流路33と出口流路34の向きは任意であり、図2のピストンヘッド13では一方側シリンダ室15から他方側シリンダ室16へ流体が流れるように圧力制御弁32を配置しているが、図4のピストンヘッド13では他方側シリンダ室16から一方側流路17へ流体が流れるように圧力制御弁32を配置している。
そして、図4のように、圧力制御弁32を配置した場合、図5(A)のように、ピストンロッド11を伸長させ、図5(B)のように、ピストンロッド11を圧縮させ、図5(C)のように、流体を循環させる。
If one pressure control valve 32 is provided in the piston head 13, it can be established as a communication means 31, but the directions of the inlet flow path 33 and the outlet flow path 34 of the pressure control valve 32 are arbitrary, and FIG. 2 shows. In the piston head 13, the pressure control valve 32 is arranged so that the fluid flows from the one-side cylinder chamber 15 to the other-side cylinder chamber 16, but in the piston head 13 of FIG. 4, the one-side flow path 17 is arranged from the other-side cylinder chamber 16. The pressure control valve 32 is arranged so that the fluid flows to the cylinder.
Then, when the pressure control valve 32 is arranged as shown in FIG. 4, the piston rod 11 is extended as shown in FIG. 5 (A), and the piston rod 11 is compressed as shown in FIG. 5 (B). The fluid is circulated as in 5 (C).

また、連通手段31(圧力制御弁32)を内蔵のピストンヘッド13を設けた流体シリンダ2は、連通手段31(圧力制御弁32)を有しない既存の拡大ヘッドHに設けた流体シリンダ2と交換設置してもよい。
また、ピストンヘッド13内に連通手段31を設けない場合では、図6のように、シリンダチューブ12外の一方側流路17と他方側流路18とを連通するバイパス流路38とバイパス流路38に設けた、連通手段31(圧力制御弁32)により循環手段30を構成してもよい。
Further, the fluid cylinder 2 provided with the piston head 13 having the communication means 31 (pressure control valve 32) is replaced with the fluid cylinder 2 provided in the existing expansion head H having no communication means 31 (pressure control valve 32). It may be installed.
When the communication means 31 is not provided in the piston head 13, the bypass flow path 38 and the bypass flow path that communicate the one side flow path 17 and the other side flow path 18 outside the cylinder tube 12 are as shown in FIG. The circulation means 30 may be configured by the communication means 31 (pressure control valve 32) provided in the 38.

この場合、図6(A)では、一方側流路17からバイパス流路38の圧力制御弁32を通って他方側流路18に流れて循環するが、図6(B)では、他方側流路18からバイパス流路38の圧力制御弁32を通って一方側流路17に流れて循環する。
しかして、図1の拡大ヘッドH内を、図7のように拡大ヘッドHのヘッドロッド3内に流体シリンダ2を内蔵した構成とした場合では、拡大翼5の基部は横軸40によりヘッドロッド3側に回動自在に取付け、横軸40にはアーム41の基部を固定する。アーム41の先端はヘッドロッド3に内蔵した流体シリンダ2のシリンダチューブ12の外周に形成した係合凹部42に係合させる。
In this case, in FIG. 6 (A), the flow flows from one side flow path 17 through the pressure control valve 32 of the bypass flow path 38 to the other side flow path 18 and circulates, but in FIG. 6 (B), the other side flow flows. It flows from the path 18 through the pressure control valve 32 of the bypass flow path 38 to the one-side flow path 17 and circulates.
Therefore, in the case where the fluid cylinder 2 is built in the head rod 3 of the expansion head H as shown in FIG. 7, the base of the expansion blade 5 is head rod by the horizontal axis 40. It is rotatably attached to the 3 side, and the base of the arm 41 is fixed to the horizontal shaft 40. The tip of the arm 41 is engaged with an engaging recess 42 formed on the outer periphery of the cylinder tube 12 of the fluid cylinder 2 built in the head rod 3.

この流体シリンダ2では、ピストンヘッド13の上下位置は変わらず、ピストンヘッド13に対してシリンダチューブ12を上下移動させる構成にしており、ピストンヘッド13の下側が一方側シリンダ室15に、ピストンヘッド13の上側が他方側シリンダ室16となり、ピストンヘッド13に対してシリンダチューブ12が下降すると拡大翼5が拡大し、ピストンヘッド13に対してシリンダチューブ12が上昇すると拡大翼5を格納する構成としている。
そして、図8のように、一方側流路17と他方側流路18の間に設けたバイパス流路38に循環手段30(圧力制御弁32)を設けており、他方側流路18から所定圧以上で流体が流れると、圧力制御弁32を介して他方側流路18に一方側流路17を連通させ、他方側流路18から一方側流路17によりタンク22に戻して循環させる構成としている。
In this fluid cylinder 2, the vertical position of the piston head 13 does not change, and the cylinder tube 12 is moved up and down with respect to the piston head 13. The lower side of the piston head 13 is in the cylinder chamber 15 on one side, and the piston head 13 is located. The upper side of the cylinder chamber 16 is on the other side, and when the cylinder tube 12 descends with respect to the piston head 13, the expansion blade 5 expands, and when the cylinder tube 12 rises with respect to the piston head 13, the expansion blade 5 is stored. ..
Then, as shown in FIG. 8, a circulation means 30 (pressure control valve 32) is provided in the bypass flow path 38 provided between the one side flow path 17 and the other side flow path 18, and is predetermined from the other side flow path 18. When the fluid flows above the pressure, the one-sided flow path 17 communicates with the other-side flow path 18 via the pressure control valve 32, and the other-side flow path 18 returns to the tank 22 by the one-side flow path 17 to circulate. It is supposed to be.

また、図10、11の拡大ヘッドHでは、
一対の拡大アーム45を流体シリンダ2のシリンダチューブ12とすると共に、シリンダチューブ12をピストンヘッド13に対して伸縮移動させる構成とし、流体シリンダ2のピストンヘッド13内に循環手段30(圧力制御弁32)を設けており、上側の拡大アーム45において、ピストンヘッド13の右側を一方側シリンダ室15とし、一方側シリンダ室15に流体が流入すると、拡大アーム45が伸長(拡大)し、ピストンヘッド13の左側を他方側シリンダ室16とし、他方側シリンダ室16に流体が流入すると、拡大アーム45が縮小(格納)し、他方側シリンダ室16内の流体圧が所定圧以上になると、図11の模式図のように、流体が他方側シリンダ室16からピストンヘッド13の循環手段30(圧力制御弁32)を通って一方側シリンダ室15に入り、一方側シリンダ室15から一方側流路17によりタンク22に戻って循環する。
Further, in the enlarged head H of FIGS. 10 and 11,
The pair of expansion arms 45 are formed as the cylinder tube 12 of the fluid cylinder 2, and the cylinder tube 12 is expanded and contracted with respect to the piston head 13, and the circulation means 30 (pressure control valve 32) is formed in the piston head 13 of the fluid cylinder 2. ) Is provided, and the right side of the piston head 13 is the one-side cylinder chamber 15 in the upper expansion arm 45, and when fluid flows into the one-side cylinder chamber 15, the expansion arm 45 expands (expands) and the piston head 13 The left side of the cylinder chamber 16 is the other side cylinder chamber 16, and when fluid flows into the other side cylinder chamber 16, the expansion arm 45 contracts (stores), and when the fluid pressure in the other side cylinder chamber 16 becomes equal to or higher than a predetermined pressure, FIG. As shown in the schematic diagram, fluid enters the one-side cylinder chamber 15 from the other-side cylinder chamber 16 through the circulation means 30 (pressure control valve 32) of the piston head 13, and enters the one-side cylinder chamber 15 from the one-side cylinder chamber 15 through the one-side flow path 17. It returns to the tank 22 and circulates.

また、図12の掘削ヘッドHでは、この掘削ヘッドHに一つの伸縮アーム46を設け、伸縮アーム46を流体シリンダ2ののシリンダチューブ12とすると共に、シリンダチューブ12をピストンヘッド13に対して伸縮移動させる構成とし、掘削孔を掘削する際に、伸縮アーム46が伸縮して掘削孔の内周に当接して、地中作業用装置1が垂直状態を保持するように傾斜修正する構成としている。
この掘削ヘッドHでは、流体シリンダ2のピストンヘッド13内に循環手段30(圧力制御弁32)を設けており、伸縮アーム46ではピストンヘッド13の左側を一方側シリンダ室15とし、一方側シリンダ室15に流体が流入すると、拡大アーム45が伸長(拡大)し、ピストンヘッド13の右側を他方側シリンダ室16とし、他方側シリンダ室16に流体が流入すると、伸縮アーム46が縮小(格納)し、他方側シリンダ室16内の流体圧が所定圧以上になると、流体が他方側シリンダ室16から循環手段30(圧力制御弁32)を通って一方側シリンダ室15に入り、一方側シリンダ室15から一方側流路17によりタンク22に戻って循環する。
Further, in the excavation head H of FIG. 12, one telescopic arm 46 is provided in the excavation head H, the telescopic arm 46 is used as the cylinder tube 12 of the fluid cylinder 2, and the cylinder tube 12 is expanded and contracted with respect to the piston head 13. The structure is such that when the excavation hole is excavated, the telescopic arm 46 expands and contracts and comes into contact with the inner circumference of the excavation hole, and the underground work device 1 is tilted and corrected so as to maintain the vertical state. ..
In this excavation head H, a circulation means 30 (pressure control valve 32) is provided in the piston head 13 of the fluid cylinder 2, and in the telescopic arm 46, the left side of the piston head 13 is a one-side cylinder chamber 15 and a one-side cylinder chamber. When the fluid flows into 15, the expansion arm 45 expands (expands), the right side of the piston head 13 becomes the other side cylinder chamber 16, and when the fluid flows into the other side cylinder chamber 16, the expansion / contraction arm 46 contracts (stores). When the fluid pressure in the other side cylinder chamber 16 becomes equal to or higher than a predetermined pressure, the fluid enters the one side cylinder chamber 15 from the other side cylinder chamber 16 through the circulation means 30 (pressure control valve 32), and enters the one side cylinder chamber 15 It returns to the tank 22 and circulates through the one-sided flow path 17.

(実施形態の作用)
本発明は、上記の構成であり、図1の地中作業用装置1では、拡大翼5を閉翼した状態で、ヘッドロッド3を回転させて掘削ヘッド4により地盤を掘削して、所定深さの竪穴を掘削する。
そして、図1の地中作業用装置1を、図3の油圧回路で、図3(A)のように、流体シリンダ2のシリンダチューブ12の一方側(伸長用)シリンダ室15に送油すると、ピストンヘッド13が上昇して、これにより、拡大翼5を拡開させて拡大掘削を行って拡大穴を掘削する。
(Action of Embodiment)
The present invention has the above-mentioned configuration, and in the underground work device 1 of FIG. 1, the ground is excavated by the excavation head 4 by rotating the head rod 3 with the expansion blade 5 closed, and the predetermined depth is obtained. Excavate the pit.
Then, when the underground work device 1 of FIG. 1 is supplied with the hydraulic circuit of FIG. 3 to the cylinder chamber 15 on one side (extension) of the cylinder tube 12 of the fluid cylinder 2 as shown in FIG. 3 (A). , The piston head 13 rises, thereby expanding the expansion blade 5 and performing expansion excavation to excavate an expansion hole.

反対に、図3の油圧回路で、図3(B)のように、流体シリンダ2のシリンダチューブ12の他方側(伸長用)シリンダ室16に送油すると、ピストンヘッド13が下降して、これにより、拡大翼5を閉翼させて格納する。
上記の場合、流体シリンダ2には、流体ポンプ20によりタンク22から送られた流体が流体シリンダ2の一方側(伸長用)シリンダ室15と他方側(縮小用)シリンダ室16の何れか一方から何れか他方に流れてタンク22に戻るように、流体を循環させる循環手段30を設けているので、所定条件になると、流体シリンダ2内の一方側シリンダ室15と他方側シリンダ室16内の流体が循環手段30により流体回路内を循環し、循環中に除去手段39により流体中のエアーや異物の除去できる。
On the contrary, when oil is supplied to the other side (extension) cylinder chamber 16 of the cylinder tube 12 of the fluid cylinder 2 as shown in FIG. 3B in the hydraulic circuit of FIG. 3, the piston head 13 is lowered, which is The expansion wing 5 is closed and stored.
In the above case, in the fluid cylinder 2, the fluid sent from the tank 22 by the fluid pump 20 is sent from either one side (extension) cylinder chamber 15 or the other side (reduction) cylinder chamber 16 of the fluid cylinder 2. Since the circulation means 30 for circulating the fluid is provided so as to flow to either one and return to the tank 22, the fluid in the one-side cylinder chamber 15 and the other-side cylinder chamber 16 in the fluid cylinder 2 is satisfied under predetermined conditions. Circulates in the fluid circuit by the circulation means 30, and air and foreign matter in the fluid can be removed by the removing means 39 during the circulation.

そのため、流体中のエアーや異物の除去は、流体シリンダ2を分解することなく行えるので、エアー・異物除去作業を容易にする。
しかして、循環手段30の構成は任意であるが、例えば、循環手段30を、一方側(伸長用)シリンダ室15または他方側(縮小用)シリンダ室16内の流体圧が所定以上になると作動する、連通手段31(圧力制御弁32)をピストンヘッド13内に設けて構成すると、一方側(伸長用)シリンダ室15または他方側(縮小用)シリンダ室16内の流体圧が所定以上になると、連通手段31(圧力制御弁32)は他方側(縮小用)シリンダ室16への流体の移動を許容し、流体をタンク22に戻して循環させる。
Therefore, the air and foreign matter in the fluid can be removed without disassembling the fluid cylinder 2, which facilitates the air and foreign matter removal work.
The configuration of the circulation means 30 is arbitrary, but for example, the circulation means 30 operates when the fluid pressure in the cylinder chamber 15 on one side (extension) or the cylinder chamber 16 on the other side (reduction) becomes equal to or higher than a predetermined value. When the communication means 31 (pressure control valve 32) is provided in the piston head 13 and the fluid pressure in the cylinder chamber 15 on one side (extension) or the cylinder chamber 16 on the other side (reduction) becomes equal to or higher than a predetermined value. , The communication means 31 (pressure control valve 32) allows the fluid to move to the other side (for reduction) cylinder chamber 16 and returns the fluid to the tank 22 to circulate.

即ち、例えば、図3(C)のように、拡大翼5を拡開させた状態で、流体ポンプ20によりタンク22内の流体を一方側(伸長用)シリンダ室15に送ると、一方側(伸長用)シリンダ室15内の流体圧が所定圧以上となって、循環手段30(圧力制御弁32)により他方側(縮小用)シリンダ室16への流体が移動が許容され、他方側流路18から戻し流路23を通ってタンク22に戻って循環し、戻し流路23によりタンク22に戻るときに、除去手段39により流体中のエアーや異物が除去される。
また、例えば、図5(C)のように、拡大翼5を閉翼した状態で、流体ポンプ20によりタンク22内の流体を他方側(縮小用)シリンダ室16に送ると、他方側(縮小用)シリンダ室16内の流体圧が所定圧以上になって、循環手段30(圧力制御弁32)により一方側(伸長用)シリンダ室15への移動が許容され、一方側流路17から戻し流路23を通ってタンク22に戻って循環し、戻し流路23に設けた除去手段39により流体中のエアーや異物が除去される。
That is, for example, as shown in FIG. 3C, when the fluid in the tank 22 is sent to the cylinder chamber 15 on one side (for extension) by the fluid pump 20 in the state where the expansion blade 5 is expanded, one side (for extension) When the fluid pressure in the cylinder chamber 15 (for extension) becomes equal to or higher than a predetermined pressure, the fluid is allowed to move to the cylinder chamber 16 on the other side (for reduction) by the circulation means 30 (pressure control valve 32), and the flow path on the other side is allowed. Air and foreign matter in the fluid are removed by the removing means 39 when the return flow path 23 returns to the tank 22 and circulates through the return flow path 23 and returns to the tank 22 by the return flow path 23.
Further, for example, as shown in FIG. 5C, when the fluid in the tank 22 is sent to the other side (for reduction) cylinder chamber 16 by the fluid pump 20 with the expansion blade 5 closed, the other side (reduction) is sent. (For) When the fluid pressure in the cylinder chamber 16 becomes equal to or higher than a predetermined pressure, the circulation means 30 (pressure control valve 32) allows movement to the one side (for extension) cylinder chamber 15, and returns from the one side flow path 17. It returns to the tank 22 through the flow path 23 and circulates, and air and foreign matter in the fluid are removed by the removing means 39 provided in the return flow path 23.

同様に、図6では、シリンダチューブ12外の一方側流路17と他方側流路18とを連通するバイパス流路38とバイパス流路38に設けた、連通手段31(圧力制御弁32)とにより循環手段30を構成しているので、例えば、図6(A)では、一方側シリンダ室15内の流体圧が所定圧以上になると、一方側流路17から他方側流路18への流体の移動を、連通手段31(圧力制御弁32)が許容し、流体は流体回路中を循環して除去手段39により異物が除去される。
また、図6(B)では、他方側シリンダ室16内の流体圧が所定圧以上になると、他方側流路18から一方側流路17への流体の移動を、連通手段31(圧力制御弁32)が許容し、流体は流体回路中を循環して除去手段39により異物が除去される。
Similarly, in FIG. 6, the bypass flow path 38 that communicates the one-side flow path 17 and the other-side flow path 18 outside the cylinder tube 12 and the communication means 31 (pressure control valve 32) provided in the bypass flow path 38. Therefore, for example, in FIG. 6A, when the fluid pressure in the one-side cylinder chamber 15 becomes equal to or higher than a predetermined pressure, the fluid from the one-side flow path 17 to the other-side flow path 18 is formed. The communication means 31 (pressure control valve 32) allows the fluid to move, and the fluid circulates in the fluid circuit to remove foreign matter by the removing means 39.
Further, in FIG. 6B, when the fluid pressure in the other side cylinder chamber 16 becomes equal to or higher than a predetermined pressure, the communication means 31 (pressure control valve) moves the fluid from the other side flow path 18 to the one side flow path 17. 32) allows, the fluid circulates in the fluid circuit and the foreign matter is removed by the removing means 39.

しかして、図1の地中作業用装置1が図7のように構成されている場合では、地中作業用装置1のヘッドロッド3に内蔵された流体シリンダ2は、ピストンヘッド13は上下動せず、ピストンヘッド13に対してシリンダチューブ12を上下移動させる構成にしており、ピストンヘッド13の下側が一方側(下降側)シリンダ室15に、ピストンヘッド13の上側が他方側シリンダ室16となっているので、流体シリンダ2のシリンダチューブ12の一方側(下降側)シリンダ室15に流体を送ってピストンヘッド13に対してシリンダチューブ12を下降させ、シリンダチューブ12の下降により拡大翼5を拡開させて拡大掘削を行って拡大穴を掘削する。 Then, when the underground work device 1 of FIG. 1 is configured as shown in FIG. 7, the piston head 13 of the fluid cylinder 2 built in the head rod 3 of the underground work device 1 moves up and down. Instead, the cylinder tube 12 is moved up and down with respect to the piston head 13, and the lower side of the piston head 13 is the one side (lowering side) cylinder chamber 15, and the upper side of the piston head 13 is the other side cylinder chamber 16. Therefore, fluid is sent to the cylinder chamber 15 on one side (lowering side) of the cylinder tube 12 of the fluid cylinder 2 to lower the cylinder tube 12 with respect to the piston head 13, and the expanding blade 5 is lowered by lowering the cylinder tube 12. Expand and excavate to excavate an expansion hole.

反対に、流体シリンダ2のシリンダチューブ12の他方側(上昇側)シリンダ室16に流体を送ってピストンヘッド13に対してシリンダチューブ12を上昇させ、シリンダチューブ12の上昇により拡大翼5を格納する。 On the contrary, the fluid is sent to the cylinder chamber 16 on the other side (rising side) of the cylinder tube 12 of the fluid cylinder 2 to raise the cylinder tube 12 with respect to the piston head 13, and the expansion blade 5 is stored by raising the cylinder tube 12. ..

この実施形態では、図7,8のように、流体シリンダ2のシリンダチューブ12外に、連通手段31(圧力制御弁32)を設けており、図6(B)の油圧回路を採用しているので、伸縮循環切替バルブ24を切り替えると、流体ポンプ20によりタンク22内の流体は流路21から流路切替えバルブ19を通って、流路切替えバルブ19から他方側流路18を通って他方側(上昇側)シリンダ室16に至り、他方側(上昇側)シリンダ室16内の流体圧により、循環手段30(連通手段31(圧力制御弁32))はバイパス流路38を通して一方側(下降側)流路17への流体の移動を許容し(図8)、一方側流路17から戻し流路23を通ってタンク22に戻る循環が行われ、この戻し流路23に設けた除去手段39により流体中のエアーや異物が除去される。 In this embodiment, as shown in FIGS. 7 and 8, the communication means 31 (pressure control valve 32) is provided outside the cylinder tube 12 of the fluid cylinder 2, and the hydraulic circuit of FIG. 6 (B) is adopted. Therefore, when the expansion / contraction circulation switching valve 24 is switched, the fluid in the tank 22 is passed from the flow path 21 through the flow path switching valve 19 and from the flow path switching valve 19 through the other side flow path 18 to the other side by the fluid pump 20. Due to the fluid pressure in the (rising side) cylinder chamber 16 and the other side (rising side) cylinder chamber 16, the circulation means 30 (communication means 31 (pressure control valve 32)) is passed through the bypass flow path 38 to one side (downward side). ) Allowing the movement of the fluid to the flow path 17 (FIG. 8), circulation is performed from the one-side flow path 17 through the return flow path 23 to the tank 22, and the removing means 39 provided in the return flow path 23. Removes air and foreign matter in the fluid.

また、図10、11の拡大ヘッドHでは、ピストンヘッド13は左右移動せず、ピストンヘッド13に対してシリンダチューブ12を左右移動させる構成にしており、一方側(伸長)シリンダ室15に流体が流入すると拡大アーム45が伸長(拡大)し、他方側(縮小)シリンダ室16に流体が流入すると拡大アーム45が縮小(格納)する。
そして、他方側(縮小)シリンダ室16内の流体圧が所定圧以上になると、流体が他方側(縮小)シリンダ室16から循環手段30(連通手段31(圧力制御弁32))を通って一方側(伸長)シリンダ室15に入り、一方側(伸長)シリンダ室15から一方側流路17によりタンク22に戻って循環が行われ、この戻し流路23に設けた除去手段39により流体中のエアーや異物が除去される。
Further, in the enlarged head H of FIGS. 10 and 11, the piston head 13 does not move left and right, but the cylinder tube 12 is moved left and right with respect to the piston head 13, and the fluid flows into the cylinder chamber 15 on one side (extension). When the fluid flows in, the expansion arm 45 expands (expands), and when the fluid flows into the cylinder chamber 16 on the other side (reduction), the expansion arm 45 contracts (stores).
Then, when the fluid pressure in the other side (reduced) cylinder chamber 16 becomes equal to or higher than a predetermined pressure, the fluid flows from the other side (reduced) cylinder chamber 16 through the circulation means 30 (communication means 31 (pressure control valve 32)). It enters the side (extension) cylinder chamber 15, returns from the one side (extension) cylinder chamber 15 to the tank 22 by the one side flow path 17, and circulates in the fluid by the removing means 39 provided in the return flow path 23. Air and foreign matter are removed.

また、図12の掘削ヘッドHでは、伸縮アーム46ではピストンヘッド13の左側を一方側シリンダ室15とし、一方側シリンダ室15に流体が流入すると、伸縮アーム46が伸長(拡大)し、他方側シリンダ室16に流体が流入すると、伸縮アーム46が縮小(格納)し、他方側シリンダ室16内の流体圧が所定圧以上になると、流体が他方側シリンダ室16から流体シリンダ2のピストンヘッド13内に設けた循環手段30(連通手段31(圧力制御弁32))を通って一方側シリンダ室15に入り、一方側シリンダ室15から一方側流路17によりタンク22に戻って循環する。 Further, in the excavation head H of FIG. 12, in the telescopic arm 46, the left side of the piston head 13 is the one-side cylinder chamber 15, and when fluid flows into the one-side cylinder chamber 15, the telescopic arm 46 expands (expands) and the other side. When the fluid flows into the cylinder chamber 16, the telescopic arm 46 contracts (stores), and when the fluid pressure in the other side cylinder chamber 16 exceeds a predetermined pressure, the fluid flows from the other side cylinder chamber 16 to the piston head 13 of the fluid cylinder 2. It enters the one-side cylinder chamber 15 through the circulation means 30 (communication means 31 (pressure control valve 32)) provided inside, and returns to the tank 22 from the one-side cylinder chamber 15 through the one-side flow path 17 to circulate.

1…地中作業用装置、2…流体シリンダ、3…ヘッドロッド、4…掘削ヘッド 、5…拡大翼、11…ピストンロッド、12…シリンダチューブ、13…ピストンヘッド、15…一方側シリンダ室、16…他方側シリンダ室、17…一方側流路、18…他方側流路、19…流路切替えバルブ、20…流体ポンプ、21…流路、22…タンク、23…戻し流路、24…伸縮循環切替バルブ、25…伸縮圧力設定バルブ、26…伸縮用流路、27…所定圧流路、28…逆止弁、29…戻し流路、30…循環手段、31…連通手段、32…圧力制御弁、33…入口流路、34…出口流路、35…弾性体、38…バイパス流路、39…除去手段、40…横軸、41…アーム、42…係合凹部、45…拡大アーム、46…伸縮アーム。 1 ... Underground work equipment, 2 ... Fluid cylinder, 3 ... Head rod, 4 ... Excavation head, 5 ... Expansion blade, 11 ... Piston rod, 12 ... Cylinder tube, 13 ... Piston head, 15 ... One side cylinder chamber, 16 ... the other side cylinder chamber, 17 ... one side flow path, 18 ... the other side flow path, 19 ... flow path switching valve, 20 ... fluid pump, 21 ... flow path, 22 ... tank, 23 ... return flow path, 24 ... Telescopic circulation switching valve, 25 ... Telescopic pressure setting valve, 26 ... Telescopic flow path, 27 ... Predetermined pressure flow path, 28 ... Check valve, 29 ... Return flow path, 30 ... Circulation means, 31 ... Communication means, 32 ... Pressure Control valve, 33 ... inlet flow path, 34 ... outlet flow path, 35 ... elastic body, 38 ... bypass flow path, 39 ... removal means, 40 ... horizontal axis, 41 ... arm, 42 ... engaging recess, 45 ... expansion arm , 46 ... Telescopic arm.

Claims (2)

作業用装置の地中作業である、地中に拡大穴を掘削する拡大翼5を備えた拡大ヘッドHを設け、流体の圧力により前記拡大翼5を拡翼状態と閉翼状態とに作動させる流体シリンダ2を設け、該流体シリンダ2は、シリンダチューブ12と、該シリンダチューブ12内に挿入したピストンロッド11を取付けたピストンヘッド13と、シリンダチューブ12内に設けた一方側シリンダ室15と他方側シリンダ室16とを有して構成し、流体シリンダ2の一方側シリンダ室15と他方側シリンダ室16の夫々に流体を送る流体ポンプ20と、一方側シリンダ室15と他方側シリンダ室16の夫々に送る流体を貯留するタンク22とを有して構成した流体回路中に、タンク22から出た流体がタンク22に戻るように流体回路内を流体が循環して流れるようにする循環手段30を設けて構成し、該循環手段30は、前記一方側シリンダ室15と前記他方側シリンダ室16とを所定条件にて連通させる連通手段31を設けて構成し、該連通手段31は、前記一方側シリンダ室15と前記他方側シリンダ室16とを連通させる圧力制御弁32をピストンヘッド13内に内蔵して構成し、前記流体ポンプ20と流体シリンダ2との間に、流体を前記ピストンロッド11を伸縮させる流路と循環用の流路とに切り替える伸縮循環切替バルブ24と、一方側シリンダ室15と他方側シリンダ室16との何れかに流路を切替える切替バルブ19と、ピストンロッド11を伸縮させるために前記圧力制御弁32を非連通状態に保持するように流体回路内の流体圧力を設定する伸縮圧力設定バルブ25とを設け、流体シリンダ2からタンク22へ流体を戻す戻し流路23に除去手段39を設け、前記拡大翼5が拡翼状態と閉翼状態との間の何れの位置においても、一方側シリンダ室15および他方側シリンダ室16内を含めてタンク22から出た流体がタンク22に戻るように循環して流れるように構成した地中作業用装置の作動機構。 An expansion head H provided with an expansion wing 5 for excavating an expansion hole in the ground, which is an underground work of a work device , is provided, and the expansion wing 5 is operated in a wing expansion state and a wing closed state by the pressure of a fluid. A fluid cylinder 2 is provided, and the fluid cylinder 2 includes a cylinder tube 12, a piston head 13 to which a piston rod 11 inserted in the cylinder tube 12 is attached, a one-side cylinder chamber 15 provided in the cylinder tube 12, and the other. A fluid pump 20 having a side cylinder chamber 16 and sending fluid to each of the one side cylinder chamber 15 and the other side cylinder chamber 16 of the fluid cylinder 2, and the one side cylinder chamber 15 and the other side cylinder chamber 16. Circulation means 30 that allows the fluid to circulate and flow in the fluid circuit so that the fluid discharged from the tank 22 returns to the tank 22 in the fluid circuit having the tank 22 for storing the fluid to be sent to each. The circulation means 30 is configured by providing a communication means 31 for communicating the one-side cylinder chamber 15 and the other-side cylinder chamber 16 under predetermined conditions, and the communication means 31 is configured by providing the one. A pressure control valve 32 for communicating the side cylinder chamber 15 and the other side cylinder chamber 16 is built in the piston head 13, and fluid is introduced between the fluid pump 20 and the fluid cylinder 2 in the piston rod 11. A telescopic circulation switching valve 24 that switches between a flow path for expanding and contracting and a flow path for circulation, a switching valve 19 that switches the flow path to either one side cylinder chamber 15 or the other side cylinder chamber 16, and a piston rod 11. A expansion / contraction pressure setting valve 25 for setting the fluid pressure in the fluid circuit so as to hold the pressure control valve 32 in a non-communication state for expansion and contraction is provided, and a return flow path 23 for returning the fluid from the fluid cylinder 2 to the tank 22 is provided. The removing means 39 is provided in the tank 22, and the fluid discharged from the tank 22 including the inside of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 at any position between the expanded blade state and the closed blade state. An operating mechanism of an underground work device configured to circulate and flow so that the cylinder returns to the tank 22 . 地中作業用装置のヘッドロッド3の外周にヘッドロッド3と平行な閉翼状態とヘッドロッド3に対して交差する拡翼状態とに拡縮する拡大翼5を、流体シリンダ2のシリンダチューブ12の一方側シリンダ室15と他方側シリンダ室16との夫々に流体ポンプ20により伸縮圧力設定バルブ25を通してピストンヘッド13に内蔵された循環手段30の圧力制御弁32の設定圧より低く減圧させてタンク22から流体を送って、ピストンロッド11を伸縮させることにより拡縮させて地中作業を行い、次に、地中作業中の拡大翼5の回転を停止させ、拡大翼5が拡翼あるいは閉翼の間の何れかの姿勢状態で、伸縮循環切替バルブ24を切り替えて、流体ポンプ20によりタンク22内の流体を流路21から伸縮圧力設定バルブ25を通さずに、流体シリンダ2のピストンヘッド13を移動させるよりも高圧の流体を流路切替えバルブ19へ通し、流路切替えバルブ19から他方側流路18を通って他方側シリンダ室16に流入させ、他方側シリンダ室16内の流体圧により、ピストンヘッド13に内蔵された循環手段30の圧力制御弁32を開き、他方側シリンダ室16と一方側シリンダ室15とを連通させ、他方側シリンダ室16から一方側シリンダ室15への流体の移動を許容し、一方側シリンダ室15から一方側流路17を介して戻し流路23を通してタンク22に戻る循環が行われ、この戻し流路23に設けた除去手段39により循環中の流体から異物を除去する地中作業用装置の使用方法。 On the outer periphery of the head rod 3 of the underground work device, an expansion blade 5 that expands and contracts in a closed state parallel to the head rod 3 and an expanded state intersecting the head rod 3 is provided on the cylinder tube 12 of the fluid cylinder 2. The fluid pump 20 passes through the expansion / contraction pressure setting valve 25 in each of the one-side cylinder chamber 15 and the other-side cylinder chamber 16 to reduce the pressure to be lower than the set pressure of the pressure control valve 32 of the circulation means 30 built in the piston head 13, and the tank 22. A fluid is sent from the piston rod 11 to expand and contract it to perform underground work, and then the rotation of the expansion wing 5 during the underground work is stopped, and the expansion wing 5 is expanded or closed. In any of the postures, the expansion / contraction circulation switching valve 24 is switched, and the fluid in the tank 22 is not passed through the expansion / contraction pressure setting valve 25 from the flow path 21 by the fluid pump 20 , and the piston head 13 of the fluid cylinder 2 is moved. A fluid having a higher pressure than moving is passed through the flow path switching valve 19, flows from the flow path switching valve 19 through the other side flow path 18 into the other side cylinder chamber 16, and is caused by the fluid pressure in the other side cylinder chamber 16. The pressure control valve 32 of the circulation means 30 built in the piston head 13 is opened to communicate the other side cylinder chamber 16 and the one side cylinder chamber 15, and the fluid moves from the other side cylinder chamber 16 to the one side cylinder chamber 15. Is allowed, circulation is performed from the one-side cylinder chamber 15 to the tank 22 through the return flow path 23 via the one-side flow path 17, and foreign matter is removed from the circulating fluid by the removing means 39 provided in the return flow path 23. How to use the underground work equipment to remove.
JP2016142014A 2016-07-20 2016-07-20 Operation mechanism of underground work equipment and how to use underground work equipment Active JP6798681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016142014A JP6798681B2 (en) 2016-07-20 2016-07-20 Operation mechanism of underground work equipment and how to use underground work equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142014A JP6798681B2 (en) 2016-07-20 2016-07-20 Operation mechanism of underground work equipment and how to use underground work equipment

Publications (2)

Publication Number Publication Date
JP2018012944A JP2018012944A (en) 2018-01-25
JP6798681B2 true JP6798681B2 (en) 2020-12-09

Family

ID=61019194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142014A Active JP6798681B2 (en) 2016-07-20 2016-07-20 Operation mechanism of underground work equipment and how to use underground work equipment

Country Status (1)

Country Link
JP (1) JP6798681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893626A (en) * 2017-12-20 2018-04-10 山东天瑞重工有限公司 A kind of closed hydraulic drill work system

Also Published As

Publication number Publication date
JP2018012944A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US9452912B1 (en) Hydraulic power bucket
DE10158532A1 (en) Hydraulically driven machine
JP6798681B2 (en) Operation mechanism of underground work equipment and how to use underground work equipment
US7614170B2 (en) Extendable excavating screw unit equipped with hydraulic excavating auxiliary blades
DE102011106672A1 (en) Energy recovering hydraulic cylinder for e.g. excavator, has cylinder tube partly formed in double-structure and with intermediate region serving as gas remaining storage chamber staying in fluid-transmissive connection with stroke chamber
JP2008202375A (en) Enlarging head of fluid pressure one flow passage switching type by striker system
CN104295250A (en) Screen annulus sand-washing tubular column
JP4589740B2 (en) Fluid pressure cylinder type expansion head
JP3963019B2 (en) Fluid pressure expansion head
JP2006009540A (en) Hydraulic pressure sensor type extending head
JP4767190B2 (en) Fluid pressure cylinder expansion head with built-in accumulator and expansion blade holding method using the same
CN207598200U (en) A kind of expansion tube section construction hydraulic oil cylinder device
JP6681043B2 (en) Hydraulic system and method for removing foreign matter in hydraulic cylinder of the hydraulic system
JP5244539B2 (en) Cylinder advancing / retracting type expansion head by excavation work rod forward / reverse rotation
JP3332898B2 (en) Drilling equipment for press-fit steel pipes
JP4638743B2 (en) Magnifying head of drilling work rod
CN103498641A (en) Sand removing device and method of oil well negative-pressure machine
WO2016127382A1 (en) Reciprocating pump
JP5457769B2 (en) 1-channel hydraulic cylinder drive expansion head
CN108729871B (en) Fishing tool
JP6853519B2 (en) Drilling hole diameter expander
CN201982046U (en) Expansion pipe compensation tool for pressure boost of incline disk type plunger pump
RU175171U1 (en) PROTECTOR OF Fountain Armature
CN206668215U (en) Oil-water well sand filtering pipe column oil jacket communicating valve
EP2987945B1 (en) Hydraulic striking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6798681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250