JP6798132B2 - Cross connect module - Google Patents

Cross connect module Download PDF

Info

Publication number
JP6798132B2
JP6798132B2 JP2016077219A JP2016077219A JP6798132B2 JP 6798132 B2 JP6798132 B2 JP 6798132B2 JP 2016077219 A JP2016077219 A JP 2016077219A JP 2016077219 A JP2016077219 A JP 2016077219A JP 6798132 B2 JP6798132 B2 JP 6798132B2
Authority
JP
Japan
Prior art keywords
stage
aggregation unit
mid
aggregation
unit group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016077219A
Other languages
Japanese (ja)
Other versions
JP2017188816A (en
Inventor
弘雄 金森
弘雄 金森
知巳 佐野
知巳 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016077219A priority Critical patent/JP6798132B2/en
Publication of JP2017188816A publication Critical patent/JP2017188816A/en
Application granted granted Critical
Publication of JP6798132B2 publication Critical patent/JP6798132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Description

本発明は、クロスコネクトモジュールに関する。 The present invention relates to a cross-connect module.

従来、波長分割多重方式(WDM;Wavelength Division Multiplex)の光通信の分野において、例えばROADM(Reconfigurable Optical Add/Drop Multiplexer)といった光信号処理装置が知られている。このような装置では、入力されたWDM信号を波長ごとに分離し、分離された各信号成分を波長毎に集める配線技術が必要となる。このような配線技術として、光クロスコネクト技術が知られている。特許文献1は、光クロスコネクトシステムの例を開示する。 Conventionally, in the field of optical communication of a wavelength division multiplexing (WDM), an optical signal processing device such as a ROADM (Reconfigurable Optical Add / Drop Multiplexer) is known. Such a device requires a wiring technique that separates the input WDM signal for each wavelength and collects each separated signal component for each wavelength. As such a wiring technique, an optical cross-connect technique is known. Patent Document 1 discloses an example of an optical cross-connect system.

特開平10−243424号公報Japanese Unexamined Patent Publication No. 10-2443424

波長多重光通信システムにおいて、複数の波長成分をそれぞれ含む二以上の光信号を入力し、同一波長の成分毎に纏めて出力する、いわゆるクロスコネクト配線技術が研究されている。図4は、クロスコネクト配線の概念を示す図である。同図に示されるように、クロスコネクト配線100は、M×N本(但し、M,Nは2以上の整数。図にはM=4、N=8の場合を例示)の光導波路103の各一端をN本ずつ集合させるM個の集約部105と、(M×N)本の光導波路103の各他端をM本ずつ集合させるN個の集約部107とを備える。ここで、例えばM個の集約部105には、それぞれ異なるWDM信号S1〜SMを波長毎に分離したN個の信号成分λ1〜λNが入力される。この場合、M個の集約部105とN個の集約部107とは、M個の集約部105から出力される信号成分λ1〜λNが、波長毎にN個の集約部107に集められるように接続される。例えば、M個の集約部105から出力される信号成分λ1は全て、或る一つの集約部107に入力される。 In wavelength division multiplexing optical communication systems, so-called cross-connect wiring technology in which two or more optical signals containing a plurality of wavelength components are input and output for each component of the same wavelength is being studied. FIG. 4 is a diagram showing the concept of cross-connect wiring. As shown in the figure, the cross-connect wiring 100 is the optical waveguide 103 of M × N lines (however, M and N are integers of 2 or more. The figure exemplifies the case of M = 4 and N = 8). It includes M aggregation units 105 for assembling N ends of each, and N aggregation portions 107 for assembling the other ends of (M × N) optical waveguides 103. Here, for example, the M-number of aggregating unit 105, different WDM signals, respectively S 1 to S M N number of signal components separated for each wavelength of lambda 1 to [lambda] N are input. In this case, in the M aggregation unit 105 and the N aggregation unit 107, the signal components λ 1 to λ N output from the M aggregation unit 105 are collected in the N aggregation unit 107 for each wavelength. Connected like this. For example, all the signal components λ 1 output from the M aggregation units 105 are input to one aggregation unit 107.

このようなクロスコネクト配線100では、一端側のM個の集約部105と他端側のN個の集約部107との間でM×N本の光導波路103が複雑に交錯する。その複雑度は、M,Nの値が大きくなるほど顕著となる。本発明は、このような問題点に鑑みてなされたものであり、一端側の集約部と他端側の集約部との間における光導波路の交錯を抑制できるクロスコネクトモジュールを提供することを目的とする。 In such a cross-connect wiring 100, M × N optical waveguides 103 are complicatedly interlaced between the M aggregation portions 105 on one end side and the N aggregation portions 107 on the other end side. The complexity becomes more remarkable as the values of M and N increase. The present invention has been made in view of such problems, and an object of the present invention is to provide a cross-connect module capable of suppressing the intersection of optical waveguides between an aggregation portion on one end side and an aggregation portion on the other end side. And.

上述した課題を解決するために、本発明の一実施形態に係るクロスコネクトモジュールは、M×N本(但し、M,Nは2以上の整数)の光導波路の各一端をN本ずつ集合させるM個の初段集約部を含む初段集約部群と、(M×N)本の光導波路の各他端をM本ずつ集合させるN個の最終段集約部を含む最終段集約部群と、を備え、各最終段集約部に、M個の初段集約部のそれぞれから光導波路が1本ずつ配線されており、(M×N)本の光導波路の中途に設けられ、二以上の中途集約部をそれぞれ含むJ段(Jは1以上の整数)の中途集約部群を更に備え、第j段(j=1,・・・,J)の中途集約部群を構成する各中途集約部に、M個の初段集約部のそれぞれから複数本の光導波路が配線されており、段数Jが2以上である場合、各中途集約部のM個の初段集約部それぞれからの配線本数は段番jが大きいほど小さい。 In order to solve the above-mentioned problems, in the cross-connect module according to the embodiment of the present invention, N each end of each end of M × N (where M and N are integers of 2 or more) are assembled. A group of first-stage aggregates including M first-stage aggregates and a group of final-stage aggregates including N final-stage aggregates in which the other ends of (M × N) optical waveguides are assembled by M each. In preparation, one optical waveguide is wired from each of the M first-stage aggregates to each final stage aggregate, and it is provided in the middle of (M × N) optical waveguides, and two or more optical waveguides are provided. Each mid-stage aggregation unit including the J-stage (J is an integer of 1 or more) is further provided, and each mid-stage aggregation unit constituting the j-stage (j = 1, ..., J) mid-stage aggregation unit When a plurality of optical waveguides are wired from each of the M first-stage aggregates and the number of stages J is 2 or more, the number of wires from each of the M first-stage aggregates of each mid-stage aggregate is the stage number j. The larger the smaller.

本発明によるクロスコネクトモジュールによれば、一端側の集約部と他端側の集約部との間における光導波路の交錯を抑制できる。 According to the cross-connect module according to the present invention, it is possible to suppress the intersection of the optical waveguide between the aggregation portion on one end side and the aggregation portion on the other end side.

図1は、本発明の第1実施形態に係るクロスコネクトモジュールの構成を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a cross-connect module according to a first embodiment of the present invention. 図2は、上記実施形態の第1変形例の構成を示す図である。FIG. 2 is a diagram showing a configuration of a first modification of the above embodiment. 図3は、本発明の第2実施形態に係るクロスコネクトモジュールの構成を概略的に示す図である。FIG. 3 is a diagram schematically showing a configuration of a cross-connect module according to a second embodiment of the present invention. 図4は、クロスコネクト配線の概念を示す図である。FIG. 4 is a diagram showing the concept of cross-connect wiring.

[本願発明の実施形態の説明]
最初に、本発明の実施形態の内容を列記して説明する。本発明の一実施形態に係るクロスコネクトモジュールは、M×N本(但し、M,Nは2以上の整数)の光導波路の各一端をN本ずつ集合させるM個の初段集約部を含む初段集約部群と、(M×N)本の光導波路の各他端をM本ずつ集合させるN個の最終段集約部を含む最終段集約部群と、を備え、各最終段集約部に、M個の初段集約部のそれぞれから光導波路が1本ずつ配線されており、(M×N)本の光導波路の中途に設けられ、二以上の中途集約部をそれぞれ含むJ段(Jは1以上の整数)の中途集約部群を更に備え、第j段(j=1,・・・,J)の中途集約部群を構成する各中途集約部に、M個の初段集約部のそれぞれから複数本の光導波路が配線されており、段数Jが2以上である場合、各中途集約部のM個の初段集約部それぞれからの配線本数は段番jが大きいほど小さい。
[Explanation of Embodiments of the Invention]
First, the contents of the embodiments of the present invention will be listed and described. The cross-connect module according to one embodiment of the present invention is a first-stage including M first-stage aggregates that collect N at each end of each end of M × N (where M and N are integers of 2 or more). Each final stage aggregation unit is provided with an aggregation unit group and a final stage aggregation unit group including N final stage aggregation units that aggregate M each other end of each (M × N) optical waveguide. One optical waveguide is wired from each of the M first-stage aggregates, and is provided in the middle of (M × N) optical waveguides, and J-stage (J is 1) including two or more optical waveguides. Each of the mid-stage aggregation units (the above integers) is further provided, and each of the mid-stage aggregation units constituting the j-stage (j = 1, ..., J) is provided with each of the M first-stage aggregation units. When a plurality of optical waveguides are wired and the number of stages J is 2 or more, the number of wirings from each of the M first-stage aggregates of each mid-stage aggregate is smaller as the stage number j is larger.

このクロスコネクトモジュールは、光導波路の中途に設けられたJ段の中途集約部群を備えている。この中途集約部群の各中途集約部には、M個の初段集約部のそれぞれから複数本の光導波路が配線されている。故に、各中途集約部に至るまでの光導波路は複数本を一単位として配線されることができる。従って、初段集約部群から光導波路を1本ずつ配線する図4の構成と比較して、光導波路の交錯を抑制することができる。 This cross-connect module includes a group of J-stage midway aggregation units provided in the middle of the optical waveguide. A plurality of optical waveguides are wired from each of the M first-stage aggregation portions in each of the intermediate aggregation portions of the intermediate aggregation portion group. Therefore, a plurality of optical waveguides leading to each midway centralized portion can be wired as one unit. Therefore, it is possible to suppress the intersection of the optical waveguides as compared with the configuration of FIG. 4 in which the optical waveguides are wired one by one from the first stage aggregation unit group.

上記のクロスコネクトモジュールにおいて、(M×N)本の光導波路が光ファイバのコアであり、各中途集約部は、初段集約部群側の複数本の光導波路と、最終段集約部群側の複数本の光導波路とを相互に接続する光コネクタ接続構造を有してもよい。これにより、各中途集約部を簡易に実現することができる。 In the above cross-connect module, (M × N) optical waveguides are the cores of the optical fiber, and each mid-stage aggregation unit has a plurality of optical waveguides on the first stage aggregation unit group side and the final stage aggregation unit group side. It may have an optical connector connection structure for connecting a plurality of optical waveguides to each other. As a result, each mid-level aggregation unit can be easily realized.

[本願発明の実施形態の詳細]
本発明の実施形態に係るクロスコネクトモジュールの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[Details of Embodiments of the present invention]
Specific examples of the cross-connect module according to the embodiment of the present invention will be described below with reference to the drawings. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. In the following description, the same elements will be designated by the same reference numerals in the description of the drawings, and duplicate description will be omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係るクロスコネクトモジュールの構成を概略的に示す図である。このクロスコネクトモジュール1Aは、初段集約部群(初段デバイス群)10と、最終段集約部群(最終段デバイス群)20と、中途集約部群(中途デバイス群)30Aとを備えている。初段集約部群10は、M個(Mは2以上の整数。図にはM=4の場合を例示)の初段集約部12を含んで構成される。M個の初段集約部12は、M×N本(Nは2以上の整数。図にはN=8の場合を例示)の光導波路3の各一端をN本ずつ集合させる。各光導波路3は、例えば光ファイバのコアによって構成される。各初段集約部12は、例えばN芯の光コネクタ、或いはN個の光入出力ポートを有する光回路である。
(First Embodiment)
FIG. 1 is a diagram schematically showing a configuration of a cross-connect module according to a first embodiment of the present invention. The cross-connect module 1A includes a first-stage aggregation unit group (first-stage device group) 10, a final-stage aggregation unit group (final-stage device group) 20, and an intermediate-stage aggregation unit group (mid-stage device group) 30A. The first-stage aggregation unit group 10 includes M first-stage aggregation units 12 (M is an integer of 2 or more. The case of M = 4 is illustrated in the figure). The M first-stage aggregation units 12 assemble N at each end of each end of M × N (N is an integer of 2 or more. The case of N = 8 is illustrated in the figure). Each optical waveguide 3 is composed of, for example, an optical fiber core. Each first-stage aggregation unit 12 is, for example, an N-core optical connector or an optical circuit having N optical input / output ports.

最終段集約部群20は、N個の最終段集約部22を含んで構成される。N個の最終段集約部22は、(M×N)本の光導波路3の各他端をM本ずつ集合させる。各最終段集約部22には、後述する中途集約部群30Aを介して、M個の初段集約部12のそれぞれから光導波路3が1本ずつ配線されている。各最終段集約部22は、例えばM芯の光コネクタ、或いはM個の光入出力ポートを有する光回路である。 The final stage aggregation unit group 20 includes N final stage aggregation units 22. The N final stage aggregation units 22 assemble the other ends of the (M × N) optical waveguides 3 by M. One optical waveguide 3 is wired from each of the M first-stage aggregation units 12 to each final-stage aggregation unit 22 via the mid-stage aggregation unit group 30A described later. Each final stage aggregation unit 22 is, for example, an M-core optical connector or an optical circuit having M optical input / output ports.

中途集約部群30Aは、(M×N)本の光導波路3の中途に設けられている。中途集約部群30Aは、二以上の中途集約部32Aを含んで構成されている。なお、後述する第2実施形態に示されるように、中途集約部群は複数段にわたって設けられることが可能だが、本実施形態の中途集約部群30Aは1段のみ設けられている。また、本実施形態の中途集約部群30Aは2個の中途集約部32Aを含んでいる。各中途集約部32Aには、M個の初段集約部12のそれぞれから光導波路3がk1本(k1は2以上の整数。本実施形態ではk1=4)ずつ配線されている。 The midway aggregation unit group 30A is provided in the middle of the (M × N) optical waveguide 3. The mid-career aggregation unit group 30A is composed of two or more mid-career aggregation units 32A. As shown in the second embodiment described later, the mid-level aggregation unit group can be provided in a plurality of stages, but the mid-range aggregation unit group 30A of the present embodiment is provided in only one stage. Further, the mid-career aggregation unit group 30A of the present embodiment includes two mid-career aggregation units 32A. In each mid-stage aggregation unit 32A, k 1 optical waveguides 3 (k 1 is an integer of 2 or more; k 1 = 4 in this embodiment) are wired from each of the M first-stage aggregation units 12.

各中途集約部32Aは、初段集約部群10側の複数本の光導波路3と、最終段集約部群20側の複数本の光導波路3とを相互に接続する多芯光コネクタ接続構造35を有してもよい。すなわち、各中途集約部32Aは、初段集約部群10から延びる複数本の光ファイバの端部を収容する多芯光コネクタと、最終段集約部群20から延びる複数本の光ファイバの端部を収容する多芯光コネクタとが互いに接続された構造を有してもよい。多芯光コネクタの芯数は任意(最大でk1×M)であり、例えば、4,8,12,16,24,32といった数である。図1には、各中途集約部32Aが、4芯光コネクタ33,34からなる多芯光コネクタ接続構造35を4つずつ有する場合を模式的に示している。 Each mid-stage aggregation unit 32A has a multi-core optical connector connection structure 35 that interconnects a plurality of optical waveguides 3 on the first stage aggregation unit group 10 side and a plurality of optical waveguides 3 on the final stage aggregation unit group 20 side. You may have. That is, each mid-stage aggregation unit 32A has a multi-core optical connector accommodating the ends of a plurality of optical fibers extending from the first stage aggregation unit group 10 and the ends of the plurality of optical fibers extending from the final stage aggregation unit group 20. It may have a structure in which the accommodating multi-core optical connector is connected to each other. The number of cores of the multi-core optical connector is arbitrary (maximum k 1 × M), and is, for example, 4, 8, 12, 16, 24, 32. FIG. 1 schematically shows a case where each midway aggregation unit 32A has four multi-core optical connector connection structures 35 including four-core optical connectors 33 and 34.

ここで、(M×N)本の光導波路3が初段集約部群10から最終段集約部群20に至る過程を説明する。まず、各初段集約部12では、前述したようにN本の光導波路3が集合している。次に、そのN本の光導波路3は、中途集約部群30Aに至る迄に2つのグループに分割され、一方の(N/2)本のグループは第1番目の中途集約部32Aに達し、他方の(N/2)本のグループは第2番目の中途集約部32Aに達する。そして、一方の(N/2)本のグループは、第1番目の中途集約部32Aから最終段集約部群20へ向かう過程で1本ずつに分割され、それぞれ対応する最終段集約部22に達する。同様に、他方の(N/2)本のグループは、第2番目の中途集約部32Aから最終段集約部群20へ向かう過程で1本ずつに分割され、それぞれ対応する最終段集約部22に達する。 Here, the process of the (M × N) book of the optical waveguide 3 from the first stage aggregation unit group 10 to the final stage aggregation unit group 20 will be described. First, in each first-stage aggregation unit 12, N optical waveguides 3 are assembled as described above. Next, the N optical waveguides 3 are divided into two groups up to the mid-aggregation group 30A, and one (N / 2) group reaches the first mid-aggregation 32A. The other (N / 2) book group reaches the second mid-aggregation section 32A. Then, one (N / 2) group is divided into one group in the process from the first mid-stage aggregation unit 32A to the final stage aggregation unit group 20, and reaches the corresponding final stage aggregation unit 22 respectively. .. Similarly, the other (N / 2) group is divided into groups one by one in the process from the second mid-stage aggregation unit 32A to the final stage aggregation unit group 20, and becomes the corresponding final stage aggregation unit 22. Reach.

以上に説明した本実施形態のクロスコネクトモジュール1Aによって得られる効果について説明する。クロスコネクトモジュール1Aは、光導波路3の中途に設けられた1段の中途集約部群30Aを備えている。この中途集約部群30Aの各中途集約部32Aには、M個の初段集約部12のそれぞれから光導波路3が複数本ずつ配線されている。故に、各中途集約部32Aに至るまでの光導波路3は複数本を一単位として、例えばテープ心線(リボンファイバ)やマルチコアファイバ等を用いて配線されることができる。更に、中途集約部群30Aから最終段集約部群20に至るまでの光導波路3では、中途集約部群30Aを備えない形態(図4を参照)と比較して、光導波路3の交差の数が低減されるため、交錯度合いが格段に抑えられる。従って、クロスコネクトモジュール1Aによれば、初段集約部群10から光導波路3を1本ずつ配線する図4の形態と比較して、光導波路3の交錯を効果的に抑制することができる。 The effect obtained by the cross-connect module 1A of the present embodiment described above will be described. The cross-connect module 1A includes a one-stage midway aggregation unit group 30A provided in the middle of the optical waveguide 3. A plurality of optical waveguides 3 are wired from each of the M first-stage aggregation units 12 in each of the intermediate integration units 32A of the intermediate aggregation unit group 30A. Therefore, the optical waveguides 3 up to each of the midway aggregation portions 32A can be wired by using a plurality of optical waveguides 3 as one unit, for example, using a tape core wire (ribbon fiber), a multi-core fiber, or the like. Further, in the optical waveguide 3 from the mid-stage aggregation unit group 30A to the final stage aggregation unit group 20, the number of intersections of the optical waveguide 3 is compared with the form not provided with the mid-stage aggregation unit group 30A (see FIG. 4). Is reduced, so the degree of crossing is significantly suppressed. Therefore, according to the cross-connect module 1A, the crossing of the optical waveguides 3 can be effectively suppressed as compared with the form of FIG. 4 in which the optical waveguides 3 are wired one by one from the first stage aggregation unit group 10.

また、本実施形態のように、(M×N)本の光導波路3は光ファイバのコアであり、各中途集約部32Aは、初段集約部群10側の複数本の光導波路3と、最終段集約部群20側の複数本の光導波路3とを相互に接続する光コネクタ接続構造35を有してもよい。これにより、各中途集約部32Aを簡易に実現することができる。 Further, as in the present embodiment, the (M × N) optical waveguides 3 are the cores of the optical fiber, and each mid-stage aggregation unit 32A has a plurality of optical waveguides 3 on the first stage aggregation unit group 10 side, and finally. It may have an optical connector connection structure 35 that connects a plurality of optical waveguides 3 on the stage aggregation unit group 20 side to each other. As a result, each midway aggregation unit 32A can be easily realized.

(第1変形例)
図2は、上記実施形態の第1変形例の構成を示す図である。本変形例に係るクロスコネクトモジュール1Bは、上記実施形態のクロスコネクトモジュール1Aに対し、中途集約部群の構成において相違し、他の構成において一致する。すなわち、クロスコネクトモジュール1Bの中途集約部群30Bは、(M×N)本の光導波路3の中途に設けられ、4個の中途集約部32Bを含んで構成されている。本変形例においても、中途集約部群30Bは1段のみ設けられている。各中途集約部32Bには、M個の初段集約部12のそれぞれから光導波路3が2本(すなわちk1=2)ずつ配線されている。本変形例においても、各中途集約部32Bは、多芯光コネクタ接続構造35を有する。図2は、各中途集約部32Bが、4芯光コネクタ33,34からなる多芯光コネクタ接続構造35を2つずつ有する場合を模式的に示している。
(First modification)
FIG. 2 is a diagram showing a configuration of a first modification of the above embodiment. The cross-connect module 1B according to the present modification is different from the cross-connect module 1A of the above embodiment in the configuration of the intermediate aggregation unit group, and is the same in other configurations. That is, the midway consolidating unit group 30B of the cross-connect module 1B is provided in the middle of the (M × N) optical waveguides 3 and includes four midway consolidating units 32B. Also in this modified example, only one stage of the midway aggregation unit group 30B is provided. Two optical waveguides 3 (that is, k 1 = 2) are wired from each of the M first-stage aggregation portions 12 to each of the intermediate aggregation portions 32B. In this modified example as well, each intermediate unit 32B has a multi-core optical connector connection structure 35. FIG. 2 schematically shows a case where each midway aggregation unit 32B has two multi-core optical connector connection structures 35 including four-core optical connectors 33 and 34.

本変形例のような構成であっても、上記実施形態の効果を同様に奏することができる。すなわち、中途集約部群においてM個の初段集約部12のそれぞれから配線される光導波路3の本数k1は、2以上の任意の数に設定され得る。 Even with a configuration like the present modification, the effects of the above-described embodiment can be similarly achieved. That is, the number k 1 of the optical waveguides 3 wired from each of the M first-stage aggregation units 12 in the mid-stage aggregation unit group can be set to any number of 2 or more.

(第2実施形態)
図3は、本発明の第2実施形態に係るクロスコネクトモジュールの構成を概略的に示す図である。このクロスコネクトモジュール1Cは、初段集約部群10と、最終段集約部群20と、第1段の中途集約部群30Cと、第2段の中途集約部群30Dとを備えている。初段集約部群10及び最終段集約部群20の構成は、第1実施形態と同様である。
(Second Embodiment)
FIG. 3 is a diagram schematically showing a configuration of a cross-connect module according to a second embodiment of the present invention. The cross-connect module 1C includes a first-stage aggregation unit group 10, a final-stage aggregation unit group 20, a first-stage mid-stage aggregation unit group 30C, and a second-stage mid-stage aggregation unit group 30D. The configuration of the first stage aggregation unit group 10 and the final stage aggregation unit group 20 is the same as that of the first embodiment.

第1段の中途集約部群30Cの構成は、第1実施形態の中途集約部群30Aと同様である。すなわち、中途集約部群30Cは、(M×N)本の光導波路3の中途に設けられ、2個の中途集約部32Cを含んで構成されている。各中途集約部32Cには、M個の初段集約部12のそれぞれから光導波路3がk1本(k1は4以上の整数。本実施形態ではk1=4)ずつ配線されている。また、各中途集約部32Cは、多芯光コネクタ接続構造35を有する。図3は、各中途集約部32Cが、4芯光コネクタ33,34からなる多芯光コネクタ接続構造35を4つずつ有する場合を模式的に示している。 The configuration of the mid-career aggregation unit group 30C of the first stage is the same as that of the mid-career aggregation unit group 30A of the first embodiment. That is, the midway aggregation unit group 30C is provided in the middle of the (M × N) optical waveguides 3, and includes two midway aggregation units 32C. In each mid-stage aggregation unit 32C, k 1 optical waveguides 3 (k 1 is an integer of 4 or more. In this embodiment, k 1 = 4) are wired from each of the M first-stage aggregation units 12. Further, each midway aggregation unit 32C has a multi-core optical connector connection structure 35. FIG. 3 schematically shows a case where each midway aggregation unit 32C has four multi-core optical connector connection structures 35 including four-core optical connectors 33 and 34.

第2段の中途集約部群30Dは、(M×N)本の光導波路3の中途、すなわち第1段の中途集約部群30Cと最終段集約部群20との間に設けられている。中途集約部群30Dは、2個以上の中途集約部32Dを含んで構成されており、中途集約部32Dの個数は、第1段の中途集約部群30Cにおける中途集約部32Cの個数よりも多い。本実施形態の中途集約部群30Dは、4個の中途集約部32Dを含んでいる。各中途集約部32Dには、M個の初段集約部12のそれぞれから光導波路3がk2本(k2は2以上の整数であって、k1よりも小さい。本実施形態ではk2=2)ずつ配線されている。また、各中途集約部32Dは、多芯光コネクタ接続構造35を有する。多芯光コネクタの芯数は任意(最大でk2×M)であり、例えば、2,4,8,12,16,24,32といった数である。図4は、各中途集約部32Dが、4芯光コネクタ33,34からなる多芯光コネクタ接続構造35を2つずつ有する場合を模式的に示している。 The second-stage mid-stage aggregation unit group 30D is provided in the middle of the (M × N) optical waveguide 3, that is, between the first-stage mid-stage aggregation unit group 30C and the final stage aggregation unit group 20. The mid-aggregation unit group 30D is configured to include two or more mid-term aggregation units 32D, and the number of mid-stage aggregation units 32D is larger than the number of mid-stage aggregation units 32C in the first-stage mid-stage aggregation unit group 30C. .. The mid-level aggregation unit group 30D of the present embodiment includes four mid-range aggregation unit 32D. In each mid-stage aggregation unit 32D, there are k 2 optical waveguides 3 from each of the M first-stage aggregation units 12 (k 2 is an integer of 2 or more and smaller than k 1. In this embodiment, k 2 = 2) They are wired one by one. Further, each midway aggregation unit 32D has a multi-core optical connector connection structure 35. The number of cores of the multi-core optical connector is arbitrary (maximum k 2 × M), and is, for example, 2, 4, 8, 12, 16, 24, 32. FIG. 4 schematically shows a case where each midway aggregation unit 32D has two multi-core optical connector connection structures 35 including four-core optical connectors 33 and 34.

ここで、(M×N)本の光導波路3が初段集約部群10から最終段集約部群20に至る過程を説明する。まず、各初段集約部12では、前述したようにN本の光導波路3が集合している。次に、そのN本の光導波路3は、中途集約部群30Cに至る迄に2つのグループに分割され、一方の(N/2)本のグループは第1番目の中途集約部32Cに達し、他方の(N/2)本のグループは第2番目の中途集約部32Cに達する。そして、第1番目の中途集約部32Cの(N/2)本のグループは、中途集約部群30Dに至る迄に更に2つのグループに分割され、一方の(N/4)本のグループは第1番目の中途集約部32Dに達し、他方の(N/4)本のグループは第2番目の中途集約部32Dに達する。同様に、第2番目の中途集約部32Cの(N/2)本のグループは、中途集約部群30Dに至る迄に更に2つのグループに分割され、一方の(N/4)本のグループは第3番目の中途集約部32Dに達し、他方の(N/4)本のグループは第4番目の中途集約部32Dに達する。その後、(M×N)本の光導波路3は、各中途集約部32Dから最終段集約部群20へ向かう過程で1本ずつに分割され、それぞれ対応する最終段集約部22に達する。 Here, the process of the (M × N) book of the optical waveguide 3 from the first stage aggregation unit group 10 to the final stage aggregation unit group 20 will be described. First, in each first-stage aggregation unit 12, N optical waveguides 3 are assembled as described above. Next, the N optical waveguides 3 are divided into two groups up to the mid-aggregation group 30C, and one (N / 2) group reaches the first mid-aggregation 32C. The other (N / 2) book group reaches the second mid-aggregation section 32C. Then, the (N / 2) group of the first half-aggregated section 32C is further divided into two groups up to the mid-aggregated section group 30D, and one (N / 4) book group is the first. The first mid-aggregation section 32D is reached, and the other (N / 4) book group reaches the second mid-interagulation section 32D. Similarly, the (N / 2) group of the second mid-aggregation unit 32C is further divided into two groups up to the mid-aggregation unit group 30D, and one (N / 4) group is divided into two groups. The third mid-aggregation section 32D is reached, and the other (N / 4) book group reaches the fourth mid-interagulation section 32D. After that, the (M × N) optical waveguides 3 are divided into one in the process from each mid-stage aggregation unit 32D toward the final stage aggregation unit group 20, and reach the corresponding final stage aggregation unit 22 respectively.

本実施形態のクロスコネクトモジュール1Cによれば、第1実施形態よりも更に顕著な効果が得られる。すなわち、クロスコネクトモジュール1Cは、光導波路3の中途に設けられた2段の中途集約部群30C,30Dを備えている。そして、初段集約部群10から各中途集約部32Cに至るまでの光導波路3は、k1本を一単位として、例えばテープ心線やマルチコアファイバ等を用いて配線されることができる。更に、各中途集約部32Cから各中途集約部32Dに至るまでの光導波路3は、k2本を一単位として、例えばテープ心線やマルチコアファイバ等を用いて配線されることができる。故に、第1段の中途集約部群30Cから最終段集約部群20に至るまでの光導波路3において、第1実施形態と比較して交差の数がより低減されるため、交錯度合いが更に抑えられる。従って、本実施形態のクロスコネクトモジュール1Cによれば、光導波路3の交錯をより効果的に抑制することができる。 According to the cross-connect module 1C of the present embodiment, a more remarkable effect can be obtained as compared with the first embodiment. That is, the cross-connect module 1C includes two-stage midway aggregation unit groups 30C and 30D provided in the middle of the optical waveguide 3. The optical waveguide 3 from the first-stage aggregation unit group 10 to each intermediate integration unit 32C can be wired with k 1 as a unit, for example, using a tape core wire, a multi-core fiber, or the like. Further, the optical waveguide 3 from each mid-aggregation section 32C to each mid-aggregation section 32D can be wired with k 2 as one unit, for example, using a tape core wire or a multi-core fiber. Therefore, in the optical waveguide 3 from the first stage centralized unit group 30C to the final stage integrated unit group 20, the number of intersections is further reduced as compared with the first embodiment, so that the degree of crossing is further suppressed. Be done. Therefore, according to the cross-connect module 1C of the present embodiment, the crossing of the optical waveguide 3 can be suppressed more effectively.

本発明によるクロスコネクトモジュールは、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記各実施形態では1段もしくは2段の中途集約部群を例示したが、本発明の中途集約部群の段数は任意である。すなわち、本発明のクロスコネクトモジュールは、(M×N)本の光導波路の中途に設けられ、二以上の中途集約部をそれぞれ含むJ段(Jは1以上の整数)の中途集約部群を備えることができる。そして、第j段(j=1,・・・,J)の中途集約部群を構成する各中途集約部には、M個の初段集約部のそれぞれから複数本の光導波路が配線される。更に、段数Jが2以上である場合には、各中途集約部のM個の初段集約部それぞれからの配線本数は段番jが大きいほど小さくなる。 The cross-connect module according to the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, in each of the above embodiments, a one-stage or two-stage mid-stage aggregation unit group is illustrated, but the number of stages of the mid-stage aggregation unit group of the present invention is arbitrary. That is, the cross-connect module of the present invention is provided in the middle of the (M × N) optical waveguide, and has a J-stage (J is an integer of 1 or more) intermediate aggregation unit group including two or more intermediate aggregation units. Can be prepared. Then, a plurality of optical waveguides are wired from each of the M first-stage aggregates in each of the mid-stage aggregates constituting the j-stage (j = 1, ..., J) mid-stage aggregates. Further, when the number of stages J is 2 or more, the number of wirings from each of the M first-stage aggregation portions of each intermediate aggregation portion becomes smaller as the stage number j is larger.

また、上記各実施形態では、各段の中途集約部群において各中途集約部に配線される光導波路の本数が各中途集約部同士で等しい場合を例示したが、光導波路の本数は各中途集約部ごとに異なってもよい。例えば、図1では2つの中途集約部32Aに光導波路3が4本ずつ配線される場合を例示したが、一方の中途集約部32Aには3本の光導波路3を配線し、他方の中途集約部32Aには5本の光導波路3を配線するような形態であってもよい。 Further, in each of the above-described embodiments, the case where the number of optical waveguides wired to each intermediate aggregation unit in each stage of the intermediate aggregation unit is equal among the intermediate aggregation units is illustrated, but the number of optical waveguides is equal to each intermediate aggregation unit. It may be different for each part. For example, FIG. 1 illustrates a case where four optical waveguides 3 are wired to two midway aggregation portions 32A, but three optical waveguides 3 are wired to one midway aggregation portion 32A and the other halfway aggregation. A form in which five optical waveguides 3 are wired may be used in the portion 32A.

本発明に係るクロスコネクトモジュールの構成に別の表現を用いると、次のようになる。すなわち、本発明によるクロスコネクトモジュールでは、まず初段集約部群において、各初段集約部のN本の光導波路3がp分割(pは2以上の整数)される。そして、光導波路3は(N/p)本毎の束とされる。第1段の中途集約部群は、片側が(N/p)芯の入出力を有する多芯光コネクタ接続構造35を(p×M)個有する。この第1段の中途集約部群には、光導波路3が(N/p)本の束ごと配線される。次に、第1段の中途集約部群において、各中途集約部の(N/p)本の光導波路3がq分割(qは2以上の整数)される。そして、光導波路3は(N/(p・q))本毎の束とされる。第2段の中途集約部群は、片側が(N/p)芯の入出力を有する多芯光コネクタ接続構造35を(p×M)個有する。この第2段の中途集約部群には、光導波路3が(N/(p・q))本の束ごと配線される。第3段以降も同様に、光導波路3が分割されながら配線される。 Using another expression for the configuration of the cross-connect module according to the present invention, it becomes as follows. That is, in the cross-connect module according to the present invention, first, in the first-stage aggregation unit group, N optical waveguides 3 of each first-stage aggregation unit are divided into p (p is an integer of 2 or more). Then, the optical waveguide 3 is bundled for each (N / p) line. The mid-stage aggregation unit group of the first stage has (p × M) multi-core optical connector connection structures 35 having (N / p) core input / output on one side. An optical waveguide 3 is wired together with a bundle of (N / p) lines in the middle-stage aggregation unit group of the first stage. Next, in the mid-stage aggregation unit group of the first stage, the (N / p) optical waveguides 3 of each mid-stage aggregation unit are divided into q (q is an integer of 2 or more). Then, the optical waveguide 3 is bundled for each (N / (p · q)) line. The middle-stage centralized unit group of the second stage has (p × M) multi-core optical connector connection structures 35 having (N / p) core input / output on one side. An optical waveguide 3 is wired together with a bundle of (N / (p · q)) lines in the middle-stage aggregation unit group of the second stage. Similarly, in the third and subsequent stages, the optical waveguide 3 is wired while being divided.

1A〜1C…クロスコネクトモジュール、3…光導波路、10…初段集約部群、12…初段集約部、20…最終段集約部群、22…最終段集約部、30A〜30D…中途集約部群、32A〜32D…中途集約部、33,34…多芯光コネクタ、35…多芯光コネクタ接続構造。 1A to 1C ... Cross-connect module, 3 ... Optical waveguide, 10 ... First stage aggregation unit group, 12 ... First stage aggregation unit group, 20 ... Final stage aggregation unit group, 22 ... Final stage aggregation unit, 30A to 30D ... Midway aggregation unit group, 32A to 32D ... Mid-central unit, 33, 34 ... Multi-core optical connector, 35 ... Multi-core optical connector connection structure.

Claims (3)

M×N本(但し、M,Nは2以上の整数)の光導波路の各一端をN本ずつ集合させるM個の初段集約部を含む初段集約部群と、
前記(M×N)本の光導波路の各他端をM本ずつ集合させるN個の最終段集約部を含む最終段集約部群と、
記(M×N)本の光導波路の中途に設けられ、二以上の中途集約部をそれぞれ含むJ段(Jは2以上の整数)の中途集約部群と、を備え、
第1段の前記中途集約部群を構成する各中途集約部に、前記M個の初段集約部のそれぞれから複数本の前記光導波路が配線されており、
第j段(j=,・・・,J)の前記中途集約部群を構成する各中途集約部に、前記M個の初段集約部のそれぞれから、第1段ないし第(j−1)段の前記中途集約部群を介して、複数本の前記光導波路が配線されており、
各最終段集約部に、前記M個の初段集約部のそれぞれから、第1段ないし第J段の前記中途集約部群を介して、前記光導波路が1本ずつ配線されており、
各中途集約部の前記M個の初段集約部それぞれからの配線本数は段番jが大きいほど小さい、クロスコネクトモジュール。
A group of first-stage aggregates including M first-stage aggregates that aggregate N each end of each end of M × N (where M and N are integers of 2 or more).
A group of final stage aggregates including N final stage aggregates in which M of each other end of the (M × N) optical waveguides are assembled.
Provided midway before SL (M × N) of optical waveguide, e Bei and a middle aggregating unit group J stage including two or more of the mid-integrated section respectively (J is an integer of 2 or more),
A plurality of the optical waveguides are wired from each of the M first-stage aggregation units to each of the mid-stage aggregation units constituting the first-stage intermediate aggregation unit group.
From each of the M first-stage aggregation units to each of the mid-stage aggregation units constituting the mid-stage aggregation unit group of the jth stage (j = 2 , ..., J), the first stage to the first stage (j-1) A plurality of the optical waveguides are wired via the intermediate aggregation unit group of the stage .
One optical waveguide is wired to each final stage aggregation unit from each of the M first stage aggregation units via the intermediate aggregation unit group of the first stage to the Jth stage.
A cross-connect module in which the number of wires from each of the M first-stage aggregation units of each mid-stage aggregation unit is smaller as the stage number j is larger.
前記各初段集約部の各N本の前記光導波路がp分割(pは2以上の整数であり、Nはpの整数倍)され、(N/p)本毎の束とされ、
第1段の前記中途集約部群には、前記光導波路が(N/p)本の束ごと配線され、
前記第1段の前記中途集約部群において、各中途集約部の(N/p)本の前記光導波路がq分割(qは2以上の整数であり、Nはp・qの整数倍)され、(N/p・q)本毎の束とされ、
第2段の前記中途集約部群には、前記光導波路が(N/p・q)本の束ごと配線される、
請求項1に記載のクロスコネクトモジュール。
Each of the N optical waveguides of each first-stage aggregation unit is divided into p (p is an integer of 2 or more , N is an integer multiple of p), and (N / p) bundles are formed.
The optical waveguide is wired together with a bundle of (N / p) lines in the middle-stage aggregation unit group in the first stage.
In the mid-stage aggregation unit group of the first stage, the (N / p) optical waveguides of each mid-stage aggregation unit are divided into q (q is an integer of 2 or more , and N is an integer multiple of p · q ). , (N / p · q) as a bundle for each book,
The optical waveguide is wired together with a bundle of (N / p · q) lines in the middle-stage aggregation unit group in the second stage.
The cross-connect module according to claim 1.
前記(M×N)本の光導波路が光ファイバのコアであり、
各中途集約部は、前記初段集約部群側の複数本の前記光導波路と、前記最終段集約部群側の複数本の前記光導波路とを相互に接続する光コネクタ接続構造を有する、請求項1または請求項2に記載のクロスコネクトモジュール。
The (M × N) optical waveguide is the core of the optical fiber.
A claim that each mid-stage aggregation unit has an optical connector connection structure for interconnecting a plurality of the optical waveguides on the first stage aggregation unit group side and a plurality of the optical waveguides on the final stage aggregation unit group side. 1 or the cross-connect module according to claim 2 .
JP2016077219A 2016-04-07 2016-04-07 Cross connect module Active JP6798132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077219A JP6798132B2 (en) 2016-04-07 2016-04-07 Cross connect module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077219A JP6798132B2 (en) 2016-04-07 2016-04-07 Cross connect module

Publications (2)

Publication Number Publication Date
JP2017188816A JP2017188816A (en) 2017-10-12
JP6798132B2 true JP6798132B2 (en) 2020-12-09

Family

ID=60045747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077219A Active JP6798132B2 (en) 2016-04-07 2016-04-07 Cross connect module

Country Status (1)

Country Link
JP (1) JP6798132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171700A1 (en) * 2018-03-07 2019-09-12 住友電気工業株式会社 Optical wiring member and optical wiring structure

Also Published As

Publication number Publication date
JP2017188816A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JPH10154986A (en) Atm switch
US6999654B1 (en) Connection of on an add/drop node
US6041152A (en) Multi-channel fiber optic communications system and multiplexer/demultiplexer arrangement therefor
US10823926B2 (en) Optical interconnect apparatus and system
JP6798132B2 (en) Cross connect module
CN117043650A (en) Low loss, low crosstalk optical mode multiplexer and optical cross-connect
US10564359B2 (en) Optical interconnect apparatus
WO2020105526A1 (en) Optical communication node
JP2005352202A (en) Optical circuit, optical multiplexer, and optical demultiplexer
CN112415684A (en) Passive optical fiber cross wiring device
JP4651012B2 (en) Optical branching module
US10534148B2 (en) Optical interconnect device
US7373039B1 (en) Low-ripple optical device
JP4460543B2 (en) Optical multiplexing / demultiplexing module and integrated optical multiplexing / demultiplexing module
JP3428732B2 (en) Network system
JPS61269110A (en) Optical tap
EP1309119A2 (en) A branching unit
US9722721B2 (en) Method and device for transparent connection of different DWDM systems by NxN AWGs
JP4504935B2 (en) Optical multiplexing / demultiplexing module
JP2002027513A (en) Optical node device
JP2001033651A (en) Optical coupler
JP2010237337A (en) Optical multiplexer/demultiplexer
WO2013103110A1 (en) Optical branching/synthesizing device
JP2012195658A (en) Optical branch device and optical communication system
JPS60140207A (en) Optical demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250