JP6797284B2 - Air conditioners, air conditioners, and control methods - Google Patents

Air conditioners, air conditioners, and control methods Download PDF

Info

Publication number
JP6797284B2
JP6797284B2 JP2019508095A JP2019508095A JP6797284B2 JP 6797284 B2 JP6797284 B2 JP 6797284B2 JP 2019508095 A JP2019508095 A JP 2019508095A JP 2019508095 A JP2019508095 A JP 2019508095A JP 6797284 B2 JP6797284 B2 JP 6797284B2
Authority
JP
Japan
Prior art keywords
temperature
concentration
air conditioning
room
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019508095A
Other languages
Japanese (ja)
Other versions
JPWO2018179320A1 (en
Inventor
正俊 伊藤
正俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018179320A1 publication Critical patent/JPWO2018179320A1/en
Application granted granted Critical
Publication of JP6797284B2 publication Critical patent/JP6797284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、在室者の快適性と省エネルギー性とを両立させることのできる空気調和装置、空気調和システム、および、制御方法に関する。 The present invention relates to an air conditioner, an air conditioner system, and a control method capable of achieving both comfort and energy saving of a resident.

従来より、家庭やオフィスには、空気調和装置(空気調和システム)が導入されている。通常、空気調和装置は、ユーザによってリモコンから入力された空調設定(一例として、設定温度、設定湿度、設定風量等)に従って、室内の空気調和を行う。 Conventionally, air conditioners (air conditioners) have been introduced in homes and offices. Normally, the air conditioner adjusts the air in the room according to the air conditioning settings (for example, set temperature, set humidity, set air volume, etc.) input from the remote controller by the user.

このような空気調和装置の先行技術として、例えば、特許文献1には、室内温度をゆらぎ制御することを特徴とした空気調和装置(空気調和機)の発明が開示されている。この特許文献1の発明では、比較的細かな1/fゆらぎの室温変動を実現し、人体に不快感を与えることなく涼感効果を得て省エネルギーを図ることを目的としている。 As a prior art of such an air conditioner, for example, Patent Document 1 discloses an invention of an air conditioner (air conditioner) characterized by fluctuating and controlling a room temperature. An object of the present invention of Patent Document 1 is to realize a relatively fine 1 / f fluctuation in room temperature, to obtain a cool sensation effect without causing discomfort to the human body, and to save energy.

特開平9−318135号公報Japanese Unexamined Patent Publication No. 9-318135

上述した特許文献1の発明では、1/fゆらぎとなるように室温を変動させているが、画一的な制御であるため、在室者(空調対象空間に在室するユーザ)の快適性を損なう場合があった。例えば、オフィス内の在室者は、時間の経過と共に集中力が徐々に低下し、ある程度まて集中力が低下すると温度の変化(特に温度上昇)に敏感になる。そのような状況で、1/fゆらぎにより室温を上げてしまうと、在室者が不快に感じてしまうことになる。つまり、特許文献1の発明では、1/fゆらぎ制御のために、室温の上昇及び低下を定期的に繰り返すため、やがて、在室者の集中力が低下した状況で、室温を上昇させてしまうことになる。 In the invention of Patent Document 1 described above, the room temperature is fluctuated so as to be 1 / f fluctuation, but since the control is uniform, the comfort of the occupants (users in the air-conditioned space) Was sometimes impaired. For example, a person in an office gradually loses his / her concentration with the passage of time, and becomes sensitive to changes in temperature (particularly a temperature rise) when his / her concentration drops to some extent. In such a situation, if the room temperature is raised by 1 / f fluctuation, the occupants will feel uncomfortable. That is, in the invention of Patent Document 1, since the room temperature rises and falls periodically in order to control the 1 / f fluctuation, the room temperature is eventually raised in a situation where the concentration of the occupants is lowered. It will be.

すなわち、特許文献1の発明では、人体に不快感を与えることなく涼感効果を得て省エネルギーを図ることを目的としているものの、現実には、在室者の快適性と省エネルギー性とを両立させることができていなかった。 That is, although the invention of Patent Document 1 aims to obtain a cool feeling effect and save energy without causing discomfort to the human body, in reality, it is necessary to achieve both comfort and energy saving of the occupants. Was not done.

本発明は、上記のような問題点を解決するためになされたもので、在室者の快適性と省エネルギー性とを両立させることを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to achieve both comfort and energy saving of a resident.

上記目的を達成するため、本発明に係る空気調和装置は、
空調対象となる室内に在室するユーザの集中力を算出する集中力算出手段と、
設定温度よりも低い温度に室温を維持する低温運転、又は、設定温度よりも高い温度に室温を維持する高温運転を行う運転制御手段と、を備え、
前記集中力算出手段は、入退室者の延べ人数に基づいて、集中力を指標する指標値を算出し、
前記運転制御手段は、前記指標値が、第1の値以上になると、前記低温運転から前記高温運転に切り換え、前記指標値が、前記第1の値よりも小さい第2の値以下になると、前記高温運転から前記低温運転に切り換える。
In order to achieve the above object, the air conditioner according to the present invention is
Concentration calculation means for calculating the concentration of users in the room to be air-conditioned,
It is provided with an operation control means for performing low temperature operation for maintaining room temperature at a temperature lower than the set temperature or high temperature operation for maintaining room temperature at a temperature higher than the set temperature.
The concentration calculation means calculates an index value for indexing concentration based on the total number of people entering and leaving the room .
When the index value becomes equal to or higher than the first value, the operation control means switches from the low temperature operation to the high temperature operation, and when the index value becomes equal to or less than a second value smaller than the first value. The high temperature operation is switched to the low temperature operation.

本発明によれば、設定温度よりも低い温度に室温を維持する低温運転、又は、設定温度よりも高い温度に室温を維持する高温運転を行う運転制御手段は、集中力算出手段により算出された集中力に基づいて、これら高温運転と低温運転とを切り換える。例えば、運転制御手段は、在室者の集中力が低いときに低温運転を行うことで、在室者の集中力を向上させる。やがて、在室者の集中力が高まると、運転制御手段は、低温運転から高温運転に切り換え、省エネルギー性を向上させる。このとき、集中力が高まっている在室者は、温度の変化が気にならない(温度変化に鈍感な状況である)ため、高温運転に切り換えても快適性が損なわれない。やがて、在室者の集中力が低くなると、再び、高温運転から低温運転に切り換え、在室者の集中力を向上させる。このように、在室者の集中力に基づいて、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 According to the present invention, the operation control means for performing the low temperature operation for maintaining the room temperature at a temperature lower than the set temperature or the high temperature operation for maintaining the room temperature at a temperature higher than the set temperature was calculated by the concentration calculation means. It switches between these high temperature operation and low temperature operation based on the concentration. For example, the operation control means improves the concentration of the occupants by performing low-temperature operation when the concentration of the occupants is low. Eventually, when the concentration of the occupants increases, the operation control means switches from low temperature operation to high temperature operation to improve energy saving. At this time, the occupants who have increased concentration do not care about the temperature change (the situation is insensitive to the temperature change), so that the comfort is not impaired even if the operation is switched to the high temperature operation. Eventually, when the concentration of the occupants becomes low, the operation is switched from the high temperature operation to the low temperature operation again to improve the concentration of the occupants. In this way, by appropriately switching between high temperature operation and low temperature operation based on the concentration of the occupants, it is possible to achieve both comfort and energy saving of the occupants.

本発明の実施形態1に係る空気調和システムの全体構成の一例を示す模式図Schematic diagram showing an example of the overall configuration of the air conditioning system according to the first embodiment of the present invention. 空調制御装置の構成の一例を示すブロック図Block diagram showing an example of the configuration of an air conditioning controller 揺らぎ時間・温度データの具体例を示す模式図Schematic diagram showing specific examples of fluctuation time / temperature data 揺らぎ温度制御を説明するための模式図Schematic diagram for explaining fluctuation temperature control 空調機の構成の一例を示すブロック図Block diagram showing an example of the configuration of an air conditioner 空調制御処理の一例を示すフローチャートFlow chart showing an example of air conditioning control processing 本発明の実施形態2に係る空調制御装置の構成の一例を示すブロック図Block diagram showing an example of the configuration of the air conditioning control device according to the second embodiment of the present invention. 本発明の実施形態2に係る揺らぎ時間・温度データの具体例を示す模式図Schematic diagram showing a specific example of fluctuation time / temperature data according to the second embodiment of the present invention. 集中力指標データの具体例を示す模式図Schematic diagram showing a specific example of concentration index data 本発明の実施形態2に係る空調機の構成の一例を示すブロック図Block diagram showing an example of the configuration of the air conditioner according to the second embodiment of the present invention. 本発明の実施形態2に係る空調制御処理の一例を示すフローチャートA flowchart showing an example of air conditioning control processing according to the second embodiment of the present invention. 本発明の実施形態3に係る空調機の構成の一例を示すブロック図Block diagram showing an example of the configuration of the air conditioner according to the third embodiment of the present invention. 他の実施形態に係る揺らぎ時間・温度データの具体例を示す模式図Schematic diagram showing specific examples of fluctuation time / temperature data according to other embodiments 暖房時における揺らぎ温度制御を説明するための模式図Schematic diagram for explaining fluctuation temperature control during heating

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付す。以下では、具体例として、本発明がビルに代表される建物に設置される空気調和システムに適用される場合について説明するが、後述するように、一般家屋に設置され単独で使用される空気調和装置(空調機)においても同様に本発明を適用することができる。また、以下では、夏期の冷房時における空調制御を一例として説明するが、後述するように、冬期の暖房時における空調制御においても、適宜適用することができる。すなわち、以下に説明する実施形態は説明のためのものであり、本発明の範囲を制限するものではない。従って、当業者であればこれらの各要素又は全要素をこれと均等なものに置換した実施形態を採用することが可能であるが、これらの実施形態も本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the figure are designated by the same reference numerals. In the following, as a specific example, a case where the present invention is applied to an air conditioning system installed in a building represented by a building will be described, but as will be described later, an air conditioning system installed in a general house and used independently. The present invention can be similarly applied to an apparatus (air conditioner). Further, in the following, the air conditioning control during cooling in summer will be described as an example, but as will be described later, it can be appropriately applied to the air conditioning control during heating in winter. That is, the embodiments described below are for illustration purposes only and do not limit the scope of the present invention. Therefore, those skilled in the art can adopt embodiments in which each or all of these elements are replaced with equivalent ones, but these embodiments are also included in the scope of the present invention.

(実施形態1)
図1は、本発明の実施形態1に係る空気調和システム1の全体構成の一例を示すブロック図である。この空気調和システム1は、例えば、ビルに代表される建物に設置されており、図示するように、空調制御装置2、及び、空調機3(一例として、複数の空調機3)を備えており、空調制御装置2と空調機3とが空調ネットワークNを介して通信可能に接続されている。なお、空調ネットワークNは、例えば、有線又は無線の通信ネットワークであり、予め定められたプロトコルに沿ったデータ通信が行われる。
(Embodiment 1)
FIG. 1 is a block diagram showing an example of the overall configuration of the air conditioning system 1 according to the first embodiment of the present invention. This air conditioning system 1 is installed in, for example, a building represented by a building, and includes an air conditioning controller 2 and an air conditioner 3 (for example, a plurality of air conditioners 3) as shown in the figure. , The air conditioning controller 2 and the air conditioner 3 are communicably connected via the air conditioning network N. The air conditioning network N is, for example, a wired or wireless communication network, and data communication is performed according to a predetermined protocol.

空調制御装置2は、空気調和システム1全体を制御する。例えば、空調制御装置2は、図2に示すように、空調通信部21と、運転制御手段としての空調運転制御部22と、データ管理部23とを備える。 The air conditioning control device 2 controls the entire air conditioning system 1. For example, as shown in FIG. 2, the air conditioning control device 2 includes an air conditioning communication unit 21, an air conditioning operation control unit 22 as an operation control means, and a data management unit 23.

空調通信部21は、空調ネットワークNを通じて、空調機3と通信可能な通信インタフェースである。空調通信部21は、例えば、空調運転制御部22が生成した制御コマンド(一例として、目標温度の指令)を、空調ネットワークNを通じて空調機3に送信する。 The air conditioning communication unit 21 is a communication interface capable of communicating with the air conditioner 3 through the air conditioning network N. For example, the air conditioning communication unit 21 transmits a control command (for example, a target temperature command) generated by the air conditioning operation control unit 22 to the air conditioner 3 through the air conditioning network N.

空調運転制御部22は、例えば、CPU(Central Processing Unit),ROM(Read Only Memory),RAM(Random Access Memory)等を備え、空調制御装置2全体を制御する。空調運転制御部22は、機能的には、以下に説明する揺らぎ温度制御実行部221を備えている。なお、空調運転制御部22は、この他にも、空調機3に対して一般的な運転管理を行う機能も備えているが、本発明の特徴ではないため説明を省略する。これらの機能は、例えば、CPUが、RAMをワークメモリとして用い、ROMに記憶されている各種プログラムを適宜実行することにより実現される。 The air conditioning operation control unit 22 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and controls the entire air conditioning control device 2. The air-conditioning operation control unit 22 functionally includes a fluctuation temperature control execution unit 221 described below. The air conditioning operation control unit 22 also has a function of performing general operation management for the air conditioner 3, but the description thereof will be omitted because it is not a feature of the present invention. These functions are realized, for example, by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM.

揺らぎ温度制御実行部221は、空調機3に対して目標温度の指令を適宜発することで、揺らぎ温度制御を行う。なお、揺らぎ温度制御の詳細は、後述するデータ管理部23(揺らぎ時間・温度データ232)と共に説明する。 The fluctuation temperature control execution unit 221 controls the fluctuation temperature by appropriately issuing a command for the target temperature to the air conditioner 3. The details of the fluctuation temperature control will be described together with the data management unit 23 (fluctuation time / temperature data 232) described later.

データ管理部23は、例えば、ハードディスクに代表される補助記憶デバイスであり、空調機3の制御に必要な種々のデータを管理する。一例として、データ管理部23は、揺らぎ温度制御開始条件データ231と、揺らぎ時間・温度データ232とを記憶する。 The data management unit 23 is, for example, an auxiliary storage device represented by a hard disk, and manages various data necessary for controlling the air conditioner 3. As an example, the data management unit 23 stores the fluctuation temperature control start condition data 231 and the fluctuation time / temperature data 232.

揺らぎ温度制御開始条件データ231は、揺らぎ温度制御を開始するための条件を規定するデータである。例えば、揺らぎ温度制御開始条件データ231には、在室者についての条件人数(一例として、閾値となる10人)が規定されている。なお、在室者とは、空調機3による空調対象空間(一例として、フロア内)に在室するユーザである。 The fluctuation temperature control start condition data 231 is data that defines the conditions for starting the fluctuation temperature control. For example, the fluctuation temperature control start condition data 231 defines the number of people in the room (for example, 10 people as a threshold value). The occupant is a user who is in the air-conditioned space (for example, in the floor) by the air conditioner 3.

揺らぎ時間・温度データ232は、揺らぎ温度制御における低温運転及び高温運転を規定するデータである。なお、低温運転とは、設定温度よりも低い温度に室温を維持することで、在室者の集中力を向上させる運転である。一方、高温運転とは、設定温度よりも高い温度に室温を維持することで、省エネルギー性を向上させる運転である。揺らぎ時間・温度データ232の具体例を、図3に示す。 The fluctuation time / temperature data 232 is data that defines low-temperature operation and high-temperature operation in fluctuation temperature control. The low temperature operation is an operation that improves the concentration of the occupants by maintaining the room temperature at a temperature lower than the set temperature. On the other hand, the high temperature operation is an operation for improving energy saving by maintaining the room temperature at a temperature higher than the set temperature. A specific example of the fluctuation time / temperature data 232 is shown in FIG.

図3の揺らぎ時間・温度データ232において、T1は、低温運転の時間を示している。つまり、T1は、在室者の集中力を向上させるための時間を規定している。また、Δt1は、低温運転における下降温度(下げる温度)を示している。つまり、Δt1は、低温運転において、設定温度よりどのくらいの温度を下げるかを規定している。また、T2は、高温運転の時間を示している。つまり、T2は、省エネルギー性を向上させるための時間を規定している。そして、Δt2は、高温運転における上昇温度(上げる温度)を示している。つまり、Δt2は、高温運転において、設定温度よりどのくらいの温度を上げるかを規定している。 In the fluctuation time / temperature data 232 of FIG. 3, T1 indicates the time of low temperature operation. That is, T1 defines the time for improving the concentration of the occupants. Further, Δt1 indicates a lowering temperature (lowering temperature) in the low temperature operation. That is, Δt1 defines how much the temperature is lowered below the set temperature in the low temperature operation. Further, T2 indicates the time of high temperature operation. That is, T2 defines the time for improving the energy saving property. Then, Δt2 indicates the rising temperature (raising temperature) in the high temperature operation. That is, Δt2 defines how much the temperature is raised above the set temperature in the high temperature operation.

図3の揺らぎ時間・温度データ232では、時間帯に応じて、これらT1、Δt1、T2、及び、Δt2の値が適切となるように規定されている。例えば、午前(00:00:00〜11:59:59)と午後(12:00:00〜23:59:59)とでは、一般に、午前の方が、集中力が向上し易く、また、向上した集中力が持続し易い。そのため、午前の方は、午後よりも、T1,Δt1が小さく、また、T2,Δt2が大きく規定されている。また、午前、午後共に、T2は、1時間以下となるように規定されている。これは、集中力が持続するのは一般的に1時間以下であるとの実験結果に沿っている。また、Δt1については、設定温度からΔt1を減じた値が26℃よりも低い温度となるように、Δt1を規定するのが望ましい。これは、集中力が向上するのは25℃付近であるという以下の文献に沿っている。 In the fluctuation time / temperature data 232 of FIG. 3, the values of T1, Δt1, T2, and Δt2 are defined to be appropriate according to the time zone. For example, in the morning (00:00:00 to 11:59:59) and in the afternoon (12:00:00 to 23:59:59), it is generally easier to improve concentration in the morning, and Improved concentration is easy to sustain. Therefore, in the morning, T1, Δt1 is smaller than in the afternoon, and T2, Δt2 is larger. In addition, T2 is stipulated to be one hour or less in both the morning and afternoon. This is in line with the experimental results that concentration generally lasts for less than an hour. Further, regarding Δt1, it is desirable to specify Δt1 so that the value obtained by subtracting Δt1 from the set temperature becomes a temperature lower than 26 ° C. This is in line with the following literature that concentration is improved around 25 ° C.

クールビズ「28度では能率低下」・・・日本建築学会調査
2008年7月18日 読売新聞夕刊
Cool Biz "Inefficiency decreases at 28 degrees" ... Architectural Institute of Japan survey
July 18, 2008 Yomiuri Shimbun evening edition

Linking Environmental Conditions to Productivity
http://ergo.human.cornell.edu/Conferences/EECE_IEQ%20and%20Productivity_ABBR.pdf
Linking Environmental Conditions to Productivity
http://ergo.human.cornell.edu/Conferences/EECE_IEQ%20and%20Productivity_ABBR.pdf

このような揺らぎ時間・温度データ232に基づいて、上述した揺らぎ温度制御実行部221は、図4に示すような揺らぎ温度制御を行う。つまり、時間軸上のP1において、揺らぎ温度制御を開始するための条件が満たされると(一例として、在室者が10人より多くなると)、揺らぎ温度制御実行部221は、揺らぎ時間・温度データ232から時間帯(現在時刻が含まれる時間帯)に応じたT1,Δt1を読み出し、設定温度よりもΔt1だけ下げた目標温度の指令を、空調通信部21を通じて空調機3に発する。そして、揺らぎ温度制御実行部221は、T1時間が経過するのを待機する。 Based on such fluctuation time / temperature data 232, the fluctuation temperature control execution unit 221 described above performs fluctuation temperature control as shown in FIG. That is, when the condition for starting the fluctuation temperature control is satisfied in P1 on the time axis (for example, when the number of people in the room is more than 10), the fluctuation temperature control execution unit 221 performs the fluctuation time / temperature data. T1 and Δt1 corresponding to the time zone (time zone including the current time) are read from 232, and a command of the target temperature lower than the set temperature by Δt1 is issued to the air conditioner 3 through the air conditioner communication unit 21. Then, the fluctuation temperature control execution unit 221 waits for the T1 time to elapse.

揺らぎ温度制御実行部221は、T1時間が経過したP2において、揺らぎ時間・温度データ232から時間帯に応じたT2,Δt2を読み出し、設定温度よりもΔt2だけ上げた目標温度の指令を、空調機3に発する。そして、揺らぎ温度制御実行部221は、T2時間が経過するのを待機する。 The fluctuation temperature control execution unit 221 reads T2 and Δt2 according to the time zone from the fluctuation time / temperature data 232 in P2 after T1 time has elapsed, and issues a command for the target temperature raised by Δt2 above the set temperature to the air conditioner. Emit to 3. Then, the fluctuation temperature control execution unit 221 waits for the T2 time to elapse.

揺らぎ温度制御実行部221は、T2時間が経過したP3において、揺らぎ温度制御を行うための条件が満たされなくなると(一例として、在室者が10人以下になると)、設定温度と等しい目標温度の指令を、空調機3に発する。これ以降は同様に、例えば、時間軸上のP4において、揺らぎ温度制御を行うための条件が満たされると、揺らぎ温度制御実行部221は、揺らぎ時間・温度データ232から時間帯に応じたT1,Δt1を読み出し、設定温度よりもΔt1だけ下げた目標温度の指令を、空調機3に発する。 When the condition for performing the fluctuation temperature control is not satisfied (for example, when the number of occupants is 10 or less) in P3 after T2 time has passed, the fluctuation temperature control execution unit 221 has a target temperature equal to the set temperature. Is issued to the air conditioner 3. After that, similarly, for example, in P4 on the time axis, when the condition for performing the fluctuation temperature control is satisfied, the fluctuation temperature control execution unit 221 performs the fluctuation time / temperature data 232 to T1 according to the time zone. Δt1 is read out, and a command for a target temperature that is lower than the set temperature by Δt1 is issued to the air conditioner 3.

このような揺らぎ温度制御では、図3の揺らぎ時間・温度データ232において「T1<T2」に規定されているため、図4のように、低温運転の時間(つまり、T1)よりも高温運転の時間(つまり、T2)の方が長くなり、全体として消費電力の低減を実現することができる。 In such fluctuation temperature control, since the fluctuation time / temperature data 232 in FIG. 3 is defined as "T1 <T2", as shown in FIG. 4, the temperature is higher than the time of low temperature operation (that is, T1). The time (that is, T2) becomes longer, and the reduction in power consumption can be realized as a whole.

次に、空調機3の詳細について、図5を参照して説明する。図5は、空調機3の構成の一例を示すブロック図である。図示するように、空調機3は、空調通信部31と、空調機制御部32と、目標温度保持部33と、在室者検出手段としての在室者検出部34とを備える。 Next, the details of the air conditioner 3 will be described with reference to FIG. FIG. 5 is a block diagram showing an example of the configuration of the air conditioner 3. As shown in the figure, the air conditioner 3 includes an air conditioning communication unit 31, an air conditioner control unit 32, a target temperature holding unit 33, and an occupant detection unit 34 as a occupant detection means.

空調通信部31は、例えば、空調ネットワークNを通じて、空調制御装置2と通信可能な通信インタフェースである。空調通信部31は、例えば、空調制御装置2から送られた制御コマンド(一例として、目標温度の指令)を、空調ネットワークNを通じて受信する。 The air conditioning communication unit 31 is a communication interface capable of communicating with the air conditioning control device 2 through, for example, the air conditioning network N. The air conditioning communication unit 31 receives, for example, a control command (for example, a target temperature command) sent from the air conditioning control device 2 through the air conditioning network N.

空調機制御部32は、例えば、CPU,ROM,RAM等を備え、空調機3全体を制御する。例えば、空調機制御部32は、図示せぬ室外機との間で冷媒を循環させる冷媒回路321、送風方向を整えるルーバー322、及び、送風を行うファン323を制御して、空気調和を行う。具体的に空調機制御部32は、空調制御装置2からの目標温度の指令に応じた室温に維持するように、空気調和を行う。 The air conditioner control unit 32 includes, for example, a CPU, ROM, RAM, etc., and controls the entire air conditioner 3. For example, the air conditioner control unit 32 controls a refrigerant circuit 321 that circulates a refrigerant with an outdoor unit (not shown), a louver 322 that adjusts the blowing direction, and a fan 323 that blows air to perform air conditioning. Specifically, the air conditioner control unit 32 performs air conditioning so as to maintain the room temperature according to the command of the target temperature from the air conditioner control device 2.

目標温度保持部33は、空調通信部31が受信した目標温度の指令に応じた目標温度データを保持する。 The target temperature holding unit 33 holds the target temperature data in response to the target temperature command received by the air conditioning communication unit 31.

在室者検出部34は、例えば、カメラに代表される撮像素子と画像認識装置とを含んでいる。在室者検出部34は、例えば、フロア内のうち、空調機3の設置位置に応じた検出範囲内にいるユーザの人数を検出する。つまり、各空調機3において、検出範囲が適宜区分けされており、各空調機3の在室者検出部34が同時期に検出した人数を集計することで、フロア内に在室するユーザの人数(つまり、在室者人数)を求めることが可能となっている。 The occupant detection unit 34 includes, for example, an image sensor represented by a camera and an image recognition device. The occupant detection unit 34 detects, for example, the number of users on the floor within the detection range according to the installation position of the air conditioner 3. That is, the detection range is appropriately divided in each air conditioner 3, and the number of users in the room on the floor is totaled by the number of people detected by the occupant detection unit 34 of each air conditioner 3 at the same time. (That is, the number of people in the room) can be calculated.

以下、本発明の実施形態1に係る空気調和システム1における空調制御装置2の動作について、図6を参照して説明する。図6は、空調制御装置2(空調運転制御部22)が実行する空調制御処理の一例を示すフローチャートである。この空調制御処理は、一般的な空調制御とは異なる揺らぎ温度制御を行う際に実行される。 Hereinafter, the operation of the air conditioning control device 2 in the air conditioning system 1 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 6 is a flowchart showing an example of the air conditioning control process executed by the air conditioning control device 2 (air conditioning operation control unit 22). This air conditioning control process is executed when fluctuating temperature control different from general air conditioning control is performed.

まず、空調運転制御部22は、在室者人数を取得する(ステップS101)。すなわち、空調運転制御部22は、同時期に各空調機3の在室者検出部34か検出した人数を集計して、在室者人数を取得する。 First, the air conditioning operation control unit 22 acquires the number of people in the room (step S101). That is, the air-conditioning operation control unit 22 acquires the number of occupants by totaling the number of occupants detected by the occupant detection unit 34 of each air conditioner 3 at the same time.

空調運転制御部22は、在室者人数が条件人数よりも多いか否かを判別する(ステップS102)。つまり、空調運転制御部22は、ステップ101にて取得された在室者人数が、揺らぎ温度制御開始条件データ231にて規定される条件人数(一例として、閾値となる10人)を超えているかどうかを判別する。空調運転制御部22は、在室者人数が条件人数よりも多くない(以下である)と判別すると(ステップS102;No)、ステップS101に処理を戻す。 The air-conditioning operation control unit 22 determines whether or not the number of people in the room is larger than the number of people in the room (step S102). That is, does the air-conditioning operation control unit 22 exceed the number of people in the room acquired in step 101, which is the condition number specified in the fluctuation temperature control start condition data 231 (for example, 10 people as a threshold value)? Determine if. When the air-conditioning operation control unit 22 determines that the number of people in the room is not greater than (or less than) the number of people in the room (step S102; No), the process returns to step S101.

一方、在室者人数が条件人数よりも多いと判別した場合(ステップS102;Yes)に、空調運転制御部22は、時間帯からT1,Δt1を決定する(ステップS103)。すなわち、空調運転制御部22は、図3に示すような揺らぎ時間・温度データ232から時間帯に応じたT1及びΔt1を読み出す。 On the other hand, when it is determined that the number of people in the room is larger than the number of people in the room (step S102; Yes), the air conditioning operation control unit 22 determines T1 and Δt1 from the time zone (step S103). That is, the air-conditioning operation control unit 22 reads out T1 and Δt1 according to the time zone from the fluctuation time / temperature data 232 as shown in FIG.

空調運転制御部22は、空調機3の目標温度を、設定温度よりもΔt1だけ下げる(ステップS104)。つまり、空調運転制御部22は、設定温度よりもΔt1だけ下げた目標温度の指令を、空調通信部21を通じて空調機3に発する。 The air conditioning operation control unit 22 lowers the target temperature of the air conditioner 3 by Δt1 from the set temperature (step S104). That is, the air conditioning operation control unit 22 issues a command of the target temperature lower than the set temperature by Δt1 to the air conditioner 3 through the air conditioning communication unit 21.

空調運転制御部22は、T1時間が経過するのを待機する(ステップS105)。つまり、空調運転制御部22は、T1時間が経過していないと判別すると(ステップS105;No)、後続処理を実行せずに待機する。 The air conditioning operation control unit 22 waits for the T1 time to elapse (step S105). That is, when the air-conditioning operation control unit 22 determines that the T1 time has not elapsed (step S105; No), it waits without executing the subsequent processing.

一方、T1時間が経過したと判別した場合(ステップS105;Yes)に、空調運転制御部22は、時間帯からT2,Δt2を決定する(ステップS106)。すなわち、空調運転制御部22は、図3に示すような揺らぎ時間・温度データ232から時間帯に応じたT2及びΔt2を読み出す。 On the other hand, when it is determined that the T1 time has elapsed (step S105; Yes), the air conditioning operation control unit 22 determines T2, Δt2 from the time zone (step S106). That is, the air-conditioning operation control unit 22 reads out T2 and Δt2 according to the time zone from the fluctuation time / temperature data 232 as shown in FIG.

空調運転制御部22は、空調機3の目標温度を、設定温度よりもΔt2だけ上げる(ステップS107)。つまり、空調運転制御部22は、設定温度よりもΔt2だけ上げた目標温度の指令を、空調通信部21を通じて空調機3に発する。 The air conditioning operation control unit 22 raises the target temperature of the air conditioner 3 by Δt2 above the set temperature (step S107). That is, the air conditioning operation control unit 22 issues a command for the target temperature raised by Δt2 above the set temperature to the air conditioner 3 through the air conditioning communication unit 21.

空調運転制御部22は、T2時間が経過するのを待機する(ステップS108)。つまり、空調運転制御部22は、T2時間が経過していないと判別すると(ステップS108;No)、後続処理を実行せずに待機する。 The air conditioning operation control unit 22 waits for the T2 time to elapse (step S108). That is, when the air-conditioning operation control unit 22 determines that the T2 time has not elapsed (step S108; No), it waits without executing the subsequent processing.

一方、T2時間が経過したと判別した場合(ステップS108;Yes)に、空調運転制御部22は、空調機3の目標温度を、設定温度と等しくする(ステップS109)。つまり、空調運転制御部22は、設定温度に戻すための目標温度の指令を、空調通信部21を通じて空調機3に発する。 On the other hand, when it is determined that the T2 time has elapsed (step S108; Yes), the air conditioning operation control unit 22 sets the target temperature of the air conditioner 3 equal to the set temperature (step S109). That is, the air conditioning operation control unit 22 issues a command of the target temperature for returning to the set temperature to the air conditioner 3 through the air conditioning communication unit 21.

そして、空調運転制御部22は、上述したステップS101に処理を戻す。 Then, the air conditioning operation control unit 22 returns the process to step S101 described above.

このような空調制御処理において、ステップS101,S102にて揺らぎ温度制御の開始を判定する。この際、条件人数を超える在室者がいることを開示条件としているため、より多くの在室者の集中力を向上させ、維持することができる。次に、ステップS103〜S105にて、設定温度よりも低い温度に室温を維持する低温運転に切り換え、在室者の集中力を向上させる。やがて、在室者の集中力が高まると、ステップS106〜S108にて、設定温度よりも高い温度に室温を維持する高温運転に切り換え、省エネルギー性を向上させる。このとき、集中力が高まっている在室者は、温度の変化が気にならない(温度変化に鈍感な状況である)ため、高温運転に切り換えても快適性が損なわれない。このように、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 In such an air conditioning control process, the start of fluctuation temperature control is determined in steps S101 and S102. At this time, since the disclosure condition is that there are more occupants than the number of occupants, it is possible to improve and maintain the concentration of more occupants. Next, in steps S103 to S105, the operation is switched to low temperature operation in which the room temperature is maintained at a temperature lower than the set temperature, and the concentration of the occupants is improved. Eventually, when the concentration of the occupants increases, in steps S106 to S108, the operation is switched to high temperature operation in which the room temperature is maintained at a temperature higher than the set temperature to improve energy saving. At this time, the occupants who have increased concentration do not care about the temperature change (the situation is insensitive to the temperature change), so that the comfort is not impaired even if the operation is switched to the high temperature operation. By appropriately switching between high-temperature operation and low-temperature operation in this way, it is possible to achieve both comfort and energy saving of the occupants.

(実施形態2)
上記の実施形態1では、図3に示すような揺らぎ時間・温度データ232に基づいて、高温運転と低温運転とを適宜切り換える場合について説明したが、在室者の集中力を算出し、算出した集中力に基づいて、高温運転と低温運転とを切り換えてもよい。以下、本発明の実施形態2について説明する。
(Embodiment 2)
In the above-described first embodiment, the case of appropriately switching between the high temperature operation and the low temperature operation based on the fluctuation time / temperature data 232 as shown in FIG. 3 has been described, but the concentration of the occupants has been calculated and calculated. You may switch between high temperature operation and low temperature operation based on your concentration. Hereinafter, Embodiment 2 of the present invention will be described.

図7は、本発明の実施形態2に係る空調制御装置2の構成の一例を示すブロック図である。図示するように、空調制御装置2は、空調通信部21と、運転制御手段としての空調運転制御部42と、データ管理部43とを備える。なお、空調通信部21は、上述した図2の空調制御装置2における空調通信部21と同じ構成である。 FIG. 7 is a block diagram showing an example of the configuration of the air conditioning control device 2 according to the second embodiment of the present invention. As shown in the figure, the air conditioning control device 2 includes an air conditioning communication unit 21, an air conditioning operation control unit 42 as an operation control means, and a data management unit 43. The air conditioning communication unit 21 has the same configuration as the air conditioning communication unit 21 in the air conditioning control device 2 of FIG. 2 described above.

空調運転制御部42は、例えば、CPU,ROM,RAM等を備え、空調制御装置2全体を制御する。空調運転制御部42は、機能的には、揺らぎ温度制御実行部221、及び、在室者集中力算出部421(集中力算出手段としての在室者集中力算出部421)を備えている。これらの機能は、例えば、CPUが、RAMをワークメモリとして用い、ROMに記憶されている各種プログラムを適宜実行することにより実現される。なお、揺らぎ温度制御実行部221は、上述した図2の空調制御装置2における揺らぎ温度制御実行部221と同じ構成である。 The air conditioning operation control unit 42 includes, for example, a CPU, ROM, RAM, etc., and controls the entire air conditioning control device 2. The air-conditioning operation control unit 42 functionally includes a fluctuation temperature control execution unit 221 and a occupant concentration calculation unit 421 (resident resident concentration calculation unit 421 as a occupant concentration calculation means). These functions are realized, for example, by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM. The fluctuation temperature control execution unit 221 has the same configuration as the fluctuation temperature control execution unit 221 in the air conditioning control device 2 of FIG. 2 described above.

在室者集中力算出部421は、例えば、入退室回数に基づいて、在室者の集中力を算出する。具体的には、後述する動作検出部51(図10に示す空調機3)にて、現在を基準として予め定められた一定時間前までにおけるユーザの入退室回数(延べ人数)が検出されるため、在室者集中力算出部421は、この入退室回数に基づいて、在室者の集中力を算出する。なお、このようにして集中力を算出するのは、一例であり、他の手法により、在室者の集中力を算出してもよい。例えば、在室者集中力算出部421は、動作検出部51にて、在室者がキーボードをタイプするタイピング動作を検出する場合、そのタイピング数に基づいて在室者の集中力を算出してもよい。この他にも、例えば、在室者集中力算出部421は、動作検出部51にて、在室者が瞬きする動作を検出する場合、その瞬き数に基づいて在室者の集中力を算出してもよい。 The occupant concentration calculation unit 421 calculates the occupant concentration based on, for example, the number of times of entering and leaving the room. Specifically, the motion detection unit 51 (air conditioner 3 shown in FIG. 10), which will be described later, detects the number of times the user enters and leaves the room (total number of people) up to a certain time before a predetermined time with respect to the present. The occupant concentration calculation unit 421 calculates the concentration of occupants based on the number of times of entering and leaving the room. It should be noted that the calculation of the concentration in this way is an example, and the concentration of the occupants may be calculated by another method. For example, when the motion detection unit 51 detects a typing motion in which the occupant types the keyboard, the occupant concentration calculation unit 421 calculates the concentration of the occupant based on the number of typings. May be good. In addition to this, for example, when the motion detection unit 51 detects the blinking motion of the occupant, the occupant concentration calculation unit 421 calculates the concentration of the occupant based on the number of blinks. You may.

データ管理部43は、例えば、ハードディスクに代表される補助記憶デバイスであり、空調機3の制御に必要な種々のデータを管理する。一例として、データ管理部43は、揺らぎ温度制御開始条件データ231と、揺らぎ時間・温度データ431と、集中力指標データ432とを記憶する。なお、揺らぎ温度制御開始条件データ231は、上述した図2の空調制御装置2における揺らぎ温度制御開始条件データ231と同じ構成である。 The data management unit 43 is, for example, an auxiliary storage device represented by a hard disk, and manages various data necessary for controlling the air conditioner 3. As an example, the data management unit 43 stores the fluctuation temperature control start condition data 231, the fluctuation time / temperature data 431, and the concentration index data 432. The fluctuation temperature control start condition data 231 has the same configuration as the fluctuation temperature control start condition data 231 in the air conditioning control device 2 of FIG. 2 described above.

揺らぎ時間・温度データ431は、実施形態2における低温運転及び高温運転を規定するデータである。揺らぎ時間・温度データ431の具体例を、図8に示す。図8の揺らぎ時間・温度データ431においても、T1は、低温運転の時間を示し、Δt1は、低温運転における下降温度を示し、T2は、高温運転の時間を示し、そして、Δt2は、高温運転における上昇温度を示している。図8の揺らぎ時間・温度データ431では、在室者集中力に応じて、これらT1、Δt1、T2、及び、Δt2の値が適切となるように規定されている。なお、在室者集中力は、以下に説明するように、在室者の集中力を指標する値である。 The fluctuation time / temperature data 431 is data that defines the low temperature operation and the high temperature operation in the second embodiment. A specific example of the fluctuation time / temperature data 431 is shown in FIG. In the fluctuation time / temperature data 431 of FIG. 8, T1 indicates the time of low temperature operation, Δt1 indicates the falling temperature in low temperature operation, T2 indicates the time of high temperature operation, and Δt2 indicates the time of high temperature operation. Shows the rising temperature in. In the fluctuation time / temperature data 431 of FIG. 8, the values of T1, Δt1, T2, and Δt2 are defined to be appropriate according to the concentration of the occupants. The concentration of occupants is a value that indicates the concentration of occupants, as described below.

集中力指標データ432は、事象と、在室者の集中力を指標する値とを対応付けたデータである。集中力指標データ432の具体例を、図9に示す。図9の集中力指標データ432では、入退室回数と、在室者集中力とを対応付けたデータを示している。なお、上述したように、在室者集中力算出部421が在室者のタイピング数に基づいて在室者の集中力を算出する場合、集中力指標データ432は、タイピング数と、在室者集中力とを対応付けたデータとなる。同様に、在室者集中力算出部421が在室者の瞬き数に基づいて在室者の集中力を算出する場合、集中力指標データ432は、瞬き数と、在室者集中力とを対応付けたデータとなる。 The concentration index data 432 is data in which an event and a value for indexing the concentration of a resident are associated with each other. A specific example of the concentration index data 432 is shown in FIG. The concentration index data 432 of FIG. 9 shows data in which the number of times of entering and leaving the room and the concentration of occupants are associated with each other. As described above, when the occupant concentration calculation unit 421 calculates the concentration of the occupants based on the number of typings of the occupants, the concentration index data 432 includes the number of typings and the occupants. The data is associated with concentration. Similarly, when the occupant concentration calculation unit 421 calculates the concentration of the occupants based on the number of blinks of the occupants, the concentration index data 432 determines the number of blinks and the concentration of the occupants. It becomes the associated data.

次に、本発明の実施形態2に係る空調機3について、図10を参照して説明する。図示するように、空調機3は、空調通信部31と、空調機制御部32と、目標温度保持部33と、在室者検出手段としての在室者検出部34と、動作検出手段としての動作検出部51とを備える。なお、空調通信部31〜在室者検出部34は、上述した図5の空調機3における空調通信部31〜在室者検出部34と同じ構成である。 Next, the air conditioner 3 according to the second embodiment of the present invention will be described with reference to FIG. As shown in the figure, the air conditioner 3 includes an air conditioning communication unit 31, an air conditioner control unit 32, a target temperature holding unit 33, an occupant detection unit 34 as an occupant detection means, and an operation detection means. It includes a motion detection unit 51. The air conditioning communication unit 31 to the occupant detection unit 34 have the same configuration as the air conditioning communication unit 31 to the occupant detection unit 34 in the air conditioner 3 of FIG. 5 described above.

動作検出部51は、例えば、カメラに代表される撮像素子と画像認識装置とを含んでいる。動作検出部51は、ユーザの入退室動作を検出し、その数を時間情報と対応付けて蓄積する。そして、動作検出部51は、現在を基準として予め定められた一定時間前までにおけるユーザの入退室回数(延べ人数)を集計し、その情報を空調通信部31を通じて空調制御装置2に送信する。なお、動作検出部51が検出する動作は、このようなユーザの入退室に限られず任意である。例えば、動作検出部51は、在室者のタイピング動作を検出し、その数を時間情報と対応付けて蓄積する。そして、動作検出部51は、現在を基準として予め定められた一定時間前までにおけるタイピング数を集計し、その情報を空調通信部31を通じて空調制御装置2に送信してもよい。この他にも、例えば、動作検出部51は、在室者の瞬き動作を検出し、その数を時間情報と対応付けて蓄積する。そして、動作検出部51は、現在を基準として予め定められた一定時間前までにおける瞬き数を集計し、その情報を空調通信部31を通じて空調制御装置2に送信してもよい。 The motion detection unit 51 includes, for example, an image sensor typified by a camera and an image recognition device. The motion detection unit 51 detects the user's entry / exit motion and stores the number in association with the time information. Then, the motion detection unit 51 totals the number of times the user enters and leaves the room (total number of people) up to a certain time before a predetermined time with respect to the present, and transmits the information to the air conditioning control device 2 through the air conditioning communication unit 31. The operation detected by the motion detection unit 51 is not limited to such user entry / exit, and is arbitrary. For example, the motion detection unit 51 detects typing motions of occupants and stores the number in association with time information. Then, the motion detection unit 51 may total the number of typings up to a certain time before a predetermined time with reference to the present, and transmit the information to the air conditioning control device 2 through the air conditioning communication unit 31. In addition to this, for example, the motion detection unit 51 detects the blinking motion of the occupant and stores the number in association with the time information. Then, the motion detection unit 51 may total the number of blinks up to a certain time before a predetermined time with reference to the present, and transmit the information to the air conditioning control device 2 through the air conditioning communication unit 31.

以下、本発明の実施形態2に係る空調制御装置2の動作について、図11を参照して説明する。図11は、空調制御装置2(空調運転制御部42)が実行する空調制御処理の一例を示すフローチャートである。なお、図11の空調制御処理において、上述した図6の空調制御処理と同じ処理には、同じ参照符号を付している。以下では、同じ処理について、簡単に記載している。 Hereinafter, the operation of the air conditioning control device 2 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 11 is a flowchart showing an example of the air conditioning control process executed by the air conditioning control device 2 (air conditioning operation control unit 42). In the air conditioning control process of FIG. 11, the same reference numerals are given to the same processes as the air conditioning control process of FIG. 6 described above. The same process is briefly described below.

まず、空調運転制御部42は、在室者人数を取得し(ステップS101)、在室者人数が条件人数よりも多いか否かを判別する(ステップS102)。空調運転制御部42は、在室者人数が条件人数よりも多くないと判別すると(ステップS102;No)、ステップS101に処理を戻す。 First, the air-conditioning operation control unit 42 acquires the number of people in the room (step S101), and determines whether or not the number of people in the room is larger than the number of people in the room (step S102). When the air-conditioning operation control unit 42 determines that the number of people in the room is not larger than the number of people in the room (step S102; No), the process returns to step S101.

一方、在室者人数が条件人数よりも多いと判別した場合(ステップS102;Yes)に、空調運転制御部42は、集中力からT1,Δt1を決定する(ステップS203)。すなわち、空調運転制御部42は、例えば、図9に示すような集中力指標データ432を基に、在室者集中力を算出する。より詳細に、在室者集中力算出部421は、動作検出部51が検出した入退室回数に基づいて、図9の集中力指標データ432を参照し、在室者集中力を算出する。そして、空調運転制御部42は、図8の揺らぎ時間・温度データ431から在室者集中力に応じたT1及びΔt1を読み出す。 On the other hand, when it is determined that the number of people in the room is larger than the number of people in the room (step S102; Yes), the air conditioning operation control unit 42 determines T1 and Δt1 from the concentration (step S203). That is, the air-conditioning operation control unit 42 calculates the concentration of occupants in the room based on, for example, the concentration index data 432 as shown in FIG. More specifically, the occupant concentration calculation unit 421 calculates the occupant concentration by referring to the concentration index data 432 of FIG. 9 based on the number of times of entering and leaving the room detected by the motion detection unit 51. Then, the air-conditioning operation control unit 42 reads out T1 and Δt1 according to the concentration of the occupants from the fluctuation time / temperature data 431 of FIG.

空調運転制御部42は、空調機3の目標温度を、設定温度よりもΔt1だけ下げる(ステップS104)。 The air conditioning operation control unit 42 lowers the target temperature of the air conditioner 3 by Δt1 from the set temperature (step S104).

空調運転制御部42は、集中力に応じたT1時間が経過したか否かを判別する(ステップS205)。空調運転制御部42は、集中力に応じたT1時間が経過していないと判別すると(ステップS205;No)、上述したステップS203に処理を戻す。すなわち、在室者の集中力が変化していれば、再度、ステップS203にて、新たな集中力からT1,Δt1が決定されることになる。なお、T1が変化しても、起点は変化しない。つまり、最初にステップS203を実行した際に、計時を開始しており、集中力の変化に伴いT1が変化した場合でも、終点(終了時期)が変化するだけである。そのため、例えば、入退室回数が増えることにより在室者の集中力が低下した場合、図9の集中力指標データ432から参照する在室者集中力が低くなり、それに応じて、図8の揺らぎ時間・温度データ431から読み出すT1の値が増加して、ステップS203で判別する終点が延びることになる。 The air-conditioning operation control unit 42 determines whether or not T1 time has elapsed according to the concentration (step S205). When the air-conditioning operation control unit 42 determines that the T1 time corresponding to the concentration force has not elapsed (step S205; No), the process returns to step S203 described above. That is, if the concentration of the occupants has changed, T1 and Δt1 will be determined again from the new concentration in step S203. Even if T1 changes, the starting point does not change. That is, when the step S203 is executed for the first time, the timing is started, and even if T1 changes due to the change in concentration, the end point (end time) only changes. Therefore, for example, when the concentration of the occupants decreases due to the increase in the number of times of entering and leaving the room, the concentration of the occupants referred to from the concentration index data 432 of FIG. 9 decreases, and the fluctuation of FIG. 8 corresponds accordingly. The value of T1 read from the time / temperature data 431 increases, and the end point determined in step S203 extends.

一方、集中力に応じたT1時間が経過したと判別した場合(ステップS205;Yes)に、空調運転制御部42は、集中力からT2,Δt2を決定する(ステップS206)。すなわち、空調運転制御部42は、図9の集中力指標データ432を基に、在室者集中力を算出する。そして、空調運転制御部42は、図8の揺らぎ時間・温度データ431から在室者集中力に応じたT2及びΔt2を読み出す。 On the other hand, when it is determined that the T1 time corresponding to the concentration power has elapsed (step S205; Yes), the air conditioning operation control unit 42 determines T2, Δt2 from the concentration power (step S206). That is, the air-conditioning operation control unit 42 calculates the concentration of occupants in the room based on the concentration index data 432 of FIG. Then, the air-conditioning operation control unit 42 reads out T2 and Δt2 according to the concentration of the occupants from the fluctuation time / temperature data 431 of FIG.

空調運転制御部42は、空調機3の目標温度を、設定温度よりもΔt2だけ上げる(ステップS107)。 The air conditioning operation control unit 42 raises the target temperature of the air conditioner 3 by Δt2 above the set temperature (step S107).

空調運転制御部42は、集中力に応じたT2時間が経過したか否かを判別する(ステップS208)。空調運転制御部42は、集中力に応じたT2時間が経過していないと判別すると(ステップS208;No)、上述したステップS206に処理を戻す。すなわち、在室者の集中力が変化していれば、再度、ステップS206にて、新たな集中力からT2,Δt2が決定されることになる。なお、T2が変化しても、上記と同様に起点は変化しない。つまり、最初にステップS206を実行した際に、計時を開始しており、集中力の変化に伴いT2が変化した場合でも、終点が変化するだけである。そのため、例えば、入退室回数が増えることにより在室者の集中力が低下した場合、図9の集中力指標データ432から参照する在室者集中力が低くなり、それに応じて、図8の揺らぎ時間・温度データ431から読み出すT2の値が低下して、ステップS208で判別する終点が短縮されることになる。 The air-conditioning operation control unit 42 determines whether or not T2 time has elapsed according to the concentration (step S208). When the air-conditioning operation control unit 42 determines that the T2 time corresponding to the concentration has not elapsed (step S208; No), the process returns to step S206 described above. That is, if the concentration of the occupants has changed, T2 and Δt2 will be determined again from the new concentration in step S206. Even if T2 changes, the starting point does not change as described above. That is, when step S206 is executed for the first time, timing is started, and even if T2 changes with a change in concentration, the end point only changes. Therefore, for example, when the concentration of the occupants decreases due to the increase in the number of times of entering and leaving the room, the concentration of the occupants referred to from the concentration index data 432 of FIG. 9 decreases, and the fluctuation of FIG. 8 corresponds accordingly. The value of T2 read from the time / temperature data 431 decreases, and the end point determined in step S208 is shortened.

一方、集中力に応じたT2時間が経過したと判別した場合(ステップS208;Yes)に、空調運転制御部42は、空調機3の目標温度を、設定温度と等しくする(ステップS109)。そして、空調運転制御部42は、上述したステップS101に処理を戻す。 On the other hand, when it is determined that the T2 time corresponding to the concentration power has elapsed (step S208; Yes), the air conditioning operation control unit 42 sets the target temperature of the air conditioner 3 equal to the set temperature (step S109). Then, the air conditioning operation control unit 42 returns the process to step S101 described above.

このような空調制御処理において、ステップS101,S102にて揺らぎ温度制御の開始を判定する。この際、条件人数を超える在室者がいることを開示条件としているため、より多くの在室者の集中力を向上させ、維持することができる。次に、ステップS203,S104,S205にて、設定温度よりも低い温度に室温を維持する低温運転に切り換え、在室者の集中力を向上させる。この間、集中力に応じて、T1,Δt1が適宜見直される。やがて、在室者の集中力が高まると、ステップS206,S107,S208にて、設定温度よりも高い温度に室温を維持する高温運転に切り換え、在室者の集中力を向上させる。このとき、集中力が高まっている在室者は、温度の変化が気にならないため、高温運転に切り換えても快適性が損なわれない。しかも、この間、集中力に応じて、T2,Δt2が適宜見直されるため、例えば、集中力が低下してきたらT2も短くなり、高温運転が早期に終了する。このため、在室者の集中力が下がりきる前に(つまり、不快を感じさせる前に)、低温運転に切り換えることが可能となる。このように、在室者の集中力に応じて、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 In such an air conditioning control process, the start of fluctuation temperature control is determined in steps S101 and S102. At this time, since the disclosure condition is that there are more occupants than the number of occupants, it is possible to improve and maintain the concentration of more occupants. Next, in steps S203, S104, and S205, the operation is switched to low temperature operation in which the room temperature is maintained at a temperature lower than the set temperature, and the concentration of the occupants is improved. During this time, T1 and Δt1 are appropriately reviewed according to the concentration. Eventually, when the concentration of the occupants increases, in steps S206, S107, and S208, the operation is switched to high temperature operation in which the room temperature is maintained at a temperature higher than the set temperature, and the concentration of the occupants is improved. At this time, the occupants with increased concentration do not care about the change in temperature, so that the comfort is not impaired even if the operation is switched to the high temperature operation. Moreover, during this period, T2 and Δt2 are appropriately reviewed according to the concentration, so that, for example, when the concentration decreases, T2 also shortens, and the high temperature operation ends early. For this reason, it is possible to switch to low-temperature operation before the concentration of the occupants is completely reduced (that is, before the person feels uncomfortable). In this way, by appropriately switching between high temperature operation and low temperature operation according to the concentration of the occupants, it is possible to achieve both comfort and energy saving of the occupants.

(実施形態3)
上記の実施形態1,2では、空調制御装置2が空調機3を制御してフロア内の空気調和を行う場合について説明したが、このような空調制御装置2の機能を空調機3側に持たせることで、空調機3が単独で揺らぎ温度制御を行えるようにしてもよい。以下、本発明の実施形態3について説明する。
(Embodiment 3)
In the above-described first and second embodiments, the case where the air conditioning control device 2 controls the air conditioner 3 to perform air conditioning in the floor has been described, but the air conditioning control device 2 has such a function on the air conditioner 3 side. By doing so, the air conditioner 3 may be able to independently control the fluctuation temperature. Hereinafter, Embodiment 3 of the present invention will be described.

図12は、本発明の実施形態3に係る空調機3の構成の一例を示すブロック図である。図示するように、空調機3は、空調通信部31と、運転制御手段としての空調機制御部62と、データ管理部63と、在室者検出手段としての在室者検出部34と、動作検出手段としての動作検出部51とを備える。なお、空調通信部31、在室者検出部34、及び、動作検出部51は、上述した図10の空調機3における空調通信部31、在室者検出部34、及び、動作検出部51と同じ構成である。 FIG. 12 is a block diagram showing an example of the configuration of the air conditioner 3 according to the third embodiment of the present invention. As shown in the figure, the air conditioner 3 operates with the air conditioning communication unit 31, the air conditioner control unit 62 as the operation control means, the data management unit 63, and the occupancy detection unit 34 as the occupancy detection means. It includes an operation detection unit 51 as a detection means. The air conditioning communication unit 31, the occupant detection unit 34, and the motion detection unit 51 are the same as the air conditioning communication unit 31, the occupancy detection unit 34, and the motion detection unit 51 in the air conditioner 3 shown in FIG. It has the same configuration.

空調機制御部62は、例えば、CPU,ROM,RAM等を備え、空調機3全体を制御する。空調機制御部62は、機能的には、揺らぎ温度制御実行部621、及び、在室者集中力算出部622(集中力算出手段としての在室者集中力算出部622)を備えている。これらの機能は、例えば、CPUが、RAMをワークメモリとして用い、ROMに記憶されている各種プログラムを適宜実行することにより実現される。なお、空調機制御部62は、上記と同様に、図示せぬ室外機との間で冷媒を循環させる冷媒回路321、送風方向を整えるルーバー322、及び、送風を行うファン323を制御して、空気調和を行う。 The air conditioner control unit 62 includes, for example, a CPU, ROM, RAM, etc., and controls the entire air conditioner 3. The air conditioner control unit 62 functionally includes a fluctuation temperature control execution unit 621 and a occupant concentration calculation unit 622 (resident occupant concentration calculation unit 622 as a occupant concentration calculation means). These functions are realized, for example, by the CPU using the RAM as a work memory and appropriately executing various programs stored in the ROM. Similarly to the above, the air conditioner control unit 62 controls the refrigerant circuit 321 that circulates the refrigerant with the outdoor unit (not shown), the louver 322 that adjusts the blowing direction, and the fan 323 that blows the air. Perform air conditioning.

揺らぎ温度制御実行部621は、在室者の集中力に応じて、高温運転と低温運転とを適宜切り換える。 The fluctuation temperature control execution unit 621 appropriately switches between high temperature operation and low temperature operation according to the concentration of the occupants.

在室者集中力算出部622は、例えば、ユーザの入退室回数に基づいて、在室者の集中力を算出する。この他にも、在室者集中力算出部622は、在室者のタイピング数、又は、在室者の瞬き数に基づいて、在室者の集中力を算出してもよい。 The occupant concentration calculation unit 622 calculates the occupant concentration based on, for example, the number of times the user enters and leaves the room. In addition to this, the occupant concentration calculation unit 622 may calculate the concentration of the occupants based on the number of typings of the occupants or the number of blinks of the occupants.

データ管理部63は、例えば、ハードディスクに代表される補助記憶デバイスであり、種々のデータを管理する。一例として、データ管理部63は、揺らぎ温度制御開始条件データ631と、揺らぎ時間・温度データ632と、集中力指標データ633と、目標温度データ634を記憶する。 The data management unit 63 is, for example, an auxiliary storage device represented by a hard disk, and manages various data. As an example, the data management unit 63 stores the fluctuation temperature control start condition data 631, the fluctuation time / temperature data 632, the concentration index data 633, and the target temperature data 634.

揺らぎ温度制御開始条件データ631は、揺らぎ温度制御を開始するための条件を規定するデータである。例えば、揺らぎ温度制御開始条件データ631には、在室者についての条件人数が規定されている。 The fluctuation temperature control start condition data 631 is data that defines the conditions for starting the fluctuation temperature control. For example, the fluctuation temperature control start condition data 631 defines the number of conditions for the occupants.

揺らぎ時間・温度データ632は、低温運転及び高温運転を規定するデータであり、例えば、上述した図8の揺らぎ時間・温度データ431と同様のデータである。 The fluctuation time / temperature data 632 is data that defines low-temperature operation and high-temperature operation, and is, for example, the same data as the fluctuation time / temperature data 431 of FIG. 8 described above.

集中力指標データ633は、事象と、在室者の集中力を指標する値とを対応付けたデータであり、例えば、上述した図9の集中力指標データ432と同様のデータである。 The concentration index data 633 is data in which an event is associated with a value indicating the concentration of a resident, and is, for example, the same data as the concentration index data 432 of FIG. 9 described above.

目標温度データ634は、揺らぎ温度制御実行部621により求められた目標温度のデータである。 The target temperature data 634 is data of the target temperature obtained by the fluctuation temperature control execution unit 621.

このような構成の空調機3においても、上述した図11の空調制御処理が空調機制御部62により実行され、揺らぎ温度制御が実現される。すなわち、ステップS101,S102にて揺らぎ温度制御の開始を判定する。この際、条件人数を超える在室者がいることを開示条件としているため、より多くの在室者の集中力を向上させ、維持することができる。次に、ステップS203,S104,S205にて、設定温度よりも低い温度に室温を維持する低温運転に切り換え、在室者の集中力を向上させる。この間、集中力に応じて、T1,Δt1が適宜見直される。やがて、在室者の集中力が高まると、ステップS206,S107,S208にて、設定温度よりも高い温度に室温を維持する高温運転に切り換え、在室者の集中力を向上させる。このとき、集中力が高まっている在室者は、温度の変化が気にならないため、高温運転に切り換えても快適性が損なわれない。しかも、この間、集中力に応じて、T2,Δt2が適宜見直されるため、例えば、集中力が低下してきたらT2も短くなり、高温運転が早期に終了する。このため、在室者の集中力が下がりきる前に(つまり、不快を感じさせる前に)、低温運転に切り換えることが可能となる。このように、在室者の集中力に応じて、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 Also in the air conditioner 3 having such a configuration, the air conditioning control process of FIG. 11 described above is executed by the air conditioner control unit 62, and the fluctuation temperature control is realized. That is, in steps S101 and S102, the start of fluctuation temperature control is determined. At this time, since the disclosure condition is that there are more occupants than the number of occupants, it is possible to improve and maintain the concentration of more occupants. Next, in steps S203, S104, and S205, the operation is switched to low temperature operation in which the room temperature is maintained at a temperature lower than the set temperature, and the concentration of the occupants is improved. During this time, T1 and Δt1 are appropriately reviewed according to the concentration. Eventually, when the concentration of the occupants increases, in steps S206, S107, and S208, the operation is switched to high temperature operation in which the room temperature is maintained at a temperature higher than the set temperature, and the concentration of the occupants is improved. At this time, the occupants with increased concentration do not care about the change in temperature, so that the comfort is not impaired even if the operation is switched to the high temperature operation. Moreover, during this period, T2 and Δt2 are appropriately reviewed according to the concentration, so that, for example, when the concentration decreases, T2 also shortens, and the high temperature operation ends early. For this reason, it is possible to switch to low-temperature operation before the concentration of the occupants is completely reduced (that is, before the person feels uncomfortable). In this way, by appropriately switching between high temperature operation and low temperature operation according to the concentration of the occupants, it is possible to achieve both comfort and energy saving of the occupants.

(他の実施形態)
上記の実施形態2,3では、図11のような制御処理において、ステップS205,ステップS208では、逐次見直される集中力に応じたT1,T2時間が経過すると、低温運転と高温運転とを切り換える場合について説明したが、見直される集中力の指標値が変化したタイミングで、低温運転と高温運転とを切り換えてもよい。例えば、図13に示すような揺らぎ時間・温度データ731が用いられる。この揺らぎ時間・温度データ731は、上述した図8の揺らぎ時間・温度データ431から、T1及びT2を省いたデータである。また、在室者集中力の「3」と「1」に対応するΔt1及びΔt2の値は、揺らぎ時間・温度データ431のものとは異なっているが、説明を容易にするためであり、揺らぎ時間・温度データ431と同じであってもよい。
(Other embodiments)
In the above-described embodiments 2 and 3, in the control process as shown in FIG. 11, in steps S205 and S208, when T1 and T2 hours corresponding to the concentration force to be reviewed sequentially elapse, the low temperature operation and the high temperature operation are switched. However, the low temperature operation and the high temperature operation may be switched at the timing when the index value of the concentration to be reviewed changes. For example, the fluctuation time / temperature data 731 as shown in FIG. 13 is used. The fluctuation time / temperature data 731 is data obtained by omitting T1 and T2 from the fluctuation time / temperature data 431 of FIG. 8 described above. Further, the values of Δt1 and Δt2 corresponding to “3” and “1” of the occupant concentration are different from those of the fluctuation time / temperature data 431, but they are for ease of explanation and fluctuate. It may be the same as the time / temperature data 431.

このような揺らぎ時間・温度データ731を用いる場合、切り換えの基準とする2つの値として、第1の値と第2の値を規定しておく。例えば、第1の値として、「4」を規定し、第2の値として、「2」を規定する。つまり、「第1の値>第2の値」となるように規定される。そして、図11のような制御処理において、ステップS205では、在室者の集中力(在室者集中力)が、第1の値(「4」)となったか否かを判別する。つまり、在室者の集中力が十分に向上したかどうかが判別される。ここで、在室者の集中力が、第1の値となると、ステップS206に進み、高温運転となる。また、同様に、ステップS208では、在室者の集中力(在室者集中力)が、第2の値(「2」)となったか否かを判別する。つまり、在室者の集中力が低下してきたかどうかが判別される。ここで、在室者の集中力が、第2の値となると、ステップS109、そして、ステップS101に戻った後に再びステップS203へと進み、低温運転となる。 When such fluctuation time / temperature data 731 is used, a first value and a second value are defined as two values to be used as a reference for switching. For example, "4" is specified as the first value, and "2" is specified as the second value. That is, it is specified that "first value> second value". Then, in the control process as shown in FIG. 11, in step S205, it is determined whether or not the concentration of the occupants (concentration of the occupants) has reached the first value (“4”). That is, it is determined whether or not the concentration of the occupants is sufficiently improved. Here, when the concentration of the occupants reaches the first value, the process proceeds to step S206, and high temperature operation is performed. Similarly, in step S208, it is determined whether or not the concentration of the occupants (concentration of the occupants) has reached the second value (“2”). That is, it is determined whether or not the concentration of the occupants has decreased. Here, when the concentration of the occupants reaches the second value, the process proceeds to step S109, and after returning to step S101, the process proceeds to step S203 again, and the low temperature operation is performed.

この場合でも、在室者の集中力に応じて、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 Even in this case, it is possible to achieve both comfort and energy saving of the occupants by appropriately switching between high temperature operation and low temperature operation according to the concentration of the occupants.

上記の実施形態2,3では、在室者集中力算出部421,622が、在室者の動作(入退室回数、タイピング数、瞬き数等)から、在室者の集中力を算出する場合について説明したが、他の手法により、在室者の集中力を算出してもよい。例えば、在室者集中力算出部421,622は、在室者の生体情報から在室者の集中力を算出してもよい。具体的に在室者集中力算出部421,622は、在室者の心拍変動(HRV)を収集して交感神経の活性度を測定することにより、在室者の集中力を算出してもよい。また、在室者集中力算出部421,622は、在室者の脳波を収集してα波を測定することにより、在室者の集中力を算出してもよい。 In the above embodiments 2 and 3, when the occupant concentration calculation units 421 and 622 calculate the occupant's concentration from the movements of the occupants (number of times of entering and leaving the room, number of typings, number of blinks, etc.). However, the concentration of the occupants may be calculated by another method. For example, the occupant concentration calculation units 421 and 622 may calculate the occupant's concentration from the biological information of the occupant. Specifically, even if the occupant concentration calculation unit 421,622 calculates the occupant's concentration by collecting the heart rate variability (HRV) of the occupant and measuring the sympathetic nerve activity. Good. In addition, the occupant concentration calculation units 421 and 622 may calculate the occupant's concentration by collecting the occupant's brain waves and measuring the α wave.

上記の実施形態1〜3では、夏期の冷房時における空調制御を一例として説明したが、冬期の暖房時における空調制御においても、適宜適用することができる。暖房時では、例えば、図14に示すような揺らぎ温度制御を行う。つまり、時間軸上のP5において、揺らぎ温度制御を開始するための条件が満たされると、揺らぎ温度制御実行部221,621は、空調機3の目標温度を、設定温度よりもΔt3だけ下げた温度にする。そして、揺らぎ温度制御実行部221,621は、例えば、T1時間が経過するのを待機する。 In the above-described first to third embodiments, the air conditioning control during cooling in summer has been described as an example, but it can also be appropriately applied to air conditioning control during heating in winter. At the time of heating, for example, the fluctuation temperature is controlled as shown in FIG. That is, when the condition for starting the fluctuation temperature control is satisfied at P5 on the time axis, the fluctuation temperature control execution unit 221, 621 lowers the target temperature of the air conditioner 3 by Δt3 from the set temperature. To. Then, the fluctuation temperature control execution unit 221, 621 waits for, for example, the elapse of the T1 time.

揺らぎ温度制御実行部221,621は、T1時間が経過したP6において、空調機3の目標温度を、設定温度よりもΔt4だけ下げた温度にする。そして、揺らぎ温度制御実行部221,621は、例えば、T2時間が経過するのを待機する。 The fluctuation temperature control execution unit 221, 621 sets the target temperature of the air conditioner 3 to a temperature lower than the set temperature by Δt4 in P6 after T1 time has elapsed. Then, the fluctuation temperature control execution unit 221, 621 waits for, for example, T2 time to elapse.

揺らぎ温度制御実行部221,621は、T2時間が経過したP7において、揺らぎ温度制御を行うための条件が満たされなくなると、空調機3の目標温度を、設定温度と等しい温度にする。これ以降は同様に、例えば、時間軸上のP8において、揺らぎ温度制御実行部221,621は、空調機3の目標温度を、設定温度よりもΔt3だけ下げた温度にする。 The fluctuation temperature control execution unit 221, 621 sets the target temperature of the air conditioner 3 to a temperature equal to the set temperature when the conditions for performing the fluctuation temperature control are no longer satisfied in P7 after the T2 time has elapsed. From this point onward, similarly, for example, at P8 on the time axis, the fluctuation temperature control execution units 221 and 621 set the target temperature of the air conditioner 3 to a temperature lower than the set temperature by Δt3.

このような暖房時における揺らぎ温度制御では、冷房時と異なり、高温運転の場合でも、設定温度よりもΔt4だけ下げた温度に維持する。なお、「Δt3>Δt4」に規定されており、設定温度よりもΔt3だけ下げる低温運転よりは高温となる。この場合も、高温運転と低温運転とを適宜切り換えることにより、在室者の快適性と省エネルギー性とを両立させることができる。 In such fluctuation temperature control during heating, unlike during cooling, the temperature is maintained at a temperature lower than the set temperature by Δt4 even in the case of high temperature operation. In addition, it is specified in "Δt3> Δt4", and the temperature becomes higher than the low temperature operation in which the temperature is lowered by Δt3 from the set temperature. Also in this case, by appropriately switching between the high temperature operation and the low temperature operation, it is possible to achieve both comfort and energy saving of the occupants.

また、上記実施形態1,2では、専用の空調制御装置2を用いる場合について説明したが、空調制御装置2の動作を規定する動作プログラムを既存のパーソナルコンピュータや情報端末機器等に適用することで、当該パーソナルコンピュータを空調制御装置2として機能させることも可能である。 Further, in the above-described first and second embodiments, the case where the dedicated air-conditioning controller 2 is used has been described, but by applying the operation program that defines the operation of the air-conditioning controller 2 to an existing personal computer, information terminal device, or the like. It is also possible to make the personal computer function as an air conditioning control device 2.

また、このようなプログラムの配布方法は任意であり、例えば、CD−ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネットといった通信ネットワークを介して配布してもよい。 The distribution method of such a program is arbitrary, and for example, a computer-readable CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), MO (Magneto Optical Disk), memory card, etc. It may be stored in a recording medium and distributed, or may be distributed via a communication network such as the Internet.

本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows for various embodiments and modifications without departing from the broad spirit and scope. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiment but by the claims. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.

本発明は、在室者の快適性と省エネルギー性とを両立させることのできる空気調和装置、空気調和システム、および、制御方法に採用され得る。 The present invention can be adopted in an air conditioner, an air conditioner system, and a control method capable of achieving both comfort and energy saving of a resident.

1 空気調和システム、2 空調制御装置、21,31 空調通信部、22,42 空調運転制御部、221,621 揺らぎ温度制御実行部、421,622 在室者集中力算出部、23,43 データ管理部、231、631 揺らぎ温度制御開始条件データ、232,431,632,731 揺らぎ時間・温度データ、432,633 集中力指標データ、634 目標温度データ、3 空調機、32,62 空調機制御部、321 冷媒回路、322 ルーバー、323 ファン、33 目標温度保持部、34 在室者検出部、51 動作検出部 1 Air conditioning system, 2 Air conditioning control device, 21,31 Air conditioning communication unit, 22,42 Air conditioning operation control unit, 221,621 Fluctuation temperature control execution unit, 421,622 Resident concentration calculation unit, 23,43 Data management Unit, 231 and 631 Fluctuation temperature control start condition data, 232,431,632,731 Fluctuation time / temperature data, 432,633 Concentration index data, 634 Target temperature data, 3 Air conditioner, 32,62 Air conditioner control unit, 321 Coolant circuit, 322 louver, 323 fan, 33 target temperature holding unit, 34 occupant detection unit, 51 motion detection unit

Claims (6)

空調対象となる室内に在室するユーザの集中力を算出する集中力算出手段と、
設定温度よりも低い温度に室温を維持する低温運転、又は、設定温度よりも高い温度に室温を維持する高温運転を行う運転制御手段と、を備え、
前記集中力算出手段は、入退室者の延べ人数に基づいて、集中力を指標する指標値を算出し、
前記運転制御手段は、前記指標値が、第1の値以上になると、前記低温運転から前記高温運転に切り換え、前記指標値が、前記第1の値よりも小さい第2の値以下になると、前記高温運転から前記低温運転に切り換える、
空気調和装置。
Concentration calculation means for calculating the concentration of users in the room to be air-conditioned,
It is provided with an operation control means for performing low temperature operation for maintaining room temperature at a temperature lower than the set temperature or high temperature operation for maintaining room temperature at a temperature higher than the set temperature.
The concentration calculation means calculates an index value for indexing concentration based on the total number of people entering and leaving the room .
When the index value becomes equal to or higher than the first value, the operation control means switches from the low temperature operation to the high temperature operation, and when the index value becomes equal to or less than a second value smaller than the first value. Switching from the high temperature operation to the low temperature operation,
Air conditioner.
前記運転制御手段は、前記高温運転において維持すべき温度、及び、前記低温運転において維持すべき温度のうち、少なくとも一方の温度を、前記集中力に基づいて変更する、
請求項1に記載の空気調和装置。
The operation control means changes at least one of the temperature to be maintained in the high temperature operation and the temperature to be maintained in the low temperature operation based on the concentration.
The air conditioner according to claim 1.
在室者の人数を検出する在室者検出手段を更に備え、
前記運転制御手段は、前記在室者の人数が閾値を超えたときに、前記高温運転又は前記低温運転を行う揺らぎ温度制御を開始する、
請求項1又は2に記載の空気調和装置。
Further equipped with a resident detection means for detecting the number of occupants,
When the number of people in the room exceeds the threshold value, the operation control means starts the fluctuation temperature control for performing the high temperature operation or the low temperature operation.
The air conditioner according to claim 1 or 2 .
前記運転制御手段は、前記低温運転の時間よりも、前記高温運転の時間の方が長くなるように、前記高温運転と前記低温運転とを切り換える、
請求項1からの何れか1項に記載の空気調和装置。
The operation control means switches between the high temperature operation and the low temperature operation so that the high temperature operation time is longer than the low temperature operation time.
The air conditioner according to any one of claims 1 to 3 .
空調制御装置と空気調和装置とを含んで構成される空気調和システムであって、
前記空調制御装置は、
空調対象となる室内に在室するユーザの集中力を算出する集中力算出手段と、
設定温度よりも低い温度に室温を維持させる低温運転、又は、設定温度よりも高い温度に室温を維持させる高温運転を、前記空気調和装置に行わせる運転制御手段と、を備え、
前記集中力算出手段は、入退室者の延べ人数に基づいて、集中力を指標する指標値を算出し、
前記運転制御手段は、前記指標値が、第1の値以上になると、前記低温運転から前記高温運転に切り換え、前記指標値が、前記第1の値よりも小さい第2の値以下になると、前記高温運転から前記低温運転に切り換える、
空気調和システム。
An air conditioning system that includes an air conditioning control device and an air conditioning device.
The air conditioning controller
Concentration calculation means for calculating the concentration of users in the room to be air-conditioned,
The air conditioner is provided with an operation control means for causing the air conditioner to perform low temperature operation for maintaining room temperature at a temperature lower than the set temperature or high temperature operation for maintaining room temperature at a temperature higher than the set temperature.
The concentration calculation means calculates an index value for indexing concentration based on the total number of people entering and leaving the room .
When the index value becomes equal to or higher than the first value, the operation control means switches from the low temperature operation to the high temperature operation, and when the index value becomes equal to or less than a second value smaller than the first value. Switching from the high temperature operation to the low temperature operation,
Air conditioning system.
空気調和装置が実行する制御方法であって、
空調対象となる室内に在室するユーザの集中力を算出する集中力算出ステップと、
設定温度よりも低い温度に室温を維持する低温運転、又は、設定温度よりも高い温度に室温を維持する高温運転を行う運転制御ステップと、を備え、
前記集中力算出ステップは、入退室者の延べ人数に基づいて、集中力を指標する指標値を算出し、
前記運転制御ステップは、前記指標値が、第1の値以上になると、前記低温運転から前記高温運転に切り換え、前記指標値が、前記第1の値よりも小さい第2の値以下になると、前記高温運転から前記低温運転に切り換える、
制御方法。
A control method performed by an air conditioner
Concentration calculation step to calculate the concentration of users in the room to be air-conditioned,
It is provided with an operation control step for performing low temperature operation for maintaining room temperature at a temperature lower than the set temperature or high temperature operation for maintaining room temperature at a temperature higher than the set temperature.
In the concentration calculation step, an index value for indexing concentration is calculated based on the total number of people entering and leaving the room .
The operation control step switches from the low temperature operation to the high temperature operation when the index value becomes equal to or more than the first value, and when the index value becomes equal to or less than a second value smaller than the first value. Switching from the high temperature operation to the low temperature operation,
Control method.
JP2019508095A 2017-03-31 2017-03-31 Air conditioners, air conditioners, and control methods Active JP6797284B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013564 WO2018179320A1 (en) 2017-03-31 2017-03-31 Air conditioning apparatus, air conditioning system, and control method

Publications (2)

Publication Number Publication Date
JPWO2018179320A1 JPWO2018179320A1 (en) 2019-11-07
JP6797284B2 true JP6797284B2 (en) 2020-12-09

Family

ID=63674420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019508095A Active JP6797284B2 (en) 2017-03-31 2017-03-31 Air conditioners, air conditioners, and control methods

Country Status (2)

Country Link
JP (1) JP6797284B2 (en)
WO (1) WO2018179320A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639774B1 (en) * 2018-12-18 2024-02-21 엘지전자 주식회사 Ceiling type indoor unit of air conditioner
JP7445374B2 (en) * 2019-09-04 2024-03-07 株式会社デンソー Vehicle air conditioner
JP7150187B1 (en) * 2021-03-10 2022-10-07 三菱電機株式会社 Environmental control system, environmental control device, and environmental control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886486A (en) * 1994-09-16 1996-04-02 Hitachi Ltd Air conditioner
JPH0933087A (en) * 1995-07-17 1997-02-07 Matsushita Electric Ind Co Ltd Control device for air conditioner
JP3549401B2 (en) * 1998-07-02 2004-08-04 松下電器産業株式会社 Operating method of air conditioner
JP5251088B2 (en) * 2007-08-03 2013-07-31 東芝ライテック株式会社 Lighting device
JP5363960B2 (en) * 2009-12-10 2013-12-11 株式会社日立製作所 Air conditioning management system
JP6370049B2 (en) * 2014-01-22 2018-08-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner indoor unit
JP2015152177A (en) * 2014-02-10 2015-08-24 三菱電機株式会社 Air blower and air conditioner having the same
JP2016171840A (en) * 2015-03-16 2016-09-29 パナソニックIpマネジメント株式会社 Environment control system, control device, and program
WO2016189867A1 (en) * 2015-05-27 2016-12-01 パナソニックIpマネジメント株式会社 Air blower

Also Published As

Publication number Publication date
JPWO2018179320A1 (en) 2019-11-07
WO2018179320A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US11668480B2 (en) Sleep enhancement in an HVAC system
JP5787858B2 (en) Air conditioning control system, air conditioning control method and program
JP6797284B2 (en) Air conditioners, air conditioners, and control methods
US9504386B2 (en) Controlling devices based on physiological measurements
WO2018076743A1 (en) Temperature control method for intelligent air conditioner, system and intelligent air conditioner
JP4864019B2 (en) How to control the comfort of your environment with an air conditioning system
CN110207336B (en) Control method and control device of multi-split air conditioner and readable storage medium
CN110822616A (en) Automatic air conditioner adjusting method and device
WO2023284536A1 (en) Method and apparatus for controlling air conditioner, and air conditioner
JP2013249991A (en) System and method for air conditioning control
JP7338886B2 (en) Area-based environmental management system, method and program
JP2016169925A (en) Indoor environment control device, indoor environment control method, and computer program
JP6874268B2 (en) Air conditioning control device, air conditioning control method, and program
WO2020162358A1 (en) Degree of wakefulness control device, degree of wakefulness control method and recording medium
JP6238883B2 (en) Air conditioning control device and program
JP2020186873A (en) Air conditioning control device, air-conditioning control system, air conditioning control method and program
JP6914279B2 (en) Control device, air conditioner, air conditioning system and air conditioning control method
JP6920991B2 (en) Controller, device control method, and program
WO2023221569A1 (en) Air conditioning method and apparatus, control device and storage medium
JP2020186826A (en) Air-conditioning control system and program
CN113639433A (en) Method and device for controlling air conditioner, air conditioner and storage medium
JP5274152B2 (en) Energy saving promotion system for air conditioners
CN111895609A (en) Drive-by-wire controller control method, drive-by-wire controller control device, storage medium and drive-by-wire controller
TW202102955A (en) System for controlling environmental comfort using deep reinforcement learning and method thereof
CN114963479B (en) Air conditioner control method, device, air conditioner and computer readable storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250