JP6796831B2 - 流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法 - Google Patents

流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法 Download PDF

Info

Publication number
JP6796831B2
JP6796831B2 JP2017517987A JP2017517987A JP6796831B2 JP 6796831 B2 JP6796831 B2 JP 6796831B2 JP 2017517987 A JP2017517987 A JP 2017517987A JP 2017517987 A JP2017517987 A JP 2017517987A JP 6796831 B2 JP6796831 B2 JP 6796831B2
Authority
JP
Japan
Prior art keywords
composition
mixture
component
air conditioner
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017517987A
Other languages
English (en)
Other versions
JPWO2016182030A1 (ja
Inventor
岡本 秀一
秀一 岡本
洋輝 速水
洋輝 速水
勝也 上野
勝也 上野
高木 洋一
洋一 高木
正人 福島
正人 福島
賢二 滝澤
賢二 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
AGC Inc
Original Assignee
Asahi Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Glass Co Ltd
Publication of JPWO2016182030A1 publication Critical patent/JPWO2016182030A1/ja
Application granted granted Critical
Publication of JP6796831B2 publication Critical patent/JP6796831B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Fireproofing Substances (AREA)

Description

本発明は、流体組成物、冷媒組成物および空気調和機に関する。
温度、圧力等の条件によって気体にも液体にもなり得るアルカン、ハロゲン化アルカン、アルケンおよびハロゲン化アルケンは、冷媒、溶媒、発泡剤、洗浄剤等として用いられる。しかし、アルカン、ハロゲン化アルカン、アルケンおよびハロゲン化アルケンは、可燃性であることが多いため、それらの使用の際には、燃焼抑制のための制限や対策が必要である。
たとえば、空気調和機の冷凍サイクルに封入される冷媒としては、オゾン層への影響が少なく、かつ地球温暖化への影響が少ないアルカン、部分フッ素化アルカン、部分フッ素化アルケン等が注目されている。しかし、空気調和機の室内ユニットから冷媒が漏洩した場合、床面近傍や密閉された狭い空間に可燃性の冷媒が充満するおそれがある。そのため、可燃性の冷媒の使用の際には、下記のような制限や対策が必要である。
・冷凍サイクルに封入される冷媒の充填量が制限される(IEC60335−2−40)。
・室内ユニットを、冷媒が溜まりやすい床面近傍や密閉された狭い空間(床面積の小さい室内、自動車内)に設置する場合、ガス漏れセンサを設ける(特許文献1)、室内ユニットに換気装置を設ける(特許文献2)、ユニットの電気機器や電気配線からのスパークを抑える(特許文献3、4)等の対策が必要である。
特開2002−98391号公報 特開2002−98393号公報 特開平6−101913号公報 特開2003−133000号公報
本発明は、燃焼性が抑えられた流体組成物および冷媒組成物、ならびに冷媒組成物の燃焼抑制のための制限が緩和され、冷媒組成物の燃焼抑制のための対策が省略ないし簡略された空気調和機を提供する。
本発明者らは、流体組成物の組成について鋭意検討した結果、アルカン、ハロゲン化アルカンおよびアルケンからなる群から選ばれる成分とハロゲン化アルケンからなる群から選ばれる成分との組み合わせや、ハロゲン化アルケンからなる群から選ばれる成分同士の組み合わせの中には、燃焼速度の実測値が燃焼速度の推算値よりも大幅に低減する
特定の組み合わせがあることを見出した。
本発明は、以下の態様を有する。
[1]アルカン(エーテル性の酸素原子を有してもよい。)、ハロゲン化アルカン(エーテル性の酸素原子を有してもよい。)およびアルケン(エーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分(A)の1種以上とハロゲン化アルケン(エーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分(B)の1種以上とを含む組成物(I)、またはハロゲン化アルケン(エーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分(B)の2種以上を含む組成物(II)(ただし、前記組成物(I)を除く。)であり、
下式(1)で定義される燃焼抑制効果が10%以上である、流体組成物。
Figure 0006796831

ただし、ε(%)は燃焼抑制効果であり、Su,max,blendは各当量比における燃焼速度の実測値のうちの最大値であり、Su,max,blend,calcは下式(2)で求められる各当量比における燃焼速度の推算値のうちの最大値である。
Figure 0006796831
ただし、Su,blend,calc(φ)は、各当量比φにおける燃焼速度の推算値であり、nは前記流体組成物に含まれる可燃性成分の種類数であり、Su,i(φ)はi番目の可燃性成分の燃焼速度の実測値であり、αは下式(3)で求められるi番目の可燃性成分のエネルギー分率である。
Figure 0006796831
ただし、ΔHc,iはi番目の可燃性成分の燃焼熱であり、xはi番目の可燃性成分のモル分率である。
[2]前記成分(A)が、炭素原子の数が1〜6であるアルカン(炭素原子数が2以上の場合はエーテル性の酸素原子を有してもよい。)、炭素原子の数が1〜6であるハロゲン化アルカン(炭素原子数が2以上の場合はエーテル性の酸素原子を有してもよい。)および炭素原子数が2〜6であるアルケン(炭素原子数が3以上の場合はエーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分である、[1]の流体組成物。
[3]前記成分(A)が、炭素原子の数が1〜3であるアルカン(炭素原子数が2以上の場合はエーテル性の酸素原子を有してもよい。)、炭素原子の数が1〜3であるハロゲン化アルカン(炭素原子数が2以上の場合はエーテル性の酸素原子を有してもよい。)および炭素数が2または3であるアルケン(炭素原子数が3の場合はエーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分である、[1]の流体組成物。
[4]前記成分(A)が、炭素原子の数が1または2であるアルカン(炭素原子数が2の場合はエーテル性の酸素原子を有してもよい。)、炭素原子の数が1または2であるハロゲン化アルカン(炭素原子数が2の場合はエーテル性の酸素原子を有してもよい。)および炭素数が2であるアルケンからなる群から選ばれる成分である、[1]の流体組成物。
[5]前記成分(A)が、ジフルオロメタン、フルオロメタン、メタン、1,1,1−トリフルオロエタン、1,1,2−トリフルオロエタン、1,1−ジフルオロエタン、1,2−ジフルオロエタン、フルオロエタン、エタン、1,1,1,3,3−ペンタフルオロブタン、トリフルオロメチルメチルエーテル、ペンタフルオロエチルメチルエーテル、ヘプタフルオロプロピルメチルエーテル、1,1,2,2−テトラフルオロエトキシメタン、ジクロロメタン、クロロメタン、1,1−ジクロロエタン、1,2−ジクロロエタン、クロロエタン、1,1−ジクロロ−1−フルオロエタンおよび1−クロロ−1,1−ジフルオロエタンからなる群から選ばれる成分である、[1]の流体組成物。
[6]前記成分(B)が、炭素原子の数が2〜5であるハロゲン化アルケン(炭素原子数が3以上の場合はエーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分である、[1]〜[5]のいずれかの流体組成物。
[7]前記成分(B)が、炭素原子の数が2または3であるハロゲン化アルケン(炭素原子数が3の場合はエーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分である、[1]〜[5]のいずれかの流体組成物。
[8]前記成分(B)が、テトラフルオロエチレン、1,1,2−トリフルオロエチレン、シス−1,2−ジフルオロエチレン、トランス−1,2−ジフルオロエチレン、1,1−ジフルオロエチレン、フッ化ビニル、シス−1,2−ジクロロエチレン、トランス−1,2−ジクロロエチレン、1,1−ジクロロエチレン、塩化ビニル、クロロトリフルオロエチレン、1−クロロ−1−フルオロエチレン、シス−1−クロロ−2−フルオロエチレン、トランス−1−クロロ−2−フルオロエチレン、ヘキサフルオロプロピレン、1,2,3,3,3−ペンタフルオロプロペン、2,3,3,3−テトラフルオロプロペン、シス−1,3,3,3−テトラフルオロプロペン、トランス−1,3,3,3−テトラフルオロプロペンおよび3,3,3−トリフルオロプロペンからなる群から選ばれる成分である、[1]〜[5]のいずれかの流体組成物。
[9]前記成分(A)の各当量比における燃焼速度の実測値のうちの最大値が、1cm/秒以上であり、前記成分(B)の各当量比における燃焼速度の実測値のうちの最大値が、1cm/秒以上である、[1]〜[8]のいずれかの流体組成物。
[10]前記[1]〜[9]のいずれかの流体組成物からなる冷媒組成物。
[11]冷凍サイクル内に[10]の冷媒組成物を封入した空気調和機。
[12]前記冷凍サイクルの一部を収容した室内ユニットが室内の床に設置される床置き形の空気調和機である、[11]の空気調和機。
[13]自動車用空気調和機である、[11]の空気調和機。
本発明の流体組成物および冷媒組成物は、燃焼性が抑えられたものとなる。
本発明の空気調和機は、冷媒組成物の燃焼抑制のための制限が緩和され、冷媒組成物の燃焼抑制のための対策を省略ないし簡略することができる。
空気調和機の一例を示す概略図である。 燃焼速度測定用装置を示す概略図である。 図2の装置の高速ビデオカメラで撮影された円筒容器内の火炎の様子を示す画像の一例である。
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「流体」とは、気体および液体の総称である。
「当量比」とは、量論混合気における可燃性成分と空気との混合比(可燃性成分/空気)に対する、燃焼速度の実測または推算の対象となる混合気における可燃性成分と空気との混合比(可燃性成分/空気)の比である。
「量論混合気」とは、可燃性成分が完全燃焼するだけの酸素を過不足なく含む、可燃性成分と空気との混合気である。
「可燃性成分」とは、空気との混合気が燃焼範囲を有する成分である。
「燃焼範囲」とは、混合気が燃焼可能となる、可燃性成分と空気との混合比の範囲である。
「冷媒」とは、冷凍サイクルにおいて気化および液化し得る化合物である。
「ハロゲン化アルカン」とは、アルカンの水素原子の一部または全部がハロゲン原子に置換された化合物である。
「ハロゲン化アルケン」とは、アルケンの水素原子の一部または全部がハロゲン原子に置換された化合物である。
「部分フッ素化アルカン」とは、アルカンの水素原子の一部がフッ素原子に置換された化合物である。
「部分フッ素化アルケン」とは、アルケンの水素原子の一部がフッ素原子に置換された化合物である。
「エーテル性酸素原子」とは、炭素原子−炭素原子間においてエーテル結合(−O−)を形成する酸素原子である。
<流体組成物>
本発明の流体組成物は、下記組成物(I)、または下記組成物(II)であって、後述する燃焼抑制効果が10%以上となるものである。
(組成物(I))
組成物(I)は、下記成分(A)の1種以上と下記成分(B)の1種以上とを含む。
成分(A):アルカン(炭素原子数を2以上有する場合は、エーテル性の酸素原子を有してもよい。)、ハロゲン化アルカン(炭素原子数を2以上有する場合は、エーテル性の酸素原子を有してもよい。)およびアルケン(炭素原子数を3以上有する場合は、エーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分。
成分(B):ハロゲン化アルケン(炭素原子数を3以上有する場合は、エーテル性の酸素原子を有してもよい。)からなる成分。
成分(A)としては、冷媒、溶媒、発泡剤、洗浄剤として好ましい沸点を有するという点から、炭素原子の数が1〜6であるアルカン、炭素原子の数が1〜6であるハロゲン化アルカンおよび炭素原子数が2〜6であるアルケンからなる群から選ばれる成分が好ましい。なかでも、炭素原子の数が1〜3であるアルカン、炭素原子の数が1〜3であるハロゲン化アルカンおよび炭素数が2または3であるアルケンからなる群から選ばれる成分がより好ましく、特に、炭素原子の数が1または2であるアルカン、炭素原子の数が1または2であるハロゲン化アルカンおよび炭素数が2であるアルケンからなる群から選ばれる成分がさらに好ましい。
また、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない点から、成分(A)としては、地球温暖化係数(GWP)が1000以下であるものが好ましく、アルカンおよび部分フッ素化アルカンからなる群から選ばれる成分が好ましい。このような成分(A)は可燃性である場合が多いため、成分(B)と組み合わせた際に地球温暖化係数を抑え、かつ、燃焼性を抑えることができ、本発明の効果が充分に発揮される。
アルカンとしては、メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ネオペンタン、シクロペンタン、ヘキサン、シクロヘキサン、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル等が挙げられる。アルカンは、1種、または2種以上を併用してもよい。
アルカンとしては、成分(B)と組み合わせた際に本発明の効果が充分に発揮される点から、メタンまたはエタンが好ましく、メタンがより好ましい。
ハロゲン化アルカンのハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、オゾン層への影響が少ない点から、フッ素原子が好ましい。
ハロゲン化アルカンとしては、ジフルオロメタン(HFC−32)、フルオロメタン(HFC−41)、ペンタフルオロエタン(HFC−125)、1,1,1,2−テトラフルオロエタン(HFC−134a)、1,1,2,2−テトラフルオロエタン(HFC−134)、1,1,1−トリフルオロエタン(HFC−143a)、1,1,2−トリフルオロエタン(HFC−143)、1,1−ジフルオロエタン(HFC−152a)、1,2−ジフルオロエタン(HFC−152)、フルオロエタン(HFC−161)、1,1,1,3,3−ペンタフルオロブタン(HFC−365mfc)、トリフルオロメチルメチルエーテル(HFE−143a)、ペンタフルオロエチルメチルエーテル、ヘプタフルオロプロピルメチルエーテル、1,1,2,2−テトラフルオロエトキシメタン、ジクロロメタン、クロロメタン、1,1−ジクロロエタン、1,2−ジクロロエタン、クロロエタン、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)等が挙げられる。ハロゲン化アルカンは、1種、または2種以上を併用してもよい。
ハロゲン化アルカンとしては、成分(B)と組み合わせた際に本発明の効果が充分に発揮される点から、HFC−32、HFC−41、HFC−143a、HFC−143、HFC−152a、HFC−152、HFC−161、HFC−365mfc、HFE−143a、ペンタフルオロエチルメチルエーテル、ヘプタフルオロプロピルメチルエーテル、1,1,2,2−テトラフルオロエトキシメタン、ジクロロメタン、クロロメタン、1,1−ジクロロエタン、1,2−ジクロロエタン、クロロエタン、HCFC−141bおよびHCFC−142bからなる群から選ばれる少なくとも1種が好ましい。なかでも、、HFC−32、HFC−41、HFC−143a、HFC−143、HFC−152a、HFC−161およびHFE−143aからなる群から選ばれる少なくとも1種がより好ましい。
アルケンとしては、公知の化合物が挙げられ、エチレン、プロピレン等があげられる。アルケンは、1種、または2種以上を併用してもよい。
成分(B)としては、冷媒、溶媒、発泡剤、および洗浄剤として好ましい沸点を有するという点から、炭素原子の数が2〜5であるハロゲン化アルケンからなる成分が好ましい。なかでも、炭素原子の数が2または3であるハロゲン化アルケンからなる成分がより好ましい。
また、成分(B)としては、流体組成物の燃焼性が抑えられやすい点から、水素原子の数がハロゲン原子の数以下のものが好ましい。
成分(B)としては、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない点から、部分フッ素化アルケンからなる成分が好ましい。
ハロゲン化アルケンのハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、オゾン層への影響が少ない点から、フッ素原子が好ましい。
ハロゲン化アルケンとしては、テトラフルオロエチレン(PFO−1114)、1,1,2−トリフルオロエチレン(HFO−1123)、シス−1,2−ジフルオロエチレン(HFO−1132(Z))、トランス−1,2−ジフルオロエチレン(HFO−1132(E))、1,1−ジフルオロエチレン(HFO−1132a)、フッ化ビニル(HFO−1141)、テトラクロロエチレン、1,1,2―トリクロロエチレン、シス−1,2−ジクロロエチレン、トランス−1,2−ジクロロエチレン、1,1−ジクロロエチレン、塩化ビニル、クロロトリフルオロエチレン(CFO−1113)、1,1−ジクロロ−2,2−ジフルオロエチレン(CFO−1112a)、シス−1,2−ジクロロ−1,2−ジフルオロエチレン(CFO−1112(Z))、トランス−1,2−ジクロロ−1,2−ジフルオロエチレン(CFO−1112(E))、シス−1−クロロ−1,2−ジフルオロエチレン(HCFO−1122(Z))、トランス−1−クロロ−1,2−ジフルオロエチレン(HCFO−1122(E))、1−クロロ−2,2−ジフルオロエチレン、1−クロロ−1−フルオロエチレン(HCFO−1131a)、シス−1−クロロ−2−フルオロエチレン、トランス−1−クロロ−2−フルオロエチレン、ヘキサフルオロプロピレン(PFO−1216)、1,2,3,3,3−ペンタフルオロプロペン(HFO−1225ye)、2,3,3,3−テトラフルオロプロペン(HFO−1234yf)、シス−1,3,3,3−テトラフルオロプロペン(HFO−1234ze(Z))、トランス−1,3,3,3−テトラフルオロプロペン(HFO−1234ze(E))、3,3,3−トリフルオロプロペン(HFO−1243zf)等が挙げられる。ハロゲン化アルケンは、1種、または2種以上を併用してもよい。
ハロゲン化アルケンとしては、成分(A)と組み合わせた際に本発明の効果が充分に発揮される点から、PFO−1114、HFO−1123、HFO−1132(Z)、HFO−1132(E)、HFO−1132a、HFO−1141、シス−1,2−ジクロロエチレン、トランス−1,2−ジクロロエチレン、1,1−ジクロロエチレン、塩化ビニル、CFO−1113、HCFO−1131a、シス−1−クロロ−2−フルオロエチレン、トランス−1−クロロ−2−フルオロエチレン、PFO−1216、HFO−1225ye、HFO−1234yf、HFO−1234ze(Z)、HFO−1234ze(E)およびHFO−1243zfからなる群から選ばれる少なくとも1種が好ましい。なかでも、PFO−1114、HFO−1123、HFO−1132(Z)、HFO−1132(E)、HFO−1132a、CFO−1113、PFO−1216、HFO−1225ye、HFO−1234yf、HFO−1234ze(Z)、HFO−1234ze(E)およびHFO−1243zfからなる群から選ばれる少なくとも1種がより好ましい。
成分(A)および成分(B)は、これらを組み合わせた組成物(I)の燃焼抑制効果が10%以上となるように選択する。成分(A)および成分(B)の好ましい組み合わせとしては、下記の組み合わせが挙げられる。
(I−1)HFC−32とHFO−1123との組み合わせ。
(I−2)HFC−152aとHFO−1123との組み合わせ。
(I−3)HFC−32とPFO−1114との組み合わせ。
(I−4)HFC−41とPFO−1114との組み合わせ。
(I−5)メタンとPFO−1114との組み合わせ。
(I−6)HFC−143aとPFO−1114との組み合わせ。
(I−7)HFC−152aとPFO−1114との組み合わせ。
(I−8)HFE−143aとPFO−1114との組み合わせ。
(I−9)HFC−365mfcとPFO−1114との組み合わせ。
(I−10)HFC−152aとCFO−1113との組み合わせ。
(I−11)HCFC−141bとPFO−1114との組み合わせ。
(I−12)HCFC−142bとHFO−1123との組み合わせ。
(I−13)HFC−152aとPFO−1216との組み合わせ。
(I−14)HFC−32、HFC−152aとHFO−1123との組み合わせ。
成分(A)と成分(B)との混合比は、組成物(I)の燃焼抑制効果が10%以上となるような比とする。
たとえば、組み合わせ(I−1)の場合、HFC−32とHFO−1123との合計(100体積%)のうち、HFO−1123の割合は、燃焼抑制効果が現れる0.5〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる5〜85体積%が好ましく、燃焼抑制効果が20%以上となる15〜70体積%がより好ましい。
組み合わせ(I−2)の場合、HFC−152aとHFO−1123との合計(100体積%)のうち、HFO−1123の割合は、燃焼抑制効果が現れる55〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる63〜90体積%が好ましく、燃焼抑制効果が20%以上となる70〜85体積%がより好ましい。
組み合わせ(I−3)の場合、HFC−32とPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる0.5〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる3〜90体積%が好ましく、燃焼抑制効果が20%以上となる7〜85体積%がより好ましい。
組み合わせ(I−4)の場合、HFC−41とPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる35〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる36〜90体積%が好ましい。
組み合わせ(I−5)の場合、メタンとPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる52〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる53〜78体積%が好ましい。
組み合わせ(I−6)の場合、HFC−143aとPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる0.5〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる1〜90体積%が好ましい。
組み合わせ(I−7)の場合、HFC−152aとPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる36〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる39〜85体積%が好ましい。
組み合わせ(I−8)の場合、HFE−143aとPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる26〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる42〜90体積%が好ましい。
組み合わせ(I−9)の場合、HFC−365mfcとPFO−1114との合計(100体積%)のうち、PFO−1114の割合は、燃焼抑制効果が現れる0.5〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる5〜90体積%が好ましい。
組み合わせ(I−10)の場合、HFC−152aとCFO−1113との合計(100体積%)のうち、CFO−1113の割合は、燃焼抑制効果が現れる40〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる50〜85体積%が好ましい。
(組成物(II))
組成物(II)は、成分(B)の2種以上を含む(ただし、組成物(I)を除く。)。
成分(B)としては、組成物(I)における成分(B)として記載したのと同様のものが挙げられ、その好ましい形態も同様である。
成分(B)の2種以上は、これらを組み合わせた組成物(II)の燃焼抑制効果が10%以上となるように選択する。2種の成分(B)の好ましい組み合わせとしては、下記の組み合わせが挙げられる。
(II−1)HFO−1243zfとHFO−1123との組み合わせ。
(II−2)HFO−1141とPFO−1114との組み合わせ。
(II−3)HFO−1132aとPFO−1114との組み合わせ。
(II−4)HFO−1234yfとCFO−1113との組み合わせ。
成分(B)の2種以上の混合比は、組成物(II)の燃焼抑制効果が10%以上となるような比とする。
たとえば、組み合わせ(II−1)の場合、HFO−1243zfとHFO−1123との合計(100体積%)のうち、HFO−1123の割合は、燃焼抑制効果が現れる25〜99.5体積%の範囲のうち、焼抑制効果が10%以上となる30〜80体積%が好ましく、燃焼抑制効果が20%以上となる40〜70体積%がより好ましい。
(他の成分)
流体組成物は、成分(A)および成分(B)以外の他の成分を、本発明の効果を損なわない範囲において含んでいてもよい。
(ハロゲン原子/水素原子)
本発明の流体組成物においては、組成物に含まれる成分(A)および成分(B)における化合物の有する合計の水素原子の原子数に対するハロゲン原子の原子数の比(ハロゲン原子/水素原子)は、1.0以上が好ましく、1.03以上がより好ましく、1.06以上がさらに好ましい。
(燃焼抑制効果)
流体組成物の燃焼抑制効果は、下式(1)で定義される。
Figure 0006796831
ただし、ε(%)は燃焼抑制効果であり、Su,max,blendは各当量比における燃焼速度の実測値のうちの最大値(以下、実測最大燃焼速度とも記す。)であり、Su,max,blend,calcは下式(2)で求められる各当量比における燃焼速度の推算値のうちの最大値(以下、推算最大燃焼速度とも記す。)である。
Figure 0006796831
ただし、Su,blend,calc(φ)は、各当量比φにおける燃焼速度の推算値であり、nは流体組成物に含まれる可燃性成分の種類数であり、Su,i(φ)はi番目の可燃性成分の燃焼速度の実測値であり、αは下式(3)で求められるi番目の可燃性成分のエネルギー分率である。
Figure 0006796831
ただし、ΔHc,iはi番目の可燃性成分の燃焼熱であり、xはi番目の可燃性成分のモル分率である。
式(2)は、混合比をエネルギー分率で置き換えたル・シャトリエ式である(参考文献1参照)。式(2)は、各可燃性成分が化学的相互作用を示さない流体組成物について精度よく燃焼速度を表現できる。同様の式は、日本国の法令においても既に適用されている(参考文献2参照)。
参考文献1:L.Sileghem et al.,Energy Fuels,26,4721(2012).
参考文献2:ガス事業法、施行規則におけるガスの最高燃焼速度の算出に用いられている。日本国の昭和45年通商産業省告示第634号「ガスの熱量及び燃焼性の測定方法を定める件」。
式(3)における燃焼熱は、燃焼反応式における生成系の生成物の生成エンタルピーの総和と、反応系の化合物の生成エンタルピーとの差で表わされる。生成エンタルピーについては、化学便覧、国際標準(参考文献3参照)、各種ハンドブック等に記載されている。全く新規の化合物については、Bensonのグループ加成性則(参考文献4参照)や、計算化学的手法で求めることができる。ハロゲンを含む化合物の燃焼反応式の考え方は国際標準に規定されている(参考文献3、5参照)。
参考文献3:ANSI/ASHRAE Standard 34(2013),Designation and Safety Classification of Refrigerants.
参考文献4:S.Benson,Thermo chemical kinetics,2nd Ed.,Wiley Interscience,New York(1976).
参考文献5:ISO 817(2014),Refrigerant:Designation and Safety Classification.
流体組成物の燃焼抑制効果は、10%以上であり、20%以上がより好ましく、30%以上がさらに好ましい。
燃焼速度は、着火に必要なエネルギー(最小着火エネルギー)の−1/3次に比例する。すなわち、燃焼速度が30%減少するということは、最小着火エネルギーが3倍大きくなり、それだけ着火する可能性が減少し、静電気やコンセント等の着火源の対策がより簡素化できるという意味である。
燃焼抑制効果の基準(推算最大燃焼速度よりも10%以上の低減)を定めた妥当性について、以下に示す。
・燃焼速度の絶対値は、測定方法によって多少のバラツキがあり、現在の国際標準では、基準ガスについて10%以内の誤差を許容している(参考文献1、5参照)。そのため、本発明においては、燃焼速度の測定方法を規定せず、統一的手法で測定された値の相対値を燃焼抑制効果として提案するものである。
・これまで報告されている流体組成物の燃焼速度の実測値について、式(2)の推算値と比較して10%を超えて低減するという例はない。
・燃焼熱の推算をBensonのグループ加成性則(参考文献4参照)によった場合、3%程度の誤差が生じる可能性がある。
・以上を考慮し、10%以上の最大燃焼速度の低減を以って、本発明における燃焼抑制効果とみなした。
成分(A)の実測最大燃焼速度は、1cm/秒以上が好ましく、5cm/秒以上がより好ましく、10cm/秒以上がさらに好ましい。成分(B)の実測最大燃焼速度は、1cm/秒以上が好ましく、5cm/秒以上がより好ましい。
各成分の実測最大燃焼速度が前記範囲の下限値以上ということは、各成分の燃焼性が高いことを示す。本発明においては、燃焼性が高い成分(A)と燃焼性が高い成分(B)とを組み合わせているにもかかわらず、燃焼性が抑えられた流体組成物が得られるという予測できない効果が発揮される。
(用途)
本発明の流体組成物は、冷媒組成物、溶媒組成物、発泡剤組成物、洗浄剤組成物等として用いられる。以下、冷媒組成物を例にとり、詳細に説明する。
<冷媒組成物>
本発明の冷媒組成物は、本発明の流体組成物からなる。本発明の冷媒組成物は、冷媒として、下記成分(A)の1種以上と下記成分(B)の1種以上とを含む、または成分(B)の2種以上を含む。
(他の成分)
冷媒組成物は、成分(A)および成分(B)以外の他の成分を、本発明の効果を損なわない範囲において含んでいてもよい。
他の成分としては、成分(A)および成分(B)以外の他の冷媒、安定剤、漏れ検出物質等が挙げられる。他の成分の具体例としては、アルコール、アンモニア、二酸化炭素等が挙げられる。
成分(A)および成分(B)の合計の割合は、冷媒の合計(100質量%)のうち、60〜100質量%が好ましく、70〜100質量%がより好ましく、80〜100質量%がさらに好ましく、90〜100質量%が特に好ましく、100質量%が最も好ましい。
他の冷媒の割合は、冷媒の合計(100質量%)のうち、0〜40質量%が好ましく、0〜30質量%がより好ましく、0〜20質量%がさらに好ましく、0〜10質量%が特に好ましく、0質量%が最も好ましい。
安定剤は、熱および酸化に対する冷媒の安定性を向上させる成分である。
安定剤としては、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、冷媒の合計(100質量部)に対して、5質量部以下が好ましく、1質量部以下がより好ましい。
漏れ検出物質としては、紫外線蛍光染料、臭気ガス、臭いマスキング剤等が挙げられる。漏れ検出物質を用いる場合には、冷媒への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、冷媒の合計(100質量部)に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。
<空気調和機>
本発明の空気調和機は、冷凍サイクル内に本発明の冷媒組成物を封入した空気調和機である。
(冷凍サイクル)
冷凍サイクルとしては、通常、蒸気圧縮式冷凍サイクルが採用される。
蒸気圧縮式冷凍サイクルは、圧縮機と凝縮器、凝縮器と減圧機構、減圧機構と蒸発器、ならびに蒸発器と圧縮機とを、それぞれ配管で接続して構成される。
(他の成分)
冷凍サイクル内には、冷媒組成物以外の他の成分が封入されていてもよい。他の成分としては、圧縮機用の冷凍機油、乾燥剤等が挙げられる。
冷凍機油としては、含酸素系合成油(エステル系合成油、エーテル系合成油等)、フッ素系合成油、炭化水素系合成油、鉱物油等が挙げられる。
エステル系合成油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
エーテル系合成油としては、ポリビニルエーテル油、ポリオキシアルキレン系合成油等が挙げられる。
フッ素系合成油としては、合成油の水素原子をフッ素原子に置換したもの、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
炭化水素系合成油としては、ポリα−オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。鉱物油としては、パラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
冷凍機油としては、冷媒組成物との相溶性の点から、ポリオールエステル油またはポリグリコール油が好ましく、安定化剤によって顕著な酸化防止効果が得られる点から、ポリアルキレングリコール油が特に好ましい。
冷凍機油の封入量は、本発明の効果を著しく低下させない範囲であればよく、用途、圧縮機の形式等によっても異なるが、冷媒組成物(100質量部)に対して、10〜100質量部が好ましく、20〜50質量部がより好ましい。
乾燥剤としては、シリカゲル、活性アルミナ、ゼオライト等が挙げられる。乾燥剤としては、乾燥剤と冷媒との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
ゼオライト系乾燥剤の大きさは、小さすぎると冷凍サイクルの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、0.5〜5mmが好ましい。形状としては、粒状または円筒状が好ましい。ゼオライト系乾燥剤の封入量は、特に限定されない。
(実施形態例)
図1は、空気調和機の一例を示す概略図である。空気調和機1は、冷媒を圧縮する圧縮機11と、冷房運転時の冷媒回路と暖房運転時の冷媒回路とを切り替える四方弁12と、冷媒の熱と室外空気の熱とを交換する室外熱交換器13と、冷媒を減圧する膨張弁14と、冷媒の熱と室内空気の熱とを交換する室内熱交換器15と、室外熱交換器13に室外空気を送風する室外送風機(図示略)と、室内熱交換器15に室内空気を送風する室内送風機(図示略)と、空気調和機1全体の動作を制御する制御部(図示略)とを備える。
空気調和機1における冷凍サイクル10は、冷房運転の場合、四方弁12を実線側に切り替えて、圧縮機11と室外熱交換器13(凝縮器)とを四方弁12を介して第1配管21および第2配管22で接続し、室外熱交換器13(凝縮器)と膨張弁14(減圧機構)とを第3配管23で接続し、膨張弁14(減圧機構)と室内熱交換器15(蒸発器)とを第4配管24で接続し、室内熱交換器15(蒸発器)と圧縮機11とを四方弁12を介して第5配管25および第6配管26で接続して構成される。
空気調和機1における冷凍サイクル10は、暖房運転の場合、四方弁12を破線側に切り替えて、圧縮機11と室内熱交換器15(凝縮器)とを四方弁12を介して第1配管21および第5配管25で接続し、室内熱交換器15(凝縮器)と膨張弁14(減圧機構)とを第4配管24で接続し、膨張弁14(減圧機構)と室外熱交換器13(蒸発器)とを第3配管23で接続し、室外熱交換器13(蒸発器)と圧縮機11とを四方弁12を介して第2配管22および第6配管26で接続して構成される。
空気調和機1においては、圧縮機11、四方弁12、室外熱交換器13、膨張弁14、第1配管21、第2配管22、第3配管23、第6配管26および室外送風機(図示略)が室外ユニット2に収容されている。
空気調和機1においては、室内熱交換器15、室内送風機(図示略)および制御部(図示略)が室内ユニット3に収容されている。
第4配管24および第5配管25は、室外ユニット2と室内ユニット3とを連絡する連絡配管を構成している。
空気調和機1の冷房運転の際には、四方弁12を実線側に切り替える。圧縮機11によって圧縮された冷媒は、高温高圧のガス冷媒となって室外熱交換器13に送られる。ガス冷媒は、室外熱交換器13(凝縮器)において室外空気と熱交換して放熱し、凝縮して高圧の液冷媒となり、膨張弁14に送られる。液冷媒は、膨張弁14(減圧機構)において減圧されて低温低圧の気液二相冷媒となり、室内熱交換器15に送られる。気液二相冷媒は、室内熱交換器15(蒸発器)において室内空気と熱交換して吸熱し、蒸発してガス冷媒となり、圧縮機11に戻される。室内熱交換器15において冷媒と熱交換した室内空気は、冷却される。
空気調和機1の暖房運転の際には、四方弁12を破線側に切り替える。圧縮機11によって圧縮された冷媒は、高温高圧のガス冷媒となって室内熱交換器15に送られる。ガス冷媒は、室内熱交換器15(凝縮器)において室内空気と熱交換して放熱し、凝縮して高圧の液冷媒となり、膨張弁14に送られる。室内熱交換器15において冷媒と熱交換した室内空気は、加熱される。液冷媒は、膨張弁14(減圧機構)において減圧されて低温低圧の気液二相冷媒となり、室外熱交換器13に送られる。気液二相冷媒は、室外熱交換器13(蒸発器)において室外空気と熱交換して吸熱し、蒸発してガス冷媒となり、圧縮機11に戻される。
(他の実施形態)
なお、本発明の空気調和機は、図示例の空気調和機に限定されない。
たとえば、図示例の空気調和機は、冷房運転と暖房運転とを切り替え可能なヒートポンプ式の空気調和機であるが、本発明の空気調和機は、冷房専用の空気調和機であってもよく、暖房専用の空気調和機であってもよい。
熱交換器は、冷媒−空気熱交換器に限定されず、冷媒−液体熱交換器であってもよい。
減圧機構は、膨張弁に限定されず、キャピラリーチューブ等であってもよい。
本発明の空気調和機は、家庭用空気調和機、業務用空気調和機、自動車用空気調和機のいずれであってもよい。また、室内ユニットの接続形態については、一体形、分離形、マルチ形のいずれであってもよい。また、室内ユニットの据付設置形態ついては、床置き形、壁掛け形、天吊形、天井カセット形、ビルトイン形、埋め込み形のいずれであってもよい。
本発明の空気調和機は、燃焼性が抑えられた冷媒組成物を用いているため、室内ユニットから冷媒が漏洩した場合であっても、燃焼性の高い冷媒を用いた従来の空気調和機に比べ安全である。
よって、本発明の空気調和機は、冷媒が溜まりやすい床面近傍や密閉された狭い空間に室内ユニットを設置する用途に好適である。具体的には、本発明の空気調和機は、冷凍サイクルの一部を収容した室内ユニットが室内の床に設置される床置き形の空気調和機、自動車用空気調和機に好適である。また、本発明の空気調和機は、冷媒充填量の多い業務用空気調和機(ビル用マルチエアコン等)に好適である。
また、本発明の空気調和機は、燃焼性が抑えられた冷媒組成物を用いているため、空気調和機から冷媒を回収する回収装置についても、特に燃焼抑制機能等を設ける必要がないことから、従来公知の回収装置を用いることができる。
(作用機序)
以上説明した本発明の空気調和機にあっては、冷凍サイクル内に封入した冷媒組成物が、燃焼性が抑えられた本発明の冷媒組成物であるため、冷媒組成物の燃焼抑制のための制限が緩和され、冷媒組成物の燃焼抑制のための対策が省略ないし簡略されたものとなる。
具体的には、本発明の空気調和機は、燃焼性の高い冷媒を用いた従来の空気調和機に比べ、冷凍サイクルに封入される冷媒の充填量を多くできる。
また、本発明の空気調和機は、燃焼性の高い冷媒を用いた従来の空気調和機では必要とされた各種対策(ガス漏れセンサを設ける、室内ユニットに換気装置を設ける、ユニットの電気機器や電気配線からのスパークを抑える等)を省略ないし簡略できる。
以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
(燃焼速度)
燃焼速度は、密閉容器を用い、密閉容器内の被測定ガスと空気との混合気の火炎をシュリーレン可視化法(シュリーレン法:ASHRAE Research PJ RP−1583,Appendix E)によって可視化し、高速ビデオカメラで直接観察、撮影することによって測定した。
燃焼速度測定用装置を図2に示す。燃焼速度測定用装置30は、シュリーレン光源であるキセノンランプ31、第1平面鏡32、第1凹面鏡33、円筒容器34、第2平面鏡35、第2凹面鏡36、第3平面鏡37、リングフィルタ38、および高速ビデオカメラ39を備える。
キセノンランプ31からの光は、第1平面鏡32によって第1凹面鏡33に向けて反射される。第1凹面鏡33によって反射され、平行光となった光は、平行光と同軸に配置された円筒容器34を通過し、第2平面鏡35によって第2凹面鏡36に向けて反射される。第2凹面鏡36によって反射され、収束光となった光は、第3平面鏡37によって反射され、シュリーレン像の焦点に配置したリングフィルタ38を通過して高速ビデオカメラ39によって撮影される。
キセノンランプ31としては、ランプ本体の前方に凸レンズ40およびフィルタ41が配置されたものを用いた。
円筒容器34としては、両端の開口に透明なアクリル窓42が設けられ、中央に一対の電極43(電極間距離5×10−3m)が挿入された、内容積3.8Lの温度調節機能および撹拌羽根付き円筒容器(内部直径155mm×長さ200mm)を用いた。
高速ビデオカメラ39としては、高速CCDビデオカメラ(毎秒1,000画像撮影)を用いた。
被測定ガスとしては、99.8%以上の純度のものを用いた。
分圧法を用いて被測定ガスと乾燥空気とを所定の当量比になるように円筒容器34内に導入し、約10分間撹拌することによって所定の当量比の被測定ガスと空気との混合気を調製した。
円筒容器34内の温度は、円筒容器34の温度調整機能によって25.0±2.0℃の範囲に調整した。
直流高圧電源を用いて、放電時間1ms、放電エネルギー約0.5Jの条件にて一対の電極43間で放電させ、火炎を発生させた。高速ビデオカメラ39で撮影された円筒容器34内の火炎の様子を示す画像の一例を図3に示す。
燃焼ガスによる浮力の影響が強く表れた火炎の燃焼速度を求める際、円筒容器内部の圧力上昇が無視できる燃焼の初期段階では、燃焼速度は下式(4)で近似できる。
Figure 0006796831
ただし、Sは燃焼速度であり、rは火炎半径であり、ρは未燃焼領域の気体密度であり、ρは既燃焼領域の気体密度である。
放電および電極43の影響を強く受ける燃焼初期のデータを除く、圧力上昇が1%以内の時刻のデータを用いることによって、定圧燃焼とみなして式(4)をそのまま適用し、実測したdr/d、および定圧条件の断熱平衡計算で求めたρの値を用いてSを評価した。
(例1)
HFC−32(モル分率:0.6391)とHFO−1123(モル分率:0.3609)との混合ガスの燃焼速度を測定した。
混合ガスは、あらかじめ1.333Pa以下まで真空引きした内容積2Lの容器に、HFC−32およびHFO−1123を充填し、各成分の質量を電子天秤で量り混合比を調整した。混合ガスは合計5回調製し、混合比の実測誤差は±0.2質量%以内であった。混合ガスのρは理想気体を仮定して求め、ρは断熱平衡計算によって求めた。混合ガスの燃焼速度を、種々の当量比で測定し、実測最大燃焼速度を求めた。
また、あらかじめ測定したHFC−32の燃焼速度の実測値およびHFO−1123の燃焼速度の実測値を用い、式(2)から各当量比における燃焼速度の推算値を求め、最大燃焼速度を求めた。
実測最大燃焼速度、推算最大燃焼速度および式(1)から求めた燃焼抑制効果を表1に示す。
(例2〜16)
成分(A)、成分(B)、それらのモル分率を表1に示すように変更した以外は例1と同様にして実測最大燃焼速度、推算最大燃焼速度および燃焼抑制効果を求めた。結果を表1に示す。
(例17)
成分(A)、成分(B)、それらのモル分率を表1に示すように変更し、かつ燃焼速度の測定に用いた空気を、酸素濃度比29.8%の空気に変更した以外は例1と同様にして実測最大燃焼速度、推算最大燃焼速度および燃焼抑制効果を求めた。結果を表1、表2に示す。
Figure 0006796831
Figure 0006796831
本発明の流体組成物うち、特に組成物(I)の燃焼抑制効果は、成分(A)と成分(B)の燃焼反応の機構が全く異なっていることに起因するものである。その反応は以下の二種類の反応によって進行する。
まず成分(B)であるハロゲン化アルケンの自己分解による発熱反応によって燃焼が進行する。この燃焼反応を抑制するためには、自己分解発熱反応を起こさない熱容量の大きな多原子分子による発熱の希釈が非常に効果的である。そこで、多原子分子である成分(A)を混合することによって、成分(A)が希釈剤として働き、成分(B)による自己分解燃焼反応が抑制される。
次に、成分(A)の燃焼が進行する。この燃焼反応は通常のラジカル連鎖反応であり、その速度は、活性化学種である水素原子、酸素原子、OHラジカルによる連鎖分岐反応によって決定される。この燃焼速度は、火炎の反応領域に存在する水素原子の濃度に比例することが知られている。水素−ハロゲンの結合エネルギーは極めて強いため、火炎の反応領域にハロゲンを導入してやれば、燃焼反応によって非常に安定なハロゲン化水素を生成し、活性種である水素が反応系から除外されるため、ラジカル連鎖反応を抑制することができる。そこで、成分(B)として水素原子数に対してハロゲン原子数を過剰に有し反応性の高いハロゲン化アルケンを混合することによって、燃焼反応系に多量のハロゲン原子を供給することができ、火炎の中の水素原子濃度を大幅に低下させることができ、成分(A)によるラジカル連鎖反応を抑制することができる。
ここで、成分(B)の自己分解発熱反応の抑制については、成分(A)のラジカル連鎖反応の燃焼性に影響されないため、成分(A)はどのような燃焼性を有する化合物であってもよい。そのため、地球温暖化への影響が少ない点から、成分(A)としては、GWPが低いものを選定することが好ましい。一方、成分(A)のラジカル連鎖反応の抑制については、理論的には流体組成物全体におけるハロゲン原子/水素原子が1.0以上となれば、流体組成物の燃焼性が抑えられるため、成分(B)はハロゲン原子を過剰に有し、混合物としてこの条件を満たすことができるものが好ましい。
本発明の流体組成物は、冷媒組成物、溶媒組成物、発泡剤組成物、洗浄剤組成物等として有用である。
1:空気調和機、2:室外ユニット、3:室内ユニット、10:冷凍サイクル、11:圧縮機、12:四方弁、13:室外熱交換器、14:膨張弁、15:室内熱交換器、21:第1配管、22:第2配管、23:第3配管、24:第4配管、25:第5配管、26:第6配管、30:燃焼速度測定用装置、31:キセノンランプ、32:第1平面鏡、33:第1凹面鏡、34:円筒容器、35:第2平面鏡、36:第2凹面鏡、37:第3平面鏡、38:リングフィルタ、39:高速ビデオカメラ、40:凸レンズ、41:フィルタ、42:アクリル窓、43:電極。
なお、2015年5月14日に出願された日本特許出願2015−99031号および2015年8月13日に出願された日本特許出願2015−159870号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (5)

  1. アルカン(炭素原子数を2以上有する場合は、エーテル性の酸素原子を有してもよい。)、ハロゲン化アルカン(炭素原子数を2以上有する場合は、エーテル性の酸素原子を有してもよい。)およびアルケン(炭素原子数を3以上有する場合は、エーテル性の酸素原子を有してもよい。)からなる群から選ばれる成分(A)の1種と、ハロゲン化アルケン(炭素原子数を3以上有する場合は、エーテル性の酸素原子を有してもよい。)からなる成分(B)の1種と、を混合してなる組成物(I)、またはハロゲン化アルケン(炭素原子数を3以上有する場合は、エーテル性の酸素原子を有してもよい。)からなる成分(B)の2種を混合してなる組成物(II)(ただし、前記組成物(I)を除く。)である流体組成物の製造方法であって、
    前記組成物(I)は、ジフルオロメタンと1,1,2−トリフルオロエチレンとの混合物、ジフルオロメタンとテトラフルオロエチレンとの混合物、1,1,1−トリフルオロエタンとテトラフルオロエチレンとの混合物、1,1−ジフルオロエタンと1,1,2−トリフルオロエチレンとの混合物、メタンとテトラフルオロエチレンとの混合物、フルオロメタンとテトラフルオロエチレンとの混合物、1,1−ジフルオロエタンとテトラフルオロエチレンとの混合物、1,1,1,3,3−ペンタフルオロブタンとテトラフルオロエチレンとの混合物、1,1−ジクロロ−1−フルオロエタンとテトラフルオロエチレンとの混合物、1,1−ジフルオロエタンとクロロトリフルオロエチレンとの混合物、1−クロロ−1,1−ジフルオロエタンと1,1,2−トリフルオロエチレンとの混合物、トリフルオロメチルエーテルとテトラフルオロエチレンとの混合物又は1,1−ジフルオロエタンとヘキサフルオロプロピレンとの混合物であり、
    前記組成物(II)は、フッ化ビニルとテトラフルオロエチレンとの混合物、1,2−ジフルオロエチレンとテトラフルオロエチレンとの混合物、3,3,3−トリフルオロプロペンと1,1,2−トリフルオロエチレンとの混合物又は2,3,3,3−テトラフルオロプロペンとクロロトリフルオロエチレンとの混合物であり、
    前記組成物(I)の前記成分(A)と成分(B)との混合比、または前記組成物(II)の前記成分(B)の2種の混合比を、下式(1)で定義する燃焼抑制効果を10%以上とする混合比に設定し、前記組成物(I)の前記成分(A)と成分(B)とを、または前記組成物(II)の前記成分(B)の2種を、前記混合比で混合することを特徴とする、流体組成物の製造方法。
    Figure 0006796831
    ただし、ε(%)は燃焼抑制効果であり、Su,max,blendは各当量比における燃焼速度の実測値のうちの最大値であり、Su,max,blend,calcは下式(2)で求められる各当量比における燃焼速度の推算値のうちの最大値である。
    Figure 0006796831
    ただし、Su,blend,calc(φ)は、各当量比φにおける燃焼速度の推算値であり、nは前記流体組成物に含まれる可燃性成分の種類数であり、Su,i(φ)はi番目の可燃性成分の燃焼速度の実測値であり、αは下式(3)で求められるi番目の可燃性成分のエネルギー分率である。
    Figure 0006796831
    ただし、ΔHc,iはi番目の可燃性成分の燃焼熱であり、xはi番目の可燃性成分のモル分率である。
  2. 請求項1に記載の流体組成物の製造方法を含む、冷媒組成物の製造方法。
  3. 請求項に記載の冷媒組成物の製造方法を含む、空気調和機の製造方法。
  4. 前記空気調和機が床置き形の空気調和機である、請求項に記載の空気調和機の製造方法。
  5. 前記空気調和機が自動車用空気調和機である、請求項に記載の空気調和機の製造方法。
JP2017517987A 2015-05-14 2016-05-12 流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法 Active JP6796831B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015099031 2015-05-14
JP2015099031 2015-05-14
JP2015159870 2015-08-13
JP2015159870 2015-08-13
PCT/JP2016/064182 WO2016182030A1 (ja) 2015-05-14 2016-05-12 流体組成物、冷媒組成物および空気調和機

Publications (2)

Publication Number Publication Date
JPWO2016182030A1 JPWO2016182030A1 (ja) 2018-03-29
JP6796831B2 true JP6796831B2 (ja) 2020-12-09

Family

ID=57249289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517987A Active JP6796831B2 (ja) 2015-05-14 2016-05-12 流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法

Country Status (4)

Country Link
US (2) US20180051198A1 (ja)
JP (1) JP6796831B2 (ja)
CN (1) CN107532074A (ja)
WO (1) WO2016182030A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833536B (zh) * 2016-12-26 2019-08-20 浙江衢化氟化学有限公司 一种含有氢氟烯烃的制冷剂组合物
JP6877998B2 (ja) * 2016-12-27 2021-05-26 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6551571B2 (ja) * 2017-07-24 2019-07-31 ダイキン工業株式会社 冷媒組成物
EP3985079A1 (en) * 2017-07-24 2022-04-20 Daikin Industries, Ltd. Refrigerant composition
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
KR20200098565A (ko) 2017-12-18 2020-08-20 다이킨 고교 가부시키가이샤 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
JP7269499B2 (ja) 2017-12-18 2023-05-09 ダイキン工業株式会社 冷凍サイクル装置
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
WO2019239528A1 (ja) 2018-06-13 2019-12-19 日立ジョンソンコントロールズ空調株式会社 冷媒組成物及びこれを用いた冷凍サイクル装置
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
EP3825381A4 (en) 2018-07-17 2022-07-27 Daikin Industries, Ltd. COMPOSITION WITH REFRIGERANT, HEAT TRANSFER MEDIUM AND HEAT CYCLE SYSTEM
CN114656934B (zh) 2018-07-17 2024-07-05 大金工业株式会社 制冷剂循环装置
EP3825380A4 (en) * 2018-07-18 2022-04-13 Daikin Industries, Ltd. COMPOSITION WITH FLAMMABLE REFRIGERANT
WO2020158170A1 (ja) 2019-01-30 2020-08-06 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
CN114656925A (zh) 2019-01-30 2022-06-24 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
CN113366268A (zh) 2019-02-05 2021-09-07 大金工业株式会社 含有制冷剂的组合物以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
WO2020162415A1 (ja) 2019-02-06 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
WO2020184635A1 (ja) * 2019-03-11 2020-09-17 ダイキン工業株式会社 1,1,2-トリフルオロエタンを含む組成物
JP7287059B2 (ja) * 2019-03-29 2023-06-06 富士通株式会社 情報処理装置、情報処理方法、情報処理プログラム
WO2020256131A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
JP6897718B2 (ja) * 2019-06-26 2021-07-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN110591650B (zh) * 2019-09-12 2020-09-25 珠海格力电器股份有限公司 一种适用于离心式制冷机组的热传递组合物
CN110845995B (zh) * 2019-10-16 2021-01-29 珠海格力电器股份有限公司 一种环保混合工质及组合物和换热***
CN111548770B (zh) * 2020-03-27 2021-08-31 珠海格力电器股份有限公司 组合物和制冷装置
JP7492130B2 (ja) 2020-07-22 2024-05-29 ダイキン工業株式会社 冷媒を含有する組成物、その組成物を用いた不均化反応を抑制する方法、その組成物を保存する方法、及び、その組成物を輸送する方法、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法、及び冷凍装置
JP2022138149A (ja) * 2021-03-09 2022-09-22 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN113769101A (zh) * 2021-08-05 2021-12-10 中山威习日化科技有限公司 一种推进剂组合物
CN113549427B (zh) * 2021-08-26 2022-04-08 珠海格力电器股份有限公司 一种环保混合制冷工质、制冷剂及制冷***
WO2024145008A1 (en) * 2022-12-31 2024-07-04 Honeywell International Inc. Refrigerants having low gwp, and systems for and methods of providing refrigeration

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237218B2 (ja) 1992-08-05 2001-12-10 株式会社日立製作所 空気調和装置
CN1083474C (zh) * 1995-10-24 2002-04-24 顾雏军 在热力循环中使用的改进的非共沸工作介质
JP4639451B2 (ja) 2000-09-26 2011-02-23 ダイキン工業株式会社 空気調和機
JP4599699B2 (ja) 2000-09-26 2010-12-15 ダイキン工業株式会社 空気調和機
JP2003133000A (ja) 2001-10-26 2003-05-09 Toshiba Corp 電気機器の配線装置
EP2258789A3 (en) 2004-12-21 2012-10-24 Honeywell International Inc. Stabilized iodocarbon compositions
US9175201B2 (en) * 2004-12-21 2015-11-03 Honeywell International Inc. Stabilized iodocarbon compositions
US7569170B2 (en) 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US7708903B2 (en) 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
CA3044769C (en) * 2005-11-01 2022-04-19 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
JP5556813B2 (ja) * 2008-07-01 2014-07-23 ダイキン工業株式会社 ジフルオロメタン(HFC32)、ペンタフルオロエタン(HFC125)及び2,3,3,3−テトラフルオロプロペン(HFO1234yf)を含む冷媒組成物
FR2954342B1 (fr) 2009-12-18 2012-03-16 Arkema France Fluides de transfert de chaleur a inflammabilite reduite
JP5466556B2 (ja) * 2010-03-25 2014-04-09 出光興産株式会社 冷凍機用潤滑油組成物
US20120119136A1 (en) * 2010-11-12 2012-05-17 Honeywell International Inc. Low gwp heat transfer compositions
US20130186115A1 (en) 2010-11-12 2013-07-25 Honeywell International Inc. Low gwp heat transfer compositions
US20140191153A1 (en) 2010-11-12 2014-07-10 Honeywell International Inc. Low gwp heat transfer compositions
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP5149456B1 (ja) * 2012-03-14 2013-02-20 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンおよび1,1−ジフルオロエチレンの製造方法
CN102660229B (zh) * 2012-04-26 2014-05-07 中科赛凌(北京)科技有限公司 适于-90~-140℃深冷温度的不可燃混合制冷剂
WO2014123120A1 (ja) * 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム
EP2970738A4 (en) * 2013-03-15 2016-11-30 Honeywell Int Inc SYSTEMS FOR EFFICIENT HEATING AND / OR COOLING WITH LOW CLIMATE CHANGE IMPACT
US20160024362A1 (en) 2013-03-15 2016-01-28 Yun Lin Compositions and method for refrigeration
CN105102905B (zh) 2013-03-29 2017-05-10 松下健康医疗控股株式会社 二元制冷装置
CN105164228B (zh) * 2013-04-30 2019-06-11 Agc株式会社 热循环用工作介质
DE102013106756A1 (de) * 2013-06-27 2014-12-31 Khs Gmbh Verfahren sowie Füllsystem zum Füllen von Behältern
CN110373158A (zh) 2013-07-12 2019-10-25 Agc株式会社 热循环用工作介质、热循环***用组合物以及热循环***
DE112015000583T5 (de) * 2014-01-31 2016-11-03 Asahi Glass Company, Limited Arbeitsfluid für einen Wärmekreisprozess, Zusammensetzung für ein Wärmekreisprozesssystem und Wärmekreisprozesssystem
WO2015115551A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 作動媒体の製造方法
CN106029823B (zh) * 2014-02-20 2020-11-06 Agc株式会社 热循环用工作介质
CN110079276B (zh) * 2014-02-20 2022-01-14 Agc株式会社 热循环***用组合物以及热循环***
MY178665A (en) * 2014-02-20 2020-10-20 Asahi Glass Co Ltd Composition for heat cycle system, and heat cycle system
EP3109302B1 (en) * 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
CN106029825A (zh) * 2014-02-24 2016-10-12 旭硝子株式会社 热循环***用组合物及热循环***
JP6540685B2 (ja) * 2014-02-28 2019-07-10 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141679A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
EP3121241B1 (en) * 2014-03-18 2019-10-30 AGC Inc. Heat cycle system composition and heat cycle system
JP6507364B2 (ja) * 2014-05-12 2019-05-08 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6511638B2 (ja) * 2014-05-12 2019-05-15 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
US9944834B2 (en) * 2014-12-15 2018-04-17 H.B. Fuller Company Reactive film adhesives with enhanced adhesion to metallic surfaces
CN107109198B (zh) * 2015-01-16 2020-04-28 株式会社电装 热循环用工作介质
EP3825383A4 (en) * 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
CN114008173A (zh) * 2019-06-19 2022-02-01 大金工业株式会社 使1,2-二氟乙烯(hfo-1132)与氧以气相共存的方法、以及包含它们的保存容器和冷冻机

Also Published As

Publication number Publication date
US20200079985A1 (en) 2020-03-12
WO2016182030A1 (ja) 2016-11-17
JPWO2016182030A1 (ja) 2018-03-29
US11827831B2 (en) 2023-11-28
US20180051198A1 (en) 2018-02-22
CN107532074A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6796831B2 (ja) 流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法
CN111527353B (zh) 制冷装置
US11834602B2 (en) Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11493244B2 (en) Air-conditioning unit
JP6642757B2 (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
US20200325376A1 (en) Refrigeration cycle apparatus
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
JP6642756B2 (ja) 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
WO2019124400A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2019124140A1 (ja) 冷凍サイクル装置
US9783720B2 (en) Use of refrigerants comprising E-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane for cooling
US20230110292A1 (en) Composition including refrigerant, use thereof, refrigerator having same, and method for operating said refrigerator
JP2022087163A (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP7236021B1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2020122134A (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6791414B2 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
WO2023058558A1 (ja) 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP6658948B2 (ja) 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200610

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200716

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6796831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250