JP6796178B2 - Pneumatic tires - Google Patents

Pneumatic tires Download PDF

Info

Publication number
JP6796178B2
JP6796178B2 JP2019208958A JP2019208958A JP6796178B2 JP 6796178 B2 JP6796178 B2 JP 6796178B2 JP 2019208958 A JP2019208958 A JP 2019208958A JP 2019208958 A JP2019208958 A JP 2019208958A JP 6796178 B2 JP6796178 B2 JP 6796178B2
Authority
JP
Japan
Prior art keywords
tread
communication
rib
circumferential
ridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208958A
Other languages
Japanese (ja)
Other versions
JP2020023323A (en
Inventor
洋志 大庭
洋志 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2019208958A priority Critical patent/JP6796178B2/en
Publication of JP2020023323A publication Critical patent/JP2020023323A/en
Application granted granted Critical
Publication of JP6796178B2 publication Critical patent/JP6796178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Description

本発明は、複数本の周方向溝により複数のリブ状陸部が形成された空気入りタイヤに関し、特にトレッド構造に関する。 The present invention relates to a pneumatic tire in which a plurality of ribbed land portions are formed by a plurality of circumferential grooves, and particularly to a tread structure.

トレッドに複数本の周方向溝が設けられリブパターンが構成された空気入りタイヤは、濡れた路面でも周方向溝により排水を促して摩擦力(ウエットグリップ性能)を確保するようにしている。
しかし、周方向溝により区画されたリブ状陸部が接地することにより、リブ状陸部の圧縮変形や倒れ込み等の弾性変形があると、変形で発生するヒステリシスロスによる損失エネルギによりトレッド部が発熱し、転がり抵抗が増加する傾向にある。
Pneumatic tires with a plurality of circumferential grooves on the tread and a rib pattern are designed to promote drainage by the circumferential grooves even on a wet road surface to ensure frictional force (wet grip performance).
However, when the rib-shaped land portion partitioned by the circumferential groove touches the ground and there is elastic deformation such as compression deformation or collapse of the rib-shaped land portion, the tread portion generates heat due to the energy loss due to the hysteresis loss generated by the deformation. However, rolling resistance tends to increase.

そこで、周方向溝を挟んで隣合うリブ状陸部から互いの方向に向けて突出部を突出させて、リブ状陸部が接地したときは、相対する突出部どうしが当接して相互に支え合い、リブ状陸部の剛性を維持して変形を抑制するようにした例が提案されている(例えば、特許文献1参照)。 Therefore, when the rib-shaped land portions are projected from the adjacent rib-shaped land portions across the circumferential groove toward each other, and the rib-shaped land portions touch the ground, the opposing projecting portions come into contact with each other and support each other. An example has been proposed in which the rigidity of the ribbed land portion is maintained and deformation is suppressed (see, for example, Patent Document 1).

特開2011−245996号公報Japanese Unexamined Patent Publication No. 2011-245996

特許文献1は、車両旋回時において、トレッドに対する横側からの外力に起因するタイヤ径方向の圧縮応力によりタイヤ接地面積が小さくなったり接地圧が低くなるバックリングを抑制するために、トレッド端に隣接する周方向溝に突出部を部分的に突出させ、トレッド端のリブ状陸部のタイヤ径方向の圧縮応力に対する剛性を高め、コーナリングパワーを向上させようとしたものである。
したがって、特許文献1においては、トレッド端に隣接する周方向溝にのみ突出部が設けられている。
また、突出部はトレッド周方向に突出部より大きい間隔をあけて配設されている。
Patent Document 1 describes at the tread end in order to suppress buckling in which the tire contact area becomes smaller or the contact pressure becomes lower due to compressive stress in the tire radial direction caused by an external force from the lateral side with respect to the tread when the vehicle turns. This is an attempt to improve the cornering power by partially projecting the protruding portion into the adjacent circumferential groove to increase the rigidity of the rib-shaped land portion at the tread end against the compressive stress in the tire radial direction.
Therefore, in Patent Document 1, the protruding portion is provided only in the circumferential groove adjacent to the tread end.
Further, the protruding portions are arranged at intervals larger than the protruding portions in the circumferential direction of the tread.

しかし、トレッドにリブパターンが構成された空気入りタイヤは、主にトラックやバス等のような重荷重車両に使用されることが多く、重荷重用空気入りタイヤであると、周方向溝により区画されたリブ状陸部が接地することによるリブ状陸部の圧縮変形や倒れ込みが大きく、特許文献1のように、トレッド端に隣接する周方向溝にのみ突出部が設けられ、同突出部がトレッド周方向に大きな間隔をおいて配設されても、トレッド部全体のリブ状陸部の剛性の維持が難しく、弾性変形によるトレッド部の発熱量が大きく、転がり抵抗を十分抑制することができない。 However, pneumatic tires with a rib pattern on the tread are often used for heavy-duty vehicles such as trucks and buses, and heavy-duty pneumatic tires are partitioned by circumferential grooves. Due to the ground contact of the rib-shaped land portion, the rib-shaped land portion is significantly deformed and collapsed. As in Patent Document 1, a protruding portion is provided only in the circumferential groove adjacent to the tread end, and the protruding portion is the tread. Even if the treads are arranged at large intervals in the circumferential direction, it is difficult to maintain the rigidity of the ribbed land portion of the entire tread portion, the amount of heat generated by the tread portion due to elastic deformation is large, and the rolling resistance cannot be sufficiently suppressed.

本発明は、かかる点に鑑みなされたもので、その目的とする処は、周方向溝の排水性を確保しながら、トレッドの接地におけるトレッド全体のリブ状陸部の剛性を高めて弾性変形を抑制して転がり抵抗を十分低減することができる空気入りタイヤを供する点にある。 The present invention has been made in view of this point, and an object of the present invention is to increase the rigidity of the ribbed land portion of the entire tread when the tread touches the ground while ensuring the drainage property of the circumferential groove to cause elastic deformation. The point is to provide a pneumatic tire that can be suppressed and the rolling resistance can be sufficiently reduced.

上記目的を達成するために、請求項1記載の発明は、
トレッド周方向に延設される周方向溝により複数本のリブ状陸部が形成された空気入りタイヤにおいて、
前記周方向溝を挟んで隣合う前記リブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、
相対する前記突条部は、前記突条部の互いに対面する先端面がタイヤ接地時に接地したリブ状陸部の弾性変形により互いに接する間隔を有して配設され、
相対する前記突条部により前記周方向溝には、相対する前記突条部の内周側の内側溝空間と相対する前記突条部の外周側の外側溝空間が形成され、
前記突条部の先端面には、前記外側溝空間と前記内側溝空間を連通する連通凹部が、トレッド周方向に複数形成され
トレッド幅方向で側方より中央側に設けられる前記周方向溝の方が、前記突条部に形成される前記連通凹部の数が多いことを特徴とする空気入りタイヤである。
In order to achieve the above object, the invention according to claim 1 is
In a pneumatic tire in which a plurality of rib-shaped land portions are formed by a circumferential groove extending in the circumferential direction of the tread.
The ridges protruding from the rib-shaped land portions adjacent to each other across the circumferential groove in the direction of each other extend in the circumferential direction of the tread and are formed in an annular shape.
The ridges facing each other are arranged so that the tip surfaces of the ridges facing each other come into contact with each other due to elastic deformation of the ribbed land portion that touches the ground when the tire touches the ground.
The ridges facing each other form an outer groove space on the outer peripheral side of the ridges facing the inner groove space on the inner peripheral side of the ridges facing each other in the circumferential groove.
On the tip surface of the ridge portion, a plurality of communication recesses communicating the outer groove space and the inner groove space are formed in the tread circumferential direction .
The circumferential groove provided on the central side of the tread width direction is a pneumatic tire characterized in that the number of the communication recesses formed in the ridge portion is larger .

この構成によれば、周方向溝を挟んで隣合うリブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、相対する環状の突条部は、突条部の互いに対面する先端面がタイヤ接地時に接地したリブ状陸部の弾性変形により互いに接する間隔を有して配設されるので、トレッド全周のいずれの箇所のリブ状陸部であっても、接地したときは、相対する環状の突条部の部分どうしが互いに接して確固として支え合ってリブ状陸部の剛性を高め弾性変形が抑制されるため、確実に転がり抵抗を低減することができる。 According to this configuration, the ridges protruding from the rib-shaped land portions adjacent to each other across the circumferential groove toward each other are formed in an annular shape extending in the circumferential direction of the tread, and the opposing annular ridges are formed. Is arranged so that the tip surfaces of the ridges facing each other are in contact with each other due to the elastic deformation of the rib-shaped land portion that is in contact with the tire when the tire is in contact with the tire. Even so, when it touches the ground, the opposing annular ridges come into contact with each other and firmly support each other, increasing the rigidity of the ribbed land and suppressing elastic deformation, thus ensuring rolling resistance. It can be reduced.

また、突条部の先端面には、外側溝空間と内側溝空間を連通する連通凹部が、トレッド周方向に複数形成されるので、接地したリブ状陸部の環状の突条部が互いに接しても連通凹部により外側溝空間と内側溝空間との連通が確保され、接地により外周の開口が塞がれた外側溝空間内の水を連通凹部を介して内側溝空間に逃がし、接地していない箇所の突条部間の隙間から外側溝空間を介して外部に排出することができ、周方向溝の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。
この構成によれば、トレッド幅方向で側方より中央側に設けられる周方向溝の方が、突条部に形成される連通凹部の数を多くすることで、タイヤ接地時にリブ状陸部のより大きい圧縮変形により特に円滑な排水が要求される中央側の周方向溝の排水を、間隔が小さく数の多い連通凹部により効率良く行うことができ、良好なウエットグリップ性能を確保することができる。
Further, since a plurality of communication recesses communicating the outer groove space and the inner groove space are formed on the tip surface of the ridge portion in the tread circumferential direction, the annular ridge portions of the rib-shaped land portion that are in contact with each other are in contact with each other. Even so, the communication recess ensures communication between the outer groove space and the inner groove space, and the water in the outer groove space whose outer peripheral opening is blocked by grounding escapes to the inner groove space through the communication recess and is grounded. It can be discharged to the outside through the gap between the ridges in the non-existent part through the outer groove space, the drainage property of the circumferential groove can be ensured, and the required wet grip performance can be maintained.
According to this configuration, the circumferential groove provided on the center side rather than the side in the tread width direction increases the number of communication recesses formed in the ridge portion, so that the rib-shaped land portion is formed when the tire touches the ground. Drainage of the circumferential groove on the central side, which requires particularly smooth drainage due to larger compression deformation, can be efficiently performed by the communication recesses having a small interval and a large number, and good wet grip performance can be ensured. ..

前記構成において、
相対する前記突条部の対面する双方の先端面に、前記連通凹部が互いに対向して形成されるようにしてもよい。
In the above configuration
The communication recesses may be formed so as to face each other on both front end surfaces of the ridge portions facing each other.

この構成によれば、突条部の先端面に形成される連通凹部の凹み量を小さく抑えて突条部自体の剛性を高くしても、リブ状陸部が接地して相対する突条部が接したときは、突条部の対面する先端面の互いに対向した位置にある双方の連通凹部が合わさって通路断面積の大きい連通孔を形成することができるので、排水性を良好としながら、剛性の高い突条部が確固として互いに支えあってリブ状陸部の弾性変形が抑制され、転がり抵抗を低減することができる。 According to this configuration, even if the dent amount of the communication recess formed on the tip surface of the ridge portion is suppressed to be small and the rigidity of the ridge portion itself is increased, the rib-shaped land portion touches the ground and faces the ridge portion. When they come into contact with each other, both communication recesses at positions facing each other on the opposite tip surfaces of the ridges can be combined to form a communication hole having a large passage cross-sectional area. The highly rigid ridges firmly support each other to suppress elastic deformation of the ribbed land portion, and rolling resistance can be reduced.

前記構成において、
前記リブ状陸部から突出する前記突条部は、前記リブ状陸部の踏面から先細の円錐面を形成して先端面まで突出して形成されるようにしてもよい。
In the above configuration
The ridge portion protruding from the rib-shaped land portion may be formed by forming a tapered conical surface from the tread surface of the rib-shaped land portion and projecting to the tip surface.

この構成によれば、リブ状陸部から突出する突条部は、円環状をなすリブ状陸部の踏面から先細の円錐面を形成して先端面まで突出して形成されるので、相対する突条部の互いに対向する円錐面の間の外側溝空間はトレッド幅方向の幅が外周側から内周側に徐々に縮小しているため、接地により外周の開口が塞がれた外側溝空間内の水を集めて連通凹部に導き易く、連通凹部を介して内側溝空間に円滑に逃がし、接地していない箇所の相対する突条部間の隙間から外側溝空間7を介して外部に容易に排出することができ、排水性を向上させて、ウエットグリップ性能を良好に維持することができる。 According to this configuration, the ridge portion protruding from the rib-shaped land portion is formed by forming a tapered conical surface from the tread surface of the rib-shaped land portion forming an annular shape and projecting to the tip surface. Since the width in the tread width direction of the outer groove space between the conical surfaces facing each other of the strips gradually decreases from the outer peripheral side to the inner peripheral side, the outer groove space in which the outer peripheral opening is closed by grounding. It is easy to collect the water and guide it to the communication recess, smoothly let it escape to the inner groove space through the communication recess, and easily to the outside through the outer groove space 7 from the gap between the opposing ridges of the non-grounded part. It can be discharged, the drainage property can be improved, and the wet grip performance can be maintained well.

前記構成において、トレッド幅方向で最外側の前記周方向溝における前記突条部は、トレッド幅方向で中央側の前記周方向溝における前記突条部よりも前記円錐面の傾斜が小さいようにしてもよい。
ここに、円錐面の傾斜とは、該円錐の中心軸に対する母線(円錐の頂点を通る円錐面上の直線)の傾きのことであり、円錐面の傾斜が小さいとは、円錐の中心軸に対して母線のなす角度(傾斜角)が小さいことをいう。
In the above configuration, the ridge portion in the circumferential groove on the outermost side in the tread width direction has a conical surface having a smaller inclination than the ridge portion in the circumferential groove on the central side in the tread width direction. May be good.
Here, the inclination of the conical surface is the inclination of the bus (straight line on the conical surface passing through the apex of the cone) with respect to the central axis of the cone, and the small inclination of the conical surface is the central axis of the cone. On the other hand, it means that the angle (inclination angle) formed by the bus is small.

この構成によれば、トレッド幅方向で中央側の周方向溝における突条部よりもトレッド幅方向で最外側の周方向溝における突条部の円錐面の傾斜が小さいので、トレッド幅方向で最外側のリブ状陸部の接地時の圧縮応力に対する剛性をより高くして、車両旋回時の最外側のリブ状陸部の倒れ込みを極力抑制して、コーナリングパワーを向上させることができるとともに、突条部の円錐面の傾斜が小さく接地により外側溝空間が塞がれ難い構造であるため、排水が極めて容易になされてウエットグリップ性能を良好とすることができる。 According to this configuration, the inclination of the conical surface of the ridge portion in the outermost circumferential groove in the tread width direction is smaller than that in the ridge portion in the circumferential groove on the central side in the tread width direction. It is possible to increase the rigidity of the outer rib-shaped land portion against compressive stress when it touches the ground, suppress the collapse of the outermost rib-shaped land portion as much as possible when the vehicle turns, and improve the cornering power. Since the conical surface of the strip has a small inclination and the outer groove space is not easily closed by ground contact, drainage is extremely easy and the wet grip performance can be improved.

前記構成において、前記連通凹部は、ラジアル方向に指向して直線的に形成されるようにしてもよい。 In the above configuration, the communication recess may be formed linearly in the radial direction.

この構成によれば、連通凹部がラジアル方向に指向して直線的に形成されるので、連通凹部は内側溝空間と外側溝空間を最短距離で連通し、排水経路を短くして排水性を向上させることができる。 According to this configuration, since the communication recess is linearly formed in the radial direction, the communication recess communicates the inner groove space and the outer groove space at the shortest distance, shortens the drainage path, and improves drainage. Can be made to.

前記構成において、
前記連通凹部は、前記内側溝空間に臨む内側開口と同内側開口より車両前進時のタイヤ回転方向に移動した位置にある前記外側溝空間に臨む外側開口とを連通して、ラジアル方向に対して傾いた方向に指向して直線的に形成されるようにしてもよい。
In the above configuration
The communication recess communicates with the inner opening facing the inner groove space and the outer opening facing the outer groove space at a position moved from the inner opening in the tire rotation direction when the vehicle advances, with respect to the radial direction. It may be formed linearly in a tilted direction.

この構成によれば、連通凹部は、内側溝空間に臨む内側開口と同内側開口より車両前進時のタイヤ回転方向に移動した位置にある外側溝空間に臨む外側開口とを直線的に連通しているので、特に前進回転時に、接地により外周の開口が塞がれた外側溝空間内の水を、連通凹部の外側開口が汲み取るようにして連通凹部に導入して内側開口から内側溝空間に逃がすことを促すことができ、車両後退時よりもタイヤが高速で回転することがある車両前進時のときの排水性をより良好としてウエットグリップ性能を効果的に発揮することができる。 According to this configuration, the communication recess linearly communicates with the inner opening facing the inner groove space and the outer opening facing the outer groove space located at a position moved in the tire rotation direction when the vehicle advances from the same inner groove space. Therefore, especially during forward rotation, water in the outer groove space whose outer peripheral opening is blocked by grounding is introduced into the communication recess so that the outer opening of the communication recess is drawn up, and is released from the inner opening to the inner groove space. This can be promoted, and the wet grip performance can be effectively exhibited by improving the drainage property when the vehicle is moving forward, which may cause the tires to rotate at a higher speed than when the vehicle is moving backward.

本発明は、周方向溝を挟んで隣合うリブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成されるので、トレッド部全体のいずれの場所のリブ状陸部であっても、接地したときは、相対する突条部が互いに接して互いに支え合って剛性を高め、確実に転がり抵抗を低減することができるとともに、突条部の先端面には、内側溝空間と外側溝空間を連通する連通凹部が、トレッド周方向に複数形成されるので、接地したリブ状陸部の突条部が互いに接しても連通凹部により外側溝空間と内側溝空間との連通が保たれ、周方向溝の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。 In the present invention, the ridges protruding in the direction of each other from the ribbed land portions adjacent to each other across the circumferential groove are formed in an annular shape extending in the circumferential direction of the tread, so that any place in the entire tread portion. Even in the ribbed land portion of the above, when the ground is touched, the opposing ridges come into contact with each other and support each other to increase the rigidity, reliably reduce the rolling resistance, and the tip surface of the ridge. Since a plurality of communication recesses that communicate the inner groove space and the outer groove space are formed in the circumferential direction of the tread, even if the ridges of the ribbed land portion that are in contact with each other are in contact with each other, the communication recesses the outer groove space and the inner side. Communication with the lateral groove space is maintained, drainage of the circumferential groove can be ensured, and the required wet grip performance can be maintained.

本発明に係る実施の形態の実施例1の空気入りタイヤのトレッドの周方向の部分平面図である。It is a partial plan view in the circumferential direction of the tread of the pneumatic tire of Example 1 of the Embodiment which concerns on this invention. 図1におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図1の部分拡大平面図である。It is a partially enlarged plan view of FIG. 図3におけるIV−IV線断面図である。FIG. 3 is a sectional view taken along line IV-IV in FIG. 図3におけるV-V線断面図である。FIG. 3 is a sectional view taken along line VV in FIG. 図3におけるVI-VI線断面図である。FIG. 3 is a sectional view taken along line VI-VI in FIG. トレッドの接地状態を示す部分平面図である。It is a partial plan view which shows the ground contact state of a tread. 図7におけるVIII-VIII線断面図である。FIG. 7 is a sectional view taken along line VIII-VIII in FIG. 実施例6の空気入りタイヤのトレッドの部分拡大平面図である。It is a partially enlarged plan view of the tread of the pneumatic tire of Example 6. 図9におけるX-X線断面図である。9 is a cross-sectional view taken along the line X-X in FIG. 図9におけるXI-XI線断面図である。FIG. 9 is a sectional view taken along line XI-XI in FIG. 実施例7の空気入りタイヤのトレッドの断面図である。It is sectional drawing of the tread of the pneumatic tire of Example 7. FIG. 実施例8の空気入りタイヤのトレッドの部分平面図である。It is a partial plan view of the tread of the pneumatic tire of Example 8.

以下、本発明の実施の形態に係る空気入りタイヤについて、以下説明する。
本空気入りタイヤは、トレッド周方向に延設される周方向溝がトレッド幅方向に複数本並列に設けられることで、リブ状陸部が複数本形成されて、トレッドにリブパターンが構成されている。
このような空気入りタイヤの1つの実施例1について、図1ないし図8に図示し、説明する。
Hereinafter, the pneumatic tire according to the embodiment of the present invention will be described below.
In this pneumatic tire, a plurality of circumferential grooves extending in the tread circumferential direction are provided in parallel in the tread width direction, so that a plurality of rib-shaped land portions are formed and a rib pattern is formed on the tread. There is.
One embodiment 1 of such a pneumatic tire will be illustrated and described with reference to FIGS. 1 to 8.

図1および図2を参照して、実施例1の空気入りタイヤ1のトレッド2には、トレッド周方向に延設された5本の周方向溝3により6本のリブ状陸部(図1で散点模様が施された部分)4が形成されたリブパターンが構成されている。 With reference to FIGS. 1 and 2, the tread 2 of the pneumatic tire 1 of the first embodiment has six ribbed land portions (FIG. 1) by five circumferential grooves 3 extending in the circumferential direction of the tread. The rib pattern in which the scattered spot pattern is formed) 4 is formed.

トレッド幅方向の中央の周方向溝3aは、直線状に形成され、その周方向溝3aの両側に設けられる周方向溝3b,3bは、周方向に対して傾いた方向に指向した直線状部分が複数ジグザグに連続して形成され、その周方向溝3b,3bのさらに両外側に設けられる周方向溝3c,3cは、周方向に対して僅かに傾いた方向に指向した直線状部分が複数ジグザグに連続して形成されている(図1参照)。 The central circumferential groove 3a in the tread width direction is formed in a straight line, and the circumferential grooves 3b and 3b provided on both sides of the circumferential groove 3a are linear portions oriented in a direction inclined with respect to the circumferential direction. Are continuously formed in a plurality of zigzags, and the circumferential grooves 3c and 3c provided on both outer sides of the circumferential grooves 3b and 3b have a plurality of linear portions oriented in a direction slightly inclined with respect to the circumferential direction. It is formed continuously in a zigzag pattern (see FIG. 1).

5本の周方向溝3は、いずれも同じ溝幅Wが10mmを有し(図3参照)、中央の周方向溝3aの両側の周方向溝3b,3bおよび周方向溝3c,3cが、中央の周方向溝3aに関して対称な位置に対称な形状をして設けられている。 Each of the five circumferential grooves 3 has the same groove width W of 10 mm (see FIG. 3), and the circumferential grooves 3b and 3b and the circumferential grooves 3c and 3c on both sides of the central circumferential groove 3a are It is provided in a symmetrical shape at a position symmetrical with respect to the central circumferential groove 3a.

周方向溝3を挟んで隣合うリブ状陸部4,4から互いの方向に向けて突出した突条部5,5が、トレッド周方向に延びて環状に形成されている。
相対する突条部5,5により周方向溝3には、相対する環状の突条部5,5の内周側に内側溝空間6が環状に形成されるとともに、相対する突条部5,5の外周側に外側溝空間7が環状に形成されている(図3,図4参照)。
The ridges 5 and 5 projecting from the rib-shaped land portions 4 and 4 adjacent to each other with the circumferential groove 3 in the circumferential direction extending in the circumferential direction of the tread are formed in an annular shape.
In the circumferential groove 3 due to the opposing ridges 5 and 5, an inner groove space 6 is formed in an annular shape on the inner peripheral side of the opposing annular ridges 5 and 5, and the opposing ridges 5 and 5 are formed. The outer groove space 7 is formed in an annular shape on the outer peripheral side of the fifth (see FIGS. 3 and 4).

図4を参照して、リブ状陸部4から突出する突条部5は、円環状をなすリブ状陸部4の踏面4fから先細の円錐面5cを形成して先端面5sまで突出して形成されている。
したがって、相対する突条部5,5より外周の外側溝空間7は、図4に示されるように、断面が両側の円錐面5c,5cを脚辺とする等脚台形を形成している。
相対する突条部5,5の内周側の内側溝空間6は、断面が円形の円環状に形成されている。
With reference to FIG. 4, the ridge portion 5 protruding from the rib-shaped land portion 4 is formed by forming a tapered conical surface 5c from the tread surface 4f of the rib-shaped land portion 4 forming an annular shape and projecting to the tip surface 5s. Has been done.
Therefore, as shown in FIG. 4, the outer groove space 7 on the outer periphery of the ridges 5 and 5 facing each other forms an isosceles trapezoid whose legs are conical surfaces 5c and 5c on both sides in cross section.
The inner groove space 6 on the inner peripheral side of the opposing ridges 5 and 5 is formed in an annular shape having a circular cross section.

相対する突条部5,5の互いに対面する先端面5s,5s間には、隙間8が存在する。
対面する先端面5s,5s間の間隔(隙間8の幅)dは、タイヤ接地時に接地したリブ状陸部4,4の弾性変形により相対する突条部5,5の先端面5s,5sが接近して接する間隔に設定されている。
本実施例1では、対面する先端面5s,5s間の間隔(隙間8の幅)dは、1.5mmである。
There is a gap 8 between the tip surfaces 5s and 5s of the opposing ridges 5 and 5 facing each other.
The distance (width of the gap 8) d between the facing tip surfaces 5s and 5s is such that the tip surfaces 5s and 5s of the ridges 5 and 5 facing each other due to the elastic deformation of the ribbed land portions 4 and 4 that touched the ground when the tire touched the ground. The interval is set so that they come into close contact with each other.
In the first embodiment, the distance (width of the gap 8) d between the facing tip surfaces 5s and 5s is 1.5 mm.

そして、突条部5の先端面5sには、内側溝空間6と外側溝空間7を連通する連通凹部9が、トレッド周方向に等しい間隔Dで複数形成されている(図1参照)。
本実施例1では、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成されている。
図5に示されるように、互いに対向する連通凹部9,9は、ラジアル方向に直線的に指向した孔径Rの円孔を構成する。
A plurality of communication recesses 9 that communicate the inner groove space 6 and the outer groove space 7 are formed on the tip surface 5s of the ridge portion 5 at intervals D equal to the tread circumferential direction (see FIG. 1).
In the first embodiment, the communication recesses 9 and 9 are formed so as to face each other on the front end surfaces 5s and 5s of the facing ridges 5 and 5 facing each other.
As shown in FIG. 5, the communicating recesses 9 and 9 facing each other form a circular hole having a hole diameter R linearly directed in the radial direction.

本実施例1では、互いに対向する連通凹部9,9が構成する円孔の孔径Rは、5mmであり(図5参照)、連通凹部9,9のトレッド周方向に配設される間隔Dは、50mmである(図1参照)。
このようなリブパターンが形成されたトレッド2を有する空気入りタイヤ1の接地したリブ状陸部4,4が圧縮されて弾性変形した状態を、図7および図8に示す。
In the first embodiment, the hole diameter R of the circular holes formed by the communicating recesses 9 and 9 facing each other is 5 mm (see FIG. 5), and the spacing D arranged in the tread circumferential direction of the communicating recesses 9 and 9 is , 50 mm (see FIG. 1).
7 and 8 show a state in which the grounded rib-shaped land portions 4 and 4 of the pneumatic tire 1 having the tread 2 on which such a rib pattern is formed are compressed and elastically deformed.

図7および図8に示すように、リブ状陸部4,4が圧縮されて弾性変形すると、相対する突条部5,5が接近して対面する互いの先端面5s,5sが接して、隙間8が無くなる。
しかし、相対する突条部5,5の対面する双方の先端面5s,5sの連通凹部9,9が互いに合わさって、内側溝空間6と外側溝空間7を連通する連通孔(連通凹部9,9)が確保される。
As shown in FIGS. 7 and 8, when the rib-shaped land portions 4 and 4 are compressed and elastically deformed, the opposite ridge portions 5 and 5 come into close contact with each other and the tip surfaces 5s and 5s are in contact with each other. The gap 8 disappears.
However, the communication holes (communication recesses 9, 9) in which the communication recesses 9 and 9 of the two end surfaces 5s and 5s facing each other of the facing ridges 5 and 5 are combined with each other to communicate the inner groove space 6 and the outer groove space 7. 9) is secured.

このように、周方向溝3を挟んで隣合うリブ状陸部4,4から互いの方向に向けて突出した突条部5,5が、トレッド周方向に延びて環状に形成され、相対する突条部5,5は、突条部5,5の対面する互いの先端面5s,5sがタイヤ接地時に接地したリブ状陸部4,4の弾性変形により互いに接する間隔dを有して配設されるので、トレッド全体のいずれの箇所のリブ状陸部4であっても、接地したときは、相対する環状の突条部5,5の部分どうしが互いに接して確固として支え合ってリブ状陸部4,4の剛性を高め弾性変形が抑制されるため、偏摩耗を抑制し、確実に転がり抵抗を低減することができる。 In this way, the ridges 5 and 5 projecting from the rib-shaped land portions 4 and 4 adjacent to each other with the circumferential groove 3 in the circumferential direction extending in the circumferential direction of the tread are formed in an annular shape and face each other. The ridges 5 and 5 are arranged so as to have an interval d in which the tip surfaces 5s and 5s of the ridges 5 and 5 facing each other are in contact with each other due to elastic deformation of the ribbed land portions 4 and 4 which are in contact with each other when the tire touches the ground. Since the rib-shaped land portion 4 is provided at any part of the entire tread, when it touches the ground, the portions of the opposing annular protrusions 5 and 5 are in contact with each other and firmly support each other to support the rib. Since the rigidity of the land portions 4 and 4 is increased and elastic deformation is suppressed, uneven wear can be suppressed and rolling resistance can be reliably reduced.

そして、突条部5の先端面には、内側溝空間6と外側溝空間7を連通する連通凹部9が、トレッド周方向に複数形成されているので、接地したリブ状陸部4,4の突条部5,5が互いに接しても連通凹部9,9により外側溝空間7と内側溝空間6との連通が確保され、接地により外周の開口が塞がれた外側溝空間7内の水を連通凹部9を介して内側溝空間6に逃がし、接地していない箇所の突条部5,5間の隙間8から外側溝空間7を介して外部に排出することができ、周方向溝3の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。 Since a plurality of communication recesses 9 that communicate the inner groove space 6 and the outer groove space 7 are formed on the tip surface of the ridge portion 5 in the tread circumferential direction, the rib-shaped land portions 4 and 4 that are in contact with the ground are formed. Even if the ridges 5 and 5 are in contact with each other, the communication recesses 9 and 9 ensure communication between the outer groove space 7 and the inner groove space 6, and the water in the outer groove space 7 whose outer peripheral opening is closed by grounding. Can be released to the inner groove space 6 through the communication recess 9 and discharged to the outside through the outer groove space 7 from the gap 8 between the ridges 5 and 5 at the non-grounded portion, and the circumferential groove 3 The drainage property can be ensured, and the required wet grip performance can be maintained.

また、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成されているので、突条部5の先端面5sに形成される連通凹部9の凹み量を小さく抑えて突条部5自体の剛性を高くしても、リブ状陸部4,4が接地して相対する突条部5,5が接したときは、突条部5,5の対面する先端面5s,5sの互いに対向した位置にある双方の連通凹部9,9が合わさって通路断面積の大きい連通孔(連通凹部9,9)を形成することができるので、排水性を良好としながら、剛性の高い突条部5,5が確固として互いに支えあってリブ状陸部4の弾性変形が抑制され、転がり抵抗を低減することができる。 Further, since the communication recesses 9 and 9 are formed so as to face each other on both the tip surfaces 5s and 5s facing each other of the ridge portions 5 and 5, they are formed on the tip surface 5s of the ridge portions 5. Even if the recessed portion of the communication recess 9 is suppressed to a small size and the rigidity of the ridge portion 5 itself is increased, when the rib-shaped land portions 4 and 4 come into contact with each other and the ridge portions 5 and 5 are in contact with each other, the ridge portion 5 is contacted. Since both communication recesses 9 and 9 located at positions facing each other on the opposite tip surfaces 5s and 5s of the portions 5 and 5 can be combined to form a communication hole (communication recesses 9 and 9) having a large passage cross-sectional area. The rib-shaped land portions 4 can be suppressed from elastic deformation and the rolling resistance can be reduced by firmly supporting the ridge portions 5 and 5 having high rigidity while improving the drainage property.

さらに、リブ状陸部4から突出する突条部5は、円環状をなすリブ状陸部4の踏面4fから先細の円錐面5cを形成して先端面5sまで突出して形成されるので、相対する突条部5,5の互いに対向する円錐面5c,5cの間の外側溝空間7はトレッド幅方向の幅が外周側から内周側に徐々に縮小しているため、接地により外周の開口が塞がれた外側溝空間7内の水を集めて連通凹部9に導き易く、連通凹部9を介して内側溝空間6に円滑に逃がし、接地していない箇所の相対する突条部5,5間の隙間8から外側溝空間7を介して外部に容易に排出することができ、排水性を向上させて、ウエットグリップ性能を良好に維持することができる。 Further, the ridge portion 5 protruding from the rib-shaped land portion 4 is formed so as to form a tapered conical surface 5c from the tread surface 4f of the rib-shaped land portion 4 forming an annular shape and project to the tip surface 5s. Since the width of the outer groove space 7 between the conical surfaces 5c and 5c of the ridges 5 and 5 facing each other is gradually reduced from the outer peripheral side to the inner peripheral side in the tread width direction, the outer peripheral opening is opened by grounding. It is easy to collect the water in the outer groove space 7 that is closed and guide it to the communication recess 9, and smoothly escape it to the inner groove space 6 through the communication recess 9, and the opposing ridges 5 and the parts that are not in contact with the ground. It can be easily discharged to the outside from the gap 8 between the 5s through the outer groove space 7, the drainage property can be improved, and the wet grip performance can be maintained well.

またさらに、連通凹部9がラジアル方向に指向して直線的に形成されるので、連通凹部9は外側溝空間7と内側溝空間6を最短距離で連通し、排水経路を短くして排水性を向上させている。 Furthermore, since the communication recess 9 is linearly formed in the radial direction, the communication recess 9 communicates the outer groove space 7 and the inner groove space 6 at the shortest distance, shortens the drainage path, and improves drainage. It is improving.

本実施例1のリブ状パターンのトレッド構造を有する空気入りタイヤ1について、転がり抵抗性能とウエットグリップ性能の試験結果を、従来例を基準として比較例とともに実施例1を対比した評価結果として、[表1]に示す。
[表1]には、各仕様も掲載する。
Regarding the pneumatic tire 1 having the tread structure of the rib-shaped pattern of the first embodiment, the test results of the rolling resistance performance and the wet grip performance are compared with the comparative example together with the conventional example as an evaluation result. Table 1].
Each specification is also listed in [Table 1].

Figure 0006796178

Figure 0006796178

本実施例1の空気入りタイヤは、タイヤサイズが、315/70R22.5であり、トレッドには、前記したように、溝幅Wが10mmの周方向溝3を挟んで隣合うリブ状陸部4,4から互いの方向に向けて突出した環状の突条部5,5が形成されており、その対面する互いの先端面5s,5s間の間隔dは、1.5mmである。 The pneumatic tire of the first embodiment has a tire size of 315 / 70R22.5, and as described above, the tread has a ribbed land portion adjacent to each other with a circumferential groove 3 having a groove width W of 10 mm. An annular ridges 5 and 5 projecting from 4 and 4 in the direction of each other are formed, and the distance d between the tip surfaces 5s and 5s facing each other is 1.5 mm.

そして、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成され、連通凹部9,9の傾きθ(ラジアル方向に対する角度)は0°で、連通凹部9,9の円孔の孔径Rは5mmであり、トレッド周方向に50mmの間隔Dで複数形成されている。
本実施例1では、5本の周方向溝3の各突条部5に形成される連通凹部9は、トレッド幅方向に一列に並んでいる。
Then, the communication recesses 9 and 9 are formed so as to face each other on the opposite tip surfaces 5s and 5s of the facing ridges 5 and 5, and the inclination θ (angle with respect to the radial direction) of the communication recesses 9 and 9 is set. At 0 °, the hole diameter R of the circular holes 9 and 9 of the communication recesses 9 and 9 is 5 mm, and a plurality of holes D are formed at intervals D of 50 mm in the circumferential direction of the tread.
In the first embodiment, the communication recesses 9 formed in the ridges 5 of the five circumferential grooves 3 are arranged in a row in the tread width direction.

なお、[表1]には、実施例2も同時に掲載する。
実施例1は互いに対向する連通凹部9,9の形状が孔径5mmの円孔であるのに対して、実施例2は連通凹部9,9の形状が縦横5×5mmの方形の孔である点が異なり、その他は実施例1と同じトレッド構造である。
In addition, Example 2 is also shown in [Table 1] at the same time.
In the first embodiment, the shapes of the communicating recesses 9 and 9 facing each other are circular holes having a hole diameter of 5 mm, whereas in the second embodiment, the shapes of the communicating recesses 9 and 9 are square holes having a length and width of 5 × 5 mm. However, the other parts have the same tread structure as in Example 1.

一方、従来例は、実施例1と同じタイヤサイズで、同じ周方向溝が形成された同じリブパターンのトレッドを有した空気入りタイヤであるが、周方向溝に突条部等の突出部を有していない例である。
比較例は、上記従来例の空気入りタイヤで、周方向溝に環状の突条部を有する例であり、連通凹部は形成されていない。
On the other hand, the conventional example is a pneumatic tire having the same tire size as that of the first embodiment and having the same rib pattern tread in which the same circumferential groove is formed, but a protruding portion such as a ridge portion is provided in the circumferential groove. This is an example of not having it.
A comparative example is an example in which the pneumatic tire of the above-mentioned conventional example has an annular ridge portion in a circumferential groove, and a communication recess is not formed.

以上の実施例1および従来例と比較例の空気入りタイヤについて、転がり抵抗性能とウエットグリップ性能の性能試験を行った評価結果が、[表1]に示されている。
転がり抵抗試験は、国際標準規格ISO28580に準拠したフォース法により転がり抵抗を測定している。
[表1]に示す転がり抵抗係数RRCの評価結果は、測定された転がり抵抗の測定値を荷重で除した転がり抵抗係数RRCについて、その逆数を用いて、従来例を100とする指数で示している。
この指数値が大きい程、転がり抵抗が小さいことを意味する。
[Table 1] shows the evaluation results of the performance tests of the rolling resistance performance and the wet grip performance of the pneumatic tires of the above Example 1 and the conventional example and the comparative example.
In the rolling resistance test, the rolling resistance is measured by the force method conforming to the international standard ISO28580.
The evaluation results of the rolling resistance coefficient RRC shown in [Table 1] are shown by using the reciprocal of the measured rolling resistance coefficient RRC, which is obtained by dividing the measured value of the measured rolling resistance by the load, as an index of 100 in the conventional example. There is.
The larger the index value, the smaller the rolling resistance.

ウエットグリップ試験は、国際標準規格ISO15222に準拠した実車法によりウエットグリップを測定している。
[表1]に示すウエットグリップ指数の評価結果は、測定されたウエットグリップの測定値について、従来例を100とする指数で示している。
この指数値が大きい程、ウエットグリップ性能が優れていることを意味する。
In the wet grip test, the wet grip is measured by the actual vehicle method conforming to the international standard ISO15222.
The evaluation result of the wet grip index shown in [Table 1] is shown by an index with the measured value of the measured wet grip as 100 in the conventional example.
The larger this index value is, the better the wet grip performance is.

[表1]に示されるように、周方向溝に突条部のない従来例に比べて、突条部を有するが連通凹部のない比較例は、転がり抵抗係数RRCが108と転がり抵抗性能が優れているが、ウエットグリップ指数が93とウエットグリップ性能が相当低下している。
これは、比較例が連通凹部のない突条部を周方向溝に有するので、相対する突条部が互いに接して確固として支え合ってリブ状陸部の剛性を高めるため、転がり抵抗を低減することができるが、連通凹部がないため、接地により外周の開口が塞がれた外側溝空間内の水を内側溝空間に逃がして外部に排水することができず排水性が劣り、ウエットグリップ性能を低下させているからである。
As shown in [Table 1], the rolling resistance coefficient RRC is 108 and the rolling resistance performance is higher in the comparative example having the ridge portion but not the communication recess as compared with the conventional example in which the circumferential groove has no ridge portion. Although it is excellent, the wet grip index is 93, and the wet grip performance is considerably reduced.
This is because the comparative example has a ridge portion having no communication recess in the circumferential groove, so that the opposing ridge portions are in contact with each other and firmly support each other to increase the rigidity of the rib-shaped land portion, thereby reducing rolling resistance. However, since there is no communication recess, the water in the outer groove space whose outer peripheral opening is blocked by grounding cannot escape to the inner groove space and drain to the outside, resulting in poor drainage and wet grip performance. This is because it reduces.

これに対して、実施例1は、突条部5に連通凹部9を有し、連通孔(連通凹部9,9)の形状が円孔であり、連通凹部9,9の孔径Rが約5mmであり、連通孔の傾きθ(ラジアル方向に対する角度)は0°である。
そして、実施例1のトレッド周方向に配設される連通孔の間隔Dは、50mmである。
On the other hand, in the first embodiment, the ridge portion 5 has a communication recess 9, the shape of the communication hole (communication recess 9, 9) is a circular hole, and the hole diameter R of the communication recess 9, 9 is about 5 mm. The inclination θ (angle with respect to the radial direction) of the communication hole is 0 °.
The distance D between the communication holes arranged in the tread circumferential direction of Example 1 is 50 mm.

かかる実施例1の従来例を基準として比較例と対比した評価結果は、転がり抵抗係数RRCが106であり、比較例の108には及ばないまでも高い転がり抵抗性能が確保されている。
実施例1のウエットグリップ指数は97であり、比較例のウエットグリップ指数93に比べ相当程度高い指数値を示しており、この指数値は十分なウエットグリップ性能が保たれていることを意味する。
これは、実施例1が突条部5に連通凹部9を有することで、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に逃がして外部に排水することができ、周方向溝3の排水性を良好としているからである。
As a result of comparison with the comparative example based on the conventional example of the first embodiment, the rolling resistance coefficient RRC is 106, and high rolling resistance performance is ensured even if it does not reach 108 of the comparative example.
The wet grip index of Example 1 is 97, which is considerably higher than the wet grip index 93 of the comparative example, and this index value means that sufficient wet grip performance is maintained.
This is because the first embodiment has the communication recess 9 in the ridge portion 5, so that the water in the outer groove space 7 whose outer peripheral opening is closed by grounding is passed through the communication holes (communication recesses 9 and 9). This is because the drainage can be released to the inner groove space 6 and drained to the outside, and the drainage property of the circumferential groove 3 is improved.

連通孔の形状を方形孔とした実施例2は、転がり抵抗係数RRCが106であり、ウエットグリップ指数が97であって、転がり抵抗係数RRCとウエットグリップ指数がともに実施例1と同じ指数値を示している。
すなわち、通路面積が略同じ連通孔は、形状が異なっても転がり抵抗性能とウエットグリップ性能に影響しないことが分かる。
In Example 2 in which the shape of the communication hole is a square hole, the rolling resistance coefficient RRC is 106, the wet grip index is 97, and both the rolling resistance coefficient RRC and the wet grip index have the same index values as in Example 1. Shown.
That is, it can be seen that the communication holes having substantially the same passage area do not affect the rolling resistance performance and the wet grip performance even if the shapes are different.

次に、別の実施例3,4,5,6に係る空気入りタイヤ1について、転がり抵抗性能とウエットグリップ性能の試験結果を、[表2]に示す。
実施例3,4,5,6の連通孔の形状は、全て円孔である。
Next, the test results of rolling resistance performance and wet grip performance of the pneumatic tire 1 according to another Example 3, 4, 5, 6 are shown in [Table 2].
The shapes of the communication holes of Examples 3, 4, 5, and 6 are all circular holes.

Figure 0006796178

Figure 0006796178

実施例3の空気入りタイヤ1は、突条部に形成される連通孔(連通凹部)が孔径10mmという大きな円孔であり、その他は実施例1と同じである。
実施例3は、連通孔の孔径が大きい分、実施例1に比べ相対する突条部の互いの支え合いが若干弱くなり、リブ状陸部の剛性も若干低下するので、転がり抵抗係数RRCは、105となるが、実施例1より僅かに小さい程度で十分な転がり抵抗性能を示している。
The pneumatic tire 1 of the third embodiment has a large circular hole having a communication hole (communication recess) formed in the ridge portion having a hole diameter of 10 mm, and is the same as that of the first embodiment.
In Example 3, since the hole diameter of the communication hole is large, the mutual support of the ridges facing each other is slightly weaker than in Example 1, and the rigidity of the ribbed land portion is also slightly reduced. Therefore, the rolling resistance coefficient RRC is , 105, but a little smaller than that of Example 1 shows sufficient rolling resistance performance.

また、実施例3は、連通孔の孔径が大きい分、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に容易に逃がして外部に排水することができ、周方向溝3の排水性が極めて良好であり、ウエットグリップ指数が100という突条部を有しない従来例と同じ指数値を示しており、従来例と同じ最良のウエットグリップ性能が維持されている。 Further, in the third embodiment, since the hole diameter of the communication hole is large, water in the outer groove space 7 whose outer peripheral opening is closed by grounding is passed through the communication holes (communication recesses 9 and 9) into the inner groove space 6. It can be easily released and drained to the outside, the drainage property of the circumferential groove 3 is extremely good, and the wet grip index is 100, which is the same index value as the conventional example having no ridge portion. The same best wet grip performance as is maintained.

実施例4の空気入りタイヤ1は、突条部に形成される連通孔(連通凹部)が孔径2mmという小さい円孔であり、その他は実施例1と同じである。
実施例4は、連通孔の孔径が小さい分、実施例1に比べ相対する突条部の互いの支え合いが強固であり、リブ状陸部の剛性も高く、転がり抵抗係数RRCは、108となり、突条部に連通孔のない比較例と同じ指数値であり、最良の転がり抵抗性能を示している。
The pneumatic tire 1 of the fourth embodiment is the same as the first embodiment except that the communication hole (communication recess) formed in the ridge portion is a small circular hole having a hole diameter of 2 mm.
In Example 4, since the hole diameter of the communication hole is small, the mutual support of the ridges facing each other is stronger than in Example 1, the rigidity of the ribbed land portion is also high, and the rolling resistance coefficient RRC is 108. , It has the same index value as the comparative example without a communication hole in the ridge, and shows the best rolling resistance performance.

しかし、実施例4は、連通孔の孔径が小さい分、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に逃がすことが容易でなく、排水性が劣り、よって、ウエットグリップ指数は95と小さく、実施例1に比べてウエットグリップ性能は良くない。 However, in the fourth embodiment, since the hole diameter of the communication hole is small, water in the outer groove space 7 whose outer peripheral opening is closed by grounding is passed through the communication holes (communication recesses 9 and 9) into the inner groove space 6. It is not easy to escape and the drainage property is inferior. Therefore, the wet grip index is as small as 95, and the wet grip performance is not good as compared with Example 1.

実施例5の空気入りタイヤ1は、孔径5mmの円孔である連通凹部9,9がトレッド周方向に10mmの間隔Dで配設され、その他は実施例1と同じである。
実施例5は、連通凹部9,9のトレッド周方向に配設される間隔Dが10mmと小さいので、その分周方向溝3に形成される連通凹部9,9の数が多い。
よって、実施例1に比べ相対する突条部の互いの支え合いが若干弱くなり、リブ状陸部の剛性も若干低下し、転がり抵抗係数RRCは、105となり、実施例1より僅かに小さい程度で十分な転がり抵抗性能を示している。
In the pneumatic tire 1 of the fifth embodiment, communication recesses 9 and 9, which are circular holes having a hole diameter of 5 mm, are arranged at intervals D of 10 mm in the tread circumferential direction, and the other parts are the same as those of the first embodiment.
In the fifth embodiment, since the interval D arranged in the tread circumferential direction of the communication recesses 9 and 9 is as small as 10 mm, the number of the communication recesses 9 and 9 formed in the circumferential groove 3 is large.
Therefore, the mutual support of the opposing ridges is slightly weaker than that of the first embodiment, the rigidity of the ribbed land portion is also slightly reduced, and the rolling resistance coefficient RRC is 105, which is slightly smaller than that of the first embodiment. Shows sufficient rolling resistance performance.

しかし、実施例5は、周方向溝3に形成される連通凹部9,9の数が多いことから、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に容易に逃がして外部に排水することができ、周方向溝3の排水性が極めて良好であり、ウエットグリップ指数が100という突条部を有しない従来例と同じ指数値を示しており、従来例と同じ最良のウエットグリップ性能が維持されている。
なお、実施例5は、転がり抵抗係数RRCとウエットグリップ指数が連通孔(連通凹部9,9)の孔径を大きくした前記実施例3と同じ指数値を示している。
However, in the fifth embodiment, since the number of the communication recesses 9 and 9 formed in the circumferential groove 3 is large, the water in the outer groove space 7 whose outer peripheral opening is closed by the grounding is a communication hole (communication recess). Conventionally, the groove can be easily released to the inner groove space 6 via 9 and 9) and drained to the outside, the drainage property of the circumferential groove 3 is extremely good, and the wet grip index does not have a ridge portion of 100. It shows the same index value as the example, and the same best wet grip performance as the conventional example is maintained.
In Example 5, the rolling resistance coefficient RRC and the wet grip index show the same index values as in Example 3 in which the hole diameters of the communication holes (communication recesses 9 and 9) are increased.

次に、別の実施例6について、図9ないし図11に基づいて説明する。
実施例6は、前記実施例1と同じタイヤサイズの空気入りタイヤ1でトレッド構造がほぼ同じ構造しており、よって実施例1と同じ符号を用いることとする。
Next, another Example 6 will be described with reference to FIGS. 9 to 11.
In the sixth embodiment, the pneumatic tire 1 having the same tire size as the first embodiment has substantially the same tread structure, and thus the same reference numerals as those in the first embodiment are used.

すなわち、実施例6のトレッドには、溝幅Wが10mmの周方向溝3を挟んで隣合うリブ状陸部4,4から互いの方向に向けて突出した環状の突条部5,5が形成されており、その対面する先端面5s,5s間の間隔dは、1.5mmである。 That is, in the tread of the sixth embodiment, the annular ridges 5 and 5 protruding from the rib-shaped land portions 4 and 4 adjacent to each other with the circumferential groove 3 having a groove width W of 10 mm in the direction of each other. The distance d between the tip surfaces 5s and 5s facing each other is 1.5 mm.

そして、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成され、連通凹部9,9の円孔の孔径Rは5mmであり、トレッド周方向に50mmの間隔Dで複数形成されている。
しかし、実施例6は、実施例1と違って、連通凹部9,9の傾きθ(ラジアル方向に対する角度)が、+5°である。
The communication recesses 9 and 9 are formed so as to face each other on the opposite tip surfaces 5s and 5s of the facing ridges 5 and 5, and the hole diameter R of the circular holes of the communication recesses 9 and 9 is 5 mm. , A plurality of treads are formed at intervals D of 50 mm in the circumferential direction.
However, in the sixth embodiment, unlike the first embodiment, the inclination θ (angle with respect to the radial direction) of the communication recesses 9 and 9 is + 5 °.

図11を参照して、連通凹部9,9は、内側溝空間6に臨む内側開口9iと同内側開口9iより車両前進時のタイヤ回転方向(図11において矢印で示す方向)に移動した位置にある外側溝空間7に臨む外側開口9oとを連通して、ラジアル方向に対して傾きθが+5°傾いた方向に指向して直線的に形成されている。 With reference to FIG. 11, the communication recesses 9 and 9 are located at positions moved from the inner opening 9i facing the inner groove space 6 and the inner opening 9i in the tire rotation direction (direction indicated by an arrow in FIG. 11) when the vehicle is moving forward. It communicates with the outer opening 9o facing a certain outer groove space 7, and is formed linearly in a direction in which the inclination θ is inclined by + 5 ° with respect to the radial direction.

このように、連通凹部9,9がラジアル方向に対して傾きθが+5°傾いていることで、前進走行で濡れた路面に踏み込んだ空気入りタイヤ1は、接地したリブ状陸部4,4の圧縮変形で相対する突条部が互いに接し、外側溝空間7と内側溝空間6とを連通する連通孔(連通凹部9,9)が確保された状態にあって、同連通孔(連通凹部9,9)はラジアル方向に対して傾きθが+5°傾いている。 In this way, the communication recesses 9 and 9 are tilted by + 5 ° with respect to the radial direction, so that the pneumatic tire 1 that has stepped on the wet road surface during forward traveling has the ribbed land portions 4 and 4 that are in contact with the ground. In a state where the ridges facing each other are in contact with each other due to the compression deformation of the above, and the communication holes (communication recesses 9 and 9) for communicating the outer groove space 7 and the inner groove space 6 are secured, the communication holes (communication recesses) are secured. In 9 and 9), the inclination θ is inclined by + 5 ° with respect to the radial direction.

そのため、特に車両前進時に、接地により外周の開口が塞がれた外側溝空間7内の水を、連通孔(連通凹部9,9)の外側開口9o,9oが汲み取るようにして連通孔(連通凹部9,9)に導入して内側開口9i,9iから内側溝空間6に逃がす(図11の破線矢印参照)ことを促すことができ、車両後退時よりもタイヤが高速で回転することがある車両前進時のときの排水性をより良好としてウエットグリップ性能を効果的に発揮することができる。 Therefore, especially when the vehicle is moving forward, the outer openings 9o and 9o of the communication holes (communication recesses 9 and 9) take in the water in the outer groove space 7 whose outer peripheral opening is blocked by the ground contact. It can be introduced into the recesses 9 and 9) to encourage the tires to escape from the inner openings 9i and 9i to the inner groove space 6 (see the broken line arrow in FIG. 11), and the tire may rotate at a higher speed than when the vehicle is retracting. Wet grip performance can be effectively exhibited by improving drainage when the vehicle is moving forward.

実施例6の評価結果は、転がり抵抗係数RRCが105であり、実施例1より僅かに低い指数値で転がり抵抗性能は殆ど変りないが、ウエットグリップ指数は99と極めて高い指数値を示して、ウエットグリップ性能は格段に向上している。 The evaluation result of Example 6 shows that the rolling resistance coefficient RRC is 105, and the rolling resistance performance is almost unchanged at an index value slightly lower than that of Example 1, but the wet grip index shows an extremely high index value of 99. Wet grip performance has been significantly improved.

次に、別の実施例7について図12に基づき説明する。
実施例7においては、トレッドの断面を示す図12において実施例1と同じ符号を用いる。
実施例7は、図12に示されるように、実施例1(図2参照)の空気入りタイヤ1のトレッドに形成された複数の周方向溝3のうち最外側の周方向溝3cの相対する突条部5,5の円錐面5cc,5ccの傾斜を小さくしたものである。
Next, another Example 7 will be described with reference to FIG.
In Example 7, the same reference numerals as those in Example 1 are used in FIG. 12 showing a cross section of the tread.
In the seventh embodiment, as shown in FIG. 12, the outermost circumferential groove 3c of the plurality of circumferential grooves 3 formed in the tread of the pneumatic tire 1 of the first embodiment (see FIG. 2) faces each other. The inclination of the conical surfaces 5cc and 5cc of the ridges 5 and 5 is reduced.

リブ状陸部4の倒れ込みが小さいトレッド幅方向で中央側の周方向溝3a,3bにおける突条部5よりもトレッド幅方向で最外側の周方向溝3cにおける突条部5の円錐面5ccの傾斜が小さいので、トレッド幅方向で最外側のリブ状陸部4の接地時の圧縮応力に対する剛性をより高くして、車両旋回時の最外側のリブ状陸部4の倒れ込みを極力抑制して、コーナリングパワーを向上させることができるとともに、突条部5の円錐面5ccの傾斜が小さく接地により外側溝空間が塞がれ難い構造であるため、排水が極めて容易になされてウエットグリップ性能を良好とすることができる。 The conical surface 5cc of the ridge portion 5 in the outermost circumferential groove 3c in the tread width direction is larger than the ridge portion 5 in the circumferential grooves 3a and 3b on the central side in the tread width direction in which the rib-shaped land portion 4 is less tilted. Since the inclination is small, the rigidity of the outermost rib-shaped land portion 4 in the tread width direction against compressive stress at the time of contact is made higher, and the collapse of the outermost rib-shaped land portion 4 during vehicle turning is suppressed as much as possible. In addition to being able to improve cornering power, the structure is such that the conical surface 5cc of the ridge 5 has a small inclination and the outer groove space is not easily blocked by ground contact, so drainage is extremely easy and wet grip performance is good. Can be.

次に、周方向溝3に設けられた突条部5の先端面5sに形成される連通凹部9のトレッド周方向に配設される数を、トレッド幅方向に配列される周方向溝3の位置によって変えた例を、実施例8として図13に示し説明する。
実施例8においては、トレッドの部分平面図を示す図13において実施例1と同じ符号を用いる。
Next, the number of communication recesses 9 formed in the tip surface 5s of the ridge portion 5 provided in the circumferential groove 3 is arranged in the tread circumferential direction of the circumferential groove 3 arranged in the tread width direction. An example changed depending on the position will be shown and described as Example 8 in FIG.
In the eighth embodiment, the same reference numerals as those in the first embodiment are used in FIG. 13 which shows a partial plan view of the tread.

図13に示されるように、周方向溝3に設けられた突条部5の先端面5sにトレッド周方向に等間隔に形成される連通凹部9の互いに隣合う連通凹部9,9間の間隔は、トレッド幅方向の中央の周方向溝3aにおける連通凹部9,9間の間隔が最も小さく、次いで周方向溝3aの両側に設けられる周方向溝3b,3bにおける連通凹部9,9間の間隔がより大きく、周方向溝3b,3bのさらに両外側に設けられる周方向溝3c,3cにおける連通凹部9,9間の間隔が最も大きい。 As shown in FIG. 13, the intervals between the communication recesses 9 and 9 adjacent to each other of the communication recesses 9 formed at equal intervals in the tread circumferential direction on the tip surface 5s of the ridge portion 5 provided in the circumferential groove 3. Is the smallest interval between the communication recesses 9 and 9 in the central circumferential groove 3a in the tread width direction, and then the interval between the communication recesses 9 and 9 in the circumferential grooves 3b and 3b provided on both sides of the circumferential groove 3a. Is larger, and the distance between the communication recesses 9 and 9 in the circumferential grooves 3c and 3c provided on both outer sides of the circumferential grooves 3b and 3b is the largest.

したがって、周方向溝3に設けられた突条部5の先端面5sに形成される連通凹部9のトレッド周方向に配設される数は、トレッド幅方向の外側より中央の周方向溝3aの方が多く、互いに隣合う連通凹部9,9間の間隔は小さいので、タイヤ接地時にリブ状陸部4のより大きい圧縮変形により特に円滑な排水が要求される中央側の周方向溝の排水を、間隔が小さく数の多い連通凹部9により効率良く行うことができ、良好なウエットグリップ性能を確保することができる。 Therefore, the number of the communication recesses 9 formed in the tip surface 5s of the ridge portion 5 provided in the circumferential groove 3 in the tread circumferential direction is the number of the circumferential groove 3a in the center from the outside in the tread width direction. Since the distance between the communicating recesses 9 and 9 adjacent to each other is small, the drainage of the circumferential groove on the central side, which requires particularly smooth drainage due to the larger compression deformation of the rib-shaped land portion 4 when the tire touches the ground, is removed. , It can be efficiently performed by the communication recesses 9 having a small interval and a large number, and good wet grip performance can be ensured.

以上、本発明に係る実施形態の空気入りタイヤのトレッド構造につき説明したが、本発明の態様は、上記実施形態に限定されず、本発明の要旨の範囲で、多様な態様で実施されるものを含むものである。 Although the tread structure of the pneumatic tire according to the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above embodiment, and is carried out in various embodiments within the scope of the gist of the present invention. Is included.

なお、本発明に係る空気入りタイヤは、周方向溝によりリブ状陸部が形成されたリブパターンをトレッドに有するものであり、そのリブ状陸部にウエットグリップ性能や氷上制動等のためサイプ等の細溝が形成されていてもよい。 The pneumatic tire according to the present invention has a rib pattern on the tread in which a rib-shaped land portion is formed by a circumferential groove, and the rib-shaped land portion has a sipe or the like for wet grip performance, braking on ice, or the like. The tread may be formed.

1…空気入りタイヤ、2…トレッド、3,3a,3b,3c…周方向溝、4…リブ状陸部、5…突条部、5c…円錐面、5s…先端面、6…内側溝空間、7…外側溝空間、8…隙間、9…連通凹部。 1 ... Pneumatic tire, 2 ... Tread, 3,3a, 3b, 3c ... Circumferential groove, 4 ... Ribbed land part, 5 ... Protruding part, 5c ... Conical surface, 5s ... Tip surface, 6 ... Inner groove space , 7 ... outer groove space, 8 ... gap, 9 ... communication recess.

Claims (4)

トレッド周方向に延設される周方向溝により複数本のリブ状陸部が形成された空気入りタイヤにおいて、
前記周方向溝を挟んで隣合う前記リブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、
相対する前記突条部は、前記突条部の互いに対面する先端面がタイヤ接地時に接地したリブ状陸部の弾性変形により互いに接する間隔を有して配設され、
相対する前記突条部により前記周方向溝には、相対する前記突条部の内周側の内側溝空間と相対する前記突条部の外周側の外側溝空間が形成され、
前記突条部の先端面には、前記外側溝空間と前記内側溝空間を連通する連通凹部が、トレッド周方向に複数形成され
トレッド幅方向で側方より中央側に設けられる前記周方向溝の方が、前記突条部に形成される前記連通凹部の数が多いことを特徴とする空気入りタイヤ。
In a pneumatic tire in which a plurality of rib-shaped land portions are formed by a circumferential groove extending in the circumferential direction of the tread.
The ridges protruding from the rib-shaped land portions adjacent to each other across the circumferential groove in the direction of each other extend in the circumferential direction of the tread and are formed in an annular shape.
The ridges facing each other are arranged so that the tip surfaces of the ridges facing each other come into contact with each other due to elastic deformation of the ribbed land portion that touches the ground when the tire touches the ground.
The ridges facing each other form an outer groove space on the outer peripheral side of the ridges facing the inner groove space on the inner peripheral side of the ridges facing each other in the circumferential groove.
On the tip surface of the ridge portion, a plurality of communication recesses communicating the outer groove space and the inner groove space are formed in the tread circumferential direction .
A pneumatic tire characterized in that the circumferential groove provided on the central side of the tread width direction has a larger number of communication recesses formed in the ridge portion .
相対する前記突条部の対面する双方の先端面に、前記連通凹部が互いに対向して形成されることを特徴とする請求項1記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the communicating recesses are formed so as to face each other on both front end surfaces of the ridge portions facing each other. 前記リブ状陸部から突出する前記突条部は、前記リブ状陸部の踏面から先細の円錐面を形成して先端面まで突出して形成されることを特徴とする請求項1または請求項2記載の空気入りタイヤ。 Claim 1 or claim 2 is characterized in that the ridge portion protruding from the rib-shaped land portion is formed by forming a tapered conical surface from the tread surface of the rib-shaped land portion and projecting to the tip surface. Pneumatic tires listed. 前記連通凹部は、ラジアル方向に指向して直線的に形成されることを特徴とする請求項1ないし請求項3のいずれか1項記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the communication recess is formed linearly in the radial direction.
JP2019208958A 2019-11-19 2019-11-19 Pneumatic tires Active JP6796178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208958A JP6796178B2 (en) 2019-11-19 2019-11-19 Pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208958A JP6796178B2 (en) 2019-11-19 2019-11-19 Pneumatic tires

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015228382A Division JP6621312B2 (en) 2015-11-24 2015-11-24 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2020023323A JP2020023323A (en) 2020-02-13
JP6796178B2 true JP6796178B2 (en) 2020-12-02

Family

ID=69619296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208958A Active JP6796178B2 (en) 2019-11-19 2019-11-19 Pneumatic tires

Country Status (1)

Country Link
JP (1) JP6796178B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927362B1 (en) * 2020-04-28 2021-08-25 住友ゴム工業株式会社 tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225238A (en) * 1967-04-21 1971-03-17
JP2000016026A (en) * 1998-06-26 2000-01-18 Sumitomo Rubber Ind Ltd Pneumatic tire
JP3949938B2 (en) * 2001-11-13 2007-07-25 住友ゴム工業株式会社 Pneumatic tire
JP2004330812A (en) * 2003-04-30 2004-11-25 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
FR2959448B1 (en) * 2010-04-30 2012-10-26 Michelin Soc Tech TIRE TREAD TIRE FOR VEHICLE HEAVY TYPE TRAILER TYPE
FR2967940B1 (en) * 2010-11-25 2012-12-07 Michelin Soc Tech HEAVY WEIGHT TIRE FOR TRAILER VEHICLE
JP6175861B2 (en) * 2013-03-29 2017-08-09 横浜ゴム株式会社 Pneumatic tire
JP2015134581A (en) * 2014-01-17 2015-07-27 横浜ゴム株式会社 pneumatic tire

Also Published As

Publication number Publication date
JP2020023323A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6621312B2 (en) Pneumatic tire
JP3542687B2 (en) Pneumatic tire
US8820373B2 (en) Tire having ribs, circumferential grooves and sipe pairs
US7597127B2 (en) Tire with tread including circumferential grooves having generally sinusoidal contour
US10464377B2 (en) Winter tire
WO2016047706A1 (en) Pneumatic tire
JP5140558B2 (en) Pneumatic tire
EP3318421B1 (en) Tire
JPH05330313A (en) Pneumatic tire
JP6312646B2 (en) Pneumatic tire
JP6358970B2 (en) Pneumatic tire
CA2219394C (en) Pneumatic tire for heavy duty
JP4262817B2 (en) Pneumatic tire
RU2750764C2 (en) Tire for vehicle wheels
JP6980446B2 (en) Pneumatic tires
JP6796178B2 (en) Pneumatic tires
JP6790098B2 (en) Heavy Truck Tire Tread and Heavy Truck Tire
JP2023064576A (en) tire
JP6888366B2 (en) tire
JP2018138461A (en) Pneumatic tire
JP4020685B2 (en) Pneumatic tire
JP6367139B2 (en) Pneumatic tire
US20070137749A1 (en) Tire with tread pattern
JP5762216B2 (en) Pneumatic tire
JP3912547B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250