JP6795035B2 - Resin molded body and resin gear - Google Patents

Resin molded body and resin gear Download PDF

Info

Publication number
JP6795035B2
JP6795035B2 JP2018530241A JP2018530241A JP6795035B2 JP 6795035 B2 JP6795035 B2 JP 6795035B2 JP 2018530241 A JP2018530241 A JP 2018530241A JP 2018530241 A JP2018530241 A JP 2018530241A JP 6795035 B2 JP6795035 B2 JP 6795035B2
Authority
JP
Japan
Prior art keywords
resin molded
volume
aramid fiber
molded product
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018530241A
Other languages
Japanese (ja)
Other versions
JPWO2018020585A1 (en
Inventor
伊藤 玄
玄 伊藤
宜伸 鍛治谷
宜伸 鍛治谷
徳世 藤崎
徳世 藤崎
拓也 竹田
拓也 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2018020585A1 publication Critical patent/JPWO2018020585A1/en
Application granted granted Critical
Publication of JP6795035B2 publication Critical patent/JP6795035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂成形体及び樹脂ギヤに関する。 The present invention relates to a resin molded body and a resin gear.

アラミド繊維は極めて高強度である。そのため、マトリックス樹脂中にアラミド繊維を充填した樹脂成形体及びアラミド繊維を主成分として含むアラミド繊維基材にマトリックス樹脂を保持した樹脂成形体が、様々な分野にて注目されている。 Aramid fibers are extremely strong. Therefore, a resin molded body in which aramid fibers are filled in a matrix resin and a resin molded body in which a matrix resin is held in an aramid fiber base material containing aramid fibers as a main component are attracting attention in various fields.

ところで、アラミド繊維は、高強度であるものの吸湿しやすく、具体的にはその飽和吸湿率が、1質量%を越えることがある。
従って、アラミド繊維を含む繊維基材に熱硬化性樹脂が含浸され、硬化した樹脂成形体は、吸湿しやすくなっている。
そして、樹脂成形体は、吸湿による膨潤で寸法変化を起こすことがある。また、樹脂成形体を吸湿した状態で高温に曝すと、アラミド繊維の吸湿に起因して発生する水蒸気圧によって、膨れ、剥離等の現象を起こすことがある。
また、樹脂成形体を樹脂ギヤとして用いる場合、現状では自動車のエンジンルーム内でも比較的負荷の低いところに使用されている。樹脂成形体の耐久強度に関し、より負荷の高いところで樹脂成形体を使用するためには、樹脂成形体の強度が足りないという課題があった。
By the way, although the aramid fiber has high strength, it easily absorbs moisture, and specifically, its saturated moisture absorption rate may exceed 1% by mass.
Therefore, the fiber base material containing the aramid fiber is impregnated with the thermosetting resin, and the cured resin molded product easily absorbs moisture.
Then, the resin molded product may change in size due to swelling due to moisture absorption. Further, when the resin molded product is exposed to a high temperature in a state of absorbing moisture, phenomena such as swelling and peeling may occur due to the vapor pressure generated due to the absorption of moisture of the aramid fiber.
Further, when the resin molded body is used as the resin gear, it is currently used in a place where the load is relatively low even in the engine room of an automobile. Regarding the durability strength of the resin molded body, there is a problem that the strength of the resin molded body is insufficient in order to use the resin molded body in a place where the load is higher.

耐久強度の問題については、無機摺動材を含む抄造シートを成形して得られた樹脂ギヤは機械強度及び耐摩耗性に優れると記載された文献として特開平11−227061号公報があるものの、具体的に強度が向上した結果を示す記載がなく、その詳細は不明であった。 Regarding the problem of durability strength, Japanese Patent Application Laid-Open No. 11-227061 describes that the resin gear obtained by molding a papermaking sheet containing an inorganic sliding material has excellent mechanical strength and abrasion resistance. There was no specific description showing the result of the improvement in strength, and the details were unknown.

また、吸湿の問題については、アラミド繊維とマトリックス樹脂との接着性を向上させることによって解決できると考えられ、接着性を向上させる手段として、特開平09−124801号公報に記載されるような技術が提案されている。
特開平09−124801号公報に記載される技術は、アラミド繊維表面をフェノール性水酸基含有ポリアミドで被覆し、アラミド繊維表面にポリアミド層を形成するものである。この技術によれば、アラミド繊維表面にフェノール性水酸基含有ポリアミド層が連続層として形成されるか、当該ポリアミド層がアラミド繊維表面に断片的に付着した状態となるか、又はアラミド繊維内部に当該ポリアミドが浸透して含浸された状態となる。ポリアミドに含まれるフェノール性水酸基は高い反応性を有するので、フェノール性水酸基含有ポリアミドはアラミド繊維表面に対して優れた接着性を有することになる。また、アラミド繊維表面に形成されるポリアミド層の化学的、熱的及び力学的特性は、アラミド繊維についてのそれら特性に類似しているので、アラミド繊維の特性を低下させにくい。
このようなアラミド繊維を補強材として用い、樹脂(例えば、エポキシ樹脂)成形体を構成すると、アラミド繊維表面は当該樹脂(マトリックス樹脂)と優れた接着性を有することとなり、高接着性を実現できるとされている。
Further, it is considered that the problem of moisture absorption can be solved by improving the adhesiveness between the aramid fiber and the matrix resin, and as a means for improving the adhesiveness, a technique as described in JP-A-09-124801. Has been proposed.
The technique described in JP-A-09-124801 is to coat the surface of an aramid fiber with a phenolic hydroxyl group-containing polyamide to form a polyamide layer on the surface of the aramid fiber. According to this technique, a phenolic hydroxyl group-containing polyamide layer is formed as a continuous layer on the surface of the aramid fiber, the polyamide layer is fragmented on the surface of the aramid fiber, or the polyamide is inside the aramid fiber. Is infiltrated and impregnated. Since the phenolic hydroxyl group contained in the polyamide has high reactivity, the phenolic hydroxyl group-containing polyamide has excellent adhesiveness to the surface of the aramid fiber. Moreover, since the chemical, thermal and mechanical properties of the polyamide layer formed on the surface of the aramid fiber are similar to those of the aramid fiber, it is difficult to deteriorate the property of the aramid fiber.
When such an aramid fiber is used as a reinforcing material to form a resin (for example, epoxy resin) molded body, the surface of the aramid fiber has excellent adhesiveness to the resin (matrix resin), and high adhesiveness can be realized. It is said that.

しかしながら、特開平09−124801号公報に記載の技術を以ってしても、樹脂成形体の吸湿性を小さくすることは不十分であった。
本発明は、上記従来の問題点に鑑みてなされたものであり、耐久性及び吸湿性に優れる樹脂成形体及びこれを用いた樹脂ギヤを提供することを目的とする。
However, even with the technique described in JP-A-09-124801, it was insufficient to reduce the hygroscopicity of the resin molded product.
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a resin molded body having excellent durability and hygroscopicity, and a resin gear using the same.

本発明は、以下のものに関する。
<1> 繊維基材と、前記繊維基材に含浸した熱硬化性樹脂組成物の硬化物と、を有し、
前記繊維基材が、アラミド繊維と無機摺動材とを含み、
前記無機摺動材が、カーボン、モリブデン、二硫化モリブデン、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム及びマイカからなる群より選択される少なくとも1種を含み、
前記熱硬化性樹脂組成物が、ビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとを含む樹脂成形体。
<2> 前記繊維基材に占める前記無機摺動材の合計の割合が5質量%〜50質量%である<1>に記載の樹脂成形体。
<3> 前記無機摺動材の形状が、平板状である<1>又は<2>に記載の樹脂成形体。
<4> 前記熱硬化性樹脂組成物が、更にマレイミド化合物を含む<1>〜<3>のいずれか1項に記載の樹脂成形体。
<5> 前記マレイミド化合物の含有量が、前記ビス(2−オキサゾリン)化合物の1モルに対して、0.10モル〜0.40モルである<4>に記載の樹脂成形体。
<6> 前記疎水性の芳香族ジアミンが、分子中にハロゲン原子を含む芳香族ジアミンを含む<1>〜<5>のいずれか1項に記載の樹脂成形体。
<7> 前記疎水性の芳香族ジアミンの分子量が、260以上である<1>〜<6>のいずれか1項に記載の樹脂成形体。
<8> 前記繊維基材の占める割合が、35体積%〜55体積%である<1>〜<7>のいずれか1項に記載の樹脂成形体。
<9> 前記アラミド繊維が、パラ型アラミド繊維とメタ型アラミド繊維とを含む<1>〜<8>のいずれか1項に記載の樹脂成形体。
<10> 前記パラ型アラミド繊維及び前記メタ型アラミド繊維の合計を100体積%としたときに、前記パラ型アラミド繊維の比率が50体積%〜70体積%であり、前記メタ型アラミド繊維の比率が50体積%〜30体積%である<9>に記載の樹脂成形体。
<11> <1>〜<10>のいずれか1項に記載の樹脂成形体で形成される歯部を有する樹脂ギヤ。
The present invention relates to the following.
<1> A fiber base material and a cured product of a thermosetting resin composition impregnated in the fiber base material are provided.
The fiber base material contains an aramid fiber and an inorganic sliding material.
The inorganic sliding material contains at least one selected from the group consisting of carbon, molybdenum, molybdenum disulfide, potassium hexatitanate, potassium octatitanate, lithium potassium titanate, magnesium potassium titanate and mica.
A resin molded product in which the thermosetting resin composition contains a bis (2-oxazoline) compound and a hydrophobic aromatic diamine.
<2> The resin molded product according to <1>, wherein the total ratio of the inorganic sliding materials to the fiber base material is 5% by mass to 50% by mass.
<3> The resin molded product according to <1> or <2>, wherein the inorganic sliding material has a flat plate shape.
<4> The resin molded product according to any one of <1> to <3>, wherein the thermosetting resin composition further contains a maleimide compound.
<5> The resin molded product according to <4>, wherein the content of the maleimide compound is 0.10 mol to 0.40 mol with respect to 1 mol of the bis (2-oxazoline) compound.
<6> The resin molded product according to any one of <1> to <5>, wherein the hydrophobic aromatic diamine contains an aromatic diamine containing a halogen atom in the molecule.
<7> The resin molded product according to any one of <1> to <6>, wherein the hydrophobic aromatic diamine has a molecular weight of 260 or more.
<8> The resin molded product according to any one of <1> to <7>, wherein the ratio of the fiber base material is 35% by volume to 55% by volume.
<9> The resin molded product according to any one of <1> to <8>, wherein the aramid fiber contains a para-type aramid fiber and a meta-type aramid fiber.
<10> When the total of the para-type aramid fiber and the meta-type aramid fiber is 100% by volume, the ratio of the para-type aramid fiber is 50% by volume to 70% by volume, and the ratio of the meta-type aramid fiber. The resin molded body according to <9>, wherein is 50% by volume to 30% by volume.
<11> A resin gear having a tooth portion formed of the resin molded body according to any one of <1> to <10>.

本発明によれば、耐久性及び吸湿性に優れる樹脂成形体及びこれを用いた樹脂ギヤを提供することができる。 According to the present invention, it is possible to provide a resin molded body having excellent durability and hygroscopicity, and a resin gear using the same.

以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本明細書において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the numerical range indicated by using "~" in the present specification, the numerical values before and after "~" are included as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present specification, the content or content of each component in the composition refers to the content of each component in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. It means the total content or content of substances.

[樹脂成形体]
本実施形態の樹脂成形体は、繊維基材と、前記繊維基材に含浸した熱硬化性樹脂組成物の硬化物と、を有し、前記繊維基材が、アラミド繊維と無機摺動材とを含み、前記無機摺動材が、カーボン、モリブデン、二硫化モリブデン、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム及びマイカからなる群より選択される少なくとも1種を含み、前記熱硬化性樹脂組成物が、ビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとを含む。
本実施形態の樹脂成形体は、耐久性及び吸湿性に優れる。その理由は明確ではないが、以下のように推察される。熱硬化性樹脂組成物に含まれるビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとが硬化反応することで生ずる硬化物は、撥水効果、吸湿を抑止する効果等を有すると考えられる。そのため、本実施形態の樹脂成形体は、吸湿性に優れると考えられる。
一方、本実施形態の樹脂成形体は特定の無機摺動材を含有するため、樹脂成形体の滑動性、摺動性等が向上すると考えられる。そのため、本実施形態の樹脂成形体は、耐久性に優れると考えられる。
[Resin molded product]
The resin molded body of the present embodiment has a fiber base material and a cured product of a thermosetting resin composition impregnated in the fiber base material, and the fiber base material contains aramid fibers and an inorganic sliding material. The inorganic sliding material comprises at least one selected from the group consisting of carbon, molybdenum, molybdenum disulfide, potassium hexatirate, potassium octatiate, lithium potassium titanate, magnesium potassium titanate and mica. The thermosetting resin composition comprises a bis (2-oxazoline) compound and a hydrophobic aromatic diamine.
The resin molded product of the present embodiment is excellent in durability and hygroscopicity. The reason is not clear, but it can be inferred as follows. The cured product produced by the curing reaction between the bis (2-oxazoline) compound contained in the thermosetting resin composition and the hydrophobic aromatic diamine is considered to have a water-repellent effect, an effect of suppressing moisture absorption, and the like. .. Therefore, it is considered that the resin molded product of the present embodiment has excellent hygroscopicity.
On the other hand, since the resin molded product of the present embodiment contains a specific inorganic sliding material, it is considered that the sliding property, slidability, etc. of the resin molded body are improved. Therefore, the resin molded product of the present embodiment is considered to have excellent durability.

以下、本実施形態の樹脂成形体を構成する繊維基材、熱硬化性樹脂組成物等の各成分について詳細に説明する。 Hereinafter, each component such as the fiber base material and the thermosetting resin composition constituting the resin molded product of the present embodiment will be described in detail.

<繊維基材>
本実施形態で用いられる繊維基材はアラミド繊維と無機摺動材とを含み、必要に応じてその他の成分を含有してもよい。
<Fiber base material>
The fiber base material used in the present embodiment contains aramid fibers and an inorganic sliding material, and may contain other components if necessary.

(アラミド繊維)
アラミド繊維は、大別すると、パラ型アラミド繊維と、メタ型アラミド繊維とに分けられる。本実施形態では、パラ型アラミド繊維及びメタ型アラミド繊維のいずれを用いてもよく、両者を混合させて用いることもできる。
但し、パラ型アラミド繊維は、線状の高分子であり、剛直であり吸湿しにくい性質を持つものの、繊維同士が絡みにくく、樹脂との接着性も高くはないため、添加量が多すぎると耐久強度が低下する傾向にある。一方、メタ型アラミド繊維は屈曲した高分子であるため、水分を内包しやすい構造となっているが、その分繊維同士が絡みやすく、樹脂との接着性もパラ型アラミド繊維よりも良好となる傾向にある。
そこで、吸湿性の低減と耐久強度を両立させるために、パラ型アラミド繊維とメタ型アラミド繊維とを、併用することが好ましい。パラ型アラミド繊維及びメタ型アラミド繊維の比率としては、パラ型アラミド繊維及びメタ型アラミド繊維の合計を100体積%としたときに、パラ型アラミド繊維の比率を50体積%〜70体積%とし、メタ型アラミド繊維の比率を50体積%〜30体積%とすることが好ましく、パラ型アラミド繊維の比率を55体積%〜65体積%とし、メタ型アラミド繊維の比率を45体積%〜35体積%とすることがより好ましい。
(Aramid fiber)
Aramid fibers are roughly classified into para-type aramid fibers and meta-type aramid fibers. In the present embodiment, either the para-type aramid fiber or the meta-type aramid fiber may be used, and both may be mixed and used.
However, although para-type aramid fibers are linear polymers and have the property of being rigid and difficult to absorb moisture, the fibers are difficult to entangle with each other and the adhesiveness to the resin is not high, so if the amount added is too large. Durability tends to decrease. On the other hand, since the meta-type aramid fiber is a bent polymer, it has a structure that easily contains water, but the fibers are easily entangled with each other and the adhesiveness with the resin is better than that of the para-type aramid fiber. There is a tendency.
Therefore, in order to achieve both reduction in hygroscopicity and durability, it is preferable to use para-type aramid fiber and meta-type aramid fiber in combination. As for the ratio of the para-type aramid fiber and the meta-type aramid fiber, when the total of the para-type aramid fiber and the meta-type aramid fiber is 100% by volume, the ratio of the para-type aramid fiber is 50% by volume to 70% by volume. The ratio of meta-type aramid fibers is preferably 50% by volume to 30% by volume, the ratio of para-type aramid fibers is 55% by volume to 65% by volume, and the ratio of meta-type aramid fibers is 45% by volume to 35% by volume. Is more preferable.

(その他の繊維)
繊維基材には、アラミド繊維以外のその他の繊維を併用することもできる。その他の繊維としては、具体的には、ポリフェニレンサルファイド、ポリアミド、ポリエチレン、ポリプロピレン等の熱可塑性樹脂繊維、バサルト繊維、アルミナ繊維、ガラス繊維、炭素繊維等の無機繊維、ステンレス繊維、アルミニウム繊維等の金属繊維などを挙げることができる。その中でも、ステンレス繊維を併用することが、摩耗の軽減及び耐久性の向上の観点から好ましい。その他の繊維としてステンレス繊維を併用することは、本実施形態の樹脂成形体を樹脂ギヤに適用した場合に、この樹脂ギヤを鉄製の相手歯車と噛み合わせるときに特に有効である。
また、アラミド繊維以外のその他の繊維を併用する際の、その他の繊維の混合量は、アラミド繊維及びその他の繊維の合計量に対して、50体積%以下であることが好ましく、45体積%以下であることがより好ましい。
(Other fibers)
Other fibers other than the aramid fiber can also be used in combination with the fiber base material. Specific examples of other fibers include thermoplastic resin fibers such as polyphenylene sulfide, polyamide, polyethylene and polypropylene, inorganic fibers such as basalt fiber, alumina fiber, glass fiber and carbon fiber, and metal such as stainless fiber and aluminum fiber. Fibers and the like can be mentioned. Among them, it is preferable to use stainless steel fibers in combination from the viewpoint of reducing wear and improving durability. The combined use of stainless steel fibers as other fibers is particularly effective when the resin molded product of the present embodiment is applied to a resin gear and the resin gear is meshed with an iron mating gear.
When other fibers other than the aramid fiber are used in combination, the mixing amount of the other fibers is preferably 50% by volume or less, preferably 45% by volume or less, based on the total amount of the aramid fibers and the other fibers. Is more preferable.

(無機摺動材)
本実施形態において用いられる無機摺動材は、カーボン、モリブデン、二硫化モリブデン、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム及びマイカからなる群より選択される少なくとも1種を含むものであればよい。これら無機摺動材は、アラミド繊維及び必要に応じて用いられるその他の繊維とともに水中で一緒に抄造する場合、簡便に素形体を作製することができる。鉄製の相手歯車と噛み合わせるような樹脂ギヤの場合において、無機摺動材を添加することにより歯面が摺動し樹脂成形体が摩耗しにくくなる。そのため、歯面上のピッチング等が起こりにくくなり、結果として耐久性が向上する傾向にある。
無機摺動材としては、二硫化モリブデン、8チタン酸カリウム及びマイカが好ましく、二硫化モリブデン及び8チタン酸カリウムがより好ましい。
本実施形態においては、1種の無機摺動材を単独で用いてもよいし、2種以上の無機摺動材を混合させて用いることもできる。
繊維基材に占める無機摺動材の合計の割合は、5質量%〜50質量%であることが好ましく、5質量%〜30質量%であることがより好ましく、5質量%〜20質量%であることがさらに好ましい。
無機摺動材の総含有量を5質量%以上とすると、樹脂成形体の摺動性がより発揮できる傾向にある。無機摺動材の総添加量を50質量%以下とすると、成形時にボイド、クラック等の欠陥が発生しにくい傾向にある。
なお、本実施形態においてアラミド繊維と共にその他の繊維が併用される場合、繊維基材に占める無機摺動材の合計の割合を規定する際の繊維基材の合計量は、アラミド繊維及び無機摺動材に加え、必要に応じて用いられるその他の繊維を含んだ合計量とする。
また、無機摺動材は、その表面をエラストマー、ゴム等の成分でコーティングされていてもよい。コーティングされた無機摺動材を用いることで、樹脂成形体に耐衝撃性を付与することもできる。
無機摺動材の形状は、特に限定されるものではない。繊維状の無機摺動材は表面積が大きく、繊維基材への熱硬化性樹脂組成物の含浸性が悪化する傾向にあることから、平板状であるものが好ましい。
(Inorganic sliding material)
The inorganic sliding material used in the present embodiment is at least one selected from the group consisting of carbon, molybdenum, molybdenum disulfide, potassium hexatitanate, potassium octatitanate, lithium potassium titanate, magnesium potassium titanate and mica. It may contain seeds. When these inorganic sliding materials are together with aramid fibers and other fibers used as needed for papermaking in water, a prototype can be easily produced. In the case of a resin gear that meshes with a mating gear made of iron, the addition of the inorganic sliding material causes the tooth surface to slide and the resin molded body to be less likely to wear. Therefore, pitching on the tooth surface is less likely to occur, and as a result, durability tends to be improved.
As the inorganic sliding material, molybdenum disulfide, potassium octatitanium and mica are preferable, and molybdenum disulfide and potassium octatitanium are more preferable.
In the present embodiment, one kind of inorganic sliding material may be used alone, or two or more kinds of inorganic sliding materials may be mixed and used.
The total ratio of the inorganic sliding material to the fiber base material is preferably 5% by mass to 50% by mass, more preferably 5% by mass to 30% by mass, and 5% by mass to 20% by mass. It is more preferable to have.
When the total content of the inorganic sliding material is 5% by mass or more, the slidability of the resin molded product tends to be more exhibited. When the total amount of the inorganic sliding material added is 50% by mass or less, defects such as voids and cracks tend to be less likely to occur during molding.
When other fibers are used in combination with the aramid fiber in the present embodiment, the total amount of the fiber base material when defining the total ratio of the inorganic sliding material to the fiber base material is the aramid fiber and the inorganic sliding material. The total amount includes the material and other fibers used as needed.
Further, the surface of the inorganic sliding material may be coated with a component such as an elastomer or rubber. By using the coated inorganic sliding material, it is possible to impart impact resistance to the resin molded product.
The shape of the inorganic sliding material is not particularly limited. Since the fibrous inorganic sliding material has a large surface area and the impregnation property of the thermosetting resin composition into the fiber base material tends to deteriorate, a flat plate-like material is preferable.

<樹脂成形体に占める繊維基材の割合>
樹脂成形体に占める繊維基材の割合は、特に制限されるものではなく、35体積%〜55体積%であることが好ましく、40体積%〜50体積%であることがより好ましい。樹脂成形体に占める繊維基材の割合がこの範囲であると、樹脂成形体への吸湿を十分に抑制できるとともに、樹脂ギヤとしての用途において長期に亘って強度を保持することができる傾向にある。
<Ratio of fiber base material in resin molded product>
The ratio of the fiber base material to the resin molded product is not particularly limited, and is preferably 35% by volume to 55% by volume, more preferably 40% by volume to 50% by volume. When the ratio of the fiber base material to the resin molded product is in this range, the moisture absorption to the resin molded product can be sufficiently suppressed, and the strength tends to be maintained for a long period of time in the use as a resin gear. ..

<熱硬化性樹脂組成物>
本実施形態の樹脂成形体は、熱硬化性樹脂組成物の硬化物を有する。本実施形態で用いられる熱硬化性樹脂組成物は、ビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとを含み、必要に応じてその他の成分を含んでいてもよい。
<Thermosetting resin composition>
The resin molded product of the present embodiment has a cured product of a thermosetting resin composition. The thermosetting resin composition used in the present embodiment contains a bis (2-oxazoline) compound and a hydrophobic aromatic diamine, and may contain other components if necessary.

(ビス(2−オキサゾリン)化合物)
本実施形態に用いられるビス(2−オキサゾリン)化合物は、1分子中に2つのオキサゾリン骨格を有する化合物であれば特に限定されない。2つのオキサゾリン骨格は、直接結合していても、有機基を介して結合していてもよい。
ビス(2−オキサゾリン)化合物は、例えば、下記一般式で表すことができる。
(Bis (2-oxazoline) compound)
The bis (2-oxazoline) compound used in the present embodiment is not particularly limited as long as it is a compound having two oxazoline skeletons in one molecule. The two oxazoline skeletons may be directly bonded or may be bonded via an organic group.
The bis (2-oxazoline) compound can be represented by, for example, the following general formula.

上記一般式中、Rは単結合、アルキレン基又はフェニレン基を示し、Rは各々独立に、水素原子又はアルキル基を示す。アルキル基、アルキレン基又はフェニレン基は無置換でもよいし、置換基を有していてもよい。
本実施形態において、Rとしては、フェニレン基が好ましい。また、Rとしては、水素原子が好ましい。
本実施形態に用いられるビス(2−オキサゾリン)化合物((A)成分)としては、例えば、PBO(2,2’−(1,3−フェニレン)ビス−2−オキサゾリン)、2,2’−(1,4−フェニレン)ビス−2−オキサゾリン、2,2’−(1,2−エチレン)ビス−2−オキサゾリン、2,2’−(1,4−ブチレン)ビス−2−オキサゾリン及び2,2’−(1,3−フェニレン)ビス−(5−メチル−2−オキサゾリン)が挙げられる。これらの中でも、PBO(2,2’−(1,3−フェニレン)ビス−2−オキサゾリン)及び2,2’−(1,4−フェニレン)ビス−2−オキサゾリンを好ましく用いることができ、その中でも、分子鎖の絡み合い及び融点の低さの観点から、PBO(2,2’−(1,3−フェニレン)ビス−2−オキサゾリン)がより好ましい。
熱硬化性樹脂組成物の固形分に占めるビス(2−オキサゾリン)化合物の含有率は、59.3質量%〜64.0質量%であることが好ましく、60.6質量%〜63.0質量%であることがより好ましく、61.2質量%〜62.4質量%であることがさらに好ましい。
In the above general formula, R 1 represents a single bond, an alkylene group or a phenylene group, and R 2 independently represents a hydrogen atom or an alkyl group. The alkyl group, alkylene group or phenylene group may be unsubstituted or may have a substituent.
In the present embodiment, the R 1, a phenylene group is preferred. Further, as R 2 , a hydrogen atom is preferable.
Examples of the bis (2-oxazoline) compound (component (A)) used in the present embodiment include PBO (2,2'-(1,3-phenylene) bis-2-oxazoline) and 2,2'-. (1,4-phenylene) bis-2-oxazoline, 2,2'-(1,2-ethylene) bis-2-oxazoline, 2,2'-(1,4-butylene) bis-2-oxazoline and 2 , 2'-(1,3-phenylene) bis- (5-methyl-2-oxazoline). Among these, PBO (2,2'-(1,3-phenylene) bis-2-oxazoline) and 2,2'-(1,4-phenylene) bis-2-oxazoline can be preferably used. Of these, PBO (2,2'-(1,3-phenylene) bis-2-oxazoline) is more preferable from the viewpoint of molecular chain entanglement and low melting point.
The content of the bis (2-oxazoline) compound in the solid content of the thermosetting resin composition is preferably 59.3% by mass to 64.0% by mass, preferably 60.6% by mass to 63.0% by mass. It is more preferably%, and further preferably 61.2% by mass to 62.4% by mass.

(疎水性の芳香族ジアミン)
本実施形態に用いられる芳香族ジアミン((B)成分)は、疎水性である。本実施形態において、芳香族ジアミンが「疎水性」であるとは、ハロゲン等の水と反応しにくい置換基を有するものか、又はアミン由来の窒素原子の濃度が低い分子構造であることをいう。
芳香族ジアミンの具体例としては、例えば、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン(MOCA)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、メチレンビス(2−エチル−6−メチルアニリン)及び4,4’−メチレンビス(2−エチルアニリン)が挙げられる。
(Hydrophobic aromatic diamine)
The aromatic diamine (component (B)) used in this embodiment is hydrophobic. In the present embodiment, the term "hydrophobic" means that the aromatic diamine has a substituent such as halogen that does not easily react with water, or has a molecular structure having a low concentration of amine-derived nitrogen atoms. ..
Specific examples of the aromatic diamine include, for example, 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), and so on. Methylenebis (2-ethyl-6-methylaniline) and 4,4'-methylenebis (2-ethylaniline) can be mentioned.

芳香族ジアミンとしては、塩素原子、臭素原子等のハロゲン原子を分子中に含む芳香族ジアミンを含むことが好ましい。ハロゲン原子は疎水性を示すことから、ハロゲン原子を芳香族ジアミンの分子中に導入していれば、水分子が芳香族ジアミンに接近しにくくなり、撥水効果が得られると推察される。中でも、MOCA(3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン)は、作業性が良好で高い強度の樹脂成形体が得られやすいので、好ましい。 The aromatic diamine preferably contains an aromatic diamine containing a halogen atom such as a chlorine atom or a bromine atom in the molecule. Since the halogen atom exhibits hydrophobicity, it is presumed that if the halogen atom is introduced into the molecule of the aromatic diamine, the water molecule becomes difficult to approach the aromatic diamine and a water-repellent effect can be obtained. Of these, MOCA (3,3'-dichloro-4,4'-diaminodiphenylmethane) is preferable because it has good workability and a high-strength resin molded product can be easily obtained.

また、アミンは一般に、吸湿性が高いため、樹脂成形体の吸湿性を低下させるためには、熱硬化性樹脂組成物の硬化物中のアミン由来の窒素原子の濃度を低下させることが好ましい。硬化物中のアミン由来の窒素原子の濃度を低下させるためには、分子量の大きな芳香族ジアミンを用いることが好ましい。分子量の大きな芳香族ジアミンを用いることでアミン当量を小さくすることができ、アミン由来の窒素原子の濃度を小さくすることができるため、樹脂成形体の吸湿性を抑制することができる傾向にある。
低吸湿性の効果の観点から、芳香族ジアミンの分子量は、260以上であることが好ましく、280以上であることがより好ましく、300以上であることがさらに好ましい。また、熱硬化性樹脂組成物の溶融時の粘度が高すぎることで繊維基材に熱硬化性樹脂組成物が含浸せず樹脂成形体を成形できなくなるのを防ぐため、芳香族ジアミンの分子量は、1000以下であることが好ましい。
アミン当量の小さい芳香族ジアミンとしては、BAPP、メチレンビス(2−エチル−6−メチルアニリン)等が好ましく、BAPPがより好ましい。
本実施形態において、複数の芳香族ジアミンが併用されていた場合、複数の芳香族ジアミンのいずれもが上記分子量の条件を満たすことが好ましい。
In addition, since amines generally have high hygroscopicity, it is preferable to reduce the concentration of amine-derived nitrogen atoms in the cured product of the thermosetting resin composition in order to reduce the hygroscopicity of the resin molded product. In order to reduce the concentration of amine-derived nitrogen atoms in the cured product, it is preferable to use an aromatic diamine having a large molecular weight. By using an aromatic diamine having a large molecular weight, the amine equivalent can be reduced, and the concentration of the nitrogen atom derived from the amine can be reduced, so that the hygroscopic property of the resin molded product tends to be suppressed.
From the viewpoint of the effect of low hygroscopicity, the molecular weight of the aromatic diamine is preferably 260 or more, more preferably 280 or more, and further preferably 300 or more. Further, in order to prevent the fiber base material from being impregnated with the thermosetting resin composition and being unable to mold the resin molded product due to the viscosity of the thermosetting resin composition at the time of melting being too high, the molecular weight of the aromatic diamine is set. , 1000 or less is preferable.
As the aromatic diamine having a small amine equivalent, BAPP, methylenebis (2-ethyl-6-methylaniline) and the like are preferable, and BAPP is more preferable.
In the present embodiment, when a plurality of aromatic diamines are used in combination, it is preferable that all of the plurality of aromatic diamines satisfy the above molecular weight conditions.

熱硬化性樹脂組成物における芳香族ジアミンの含有率は、ビス(2−オキサゾリン)化合物の1モルに対して、0.46モル〜0.56モルであることが好ましく、0.48モル〜0.53モルであることがより好ましく、0.49モル〜0.51モルであることがさらに好ましい。 The content of the aromatic diamine in the thermosetting resin composition is preferably 0.46 mol to 0.56 mol, preferably 0.48 mol to 0 mol, based on 1 mol of the bis (2-oxazoline) compound. It is more preferably .53 mol, further preferably 0.49 mol to 0.51 mol.

(マレイミド化合物)
熱硬化性樹脂組成物は、樹脂成形体の耐久強度をさらに向上させるための添加剤として、マレイミド化合物を含んでもよい。マレイミド化合物は、熱硬化性樹脂組成物の硬化物の繊維基材への接着性を向上させるための、接着性向上剤として機能することができる。
マレイミド化合物としては、モノマレイミド、モノマレイミド誘導体、ビスマレイミド、ビスマレイミド誘導体、ビスマレイミドの高分子量体等が挙げられる。
マレイミド化合物の具体例としては、4,4’−ジフェニルメタンビスマレイミド、N−メチルマレイミド等を挙げることができる。これらの中でも、4,4’−ジフェニルメタンビスマレイミドが好ましい。
マレイミド化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
熱硬化性樹脂組成物がマレイミド化合物を含む場合、マレイミド化合物の含有量は、樹脂成形体の低吸湿性を損ねないためにも、ビス(2−オキサゾリン)化合物の1モルに対して、0.10モル〜0.40モルであることが好ましく、0.15モル〜0.35モルであることがより好ましく、0.20モル〜0.30モルであることがさらに好ましい。
(Maleimide compound)
The thermosetting resin composition may contain a maleimide compound as an additive for further improving the durability strength of the resin molded product. The maleimide compound can function as an adhesiveness improver for improving the adhesiveness of the cured product of the thermosetting resin composition to the fiber substrate.
Examples of the maleimide compound include monomaleimide, monomaleimide derivative, bismaleimide, bismaleimide derivative, and a high molecular weight substance of bismaleimide.
Specific examples of the maleimide compound include 4,4'-diphenylmethanebismaleimide, N-methylmaleimide and the like. Among these, 4,4'-diphenylmethanebismaleimide is preferable.
The maleimide compound may be used alone or in combination of two or more.
When the thermosetting resin composition contains a maleimide compound, the content of the maleimide compound is 0, with respect to 1 mol of the bis (2-oxazoline) compound so as not to impair the low moisture absorption of the resin molded product. It is preferably 10 mol to 0.40 mol, more preferably 0.15 mol to 0.35 mol, still more preferably 0.20 mol to 0.30 mol.

(硬化促進剤)
熱硬化性樹脂組成物は、必要に応じてビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとの硬化反応を促進させるため、硬化促進剤を含んでもよい。硬化促進剤の具体例としては、n−オクチルブロマイド、p−トルエンスルホン酸エステル等が挙げられる。これらの中でも、n−オクチルブロマイドが好ましい。
熱硬化性樹脂組成物が硬化促進剤を含む場合、硬化促進剤の含有量は、ビス(2−オキサゾリン)化合物と疎水性の芳香族ジアミンとの合計量の100質量部に対して0.8質量部〜2.5質量部であることが好ましく、1.0質量部〜2.0質量部であることがより好ましい。
(Curing accelerator)
The thermosetting resin composition may contain a curing accelerator in order to accelerate the curing reaction between the bis (2-oxazoline) compound and the hydrophobic aromatic diamine, if necessary. Specific examples of the curing accelerator include n-octyl bromide, p-toluenesulfonic acid ester and the like. Among these, n-octyl bromide is preferable.
When the thermosetting resin composition contains a curing accelerator, the content of the curing accelerator is 0.8 with respect to 100 parts by mass of the total amount of the bis (2-oxazoline) compound and the hydrophobic aromatic diamine. It is preferably from 7 parts by mass to 2.5 parts by mass, and more preferably 1.0 part by mass to 2.0 parts by mass.

(その他添加剤)
熱硬化性樹脂組成物は、必要に応じて、添加剤として、ゴム等の衝撃吸収材、ポリエチレングリコール等の有機系摺動材などを含んでいてもよい。これらの機能を向上させるものであればそのいずれを用いてもよく、2種以上を組み合わせてもよい。
ゴム等の衝撃吸収材として、エンジンオイル、ガソリン等の影響を受けにくいものが好ましく、シリコーンゴム、フッ素ゴム、ニトリルゴム等が好ましい。
また、有機系摺動材としてポリエチレングリコールを用いる場合には、摩耗量の増大を抑制する観点から、耐摩耗性を損ねない程度の添加量とすることが好ましい。
(Other additives)
If necessary, the thermosetting resin composition may contain a shock absorbing material such as rubber, an organic sliding material such as polyethylene glycol, and the like as additives. Any of them may be used as long as they improve these functions, and two or more kinds may be combined.
As the shock absorbing material such as rubber, one that is not easily affected by engine oil, gasoline, etc. is preferable, and silicone rubber, fluororubber, nitrile rubber, etc. are preferable.
When polyethylene glycol is used as the organic sliding material, the amount added is preferably such that the wear resistance is not impaired from the viewpoint of suppressing an increase in the amount of wear.

[樹脂ギヤ]
本実施形態の樹脂ギヤは、本実施形態の樹脂成形体で形成される歯部を有するものであれば特に限定されるものではない。樹脂ギヤの歯部が、樹脂ギヤの周囲に配置される相手ギヤとかみ合うことができる。
また、樹脂ギヤは、力の掛かりが大きい回転軸との接合部分に金属製のブッシュを用いることが好ましく、この金属製ブッシュの周囲に樹脂成形体で形成された歯部が配置される構成であることが好ましい。
歯部の形成に特に制限はなく、具体的には、熱硬化性樹脂組成物を硬化する段階にて歯部形の金型を用いることで形成したり、樹脂硬化が終了した後に切削等により形成したりすることができる。
本実施形態において熱硬化性樹脂組成物の硬化条件は特に限定されるものではなく、例えば、160℃〜250℃で3分〜20分の条件が挙げられる。
[Resin gear]
The resin gear of the present embodiment is not particularly limited as long as it has a tooth portion formed of the resin molded body of the present embodiment. The tooth portion of the resin gear can mesh with the mating gear arranged around the resin gear.
Further, the resin gear preferably uses a metal bush at the joint portion with the rotating shaft on which a large force is applied, and the tooth portion formed of the resin molded body is arranged around the metal bush. It is preferable to have.
There is no particular limitation on the formation of the tooth portion, and specifically, the thermosetting resin composition is formed by using a tooth-shaped mold at the stage of curing, or by cutting after the resin curing is completed. It can be formed.
In the present embodiment, the curing conditions of the thermosetting resin composition are not particularly limited, and examples thereof include conditions of 160 ° C. to 250 ° C. for 3 minutes to 20 minutes.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

表1に、実施例及び比較例で使用する原材料の一覧を示す。 Table 1 shows a list of raw materials used in Examples and Comparative Examples.

[実施例1]
PBO((A)成分)と、MOCA((B)成分)とを、モル比:100/50(質量比:62/38)の配合割合で加熱して溶解し、混合することで液状物とした。これに、硬化促進剤としてn−オクチルブロマイドを配合した。硬化促進剤の配合量は、(A)成分とその硬化剤としての(B)成分の総量100質量部に対して1.5質量部とした。このようにして、熱硬化性樹脂組成物を得た。
[Example 1]
PBO (component (A)) and MOCA (component (B)) are heated and dissolved at a mixing ratio of molar ratio: 100/50 (mass ratio: 62/38) to dissolve and mix to form a liquid product. did. To this, n-octyl bromide was blended as a curing accelerator. The blending amount of the curing accelerator was 1.5 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) as the curing agent. In this way, a thermosetting resin composition was obtained.

パラ型アラミド繊維(帝人株式会社製、テクノーラ)及びメタ型アラミド繊維(帝人株式会社製、コーネックス)を、体積比で55/45の割合に配合し、これに、繊維基材に占める無機摺動材である二硫化モリブデンの割合が10質量%となるように、二硫化モリブデンを添加した状態で抄造し、繊維基材とした。この繊維基材を樹脂成形体全体に対して35体積%(樹脂成形体に占める繊維基材の割合、以下、「繊維基材体積率」と称することがある)となるように、抄造金型内で金属製ブッシュと一体化し、円筒状の補強繊維集積体を得た。 Para-type aramid fiber (Teijin Co., Ltd., Technora) and meta-type aramid fiber (Teijin Co., Ltd., Cornex) are blended in a volume ratio of 55/45, and an inorganic slide occupying the fiber base material. A fiber base material was prepared by adding molybdenum disulfide so that the proportion of molybdenum disulfide as a moving material was 10% by mass. Papermaking mold so that this fiber base material is 35% by volume based on the entire resin molded product (the ratio of the fiber base material to the resin molded product, hereinafter sometimes referred to as "fiber base material volume ratio"). Inside, it was integrated with a metal bush to obtain a cylindrical reinforcing fiber aggregate.

円筒状の補強繊維集積体を210℃の成形金型に配置して型締めした。上記のように調製した熱硬化性樹脂組成物を金型に注入し、金属製ブッシュをインサートとする円板(樹脂成形体)を成形した。そして、成形した円板の周囲に切削加工により歯を形成し、これを樹脂ギヤとした。 The cylindrical reinforcing fiber aggregate was placed in a molding die at 210 ° C. and molded. The thermosetting resin composition prepared as described above was injected into a mold to form a disk (resin molded product) having a metal bush as an insert. Then, teeth were formed around the formed disk by cutting, and this was used as a resin gear.

<耐久強度>
耐久強度は、樹脂ギヤと金属製ギヤとを噛み合わせた状態で連続回転させ、樹脂ギヤが破壊するまでの時間を測定した。評価条件は表2に示すとおりである。樹脂ギヤが破壊したか否かは、樹脂ギヤの一部が破断したか否かで判断した。後述する比較例1を基準とし、破壊までの時間が比較例1より2倍以上の場合を「A」、同等以上2倍未満の場合を「B」、同等未満を「C」とした。
<Durability>
For the durability strength, the resin gear and the metal gear were continuously rotated in a meshed state, and the time until the resin gear broke was measured. The evaluation conditions are as shown in Table 2. Whether or not the resin gear was broken was determined by whether or not a part of the resin gear was broken. Based on Comparative Example 1 described later, the case where the time until destruction was twice or more as compared with Comparative Example 1 was designated as “A”, the case where it was equal to or more than twice and less than twice was designated as “B”, and the case where it was less than equivalent was designated as “C”.

<吸湿率>
吸湿率の評価方法は、次のとおりである。
樹脂成形体の試験片(1mm×50mm×50mm)を、加熱乾燥(105℃、1時間)した後、吸湿処理(湿度85%RH、85℃、200時間)をした。((吸湿処理後試験片質量−吸湿処理前試験片質量)/吸湿処理後試験片質量)×100を吸湿率(%)とした。
比較例1を基準とし、比較例1の吸湿率の40%以下の場合を「A」、40%を超え60%以下の場合を「B」、60%を超える場合を「C」とした。
各実施例及び比較例における樹脂成形体について、耐久強度及び吸湿性を評価した結果を表3及び4に示す。
表3に示すように、耐久強度及び吸湿率ともに良好であった。
<Hygroscopicity>
The method for evaluating the hygroscopicity is as follows.
The test piece (1 mm × 50 mm × 50 mm) of the resin molded product was heat-dried (105 ° C., 1 hour) and then subjected to a moisture absorption treatment (humidity 85% RH, 85 ° C., 200 hours). ((Mass of test piece after moisture absorption treatment-Mass of test piece before moisture absorption treatment) / Mass of test piece after moisture absorption treatment) × 100 was defined as a moisture absorption rate (%).
Based on Comparative Example 1, the case where the hygroscopicity of Comparative Example 1 was 40% or less was designated as "A", the case where it exceeded 40% and 60% or less was designated as "B", and the case where it exceeded 60% was designated as "C".
Tables 3 and 4 show the results of evaluating the durability strength and hygroscopicity of the resin molded products in each Example and Comparative Example.
As shown in Table 3, both the durability strength and the hygroscopicity were good.

[実施例2及び3]
二硫化モリブデンの添加率を5質量%(実施例2)及び50質量%(実施例3)のそれぞれとする以外は、実施例1と同様とした。表3に示すように、この繊維基材体積率の範囲では、耐久強度及び吸湿率ともに良好であった。
[Examples 2 and 3]
It was the same as in Example 1 except that the addition rate of molybdenum disulfide was 5% by mass (Example 2) and 50% by mass (Example 3), respectively. As shown in Table 3, both the durability strength and the hygroscopicity were good within the range of the volume ratio of the fiber base material.

[実施例4]
二硫化モリブデンの代わりに8チタン酸カリウムを用いる以外は、実施例1と同様とした。表3に示すように、8チタン酸カリウムに代えても耐久強度及び吸湿率ともに良好であった。
[Example 4]
The same procedure as in Example 1 was carried out except that potassium octatitanate was used instead of molybdenum disulfide. As shown in Table 3, both durability strength and hygroscopicity were good even when potassium octatitanate was used instead.

[実施例5及び6]
繊維基材体積率を40体積%とし、アラミド繊維基材中のパラ型アラミド繊維比率を50体積%(実施例5)とするか、又は繊維基材体積率を55体積%とし、アラミド繊維基材中のパラ型アラミド繊維比率を70体積%(実施例6)とする以外は、実施例1と同様とした。表3に示すように、このパラ型アラミド繊維比率の範囲では耐久強度及び吸湿率ともに良好であった。
[Examples 5 and 6]
The fiber base material volume ratio is 40% by volume and the para-type aramid fiber ratio in the aramid fiber base material is 50% by volume (Example 5), or the fiber base material volume ratio is 55% by volume and the aramid fiber group. The same as in Example 1 except that the ratio of para-type aramid fibers in the material was 70% by volume (Example 6). As shown in Table 3, both the durability strength and the hygroscopicity were good in the range of this para-type aramid fiber ratio.

[実施例7]
MOCAの代わりにBAPPを用いる以外は、実施例1と同様とした。表4に示すように、MOCAをBAPPに代えても耐久強度及び吸湿率ともに良好であった。
[Example 7]
It was the same as in Example 1 except that BAPP was used instead of MOCA. As shown in Table 4, even if MOCA was replaced with BAPP, both durability strength and hygroscopicity were good.

[実施例8]
MOCAの比率を半分にし、代わりにBMIを添加する以外は実施例1と同様とした。表4に示すように、この繊維基材体積率の範囲では、耐久強度及び吸湿率ともに良好であった。
[Example 8]
The same as in Example 1 except that the ratio of MOCA was halved and BMI was added instead. As shown in Table 4, both the durability strength and the hygroscopicity were good within the range of the volume fraction of the fiber base material.

[比較例1]
MOCAの代わりにMDAを用いる以外は、実施例1と同様とした。表4に示すように、MDAに代えると吸湿率が大きくなり耐吸湿性が悪化した。
[Comparative Example 1]
The same as in Example 1 except that MDA was used instead of MOCA. As shown in Table 4, the hygroscopicity increased and the hygroscopicity deteriorated when MDA was used instead.

[比較例2、3及び4]
MOCAの代わりにMDAを用いる以外は、実施例4、5及び8のそれぞれと同様の無機摺動材添加量、繊維基材体積率及びパラ型アラミド繊維比率とした。いずれも耐久強度は良好であったが、吸湿率が大きくなった。
[Comparative Examples 2, 3 and 4]
The amount of inorganic sliding material added, the volume fraction of the fiber base material, and the ratio of para-type aramid fibers were the same as in each of Examples 4, 5 and 8, except that MDA was used instead of MOCA. All had good durability, but the hygroscopicity increased.

本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (5)

繊維基材と、前記繊維基材に含浸した熱硬化性樹脂組成物の硬化物と、を有し、
前記繊維基材が、アラミド繊維と無機摺動材とを含み、
前記無機摺動材が、二硫化モリブデンを含み、
前記アラミド繊維が、パラ型アラミド繊維とメタ型アラミド繊維とを含み、
前記パラ型アラミド繊維及び前記メタ型アラミド繊維の合計を100体積%としたときに、前記パラ型アラミド繊維の比率が55体積%を超え70体積%以下であり、前記メタ型アラミド繊維の比率が30体積%以上45体積%未満であり、
前記熱硬化性樹脂組成物が、ビス(2−オキサゾリン)化合物と3,3’−ジクロロ−4,4’−ジアミノジフェニルメタンとを含み、
前記繊維基材に占める前記無機摺動材の合計の割合が5質量%〜20質量%であり、
前記繊維基材の占める割合が、40体積%〜55体積%である樹脂成形体。
It has a fiber base material and a cured product of a thermosetting resin composition impregnated in the fiber base material.
The fiber base material contains an aramid fiber and an inorganic sliding material.
Wherein the inorganic sliding member comprises a disulfide molybdenum,
The aramid fiber contains a para-type aramid fiber and a meta-type aramid fiber.
When the total of the para-type aramid fiber and the meta-type aramid fiber is 100% by volume, the ratio of the para-type aramid fiber is more than 55% by volume and 70% by volume or less, and the ratio of the meta-type aramid fiber is 30% by volume or more and less than 45% by volume,
The thermosetting resin composition, see contains the bis (2-oxazoline) compound and 3,3'-dichloro-4,4'-diaminodiphenylmethane,
The total ratio of the inorganic sliding materials to the fiber base material is 5% by mass to 20% by mass.
A resin molded product in which the proportion of the fiber base material is 40% by volume to 55% by volume .
前記無機摺動材の形状が、平板状である請求項1に記載の樹脂成形体。 The resin molded product according to claim 1, wherein the shape of the inorganic sliding material is a flat plate. 前記熱硬化性樹脂組成物が、更にマレイミド化合物を含む請求項1又は請求項2に記載の樹脂成形体。 The resin molded product according to claim 1 or 2 , wherein the thermosetting resin composition further contains a maleimide compound. 前記マレイミド化合物の含有量が、前記ビス(2−オキサゾリン)化合物の1モルに対して、0.10モル〜0.40モルである請求項に記載の樹脂成形体。 The resin molded product according to claim 3 , wherein the content of the maleimide compound is 0.10 mol to 0.40 mol with respect to 1 mol of the bis (2-oxazoline) compound. 請求項1〜請求項のいずれか1項に記載の樹脂成形体で形成される歯部を有する樹脂ギヤ。 A resin gear having a tooth portion formed of the resin molded product according to any one of claims 1 to 4 .
JP2018530241A 2016-07-26 2016-07-26 Resin molded body and resin gear Active JP6795035B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071916 WO2018020585A1 (en) 2016-07-26 2016-07-26 Molded resin body and resin gear

Publications (2)

Publication Number Publication Date
JPWO2018020585A1 JPWO2018020585A1 (en) 2019-01-17
JP6795035B2 true JP6795035B2 (en) 2020-12-02

Family

ID=61016955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530241A Active JP6795035B2 (en) 2016-07-26 2016-07-26 Resin molded body and resin gear

Country Status (2)

Country Link
JP (1) JP6795035B2 (en)
WO (1) WO2018020585A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565722B2 (en) * 1986-11-04 1996-12-18 武田薬品工業株式会社 Manufacturing method of crosslinked resin
JPH0788421B2 (en) * 1987-10-26 1995-09-27 武田薬品工業株式会社 Method for producing crosslinked resin
JPH01139627A (en) * 1987-11-27 1989-06-01 Teijin Ltd Fiber-reinforced composite material and production thereof
JPH02258836A (en) * 1989-03-31 1990-10-19 Takeda Chem Ind Ltd Production of crosslinked resin
JPH02283720A (en) * 1989-04-24 1990-11-21 Takeda Chem Ind Ltd Production of crosslinked resin
JPH0347848A (en) * 1989-04-26 1991-02-28 Takeda Chem Ind Ltd Production of prepreg
JPH05156013A (en) * 1991-12-03 1993-06-22 Takeda Chem Ind Ltd Production of crosslinked resin
JP3388879B2 (en) * 1994-06-06 2003-03-24 三國製薬工業株式会社 Crosslinked resin stock solution and method for producing crosslinked resin using said crosslinked resin stock solution
JP2004324875A (en) * 2003-04-11 2004-11-18 Shin Kobe Electric Mach Co Ltd Method of manufacturing resin or metal gear
JP2008260922A (en) * 2007-03-20 2008-10-30 Shin Kobe Electric Mach Co Ltd Reinforcing-fiber base material for use in resin molded body, and fiber-reinforced resin molded body
JP5378125B2 (en) * 2009-09-09 2013-12-25 新神戸電機株式会社 Crosslinked resin composition
JP2013221105A (en) * 2012-04-17 2013-10-28 Shin Kobe Electric Mach Co Ltd Resin molded body and resin-made gear using the same
JP6179519B2 (en) * 2012-08-30 2017-08-16 日立化成株式会社 Friction material composition, friction material using friction material composition, and friction member

Also Published As

Publication number Publication date
WO2018020585A1 (en) 2018-02-01
JPWO2018020585A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
Jawaid et al. Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute fibers reinforced epoxy hybrid composite
JP6044584B2 (en) Gear for electric power steering device
US5797819A (en) Resin pulley
US7598308B2 (en) Metal—elastomer compound
WO2012114967A1 (en) Toothed belt
JPH022496B2 (en)
EP2397521A1 (en) Benzoxazine resin composition
TWI542642B (en) High-damping composition
JP2009544799A (en) Vibration damping material, structural laminate, and manufacturing method thereof
EP1153973A1 (en) Rubber vibration isolator and method for producing the same
WO2012165561A1 (en) Anti-vibration rubber composition and anti-vibration rubber
JP7363769B2 (en) Acrylic rubber, acrylic rubber composition, crosslinked acrylic rubber, sealing material, and hose material
JP2014237753A (en) Rubber composition for vibration-proof rubber
JP2009544808A (en) Vibration damping materials for polyamides and mercaptobenzimidazoles
TW201341475A (en) Highly damping composition and viscoelastic damper
CN109153834A (en) Composite material including fluoroelastomer and polyimides prepares the method for composite material and the product comprising it
JP6795035B2 (en) Resin molded body and resin gear
JP5790236B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JPS58131440A (en) Frictional material by high molecular elastic body
JP2009536891A (en) Gear for electric power steering device
JPS62132915A (en) Heat-resistant resin composition for molding
JP2007070599A (en) Method for producing crosslinked resin and fiber-reinforced resin molded article
CN101688043B (en) Acrylic rubber composition and vulcanizates thereof
KR20140125051A (en) Polyamide Based Resin Composition Having Excellent Flexural Modulus and Impact Strength
RU2773476C1 (en) Anti-friction polymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6795035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350