JP6794616B2 - Fiber-reinforced polyimide resin molded product and its manufacturing method - Google Patents

Fiber-reinforced polyimide resin molded product and its manufacturing method Download PDF

Info

Publication number
JP6794616B2
JP6794616B2 JP2015181260A JP2015181260A JP6794616B2 JP 6794616 B2 JP6794616 B2 JP 6794616B2 JP 2015181260 A JP2015181260 A JP 2015181260A JP 2015181260 A JP2015181260 A JP 2015181260A JP 6794616 B2 JP6794616 B2 JP 6794616B2
Authority
JP
Japan
Prior art keywords
weight
parts
molded product
resin molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015181260A
Other languages
Japanese (ja)
Other versions
JP2016060915A (en
Inventor
渡辺 和伸
和伸 渡辺
俊文 榎戸
俊文 榎戸
幸太 瀬上
幸太 瀬上
小林 祐介
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Publication of JP2016060915A publication Critical patent/JP2016060915A/en
Application granted granted Critical
Publication of JP6794616B2 publication Critical patent/JP6794616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維強化ポリイミド樹脂成形体及びその製造方法に関するものであり、より詳細には、優れた摺動性能を有すると共に、ポリイミド樹脂中の機能性繊維が分散し、成形時の形状安定性に優れた成形体及びその製造方法に関する。 The present invention relates to a fiber-reinforced polyimide resin molded product and a method for producing the same. More specifically, the present invention has excellent sliding performance, functional fibers in the polyimide resin are dispersed, and shape stability during molding. The present invention relates to an excellent molded product and a method for producing the same.

従来より炭素繊維等の機能性繊維を樹脂に配合して成る繊維強化樹脂から成る成形体は、耐候性、機械的強度、耐久性等の特性に優れていることから、自動車、航空機等の輸送機材、土木・建設材料、スポーツ用品等の用途に広く使用されている。
例えば、下記特許文献1には、特定のピッチ系炭素短繊維混合物及びマトリックス樹脂から成る炭素繊維強化樹脂成形体が記載されており、各種電子部品に好適に使用されることが記載されている。
また下記特許文献2には、炭素繊維等のバインダーとして特定の芳香族ポリイミドオリゴマーを用いた摩擦材用樹脂組成物から成る摩擦材が提案されており、この摩擦材においては、従来、摩擦材のバインダーとして好適に使用されていたフェノール樹脂を用いた場合に比べて、バインダー自身の耐熱性や機械的特性が優れ、成形性が良好であることが記載されている。
更に下記特許文献3には、特定の熱伝導率を有する炭素繊維を10〜70重量%含む炭素繊維強化合成樹脂から成る転動体が提案されている。
Conventionally, a molded product made of a fiber-reinforced resin obtained by blending a functional fiber such as carbon fiber with a resin has excellent characteristics such as weather resistance, mechanical strength, and durability, and thus is used for transportation of automobiles, aircraft, etc. Widely used for equipment, civil engineering / construction materials, sports equipment, etc.
For example, Patent Document 1 below describes a carbon fiber reinforced resin molded product made of a specific pitch-based carbon short fiber mixture and a matrix resin, and describes that it is suitably used for various electronic parts.
Further, Patent Document 2 below proposes a friction material made of a resin composition for a friction material using a specific aromatic polyimide oligomer as a binder for carbon fibers and the like. It is described that the heat resistance and mechanical properties of the binder itself are excellent and the moldability is good as compared with the case where the phenol resin preferably used as the binder is used.
Further, Patent Document 3 below proposes a rolling element made of a carbon fiber reinforced synthetic resin containing 10 to 70% by weight of carbon fibers having a specific thermal conductivity.

このような繊維強化樹脂成形体を軸受け等の摺動性部材として用いる場合には、強度、剛性等の機械的強度が高いこと、動摩擦係数が小さく摩耗量が少ないこと、更に限界PV値が高いこと等の特性が要求されており、機械的強度、耐熱性及び耐久性に優れ、また樹脂の含浸性に優れた付加反応型ポリイミド樹脂をマトリックス樹脂として用いることが望まれている。
付加反応型ポリイミド樹脂として、トランスファー成形(RTM)と樹脂圧入(RI)によって炭素繊維強化コンポジットを製造可能な高機能の付加反応型ポリイミド樹脂も提案されている(特許文献4)。
When such a fiber-reinforced resin molded body is used as a slidable member such as a bearing, the mechanical strength such as strength and rigidity is high, the dynamic friction coefficient is small and the amount of wear is small, and the limit PV value is high. It is desired to use an addition reaction type polyimide resin which is excellent in mechanical strength, heat resistance and durability and also has excellent resin impregnation property as a matrix resin.
As an addition reaction type polyimide resin, a high-performance addition reaction type polyimide resin capable of producing a carbon fiber reinforced composite by transfer molding (RTM) and resin press-fitting (RI) has also been proposed (Patent Document 4).

特許第4538502号Patent No. 4538502 特開2009−242656号公報Japanese Unexamined Patent Publication No. 2009-242656 特開2011−127636号公報Japanese Unexamined Patent Publication No. 2011-127636 特表2003−526704号公報Special Table 2003-526704A

しかしながら、繊維強化樹脂成形体のマトリックス樹脂として、付加反応型ポリイミド樹脂を用いる場合、優れた耐熱性、耐久性及び機械的強度が得られるとしても、得られた成形体に反りが生じてしまい、摺動性部材としては実用に供することができないという問題があった。
本発明者等がこの原因について鋭意研究した結果、以下の事実が分かった。すなわち、炭素繊維等の機能性繊維のマトリックス樹脂として好適に使用できる付加反応型ポリイミド樹脂は、プレポリマーの状態で溶融粘度が低いことから、プレポリマーに機能性繊維を混合すると、機能性繊維が沈降してプレポリマー中に偏在した状態となり、この状態で樹脂が架橋硬化されることにより、機能性繊維の存在量に応じて成形体の収縮量に差が生じてしまい、得られる繊維強化樹脂成形体に反りを生じてしまうことが分かった。
However, when an addition reaction type polyimide resin is used as the matrix resin of the fiber reinforced resin molded product, even if excellent heat resistance, durability and mechanical strength can be obtained, the obtained molded product will be warped. There is a problem that it cannot be put into practical use as a slidable member.
As a result of diligent research by the present inventors on this cause, the following facts were found. That is, since the addition reaction type polyimide resin that can be suitably used as a matrix resin for functional fibers such as carbon fibers has a low melt viscosity in the prepolymer state, when the functional fibers are mixed with the prepolymer, the functional fibers are formed. It precipitates and becomes unevenly distributed in the prepolymer, and the resin is cross-linked and cured in this state, so that the amount of shrinkage of the molded product differs depending on the amount of functional fibers present, and the resulting fiber reinforced resin is obtained. It was found that the molded body was warped.

従って本発明の目的は、優れた摺動性能を有すると共に、反り等の発生がなく、成形時の形状安定性に優れた繊維強化ポリイミド樹脂成形体を提供することである。
本発明の他の目的は、優れた摺動性能を有する繊維強化ポリイミド樹脂成形体を形状安定性よく成形可能な製造方法を提供することである。
Therefore, an object of the present invention is to provide a fiber-reinforced polyimide resin molded product having excellent sliding performance, no warpage, and excellent shape stability during molding.
Another object of the present invention is to provide a manufacturing method capable of molding a fiber-reinforced polyimide resin molded product having excellent sliding performance with good shape stability.

本発明によれば、付加反応型ポリイミド100重量部に対して、5〜200重量部のメソフェーズ型ピッチ系炭素繊維、5〜40重量部の増粘剤が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることを特徴とする樹脂成形体が提供される。
本発明の樹脂成形体においては
.前記メソフェーズ型ピッチ系炭素繊維が、平均繊維長50〜6000μm、平均繊維径5〜20μmのメソフェーズ型ピッチ系炭素繊維であること、
2.前記増粘剤が、グラファイト、PTFE(四フッ化エチレン樹脂)又は二硫化モリブデン、微細炭素系材料、金属粉の少なくとも1種以上であること、
が好適である。
According to the present invention, the resin molded product is formed by dispersing 5 to 200 parts by weight of mesophase pitch carbon fiber and 5 to 40 parts by weight of a thickener with respect to 100 parts by weight of the addition reaction type polyimide. Provided is a resin molded product having a limit PV value of 3000 kPa · m / s or more.
In the resin molded product of the present invention ,
1 . Said mesophase-type pitch-based carbon fiber has an average fiber length 50~6000Myuemu, a mesophase-type pitch-based carbon fibers having an average fiber diameter of 5 to 20 [mu] m,
2. 2. The thickener is at least one of graphite, PTFE (tetrafluoroethylene resin) or molybdenum disulfide, a fine carbon-based material, and a metal powder.
Is preferable.

本発明によればまた、付加反応型ポリイミド100重量部に対して、5〜200重量部のメソフェーズ型ピッチ系炭素繊維、5〜40重量部の増粘剤が分散して成る樹脂成形体の製造方法であって、前記付加反応型ポリイミド樹脂のプレポリマー、メソフェーズ型ピッチ系炭素繊維及び増粘剤を付加反応型ポリイミド樹脂の融点(160〜170℃)以上、熱硬化開始温度(300℃近傍)以下の温度で混練する分散混練工程、分散混練工程を経た混合物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形する加圧賦形工程、とから成ることを特徴とする樹脂成形体の製造方法が提供される。
本発明の樹脂成形体の製造方法においては、
1.前記分散混練工程を経た混合物の300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sであること、
2.前記賦形工程が、圧縮成形により行われること、
が好適である。
According to the present invention, the production of a resin molded body in which 5 to 200 parts by weight of mesophase pitch-based carbon fibers and 5 to 40 parts by weight of a thickener are dispersed with 100 parts by weight of addition reaction type polyimide. The method is such that the prepolymer of the addition reaction type polyimide resin, the mesophase type pitch carbon fiber and the thickener are added to the addition reaction type polyimide resin at the melting point (160 to 170 ° C.) or higher, and the thermosetting start temperature (near 300 ° C.). A resin characterized by comprising a dispersion kneading step of kneading at the following temperature and a pressure shaping step of shaping a mixture that has undergone the dispersion kneading step under temperature conditions equal to or higher than the thermosetting start temperature of the reactive polyimide resin. A method for producing a molded body is provided.
In the method for producing a resin molded product of the present invention,
1. 1. The melt viscosity of the mixture that has undergone the dispersion kneading step under temperature conditions of 300 to 320 ° C. is 10 to 5000 Pa · s.
2. 2. That the shaping step is performed by compression molding,
Is preferable.

本発明の繊維強化ポリイミド樹脂成形体においては、耐熱性、耐久性及び機械的強度に優れた付加反応型ポリイミド樹脂をマトリックス樹脂とし、この付加反応型ポリイミド100重量部に対して5〜200重量部の機能性繊維、5〜40重量部の増粘剤の量で配合することにより、限界PV値が3000kPa・m/s以上と優れた摺動性能を発現することが可能になる。しかも成形体中に機能性繊維が均一に分散された状態で架橋硬化されて成形されていることから、反り等のゆがみがなく、摺動性部材として好適に使用できる。尚、限界PV値とは、摩擦力が急激に上昇するときの面圧Pと速度Vの積で求まる値で、摺動部材として使用環境に適しているかを判断する指標として限界PV値を算出することが一般的である。限界PV値に近い条件下では摺動面の摩擦熱による樹脂の溶融・焼きつきによる動摩擦係数および試料温度の上昇、材料の異常摩耗などがみられ、この値が高いことは摺動性能が高いことを意味する。
また本発明の繊維強化ポリイミド樹脂成形体は、機能性繊維に付加反応型ポリイミドが含浸し、かつ、機能性繊維を所定量に含有しており、摺動に優れ、摺動部材として用いた場合に、長期に亘って安定した性能を維持することができるばかりか、そりによる変形を防止できるので、生産性に優れるとともに、長期間使用時の磨耗によるPV値の変化を小さくでき、交換時期や装置などの管理がしやすい。
In the fiber-reinforced polyimide resin molded product of the present invention, an addition reaction type polyimide resin having excellent heat resistance, durability and mechanical strength is used as a matrix resin, and 5 to 200 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide. By blending the functional fiber in an amount of 5 to 40 parts by weight of a thickener, it becomes possible to exhibit excellent sliding performance with a limit PV value of 3000 kPa · m / s or more. Moreover, since the functional fibers are cross-linked and cured in a state of being uniformly dispersed in the molded body, there is no distortion such as warpage, and the functional fibers can be suitably used as a slidable member. The limit PV value is a value obtained by the product of the surface pressure P and the speed V when the frictional force suddenly rises, and the limit PV value is calculated as an index for judging whether the sliding member is suitable for the usage environment. It is common to do. Under conditions close to the limit PV value, the dynamic friction coefficient and sample temperature rise due to melting and seizure of the resin due to the frictional heat of the sliding surface, abnormal wear of the material, etc. are observed, and a high value means high sliding performance. Means that.
Further, in the fiber-reinforced polyimide resin molded product of the present invention, the functional fibers are impregnated with the addition reaction type polyimide and contain a predetermined amount of the functional fibers, which is excellent in sliding and is used as a sliding member. In addition, not only can stable performance be maintained for a long period of time, but deformation due to warpage can be prevented, so productivity is excellent, and changes in PV value due to wear during long-term use can be reduced, and replacement time and Easy to manage equipment.

また本発明の繊維強化ポリイミド樹脂成形体の成形方法においては、付加反応型ポリイミド樹脂と機能性繊維と共に、増粘剤を配合することにより、増粘工程を設けることなく、繊維沈降が生じない粘度に調整することが可能になる。これにより、プレポリマー中に機能性繊維が分散した状態を維持することが可能になり、機能性繊維が均一に分散した繊維強化ポリイミド樹脂成形体を反り変形を生じることなく成形することが可能になる。
また後述するように本発明で好適に用いる増粘剤は摺動性にも優れており、摺動性能を向上することができる。
Further, in the molding method of the fiber-reinforced polyimide resin molded product of the present invention, by blending a thickener together with the addition reaction type polyimide resin and the functional fiber, the viscosity does not cause fiber sedimentation without providing a thickening step. It becomes possible to adjust to. This makes it possible to maintain a state in which the functional fibers are dispersed in the prepolymer, and it is possible to mold a fiber-reinforced polyimide resin molded product in which the functional fibers are uniformly dispersed without causing warpage deformation. Become.
Further, as will be described later, the thickener preferably used in the present invention is also excellent in slidability, and the sliding performance can be improved.

実施例における限界PV値の測定方法を説明するための図である。It is a figure for demonstrating the measurement method of the limit PV value in an Example. 実施例における反り量の測定方法を説明するための図である。It is a figure for demonstrating the method of measuring the amount of warpage in an Example. 繊維の偏在による繊維不均一性を示すための図である。It is a figure for showing the fiber non-uniformity due to uneven distribution of a fiber.

(樹脂成形体)
本発明の繊維強化ポリアミド樹脂成形体は、後述する付加反応型ポリイミド樹脂をマトリックス樹脂とし、この付加反応型ポリイミド100重量部に対して5〜200重量部の機能性繊維、5〜40重量部の増粘剤が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることが重要な特徴であり、耐熱性、耐久性及び機械的強度を有すると共に、限界PV値が大きく、優れた摺動性能を有している。
(Resin molded product)
In the fiber-reinforced polyamide resin molded product of the present invention, the addition reaction type polyimide resin described later is used as a matrix resin, and 5 to 200 parts by weight of functional fibers and 5 to 40 parts by weight of the functional fiber are used with respect to 100 parts by weight of the addition reaction type polyimide. It is a resin molded body in which a thickener is dispersed, and it is an important feature that the limit PV value is 3000 kPa · m / s or more, and it has heat resistance, durability and mechanical strength, and the limit PV. It has a large value and excellent sliding performance.

[付加反応型ポリイミド樹脂]
本発明においては、繊維強化ポリイミド樹脂成形体を構成する組成物のマトリックスとなるポリイミド樹脂として、付加反応型ポリイミド樹脂を用いることが重要な特徴である。
本発明に用いる付加反応型ポリイミド樹脂は、末端に付加反応基を有する芳香族ポリイミドオリゴマーから成り、従来公知の製法により調製したものを使用することができる。例えば、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物を、各酸基の当量の合計と各アミノ基の合計とをほぼ等量となるように使用して、好適には溶媒中で反応させることによって容易に得ることができる。反応の方法としては、100℃以下、好適には80℃以下の温度で、0.1〜50時間重合してアミド酸結合を有するオリゴマーを生成し、次いでイミド化剤によって化学イミド化する方法や、140〜270℃程度の高温で加熱して熱イミド化する2工程からなる方法、或いは始めから140〜270℃の高温で、0.1〜50時間重合・イミド化反応を行わせる1工程からなる方法を例示できる。
これらの反応で用いる溶媒は、これに限定されないが、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、γ−ブチルラクトン、N−メチルカプロラクタム等の有機極性溶媒を好適に使用できる。
[Addition reaction type polyimide resin]
In the present invention, it is an important feature to use an addition reaction type polyimide resin as a polyimide resin serving as a matrix of a composition constituting a fiber-reinforced polyimide resin molded product.
The addition reaction type polyimide resin used in the present invention is composed of an aromatic polyimide oligomer having an addition reaction group at the terminal, and one prepared by a conventionally known production method can be used. For example, an aromatic tetracarboxylic acid dianhydride, an aromatic diamine, and a compound having an anhydride group or an amino group together with an addition reactive group in the molecule, the sum of the equivalents of each acid group and the sum of each amino group are approximately equal to each other. It can be easily obtained by using it in equal amounts and preferably reacting in a solvent. The reaction method includes a method of polymerizing at a temperature of 100 ° C. or lower, preferably 80 ° C. or lower, for 0.1 to 50 hours to produce an oligomer having an amic acid bond, and then chemically imidizing with an imidizing agent. , A method consisting of two steps of heating at a high temperature of about 140 to 270 ° C. for thermal imidization, or from one step of carrying out a polymerization / imidization reaction at a high temperature of 140 to 270 ° C. for 0.1 to 50 hours from the beginning. Can be exemplified.
Solvents used in these reactions are not limited to this, but are limited to N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, γ-butyllactone, N- An organic polar solvent such as methylcaprolactam can be preferably used.

本発明において、芳香族イミドオリゴマーの末端の付加反応基は、樹脂成形体を製造する際に、加熱によって硬化反応(付加重合反応)を行う基であれば特に限定されないが、好適に硬化反応を行うことができること、及び得られた硬化物の耐熱性が良好であることを考慮すると、好ましくはフェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることが好ましく、特にフェニルエチニル基は、硬化反応によるガス成分の発生がなく、しかも得られた樹脂成形体の耐熱性に優れていると共に機械的な強度にも優れていることから好適である。
これらの付加反応基は、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物が、芳香族イミドオリゴマーの末端のアミノ基又は酸無水物基と、好適にはイミド環を形成する反応によって、芳香族イミドオリゴマーの末端に導入される。
分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は、例えば4−(2−フェニルエチニル)無水フタル酸、4−(2−フェニルエチニル)アニリン、4−エチニル−無水フタル酸、4−エチニルアニリン、ナジック酸無水物、マレイン酸無水物等を好適に使用することができる。
In the present invention, the addition reactive group at the terminal of the aromatic imide oligomer is not particularly limited as long as it is a group that undergoes a curing reaction (additional polymerization reaction) by heating when producing a resin molded product, but the curing reaction is preferably performed. Considering what can be done and the good heat resistance of the obtained cured product, any reactive group preferably selected from the group consisting of a phenylethynyl group, an acetylene group, a nadic acid group, and a maleimide group. The phenylethynyl group is particularly preferable because it does not generate a gas component due to the curing reaction, and the obtained resin molded product has excellent heat resistance and mechanical strength. is there.
These addition-reactive groups are reactions in which a compound having an anhydride group or an amino group together with an addition-reaction group in the molecule preferably forms an imide ring with an amino group or an acid anhydride group at the terminal of an aromatic imide oligomer. Is introduced at the end of the aromatic imide oligomer.
Compounds having an anhydride group or an amino group together with an addition reaction group in the molecule include, for example, 4- (2-phenylethynyl) phthalic anhydride, 4- (2-phenylethynyl) aniline, 4-ethynyl-phthalic anhydride, 4 -Ethynylaniline, nadicic anhydride, maleic anhydride and the like can be preferably used.

末端に付加反応基を有する芳香族イミドオリゴマーを形成するテトラカルボン酸成分としては、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物を例示することができ、特に、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物を好適に使用することができる。 Examples of the tetracarboxylic acid component forming an aromatic imide oligomer having an addition reactive group at the terminal include 2,3,3', 4'-biphenyltetracarboxylic dianhydride and 2,2', 3,3'-biphenyl. At least selected from the group consisting of tetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride. One tetracarboxylic dianhydride can be exemplified, and in particular, 2,3,3', 4'-biphenyltetracarboxylic dianhydride can be preferably used.

末端に付加反応基を有する芳香族イミドオリゴマーを形成するジアミン成分としては、これに限定されないが、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、2,6−ジエチル−1,3−ジアミノベンゼン、4,6−ジエチル−2−メチル−1,3-ジアミノベンゼン、3,5−ジエチルトルエン−2,4−ジアミン、3,5−ジエチルトルエン−2,6−ジアミン等のベンゼン環を1個有するジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、ビス(2,6−ジエチル−4−アミノフェノキシ)メタン、ビス(2−エチル−6−メチル−4−アミノフェニル)メタン、4,4’−メチレン−ビス(2,6−ジエチルアニリン)、4,4’−メチレン−ビス(2−エチル,6−メチルアニリン)、2,2―ビス(3−アミノフェニル)プロパン、2,2―ビス(4−アミノフェニル)プロパン、ベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、3,3’−ジメチルベンジジン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)プロパン等のベンゼン環を2個有するジアミン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン,1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン等のベンゼン環を3個有するジアミン2,2−ビス[4−[4−アミノフェノキシ]フェニル]プロパン、2,2−ビス[4−[4−アミノフェノキシ]フェニル]ヘキサフルオロプロパン等のベンゼン環を4個有するジアミン等を単独、或いは複数種混合して使用することができる。 The diamine component forming an aromatic imide oligomer having an addition reactive group at the terminal is not limited to this, but is limited to 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, and 2,6-. Diethyl-1,3-diaminobenzene, 4,6-diethyl-2-methyl-1,3-diaminobenzene, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6- Diamine having one benzene ring such as diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone , 4,4'-Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, bis (2,6-diethyl-4-aminophenoxy) methane, bis (2-ethyl-6-methyl-4-aminophenyl) methane, 4 , 4'-methylene-bis (2,6-diethylaniline), 4,4'-methylene-bis (2-ethyl, 6-methylaniline), 2,2-bis (3-aminophenyl) propane, 2, 2-Bis (4-aminophenyl) propane, benzene, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-dimethylbenzene, 2,2-bis (4-aminophenyl) propane, 2,2 -Diamine having two benzene rings such as bis (3-aminophenyl) propane, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis Diamine 2,2-bis [4- [4-aminophenoxy] phenyl] propane, 2,2 having three benzene rings such as (4-aminophenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene. -Bis [4- [4-aminophenoxy] phenyl] Hexafluoropropane and other diamines having four benzene rings can be used alone or in combination of two or more.

これらの中でも、1,3−ジアミノベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、及び2,2’−ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成された混合ジアミンを用いることが好適であり、特に、1,3−ジアミノベンゼンと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、3,4’−ジアミノジフェニルエーテルと4,4’−ジアミノジフェニルエーテルとの組み合せからなる混合ジアミン、3,4’−ジアミノジフェニルエーテルと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、4,4’−ジアミノジフェニルエーテルと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、及び2,2’−ビス(トリフルオロメチル)ベンジジンと1,3−ビス(4−アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミンを使用することが、耐熱性と成形性の点から好適である。 Among these, 1,3-diaminobenzene, 1,3-bis (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and 2,2'-bis (trifluoro). It is preferable to use a mixed diamine composed of at least two aromatic diamines selected from the group consisting of methyl) benzidine, in particular 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene. Mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, mixed diamine consisting of a combination of 3,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy). Mixed diamines consisting of a combination with benzene, mixed diamines consisting of a combination of 4,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy) benzene, and 2,2'-bis (trifluoromethyl) benzidine It is preferable to use a mixed diamine composed of a combination of 1,3-bis (4-aminophenoxy) benzene from the viewpoint of heat resistance and moldability.

本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、イミドオリゴマーの繰返し単位の繰返しが、0〜20、特に1〜5であることが好適であり、GPCによるスチレン換算の数平均分子量が、10000以下、特に3000以下であることが好適である。繰返し単位の繰返し数が上記範囲にあることにより、溶融粘度が適切な範囲に調整されて、機能性繊維を混合することが可能になる。また高温で成形する必要がなく、成形性に優れていると共に、耐熱性、機械的強度に優れた樹脂成形体を提供することが可能になる。
繰返し単位の繰返し数の調整は、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を変えることにより行うことができ、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を高くすることにより、低分子量化して繰返し単位の繰返し数は小さくなり、この化合物の割合を小さくすると、高分子量化して繰返し単位の繰返し数は大きくなる。
The aromatic imide oligomer having an addition reactive group at the terminal used in the present invention preferably has a repetition unit of the imide oligomer of 0 to 20, particularly 1 to 5, and has a styrene-equivalent number average molecular weight by GPC. However, it is preferably 10,000 or less, particularly 3000 or less. When the number of repetitions of the repetition unit is in the above range, the melt viscosity is adjusted to an appropriate range, and the functional fibers can be mixed. Further, it is not necessary to mold at a high temperature, and it is possible to provide a resin molded product having excellent moldability and excellent heat resistance and mechanical strength.
The number of repetitions of the repetition unit can be adjusted by changing the proportion of the aromatic tetracarboxylic acid dianhydride, the aromatic diamine, and the compound having an anhydride group or an amino group together with the addition reactive group in the molecule. By increasing the proportion of the compound having an anhydride group or an amino group together with the addition reactive group in the molecule, the molecular weight is reduced and the number of repetitions of the repeating unit is reduced, and when the proportion of this compound is decreased, the molecular weight is increased and the repetition is repeated. The number of repetitions of the unit increases.

付加反応型ポリイミド樹脂には、目的とする樹脂成形体の用途に応じて、難燃剤、着色剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤等の樹脂添加剤を公知の処方に従って配合することができる。 As the addition reaction type polyimide resin, resin additives such as flame retardants, colorants, lubricants, heat stabilizers, light stabilizers, ultraviolet absorbers, fillers, etc. are known depending on the intended use of the resin molded body. Can be formulated according to the formulation.

[機能性繊維]
本発明において、上述した付加反応型ポリイミド樹脂中に分散させる機能性繊維としては、従来公知の物を使用することができ、炭素繊維、アラミド繊維、ガラス繊維、金属繊維等、従来公知の機能性繊維を使用することができるが、特に炭素繊維を好適に用いることができる。
中でも、平均繊維長が50〜6000μm及び平均繊維径が5〜20μmの範囲にある炭素繊維を好適に使用することができる。上記範囲よりも平均繊維長が短い場合には、炭素繊維の強化材としての効果を充分に得ることができず、その一方上記範囲よりも長いとポリイミド樹脂中での分散性に劣るようになる。また上記範囲よりも平均繊維径が細い場合には、取扱い性に劣ると共に高価であり、一方上記範囲よりも平均繊維径が太い場合には機能性繊維の沈降速度が増大して、機能性繊維が偏在しやすくなるおそれがあると共に、繊維の強度が低下する傾向があり、強化材としての効果を充分に得られないおそれがある。
[Functional fiber]
In the present invention, conventionally known functional fibers can be used as the functional fibers dispersed in the above-mentioned addition reaction type polyimide resin, and conventionally known functional fibers such as carbon fibers, aramid fibers, glass fibers, and metal fibers can be used. Although fibers can be used, carbon fibers can be particularly preferably used.
Among them, carbon fibers having an average fiber length in the range of 50 to 6000 μm and an average fiber diameter in the range of 5 to 20 μm can be preferably used. If the average fiber length is shorter than the above range, the effect as a reinforcing material for carbon fibers cannot be sufficiently obtained, while if it is longer than the above range, the dispersibility in the polyimide resin becomes inferior. .. If the average fiber diameter is smaller than the above range, the handleability is poor and the price is high. On the other hand, if the average fiber diameter is larger than the above range, the settling speed of the functional fiber increases and the functional fiber There is a possibility that the fibers are unevenly distributed, and the strength of the fibers tends to decrease, so that the effect as a reinforcing material may not be sufficiently obtained.

機能性繊維の含有量は、樹脂成形体の摺動性能及び成形時の反り発生に重大な影響を有しており、本発明においては、機能性繊維は、付加反応型ポリイミド100重量部に対して5〜200重量部、特に10〜150重量部の量で含有されていることが、優れた摺動性能を有すると共に、反りがなく優れた形状安定性を有する成形体を得る上で好適である。上記範囲よりも機能性繊維の量が少ないと、限界PV値が上記値未満になり摺動性が低下するおそれがある。また機能性繊維の沈降による樹脂成形体の反りが発生するおそれもある。一方上記範囲よりも機能性繊維の量が多いと、上記範囲にある場合に比して限界PV値が低下するおそれがある。また過度の増粘が生じ、賦型できないおそれがある。
また上記機能性繊維と共に、カーボンブラック等の微細炭素系材料、アルミ粉、銅粉等の金属粉等の無機材料の少なくとも一種を配合することもできる。
上記無機材料は、付加反応型ポリイミド100重量部に対して5〜40重量部で含有されていることが好適である。
The content of the functional fiber has a significant influence on the sliding performance of the resin molded product and the occurrence of warpage during molding. In the present invention, the functional fiber is based on 100 parts by weight of the addition reaction type polyimide. It is preferable that the content is contained in an amount of 5 to 200 parts by weight, particularly 10 to 150 parts by weight, in order to obtain a molded product having excellent sliding performance, no warpage and excellent shape stability. is there. If the amount of functional fibers is less than the above range, the limit PV value may be less than the above value and the slidability may be lowered. In addition, warpage of the resin molded product may occur due to sedimentation of the functional fibers. On the other hand, if the amount of functional fibers is larger than the above range, the limit PV value may be lower than that in the above range. In addition, excessive thickening may occur and molding may not be possible.
Further, together with the above functional fibers, at least one kind of fine carbon-based material such as carbon black and inorganic material such as metal powder such as aluminum powder and copper powder can be blended.
It is preferable that the inorganic material is contained in an amount of 5 to 40 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide.

[増粘剤]
本発明においては、上記機能性繊維と共に増粘剤を付加反応型ポリイミド100重量部に対して5〜40重量部で用いることにより、付加反応型ポリアミド樹脂のプレポリマーの粘度を、増粘工程を経ることなく増大させることが可能になり、これにより機能性繊維は沈降することなく、プレポリマー中に分散した状態を維持できる。
増粘剤としては、グラファイト、二硫化モリブデン、PTFE(四フッ化エチレン樹脂)、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム等を使用することができるが、中でグラファイト、二硫化モリブデン、PTFEは、摺動性能を更に向上させることもできるので特に好適である。
増粘剤は、付加反応型ポリイミド100重量部に対して5〜40重量部の量で含有されていることが好適である。上記範囲よりも増粘剤の量が少ないと、プレポリマーの粘度が十分に増加せず、機能性繊維の沈降を充分に抑制することができず、機能性繊維が分散している反り変形のない樹脂成形体を成形することができない。また上記範囲よりも増粘剤の量が多くなると摩擦係数の増大や耐摩耗性の低下等、摺動性能を損なうおそれがある。
[Thickener]
In the present invention, the viscosity of the prepolymer of the addition reaction type polyamide resin is increased by using the thickener together with the above functional fibers in an amount of 5 to 40 parts by weight based on 100 parts by weight of the addition reaction type polyimide. It can be increased without passage, which allows the functional fibers to remain dispersed in the prepolymer without settling.
As the thickener, graphite, molybdenum disulfide, PTFE (tetrafluoroethylene resin), magnesium oxide, magnesium hydroxide, calcium hydroxide and the like can be used, among which graphite, molybdenum disulfide and PTFE are used. , It is particularly suitable because the sliding performance can be further improved.
The thickener is preferably contained in an amount of 5 to 40 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide. If the amount of the thickener is smaller than the above range, the viscosity of the prepolymer is not sufficiently increased, the sedimentation of the functional fibers cannot be sufficiently suppressed, and the functional fibers are dispersed in the warp deformation. No resin molded body can be molded. Further, if the amount of the thickener is larger than the above range, the sliding performance may be impaired, such as an increase in the friction coefficient and a decrease in wear resistance.

(樹脂成形体の製造方法)
本発明の樹脂成形体の製造方法は、付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)100重量部に対して5〜200重量部の機能性繊維及び5〜40重量部の増粘剤を、付加反応型ポリイミド樹脂の融点以上の温度で混練する分散混練工程、及び前記分散混練工程を経た混合物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で加圧賦形する賦形工程、とから成ることを特徴とする。
前述したとおり、本発明の樹脂成形体の成形に用いる付加反応型ポリイミド樹脂は、架橋硬化前のプレポリマーの状態では低粘度であることから、機能性繊維を含有させると沈降してしまい、その結果、機能性繊維が遍在し、成形体に反りが発生する。本発明においては、機能性繊維と共に所定量の増粘剤をプレポリマーに配合することにより、プレポリマーの粘度を増大させることが可能になり、その結果、プレポリマー中で機能性繊維が沈降することなく分散し、機能性繊維が分散した状態を維持したまま賦形工程で賦形されることから、加熱硬化の際に均等に収縮して反りのない成形体を成形することが可能になる。
(Manufacturing method of resin molded product)
In the method for producing a resin molded product of the present invention, 5 to 200 parts by weight of functional fibers and 5 to 40 parts by weight of a thickener are added to 100 parts by weight of a prepolymer (imide oligomer) of an addition reaction type polyimide resin. A dispersion kneading step of kneading at a temperature equal to or higher than the melting point of the addition reaction type polyimide resin, and a shaping step of pressurizing and shaping the mixture that has undergone the dispersion kneading step under temperature conditions equal to or higher than the thermal curing start temperature of the reactive polyimide resin. It is characterized by consisting of.
As described above, the addition reaction type polyimide resin used for molding the resin molded product of the present invention has a low viscosity in the state of the prepolymer before cross-linking and curing, so that it precipitates when it contains functional fibers. As a result, the functional fibers are ubiquitous and the molded product is warped. In the present invention, by blending a predetermined amount of a thickener together with the functional fibers into the prepolymer, it becomes possible to increase the viscosity of the prepolymer, and as a result, the functional fibers settle in the prepolymer. Since it is dispersed without being dispersed and the functional fibers are shaped in the shaping step while maintaining the dispersed state, it becomes possible to form a molded product that shrinks evenly during heat curing and does not warp. ..

[分散混練工程]
付加反応型ポリイミド樹脂のプレポリマー(イミドオリゴマー)と機能性繊維及び増粘剤を、付加反応型ポリイミド樹脂の融点以上の温度で加熱しプレポリマーを溶融しながら混練することにより、プレポリマーと機能性繊維を混合する。この際、前述したとおり、付加反応型ポリイミド100重量部に対して機能性繊維を5〜200重量部、特に10〜150重量部、増粘剤を5〜40重量部の量で用いる。
プレポリマー及び機能性繊維の混練は、ヘンシェルミキサー、タンブラーミキサー、リボンブレンダ―等の従来公知の混合機を用いることもできるが、機能性繊維の破断を抑制すると共に分散させることが重要であることから、バッチ式の加圧ニーダー(混練機)を用いることが特に好適である。
本発明においては、分散混練工程の温度は、プレポリマーの融点以上、且つ架橋硬化する温度以下とし分散混練工程を経たプレポリマーと機能性繊維及び増粘剤の混合物が、300〜320℃の温度条件下での溶融粘度が10〜5000Pa・sの範囲にあり、機能性繊維にプレポリマーが浸透することとが相俟って、機能性繊維は沈降することなく、プレポリマー中に分散した状態を維持する。
[Dispersion kneading process]
The prepolymer (imide oligomer) of the addition reaction type polyimide resin, the functional fiber, and the thickener are heated at a temperature equal to or higher than the melting point of the addition reaction type polyimide resin and kneaded while melting the prepolymer to function as a prepolymer. Mix the sex fibers. At this time, as described above, the functional fiber is used in an amount of 5 to 200 parts by weight, particularly 10 to 150 parts by weight, and the thickener is used in an amount of 5 to 40 parts by weight with respect to 100 parts by weight of the addition reaction type polyimide.
For kneading the prepolymer and the functional fiber, a conventionally known mixer such as a Henschel mixer, a tumbler mixer, or a ribbon blender can be used, but it is important to suppress the breakage of the functional fiber and disperse it. Therefore, it is particularly preferable to use a batch type pressure kneader (kneader).
In the present invention, the temperature of the dispersion kneading step is set to be equal to or higher than the melting point of the prepolymer and lower than the temperature at which the prepolymer is crosslinked and cured, and the temperature of the mixture of the prepolymer, the functional fiber and the thickener that has undergone the dispersion kneading step is 300 to 320 ° C. The melt viscosity under the conditions is in the range of 10 to 5000 Pa · s, and the prepolymer permeates the functional fibers, and the functional fibers are dispersed in the prepolymer without settling. To maintain.

本発明においては、分散混練工程を経たプレポリマーと機能性繊維及び増粘剤の混合物を冷却固化した後、所定の大きさの塊状にしておくことが望ましい。これにより、機能性繊維がプレポリマーに均一分散した混合物を経時保管することが可能になり、取扱い性も向上する。 In the present invention, it is desirable that a mixture of the prepolymer, the functional fiber and the thickener that has undergone the dispersion kneading step is cooled and solidified, and then made into a mass having a predetermined size. This makes it possible to store the mixture in which the functional fibers are uniformly dispersed in the prepolymer over time, and the handleability is also improved.

[賦形工程]
分散混練工程を経て溶融粘度が上記範囲に調整されたプレポリマー、機能性繊維及び増粘剤の混合物は、用いるポリイミド樹脂の熱硬化開始温度以上の温度条件下で賦形し、所望の形状の樹脂成形体として成形される。
分散混練工程と連続して賦形工程を行う場合には、溶融状態にあるポリイミドプレポリマーと機能性繊維及び増粘剤の混合物を、成形型に導入して熱硬化開始温度以上の温度で加熱することにより硬化させて樹脂成形体を成形するが、前述したように、分散混練工程後プレポリマーと機能性繊維及び増粘剤の混合物を冷却固化し粉砕混合した混合物を用いる場合には、付加反応型ポリイミド樹脂の融点以上の温度で加熱して混合物を溶融した後成形型に導入して加熱硬化させるか、或いは成形型内で混合物を溶融すると共に加熱硬化させることにより樹脂成形体を成形することができる。
尚、賦形は、成形型に導入された混合物を加圧圧縮して成形する圧縮成形やトランスファー成形によることが好適であるが、射出成形や押出成形によっても成形することができる。
[Shaping process]
The mixture of the prepolymer, the functional fiber and the thickener whose melt viscosity has been adjusted to the above range through the dispersion kneading step is shaped under temperature conditions equal to or higher than the thermosetting start temperature of the polyimide resin to be used, and has a desired shape. It is molded as a resin molded body.
When the shaping step is performed continuously with the dispersion kneading step, a mixture of the melted polyimide prepolymer, the functional fiber and the thickener is introduced into a molding die and heated at a temperature equal to or higher than the thermosetting start temperature. The resin molded body is formed by curing the resin molded body. However, as described above, when a mixture of the prepolymer, the functional fiber and the thickener is cooled and solidified after the dispersion kneading step and pulverized and mixed is used, it is added. The resin molded body is molded by heating at a temperature equal to or higher than the melting point of the reactive polyimide resin to melt the mixture and then introducing it into a molding die to heat-cure it, or by melting the mixture in the molding die and heat-curing it. be able to.
The shaping is preferably performed by compression molding or transfer molding in which the mixture introduced into the molding die is pressure-compressed and molded, but it can also be molded by injection molding or extrusion molding.

(限界PV値の測定)
JIS K 7218(プラスチックの滑り摩耗試験方法)に適合したスラスト型摩耗試験機を用い、図1に示すようなリングオンディスク式にて速度一定の条件下で5分ないしは10分おきに面圧を上昇させ、摩擦力が急激に上昇する或いは著しい変形と摩耗粉が発生したところを限界とし、限界時の1つ前の面圧(P)と速度(V)の積を限界PV値とした。
限界PV値測定条件
試験速度;0.5m/s、初期面圧;0.5MPa
面圧ステップ 0.5MPa/10min(〜10MPa)
1MPa/10min(10MPa〜)
相手材 :S45Cリング 表面粗さRa0.8μm
外径25.6mm、内径20mm(接触面積2cm
試験環境:23±2℃、50%±5%RH
試験機:エー・アンド・デイ社製 摩擦摩耗試験機 EMF−III−F
(Measurement of limit PV value)
Using a thrust type wear tester conforming to JIS K 7218 (plastic slip wear test method), a ring-on-disk type as shown in Fig. 1 is used to apply surface pressure every 5 to 10 minutes under constant speed conditions. The limit is the place where the frictional force rises sharply or significant deformation and wear debris are generated, and the product of the surface pressure (P) and the velocity (V) immediately before the limit is set as the limit PV value.
Limit PV value measurement conditions Test speed; 0.5 m / s, initial surface pressure; 0.5 MPa
Surface pressure step 0.5 MPa / 10 min (-10 MPa)
1MPa / 10min (10MPa ~)
Mating material: S45C ring Surface roughness Ra 0.8 μm
Outer diameter 25.6 mm, inner diameter 20 mm (contact area 2 cm 2 )
Test environment: 23 ± 2 ° C, 50% ± 5% RH
Testing machine: A & D Co., Ltd. friction and wear testing machine EMF-III-F

(繊維の分散)
成形体の断面を観察し、繊維の偏在の有無を目視または走査電子顕微鏡(日立ハイテクテクノロジー社製S−3400N)による観察にて確認した。繊維が分散しているものを○、繊維の沈降がみられるものを×とした。
(Dispersion of fibers)
The cross section of the molded body was observed, and the presence or absence of uneven distribution of fibers was confirmed visually or by observation with a scanning electron microscope (S-3400N manufactured by Hitachi High-Tech Technology Corporation). Those in which the fibers were dispersed were marked with ◯, and those in which the fibers were settled were marked with x.

(反り量の測定)
図2に示す試験片反り量t(mm)、製品直径寸法D(mm)を測定し、反り/直径比を以下の式(1)により算出した。
反り/直径比(%)=t/D×100
t:試験片反り量(mm)、D:製品直径(mm)
なお反り/直径比の良否判定は1.5%未満を○、1.5%以上を×とした。
(Measurement of warpage)
The test piece warp amount t (mm) and the product diameter dimension D (mm) shown in FIG. 2 were measured, and the warp / diameter ratio was calculated by the following formula (1).
Warp / diameter ratio (%) = t / D x 100
t: Test piece warpage amount (mm), D: Product diameter (mm)
The quality of the warp / diameter ratio was judged as ◯ for less than 1.5% and x for 1.5% or more.

(溶融粘度の測定)
310℃における溶融粘度をレオメータ(TA instrument社製ARES)により測定した。測定モードを動的周波数分散として、角周波数を0.1〜500rad/sとし、0.1rad/sの条件における溶融粘度を測定値とした。
(Measurement of melt viscosity)
The melt viscosity at 310 ° C. was measured with a rheometer (ARES manufactured by TA instrument). The measurement mode was dynamic frequency dispersion, the angular frequency was 0.1 to 500 rad / s, and the melt viscosity under the condition of 0.1 rad / s was the measured value.

(実施例1)
付加重合型ポリイミド(宇部興産社製PETI−330)100重量部に対して、平均単繊維長さ200μmのピッチ系炭素繊維(三菱樹脂社製K223HM)12.5重量部、グラファイト粉末(和光純薬製070−01325)12.5重量部を配合し、ニーダーにより大気圧下280℃、30分で溶融混練した。その後、室温まで冷却された混合物(バルクモールディングコンパウンド、以下BMC)を得た。得られたBMCを金型内に納まる大きさ程度に割ってからBMCを圧縮成形機用金型に、280℃〜320℃で一定時間保持することで溶融および均熱した後、2.4MPaに加圧しながら、昇温速度3℃/minで371℃まで昇温、1時間保持、徐冷してφ40mm厚さ3mmの板を得た。得られた板材を357℃条件下で6時間の硬化処理を施した後、所望の寸法に加工し試験片を得た。
(Example 1)
12.5 parts by weight of pitch-based carbon fiber (K223HM manufactured by Mitsubishi Resin Industries, Ltd.) with an average single fiber length of 200 μm and graphite powder (Wako Pure Chemical Industries, Ltd.) with respect to 100 parts by weight of addition polymerization type polyimide (PETI-330 manufactured by Ube Industries, Ltd.) 070-01325) 12.5 parts by weight was blended and melt-kneaded with a kneader at 280 ° C. for 30 minutes under atmospheric pressure. Then, a mixture cooled to room temperature (bulk molding compound, hereinafter BMC) was obtained. After dividing the obtained BMC into a size that fits in the mold, melt and soak the BMC in a mold for a compression molding machine by holding it at 280 ° C. to 320 ° C. for a certain period of time, and then set it to 2.4 MPa. While pressurizing, the temperature was raised to 371 ° C. at a heating rate of 3 ° C./min, held for 1 hour, and slowly cooled to obtain a plate having a diameter of 40 mm and a thickness of 3 mm. The obtained plate material was cured under the condition of 357 ° C. for 6 hours, and then processed to a desired size to obtain a test piece.

(実施例2)
炭素繊維の配合量を28.6重量部、グラファイト粉末の配合量を14.3重量部に変更した以外は実施例1と同じとした。
(Example 2)
The same as in Example 1 except that the blending amount of carbon fiber was changed to 28.6 parts by weight and the blending amount of graphite powder was changed to 14.3 parts by weight.

(実施例3)
付加重合型ポリイミド(宇部興産社製PETI−330)100重量部に対して、平均単繊維長さ200μmのピッチ系炭素繊維(三菱樹脂社製K223HM)28.6重量部、PTFE粉末(喜多村社製 KT−600M)14.3重量部を配合し、ニーダーにより大気圧下280℃、30分で溶融混練した。その後、室温まで冷却されたBMCを得た。得られたBMCを金型内に納まる大きさ程度に割ってからBMCを圧縮成形機用金型に、280℃〜320℃で一定時間保持することで溶融および均熱した後、11MPaに加圧しながら、昇温速度3℃/minで371℃まで昇温、1時間保持、徐冷してφ200mm厚さ3mmの板を得た。得られた板材を357℃条件下で6時間の硬化処理を施した後、所望の寸法に加工し試験片を得た。
(Example 3)
28.6 parts by weight of pitch-based carbon fiber (K223HM manufactured by Mitsubishi Resin Co., Ltd.) and PTFE powder (manufactured by Kitamura Co., Ltd.) with an average single fiber length of 200 μm with respect to 100 parts by weight of addition polymerization type polyimide (PETI-330 manufactured by Ube Industries, Ltd.) KT-600M) 14.3 parts by weight was blended and melt-kneaded with a kneader at 280 ° C. for 30 minutes under atmospheric pressure. Then, BMC cooled to room temperature was obtained. The obtained BMC is divided into a size that fits in the mold, and then the BMC is melted and heated by holding it in a mold for a compression molding machine at 280 ° C. to 320 ° C. for a certain period of time, and then pressurized to 11 MPa. However, the temperature was raised to 371 ° C. at a heating rate of 3 ° C./min, held for 1 hour, and slowly cooled to obtain a plate having a diameter of 200 mm and a thickness of 3 mm. The obtained plate material was cured under the condition of 357 ° C. for 6 hours, and then processed to a desired size to obtain a test piece.

(実施例4)
炭素繊維の配合量を14.3重量部、PTFE粉末の配合量を28.6重量部に変更した以外は実施例3と同じとした。
(Example 4)
The same as in Example 3 except that the blending amount of carbon fiber was changed to 14.3 parts by weight and the blending amount of PTFE powder was changed to 28.6 parts by weight.

(実施例5)
炭素繊維の配合量を33.3重量部、PTFE粉末の配合量を33.3重量部に変更した以外は実施例3と同じとした。
(Example 5)
The same as in Example 3 except that the blending amount of carbon fiber was changed to 33.3 parts by weight and the blending amount of PTFE powder was changed to 33.3 parts by weight.

(比較例1)
付加重合型ポリイミド(宇部興産社製PETI−330)を280℃〜320℃で一定時間保持することで溶融および均熱した後、11MPaに加圧しながら、昇温速度3℃/minで371℃まで昇温、1時間保持、徐冷してφ100mm厚さ3mmの板を得た。得られた板材を357℃条件下で6時間の硬化処理を施した後、所望の寸法に加工し試験片を得た。
(Comparative Example 1)
Addition polymerization type polyimide (PETI-330 manufactured by Ube Industries, Ltd.) is melted and soothed by holding it at 280 ° C to 320 ° C for a certain period of time, and then pressurized to 11 MPa to a temperature rise rate of 3 ° C / min to 371 ° C. The temperature was raised, held for 1 hour, and slowly cooled to obtain a plate having a diameter of 100 mm and a thickness of 3 mm. The obtained plate material was cured under the condition of 357 ° C. for 6 hours, and then processed to a desired size to obtain a test piece.

(比較例2)
炭素繊維の配合量を11.1重量部、グラファイト粉末を配合しなかった以外は実施例1と同じとした。なお、繊維の不均一な分布による反りが発生した。限界PV値において、部材の平行度を得るために反り量分部材の表裏層を削る必要がある。本比較例の限界PV値は繊維重量部が乏しい表層を除去した部材の結果である。比較例1の炭素繊維未含有条件における限界PV値の結果からも、均一分散されていないことにより低い繊維重量部の箇所が生じてしまい、結果限界PV値が低くなると考えられる。
(Comparative Example 2)
The amount of carbon fiber blended was 11.1 parts by weight, and the same as in Example 1 except that graphite powder was not blended. In addition, warpage occurred due to the non-uniform distribution of fibers. At the limit PV value, it is necessary to scrape the front and back layers of the member by the amount of warpage in order to obtain the parallelism of the member. The limit PV value of this comparative example is the result of the member from which the surface layer lacking the fiber weight part is removed. From the result of the limit PV value under the carbon fiber-free condition of Comparative Example 1, it is considered that the portion of the fiber weight part is low due to the non-uniform dispersion, and the result limit PV value becomes low.

実施例1〜5、比較例1、2にて得られた試験片の限界PV値測定結果および繊維の分散の良否を表1に示す。 Table 1 shows the measurement results of the limit PV value of the test pieces obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and the quality of fiber dispersion.

1.5mmの板厚さ以外は比較例2と同じとした試験片における繊維の分散状態を図3に示す。 FIG. 3 shows the dispersed state of the fibers in the test piece which was the same as in Comparative Example 2 except for the plate thickness of 1.5 mm.

(実施例6)
炭素繊維の配合量を14.3重量部、グラファイト粉末の配合量を28.6重量部に変更した以外は実施例1と同じとした。
(Example 6)
The same as in Example 1 except that the blending amount of carbon fiber was changed to 14.3 parts by weight and the blending amount of graphite powder was changed to 28.6 parts by weight.

(比較例3)
炭素繊維の配合量を16.7重量部、グラファイト粉末の配合量を50.0重量部に変更した以外は実施例1と同じとした。
(Comparative Example 3)
The same as in Example 1 except that the blending amount of carbon fiber was changed to 16.7 parts by weight and the blending amount of graphite powder was changed to 50.0 parts by weight.

実施例1〜3、6、比較例2、3にて得られた試験片の賦形性、繊維の分散の良否、反り/直径比、溶融粘度の測定結果を表2に示す。なお、製品の反りについては、全ての実施例および比較例で、圧縮成形にて板材を得た後、357℃条件下で6時間の硬化処理を施す前の状態を測定し、良否判定をおこなった。 Table 2 shows the measurement results of the formability of the test pieces obtained in Examples 1 to 3 and 6 and Comparative Examples 2 and 3, the quality of fiber dispersion, the warp / diameter ratio, and the melt viscosity. Regarding the warpage of the product, in all the examples and comparative examples, after obtaining the plate material by compression molding, the state before the curing treatment for 6 hours under the condition of 357 ° C. was measured, and the quality was judged. It was.

本発明の樹脂成形体は、限界PV値が3000kPa・m/s以上と摺動性能に優れていることから、自動車、電気・電子分野等の摺動性部材として種々の用途に使用できる。 Since the resin molded product of the present invention has an excellent sliding performance with a limit PV value of 3000 kPa · m / s or more, it can be used for various purposes as a slidable member in the fields of automobiles, electricity and electronics, and the like.

Claims (6)

付加反応型ポリイミド100重量部に対して、5〜200重量部のメソフェーズ型ピッチ系炭素繊維、5〜40重量部の増粘剤が分散して成る樹脂成形体であって、限界PV値が3000kPa・m/s以上であることを特徴とする樹脂成形体。 A resin molded product in which 5 to 200 parts by weight of mesophase pitch carbon fiber and 5 to 40 parts by weight of a thickener are dispersed with respect to 100 parts by weight of the addition reaction type polyimide, and the limit PV value is 3000 kPa. -A resin molded product characterized by being m / s or more. 前記メソフェーズ型ピッチ系炭素繊維が、平均繊維長50〜6000μm、平均繊維径5〜20μmのメソフェーズ型ピッチ系炭素繊維である請求項1に記載の樹脂成形体。 The mesophase-type pitch-based carbon fiber has an average fiber length 50~6000Myuemu, resin molded article according to claim 1 which is a mesophase type pitch-based carbon fibers having an average fiber diameter of 5 to 20 [mu] m. 前記増粘剤が、グラファイト、二硫化モリブデン、PTFE(四フッ化エチレン樹脂)、微細炭素系材料、金属粉の少なくとも1種以上である請求項1又は2記載の樹脂成形体。 The resin molded product according to claim 1 or 2 , wherein the thickener is at least one of graphite, molybdenum disulfide, PTFE (tetrafluoroethylene resin), a fine carbon-based material, and a metal powder. 付加反応型ポリイミド100重量部に対して、5〜200重量部のメソフェーズ型ピッチ系炭素繊維、5〜40重量部の増粘剤が分散して成る樹脂成形体の製造方法であって、
前記付加反応型ポリイミド樹脂のプレポリマー、メソフェーズ型ピッチ系炭素繊維及び増粘剤を付加反応型ポリイミド樹脂の融点以上、熱硬化開始温度以下の温度で混練する分散混練工程、
分散混練工程を経た混合物を反応型ポリイミド樹脂の熱硬化開始温度以上の温度条件下で加圧賦型する賦型工程、とから成ることを特徴とする樹脂成形体の製造方法。
A method for producing a resin molded product in which 5 to 200 parts by weight of mesophase pitch-based carbon fibers and 5 to 40 parts by weight of a thickener are dispersed with respect to 100 parts by weight of the addition reaction type polyimide.
A dispersion kneading step in which the prepolymer of the addition reaction polyimide resin, the mesophase pitch carbon fiber, and the thickener are kneaded at a temperature equal to or higher than the melting point of the addition reaction polyimide resin and lower than the thermosetting start temperature.
A method for producing a resin molded product, which comprises a molding step of pressurizing and molding a mixture that has undergone a dispersion kneading step under temperature conditions equal to or higher than the thermosetting start temperature of a reactive polyimide resin.
前記分散混練工程を経た混合物の300〜320℃の温度条件下における溶融粘度が10〜5000Pa・sである請求項記載の製造方法。 The production method according to claim 4 , wherein the melt viscosity of the mixture that has undergone the dispersion kneading step under a temperature condition of 300 to 320 ° C. is 10 to 5000 Pa · s. 前記賦型工程が、圧縮成形により行われる請求項又は記載の製造方法。 The manufacturing method according to claim 4 or 5 , wherein the shaping step is performed by compression molding.
JP2015181260A 2014-09-12 2015-09-14 Fiber-reinforced polyimide resin molded product and its manufacturing method Active JP6794616B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186942 2014-09-12
JP2014186942 2014-09-12

Publications (2)

Publication Number Publication Date
JP2016060915A JP2016060915A (en) 2016-04-25
JP6794616B2 true JP6794616B2 (en) 2020-12-02

Family

ID=55797247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181260A Active JP6794616B2 (en) 2014-09-12 2015-09-14 Fiber-reinforced polyimide resin molded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6794616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961988B2 (en) 2017-04-12 2021-11-05 東洋製罐グループホールディングス株式会社 Method for Producing Composition with High Filler Content and Mold
JP7405097B2 (en) 2018-12-07 2023-12-26 東洋製罐グループホールディングス株式会社 Fiber-reinforced polyimide resin molding precursor and method for producing the same
CN110978562B (en) * 2019-11-28 2021-10-01 长春长光宇航复合材料有限公司 Preparation method of high-temperature-resistant composite material cabin section

Also Published As

Publication number Publication date
JP2016060915A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
WO2016039485A1 (en) Fiber-reinforced polyimide resin molded article and method for producing same
US8748509B2 (en) Friction material and resin composition for friction material
JP6794616B2 (en) Fiber-reinforced polyimide resin molded product and its manufacturing method
JP6679860B2 (en) Fiber-reinforced polyimide resin molding and method for manufacturing the same
CN110520455B (en) Composition with high filler content and method for producing shaped bodies
WO2019107352A1 (en) Fiber-reinforced laminated body and method for manufacturing same
Jin et al. Preparation of polyimide powders via hydrothermal polymerization and post-heat treatment for application to compression-molding materials
WO2017209255A1 (en) Sliding structure and method for producing same
JP7405097B2 (en) Fiber-reinforced polyimide resin molding precursor and method for producing the same
JP6984804B1 (en) Polyimide resin molded product and its manufacturing method
JP2018162411A (en) Polyimide resin composition, and seal ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6794616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150