JP6791085B2 - Steelworks by-product gas separation equipment and separation method - Google Patents

Steelworks by-product gas separation equipment and separation method Download PDF

Info

Publication number
JP6791085B2
JP6791085B2 JP2017188974A JP2017188974A JP6791085B2 JP 6791085 B2 JP6791085 B2 JP 6791085B2 JP 2017188974 A JP2017188974 A JP 2017188974A JP 2017188974 A JP2017188974 A JP 2017188974A JP 6791085 B2 JP6791085 B2 JP 6791085B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
separation
separation device
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188974A
Other languages
Japanese (ja)
Other versions
JP2019063697A (en
Inventor
伸行 紫垣
伸行 紫垣
茂木 康弘
康弘 茂木
たかし 原岡
たかし 原岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017188974A priority Critical patent/JP6791085B2/en
Publication of JP2019063697A publication Critical patent/JP2019063697A/en
Application granted granted Critical
Publication of JP6791085B2 publication Critical patent/JP6791085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、製鉄所副生ガスの分離設備及び分離方法に関する。 The present invention relates to a steel mill by-product gas separation facility and a separation method.

製鉄所から排出されるCO2を削減するための技術として、高効率かつ低コストのガス分離技術の開発が求められている。従来、原料ガスに含まれる所定のガス成分を分離する方法として、例えば圧力スイング吸着法(Pressure Swing Adsorption法、PSA法)などが用いられてきた(例えば、特許文献1参照)。 Development of highly efficient and low-cost gas separation technology is required as a technology for reducing CO 2 emitted from steelworks. Conventionally, as a method for separating a predetermined gas component contained in a raw material gas, for example, a pressure swing adsorption method (Pressure Swing Adsorption method, PSA method) or the like has been used (see, for example, Patent Document 1).

PSA法は、吸着剤に対するガス成分の吸着量が、ガス種及びその分圧によって異なることを利用した分離方法である。PSA法は、通常、吸着剤にガス成分を吸着させる工程(吸着工程)、吸着剤へのガス成分の吸着率を高めるために、他の吸着塔で脱着された脱着ガスの一部を洗浄ガスとして供給する工程(洗浄工程)、及び吸着したガス成分を吸着剤から脱着させてガスを回収する工程(脱着工程)を有する。 The PSA method is a separation method utilizing the fact that the amount of gas component adsorbed on the adsorbent differs depending on the gas type and its partial pressure. The PSA method is usually a step of adsorbing a gas component to an adsorbent (adsorption step), and a cleaning gas for a part of the desorbed gas desorbed by another adsorption tower in order to increase the adsorption rate of the gas component to the adsorbent. It has a step of supplying the gas as an adsorbent (cleaning step) and a step of desorbing the adsorbed gas component from the adsorbent to recover the gas (desorption step).

このPSA法は、種々の分野に適用されているが、原料ガスに含まれる一成分を吸着させることにより、高濃度のガスを製造する方法として利用されることが多い。PSA法は、加圧−常圧の圧力差を用いる加圧方式と、常圧(または微加圧)−減圧の圧力差を用いる吸引方式があり、後者についてはVSA法(Vacuum Swing Adsorption)と呼ばれることもある。 Although this PSA method is applied to various fields, it is often used as a method for producing a high-concentration gas by adsorbing one component contained in a raw material gas. The PSA method includes a pressurization method that uses a pressure difference between pressurization and normal pressure, and a suction method that uses a pressure difference between normal pressure (or slight pressurization) and decompression. The latter is called the VSA method (Vacuum Swing Adsorption). Sometimes called.

また一方で、高炉ガスなどの製鉄所副生ガスからCO2を分離すると、一般に分離後オフガスは単位体積当りの熱量が増加した高カロリーガスとなる。そのため、例えばガスタービンコンバインドサイクル(GTCC)発電などの高効率な発電設備用にガスを供給することができるようになり、高効率かつ低コストのCO2分離はガス運用面からも望ましい。 On the other hand, when CO 2 is separated from the by-product gas of a steel mill such as blast furnace gas, the off-gas after separation generally becomes a high-calorie gas with an increased amount of heat per unit volume. Therefore, it becomes possible to supply gas for high-efficiency power generation equipment such as gas turbine combined cycle (GTCC) power generation, and high-efficiency and low-cost CO 2 separation is desirable from the viewpoint of gas operation.

特開平06−144818号公報Japanese Unexamined Patent Publication No. 06-144818

N. Heymans et al.,「Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation」, Chemical Engineering Science 66(2011)pp. 3850-3858N. Heymans et al., "Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation", Chemical Engineering Science 66 (2011) pp. 3850- 3858 A. Arefi Pour et al.,「Adsorption separation of CO2/CH4 on the synthesized NaA zeolite shaped with montmorillonite clay in natural gas purification process」,Journal of Natural Gas Science and Engineering 36(2016)pp. 630-643A. Arefi Pour et al., "Adsorption separation of CO2 / CH4 on the synthesized NaA promoting shaped with montmorillonite clay in natural gas purification process", Journal of Natural Gas Science and Engineering 36 (2016) pp. 630-643

しかしながら、一般にPSA法はガス分離に要する電力が大きいため、ガス分離コストの削減には電力消費量の削減が必要である。例えば、吸引方式でPSA法によりCO2を分離する処理(以下、「CO2−PSA」とも言う。)では、脱着工程における真空ポンプの電力消費量が、ガス分離に要する電力消費量の主要な割合を占めている。特に、CO2−PSAの1サイクル当りのCO2回収量を増加させるためには、真空ポンプにより吸着塔内をより低い圧力まで減圧してCO2吸着剤からのCO2の脱着量を増やす必要があるため、真空ポンプの電力消費量が著しく増加する。 However, since the PSA method generally requires a large amount of electric power for gas separation, it is necessary to reduce the electric power consumption in order to reduce the gas separation cost. For example, in the process of separating CO 2 by the PSA method by the suction method (hereinafter, also referred to as “CO 2- PSA”), the power consumption of the vacuum pump in the desorption step is the main power consumption required for gas separation. It occupies a proportion. In particular, CO 2 in order to increase the CO 2 recovery amount per cycle -PSA is necessary to increase the desorption amount of CO 2 from the depressurized to a lower pressure in the adsorption tower CO 2 sorbent by the vacuum pump Therefore, the power consumption of the vacuum pump is significantly increased.

そこで、本発明の目的は、製鉄所で発生する副生ガスからの二酸化炭素の分離に要する電力消費量を削減することができる製鉄所副生ガスの分離設備および方法を提供することにある。 Therefore, an object of the present invention is to provide a steel mill by-product gas separation facility and a method capable of reducing the power consumption required for separating carbon dioxide from the by-product gas generated in the steel mill.

上記課題を解決する本発明は以下の通りである。
(1)酸素を含む原料ガスから酸素を分離する酸素分離装置と、製鉄所で発生した副生ガスから所定のガス成分を分離するガス分離装置と、前記酸素分離装置の酸素分離後オフガスを前記ガス分離装置に供給するガス供給装置とを備えることを特徴とする、製鉄所副生ガスの分離設備。
The present invention that solves the above problems is as follows.
(1) An oxygen separator that separates oxygen from a raw material gas containing oxygen, a gas separator that separates a predetermined gas component from a by-product gas generated at a steel mill, and an off-gas after oxygen separation of the oxygen separator. A steel mill by-product gas separation facility characterized by being provided with a gas supply device for supplying the gas separation device.

(2)前記ガス分離装置が圧力スイング吸着法によるガス分離装置であり、前記ガス分離装置は、前記ガス供給装置により供給される前記酸素分離装置からの酸素分離後オフガスを、前記ガス分離装置のガス吸着剤充填層内に流通させるガス流通ラインを有する、前記(1)に記載の製鉄所副生ガスの分離設備。 (2) The gas separation device is a gas separation device by a pressure swing adsorption method, and the gas separation device uses the off gas after oxygen separation from the oxygen separation device supplied by the gas supply device. The iron mill by-product gas separation facility according to (1) above, which has a gas flow line for circulating in the gas adsorbent-filled layer.

(3)前記ガス分離装置は、前記ガス分離装置の脱着工程における回収ガスに関して、真空ポンプによる前記ガス分離装置内の減圧により脱着される脱着ガスを少なくとも2系統に分離回収する第1ガス回収ラインと、前記酸素分離後オフガスを前記ガス分離装置内に流通させることにより脱着される脱着ガスを分離回収する第2ガス回収ラインとを有する、前記(2)に記載の製鉄所副生ガスの分離設備。 (3) The gas separation device is a first gas recovery line that separates and recovers the desorbed gas desorbed by decompression in the gas separation device by a vacuum pump into at least two systems with respect to the recovery gas in the desorption step of the gas separation device. The separation of the by-product gas of the steel mill according to the above (2), which has a second gas recovery line for separating and recovering the desorbed gas desorbed by circulating the off-gas after oxygen separation in the gas separation device. Facility.

(4)前記副生ガスは高炉ガスである、前記(1)〜(3)のいずれか一項に記載の製鉄所副生ガスの分離設備。 (4) The steel mill by-product gas separation facility according to any one of (1) to (3) above, wherein the by-product gas is a blast furnace gas.

(5)前記所定のガス成分は二酸化炭素である、前記(1)〜(4)のいずれか一項に記載の製鉄所副生ガスの分離設備。 (5) The equipment for separating by-product gas from a steel mill according to any one of (1) to (4) above, wherein the predetermined gas component is carbon dioxide.

(6)前記(2)〜(5)のいずれか一項に記載の製鉄所副生ガスの分離設備を用いて製鉄所副生ガスから所定のガス成分を分離する方法であって、
前記酸素分離装置における酸素分離後オフガスを、前記圧力スイング吸着法によるガス分離装置のガス脱着用ガスとして用いることを特徴とする、製鉄所副生ガスの分離方法。
(6) A method for separating a predetermined gas component from the by-product gas of the steelworks by using the separation facility for the by-product gas of the steelworks according to any one of (2) to (5) above.
A method for separating by-product gas from a steel mill, wherein the off-gas after oxygen separation in the oxygen separation device is used as a gas desorption gas for the gas separation device by the pressure swing adsorption method.

(7)前記副生ガスは、前記酸素分離装置で分離された酸素により酸素富化運転を行った高炉から排出される高炉ガスであり、前記高炉ガスの組成に応じて、前記ガス分離装置における高炉ガスの流量、ガス吸着圧力、ガス脱着圧力、および前記酸素分離後オフガスの流量のうちの少なくとも1つを、前記所定のガス成分の回収ガス量およびガス組成の少なくとも一方が得られるように制御することを特徴とする、前記(6)に記載の製鉄所副生ガスの分離方法。 (7) The by-product gas is a blast furnace gas discharged from a blast furnace that has been oxygen-enriched with oxygen separated by the oxygen separator, and is used in the gas separator according to the composition of the blast furnace gas. At least one of the flow rate of the blast furnace gas, the gas adsorption pressure, the gas desorption pressure, and the flow rate of the off-gas after oxygen separation is controlled so that at least one of the recovered gas amount and the gas composition of the predetermined gas component can be obtained. The method for separating by-product gas from a steel mill according to (6) above, which comprises the above.

(8)前記ガス分離装置の脱着工程における回収ガスに関して、真空ポンプによる前記ガス分離装置内の減圧により脱着される脱着ガスを、脱着工程の時間に応じて少なくとも2系統の第1ガス回収ラインで分離回収すると共に、前記酸素分離後オフガス流通により脱着される脱着ガスを、前記第1ガス回収ラインとは別系統の第2ガス回収ラインにて分離回収する、前記(6)または(7)に記載の製鉄所副生ガスの分離方法。 (8) Regarding the recovered gas in the desorption step of the gas separation device, the desorption gas desorbed by decompression in the gas separation device by the vacuum pump is carried out at least two systems of the first gas recovery line according to the time of the desorption step. In the above (6) or (7), the desorbed gas that is separated and recovered and desorbed by the off-gas flow after the oxygen separation is separated and recovered by a second gas recovery line that is a system different from the first gas recovery line. The method for separating by-product gas from a steel mill described.

本発明によれば、高炉ガスなどの製鉄所で発生する副生ガスからの二酸化炭素の分離に要する電力消費量を削減することができる。 According to the present invention, it is possible to reduce the power consumption required for separating carbon dioxide from the by-product gas generated in a steel mill such as blast furnace gas.

本発明による製鉄所副生ガスの分離設備を有する製鉄プロセス全体システムの好適例を示す概要図である。It is a schematic diagram which shows the preferable example of the steelmaking process whole system which has the separation facility of the by-product gas of a steelworks according to this invention. 吸着力に差のある2種類のガスの吸着等温線の形状差と圧力との関係を示す図である。It is a figure which shows the relationship between the shape difference of the adsorption isotherm of two kinds of gases having a difference in adsorption force, and pressure. PSA方式のガス分離設備および脱着工程におけるガス流通方法を示す図である。It is a figure which shows the gas separation equipment of PSA type, and the gas flow method in a desorption process. 実施例において使用したPSA実験装置の構成を示す図である。It is a figure which shows the structure of the PSA experimental apparatus used in an Example. 実施例において使用したPSA実験装置の運転時1サイクル内のガスラインを切り替えるタイミングを示す図である。It is a figure which shows the timing of switching a gas line within one cycle at the time of operation of the PSA experimental apparatus used in an Example.

以下、図面を参照して本発明の実施形態について説明する。本発明による製鉄所副生ガスの分離設備は、酸素を含む原料ガスから酸素を分離する酸素分離装置と、製鉄所で発生した副生ガスから所定のガス成分を分離するガス分離装置と、前記酸素分離装置の酸素分離後オフガスを前記ガス分離装置に供給するガス供給装置とを備えることを特徴とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The steel mill by-product gas separation equipment according to the present invention includes an oxygen separator that separates oxygen from a raw material gas containing oxygen, a gas separator that separates a predetermined gas component from the by-product gas generated at the steel mill, and the above. It is characterized by including a gas supply device that supplies off gas after oxygen separation of the oxygen separation device to the gas separation device.

上述のように、PSA法により製鉄所で発生する副生ガスからCO2を分離する際に、脱着工程における真空ポンプの電力消費量がガス分離に要する電力消費量の主要な割合を占めている。そして、CO2−PSAの1サイクル当りCO2回収量を増加させる場合には、より低い圧力まで真空ポンプで減圧してCO2吸着剤からのCO2脱着量を増やす必要がある。しかし、そのためには真空ポンプを長時間稼働する必要があり、真空ポンプの電力消費量が著しく増加してしまう。 As mentioned above, when CO 2 is separated from the by-product gas generated in the steelworks by the PSA method, the power consumption of the vacuum pump in the desorption process accounts for the main proportion of the power consumption required for gas separation. .. Then, when increasing the per cycle CO 2 recovery amount of CO 2-PSA, it is necessary to increase the CO 2 desorption amount from CO 2 adsorbent under reduced pressure with a vacuum pump to a lower pressure. However, for that purpose, it is necessary to operate the vacuum pump for a long time, and the power consumption of the vacuum pump increases remarkably.

本発明者らは、上記ガス分離に要する真空ポンプの電力消費量を削減する方途について鋭意検討した。その結果、酸素分離装置において酸素を分離した後のオフガス(以下、「酸素分離後オフガス」とも言う。)をガス分離装置に供給して、ガス分離装置内のCO2の分圧を制御することに想到した。 The present inventors have diligently studied ways to reduce the power consumption of the vacuum pump required for the gas separation. As a result, the off-gas after oxygen separation in the oxygen separator (hereinafter, also referred to as "off-gas after oxygen separation") is supplied to the gas separator to control the partial pressure of CO 2 in the gas separator. I came up with.

酸素分離装置は、例えば深冷分離法などにより、空気などの原料ガスから酸素を分離する装置である。そして、酸素分離後オフガスは、酸素分離装置において酸素を分離した後に残存するガスであり、窒素やアルゴンなど、酸素以外の不活性なガスが主成分となる。 The oxygen separation device is a device that separates oxygen from a raw material gas such as air by, for example, a deep cold separation method. The off-gas after oxygen separation is a gas that remains after oxygen is separated in the oxygen separation device, and is mainly composed of an inert gas other than oxygen, such as nitrogen and argon.

上述のように、PSA法は、吸着剤に対するガス成分の吸着量が、ガス種及びその分圧によって異なることを利用した分離方法である。そのため、上記酸素分離後オフガスを、例えば高炉ガスからCO2を分離するCO2分離装置に供給すると、装置内のCO2の分圧が低下して、吸着剤に吸着したCO2を吸着剤から脱着させることができる。これにより、CO2−PSAのCO2脱着工程の一部を、真空ポンプを用いる代わりにガスパージを用いることができ、真空ポンプの稼働時間を短縮して、真空ポンプの電力消費量を削減することができる。 As described above, the PSA method is a separation method utilizing the fact that the amount of gas component adsorbed on the adsorbent differs depending on the gas type and its partial pressure. Therefore, when the off-gas after oxygen separation is supplied to a CO 2 separation device that separates CO 2 from blast furnace gas, for example, the partial pressure of CO 2 in the device decreases, and CO 2 adsorbed on the adsorbent is removed from the adsorbent. It can be attached and detached. As a result, a gas purge can be used instead of using a vacuum pump for a part of the CO 2 desorption process of CO 2- PSA, shortening the operating time of the vacuum pump and reducing the power consumption of the vacuum pump. Can be done.

図1は、本発明による製鉄所副生ガスの分離設備を有する製鉄プロセス全体システムの好適例を示す概要図である。なお、図1においては、図の簡略化のため、高炉への酸素富化に用いる酸素以外の投入原料は省略されている。図の左下に示した酸素分離装置は、例えば深冷分離法などにより空気から酸素を分離する。分離した酸素は、例えば高炉の酸素富化率上昇のために用いることができる。 FIG. 1 is a schematic view showing a preferable example of an entire steelmaking process system having a steel mill by-product gas separation facility according to the present invention. In FIG. 1, for the sake of simplification of the figure, input raw materials other than oxygen used for oxygen enrichment in the blast furnace are omitted. The oxygen separator shown in the lower left of the figure separates oxygen from air by, for example, a deep cold separation method. The separated oxygen can be used, for example, to increase the oxygen enrichment rate of the blast furnace.

酸素分離装置における酸素分離後オフガスは、ガス供給装置によりガス分離装置に供給され、ガス分圧制御用ガスとして使用される。上記ガス供給装置としては、ブロワーやガスコンプレッサーなどを用いることができる。 The off-gas after oxygen separation in the oxygen separation device is supplied to the gas separation device by the gas supply device and used as a gas for controlling the partial pressure of gas. As the gas supply device, a blower, a gas compressor, or the like can be used.

ガス分離装置は、高炉ガスからCO2を分離する。高炉ガスは、CO2、CO、N2を主成分とする混合ガスであり、CO2の含有量が高く、また製鉄所での発生量が多い。そのため、ガス分離装置に供給する原料ガスとして、高炉ガスを好適に用いることができる。 The gas separator separates CO 2 from the blast furnace gas. Blast furnace gas is a mixed gas containing CO 2 , CO, and N 2 as the main components, has a high CO 2 content, and is generated in a large amount at steelworks. Therefore, blast furnace gas can be preferably used as the raw material gas to be supplied to the gas separator.

上記ガス分離装置はPSA法によるガス分離装置であり、ガス分離装置において、ガス供給装置により供給される酸素分離装置からの酸素分離後オフガスを、ガス分離装置のガス吸着剤充填層内に流通させるガス流通ライン(図示せず)が設けられている。 The gas separation device is a gas separation device by the PSA method, and in the gas separation device, off gas after oxygen separation from the oxygen separation device supplied by the gas supply device is circulated in the gas adsorbent-filled layer of the gas separation device. A gas distribution line (not shown) is provided.

上記ガス流通ラインから上記酸素分離後オフガスをガス分離装置内に流通させることにより、例えばCO2など分離対象のガスの分圧を下げて吸着材に吸着したCO2を脱着させることができるため、真空ポンプの出力を上げて吸引圧力を低下させてCO2を脱着するのと同等の効果が得られる。 By circulating the off-gas after oxygen separation from the gas flow line into the gas separation device, the partial pressure of the gas to be separated such as CO 2 can be lowered to desorb CO 2 adsorbed on the adsorbent. The same effect as desorbing CO 2 by increasing the output of the vacuum pump and decreasing the suction pressure can be obtained.

また、ガス分離装置においては、該ガス分離装置の脱着工程における回収ガスに関して、真空ポンプVによる前記ガス分離装置内の減圧により脱着される脱着ガスを少なくとも2系統に分離回収するガス回収ライン(第1ガス回収ライン)と、酸素分離後オフガスをガス分離装置内に流通させることにより脱着される脱着ガスを分離回収するガス回収ライン(第2ガス回収ライン)とが設けられている。 Further, in the gas separation device, regarding the recovery gas in the desorption step of the gas separation device, a gas recovery line (first) that separates and recovers the desorbed gas desorbed by decompression in the gas separation device by the vacuum pump V into at least two systems. A gas recovery line (1 gas recovery line) and a gas recovery line (second gas recovery line) for separating and recovering the desorbed gas that is desorbed by circulating the off-gas after oxygen separation in the gas separation device are provided.

本発明者らは、ラボスケールのPSA実験により、真空ポンプによる減圧により脱着されるガスの組成が、脱着開始からの時間により変化することを見出した。図2は、吸着力に差のある2種類のガスの吸着等温線の形状差と圧力との関係を示す図である。この図は、13Xゼオライトを吸着剤として用いて得られたものである。この図に示すように、CO2−PSAの場合、脱着工程の初期には、比較的吸着力が弱い不純物成分(COやN2など)が脱着し、脱着工程の後期には、比較的吸着力が強いCO2が脱着する。 The present inventors have found by lab-scale PSA experiments that the composition of the gas desorbed by decompression by a vacuum pump changes with the time from the start of desorption. FIG. 2 is a diagram showing the relationship between the pressure and the shape difference of the adsorption isotherms of two types of gases having different adsorption forces. This figure was obtained using 13X zeolite as an adsorbent. As shown in this figure, in the case of CO 2- PSA, impurity components (CO, N 2 etc.) with relatively weak adsorption power are desorbed at the beginning of the desorption process, and relatively adsorbed at the end of the desorption process. Strong CO 2 is attached and detached.

そのため、真空ポンプによる減圧により脱着される脱着ガスを、脱着工程における時間に応じて少なくとも2系統に分離回収するガス回収ライン(第1ガス回収ライン)を設け、図3に示す脱着工程におけるガス流通方法により、これらガス組成の異なるガスを別々に回収することができる。 Therefore, a gas recovery line (first gas recovery line) is provided to separate and recover the desorbed gas desorbed by decompression by the vacuum pump into at least two systems according to the time in the desorption step, and the gas flow in the desorption step shown in FIG. Depending on the method, these gases having different gas compositions can be recovered separately.

上記現象は、吸着ガスによる吸着等温線の線形性の違いに由来する。そのため、例えば、CO2−PSAの脱着工程における初期脱着ガスと後期脱着ガスとに分離することにより、初期脱着工程において回収されるCO2濃度の低いガス(回収ガス1)と、後期脱着工程において回収されるCO2濃度の高いガス(回収ガス2)とを別々に回収することができる。 The above phenomenon is derived from the difference in the linearity of the adsorption isotherm due to the adsorbed gas. Therefore, for example, by separating the initial desorption gas and the late desorption gas in the desorption step of CO 2- PSA, the gas having a low CO 2 concentration (recovered gas 1) recovered in the initial desorption step and the gas having a low CO 2 concentration in the late desorption step The recovered gas having a high CO 2 concentration (recovered gas 2) can be recovered separately.

上記初期脱着ガスとして回収されるCO2濃度の低い回収ガス1は、単位体積当りの可燃ガス(COなど)の割合が相対的に大きいため、高カロリーガスとしてGTCC発電などの用途で使用することができる。また、後期脱着ガスとして回収されるCO2濃度の高い回収ガス2は、例えば、H2と反応させてメタノールやエタノールなどの化学製品に変換するCO2再利用プロセスなどに供給することができる。 The recovered gas 1 having a low CO 2 concentration recovered as the initial desorption gas has a relatively large proportion of combustible gas (CO, etc.) per unit volume, and therefore should be used as a high-calorie gas in applications such as GTCC power generation. Can be done. Further, the recovered gas 2 having a high CO 2 concentration recovered as the late desorption gas can be supplied to, for example, a CO 2 recycling process in which the recovered gas 2 is reacted with H 2 and converted into a chemical product such as methanol or ethanol.

また、通常は真空ポンプによる減圧のみでガス脱着を行うところ、本発明においては、真空ポンプによる減圧と酸素分離後オフガス流通によるガス分圧制御との組み合わせによりガス脱着を行う。具体的には、脱着工程の最も後期の段階で、真空ポンプによる脱着に代えて、酸素分離装置における酸素分離後オフガスをガス分離装置内に供給し、CO2分圧を調整して、吸着剤に吸着したCO2を脱着させる。 Further, normally, gas desorption is performed only by decompression by a vacuum pump, but in the present invention, gas desorption is performed by a combination of decompression by a vacuum pump and gas partial pressure control by off-gas flow after oxygen separation. Specifically, at the latest stage of the desorption process, instead of desorption by a vacuum pump, off-gas after oxygen separation in the oxygen separator is supplied into the gas separator, and the CO 2 partial pressure is adjusted to adjust the adsorbent. Desorbs CO 2 adsorbed on.

上記酸素分離後オフガスをガス分離装置内で流通させて得られる脱着ガスを回収するために、真空ポンプによる減圧により脱着される脱着ガスを回収するためのガス回収ライン(第1ガス回収ライン)とは別のガス回収ライン(第2ガス回収ライン)を設けることにより、酸素分離後オフガス流通により得られる脱着ガスを個別に回収することができる。 A gas recovery line (first gas recovery line) for recovering the desorbed gas desorbed by decompression by a vacuum pump in order to recover the desorbed gas obtained by circulating the off-gas after oxygen separation in the gas separation device. By providing another gas recovery line (second gas recovery line), the desorbed gas obtained by off-gas flow after oxygen separation can be individually recovered.

上記第2ガス回収ラインで回収されるガス(回収ガス3)については、N2が多いため、液体燃料の合成反応用としては不適である。そのため、大気放散するか、或いは他の副生ガスに混合するなどして二次使用することができる。 The gas recovered by the second gas recovery line (recovered gas 3) contains a large amount of N 2, and is therefore unsuitable for a synthetic reaction of liquid fuel. Therefore, it can be secondarily used by being dissipated to the atmosphere or mixed with other by-product gases.

(製鉄所副生ガスの分離方法)
本発明による製鉄所副生ガスの分離方法は、上記本発明による製鉄所副生ガスの分離設備を用いて製鉄所副生ガスから所定のガス成分を分離する方法である。ここで、上記酸素分離装置における酸素分離後オフガスを、圧力スイング吸着法によるガス分離装置のガス脱着用ガスとして用いることを特徴とする。
(Separation method of by-product gas from steelworks)
The method for separating the by-product gas of the steelworks according to the present invention is a method of separating a predetermined gas component from the by-product gas of the steelworks by using the above-mentioned separation facility for the by-product gas of the steelworks according to the present invention. Here, the off-gas after oxygen separation in the oxygen separation device is used as the gas desorption gas of the gas separation device by the pressure swing adsorption method.

上述のように、酸素分離後オフガスを、例えば、PSA法により高炉ガスからCO2を分離するCO2分離装置に供給すると、装置内のCO2の分圧が低下して、吸着剤に吸着したCO2を吸着剤から脱着させることができる。これにより、CO2−PSAのCO2脱着工程の一部を、真空ポンプを用いる代わりにガスパージを用いることができ、真空ポンプの稼働時間を短縮して、真空ポンプの電力消費量を削減することができる。 As described above, when the off-gas after oxygen separation is supplied to a CO 2 separation device that separates CO 2 from blast furnace gas by, for example, the PSA method, the partial pressure of CO 2 in the device decreases and the gas is adsorbed on the adsorbent. CO 2 can be desorbed from the adsorbent. As a result, a gas purge can be used instead of using a vacuum pump for a part of the CO 2 desorption process of CO 2- PSA, shortening the operating time of the vacuum pump and reducing the power consumption of the vacuum pump. Can be done.

本発明において、ガス分離装置における原料ガスを、酸素分離装置で分離された酸素により酸素富化運転を行った高炉から排出される高炉ガスとし、高炉ガスの組成に応じて、ガス分離装置における、原料ガス流量、ガス吸着圧力、ガス脱着圧力、および酸素分離後オフガス流量のうち少なくとも1つを、分離対象の所定のガス成分の回収ガス量およびガス組成の少なくとも一方が得られるように制御することが好ましい。 In the present invention, the raw material gas in the gas separator is the blast furnace gas discharged from the blast furnace that has been oxygen-enriched with the oxygen separated by the oxygen separator, and depending on the composition of the blast furnace gas, the gas separator Controlling at least one of the raw material gas flow rate, the gas adsorption pressure, the gas desorption pressure, and the off-gas flow rate after oxygen separation so as to obtain at least one of the recovered gas amount and the gas composition of a predetermined gas component to be separated. Is preferable.

高炉から排出される高炉ガスは、高炉送風時の酸素富化率によりガス組成が変化する。CO2−PSA運転における原料ガス(即ち高炉ガス)の組成が変化すると、同じ原料ガス流量に対して、吸着層内における吸着ガスおよび未吸着ガス(オフガス)のガス量およびガス組成がそれぞれ変化する。 The gas composition of the blast furnace gas discharged from the blast furnace changes depending on the oxygen enrichment rate during blast furnace ventilation. When the composition of the raw material gas (that is, blast furnace gas) in the CO 2- PSA operation changes, the gas amount and gas composition of the adsorbed gas and the unadsorbed gas (off gas) in the adsorption layer change with respect to the same raw material gas flow rate. ..

また、吸着ガス量が変化することにより、同じ脱着圧に対して、回収されるガス量およびガス組成もそれぞれ変化する。そこで、前記高炉ガスの組成変化に応じて、前記ガス分離装置における、原料ガス流量、ガス吸着圧力、ガス脱着圧力、および前記酸素分離後オフガス流量のうち少なくとも1つを制御して、分離回収する目的ガス(CO2など)の回収ガス量やガス組成を制御することが好ましい。 Further, as the amount of adsorbed gas changes, the amount of recovered gas and the gas composition also change for the same desorption pressure. Therefore, according to the change in the composition of the blast furnace gas, at least one of the raw material gas flow rate, the gas adsorption pressure, the gas desorption pressure, and the off-gas flow rate after oxygen separation in the gas separation device is controlled and separated and recovered. It is preferable to control the amount of recovered gas and the gas composition of the target gas (CO 2, etc.).

また、本発明において、ガス分離装置の脱着工程における回収ガスに関して、真空ポンプによるガス分離装置内の減圧により脱着される脱着ガスを、脱着工程の時間に応じて少なくとも2系統の第1ガス回収ラインで分離回収すると共に、酸素分離後オフガス流通により脱着される脱着ガスを、第1ガス回収ラインとは別系統の第2ガス回収ラインにて分離回収することが好ましい。 Further, in the present invention, regarding the recovered gas in the desorption step of the gas separation device, the desorption gas desorbed by decompression in the gas separation device by the vacuum pump is desorbed by at least two systems of the first gas recovery line according to the time of the desorption step. It is preferable that the desorbed gas desorbed by off-gas flow after oxygen separation is separated and recovered by a second gas recovery line of a system different from the first gas recovery line.

上述のように、本発明者らは、ラボスケールのPSA実験により、真空ポンプによる減圧により脱着されるガスの組成が、脱着開始からの時間により変化することを見出した。そのため、真空ポンプによる減圧により脱着される脱着ガスを、脱着工程における時間に応じて少なくとも2系統に分離回収するガス回収ライン(第1ガス回収ライン)を設けることにより、初期脱着工程において回収されるCO2濃度の低いガス(回収ガス1)と、後期脱着工程において回収されるCO2濃度の高いガス(回収ガス2)とを別々に回収することができるのは既述の通りである。 As described above, the present inventors have found in a lab-scale PSA experiment that the composition of the gas desorbed by decompression by a vacuum pump changes with the time from the start of desorption. Therefore, the desorbed gas desorbed by decompression by the vacuum pump is recovered in the initial desorption step by providing a gas recovery line (first gas recovery line) that separates and recovers the desorbed gas into at least two systems according to the time in the desorption step. As described above, the gas having a low CO 2 concentration (recovered gas 1) and the gas having a high CO 2 concentration (recovered gas 2) recovered in the late desorption step can be recovered separately.

また、上記真空ポンプによる減圧により脱着される脱着ガスを回収するためのガス回収ライン(第1ガス回収ライン)とは別のガス回収ライン(第2ガス回収ライン)を設け、脱着工程の最も後期の段階で、真空ポンプによる脱着に代えて、酸素分離装置における酸素分離後オフガスを、ガス分離装置内に供給し、CO2分圧を調整して、吸着剤に吸着したCO2を脱着させることにより、酸素分離後オフガス流通により得られる脱着ガスを個別に回収することができる。上記第2ガス回収ラインで回収されるガス(回収ガス3)については、N2が多いため、大気放散するか、或いは他の副生ガスに混合するなどして二次使用することができるのは既述の通りである。 In addition, a gas recovery line (second gas recovery line) separate from the gas recovery line (first gas recovery line) for recovering the desorbed gas desorbed by decompression by the vacuum pump is provided, and the latest stage of the desorption process. At this stage, instead of desorption by a vacuum pump, off-gas after oxygen separation in the oxygen separator is supplied into the gas separator, and the CO 2 partial pressure is adjusted to desorb CO 2 adsorbed on the adsorbent. Therefore, the desorbed gas obtained by off-gas flow after oxygen separation can be individually recovered. Since the gas recovered by the second gas recovery line (recovered gas 3) contains a large amount of N 2 , it can be secondarily used by being released to the atmosphere or mixed with other by-product gas. Is as described above.

本件発明によるガス分離設備を想定したラボPSA実験を、図2に示したガス分離設備を模した、図4に示す実験装置を用いて行った。原料ガスとして、49%N2、22%CO2、24%CO、5%H2で構成された標準ガスを用いた。また、酸素分離後オフガスとして、100%N2の標準ガス(以下、単に「N2ガス」と言う。)を用いた。原料ガスおよびN2ガスの流量は、マスフローコントローラー(MFC)を用いて、何れも3.0NL/minに制御した。 A lab PSA experiment assuming a gas separation facility according to the present invention was carried out using the experimental device shown in FIG. 4, which imitated the gas separation facility shown in FIG. As the raw material gas, a standard gas composed of 49% N 2 , 22% CO 2 , 24% CO, and 5% H 2 was used. Further, as the off gas after oxygen separation, a standard gas of 100% N 2 (hereinafter, simply referred to as “N 2 gas”) was used. The flow rates of the raw material gas and the N 2 gas were both controlled to 3.0 NL / min using a mass flow controller (MFC).

PSA運転方法として、吸着圧は、背圧弁を調整して50kPaGとした。脱着圧は、真空ポンプの吸引速度をニードル弁で調整して−95kPaGになるようにした。そして、図4に示した5種類のガス(オフガス、放出ガス、回収ガス1〜3)を、それぞれPSA運転の1サイクル内でt1〜t5の時間で別々にガスバックにて採取し、ガス体積を測定した後、各ガスの組成をガスクロマトグラフィーで測定した。t1〜t5のガス採取時間を表1、PSA実験装置の運転時1サイクル内のガスラインを切り替えるタイミングを図5にそれぞれ示す。 As a PSA operation method, the suction pressure was set to 50 kPaG by adjusting the back pressure valve. The desorption pressure was adjusted to -95 kPaG by adjusting the suction speed of the vacuum pump with a needle valve. Then, the five types of gases (off gas, released gas, and recovered gas 1 to 3) shown in FIG. 4 were separately sampled by gas bag for a time of t 1 to t 5 within one cycle of PSA operation. After measuring the gas volume, the composition of each gas was measured by gas chromatography. The gas sampling time t 1 ~t 5 respectively the timing for switching the gas line in one cycle during operation of the Table 1, PSA experimental apparatus in Fig.

Figure 0006791085
Figure 0006791085

実験は、N2ガス流通なしの運転(比較例)と、N2ガス流通ありの運転(発明例)の2条件にて実施した。1サイクル当りの原料ガス供給時間は何れも37secとした。表2に、今回の実験における1サイクル当りの真空ポンプ運転時間と、今回の実験にて得られた回収ガス組成および回収ガス量をそれぞれ示す。回収ガス組成は、回収ガス1,回収ガス2共に、比較例と発明例でほぼ同じであった。 The experiment was carried out under two conditions: operation without N 2 gas flow (comparative example) and operation with N 2 gas flow (invention example). The raw material gas supply time per cycle was set to 37 sec. Table 2 shows the vacuum pump operating time per cycle in this experiment, and the recovered gas composition and recovered gas amount obtained in this experiment, respectively. The recovered gas composition of both the recovered gas 1 and the recovered gas 2 was almost the same in the comparative example and the invention example.

Figure 0006791085
Figure 0006791085

一方、回収ガス量は、COが多く高カロリーな回収ガス1については、比較例よりも発明例の方が多く得られた。これは、N2ガスの流通により、真空ポンプによる減圧以上にCO2脱着が促進された結果、吸着剤における空きサイトが増加し、COの吸着量が増加したためと考えられる。また、真空ポンプ運転時間は、比較例よりも発明例の方が短くなっており、より少ない電力消費で多くの高カロリーガスを得られていることが分かる。 On the other hand, as for the amount of recovered gas, the recovered gas 1 having a large amount of CO and high calorie was obtained in the invention example more than in the comparative example. It is considered that this is because the circulation of N 2 gas promoted CO 2 desorption more than the decompression by the vacuum pump, and as a result, the number of empty sites in the adsorbent increased and the amount of CO adsorbed increased. Further, it can be seen that the vacuum pump operating time is shorter in the invention example than in the comparative example, and a large amount of high-calorie gas can be obtained with less power consumption.

本発明によれば、製鉄所で発生する副生ガスからの二酸化炭素の分離に要する電力消費量を削減することができるため、製鉄業において有用である。 According to the present invention, it is possible to reduce the power consumption required for separating carbon dioxide from the by-product gas generated in the steel mill, which is useful in the steel industry.

Claims (6)

酸素を含む原料ガスから酸素を分離する酸素分離装置と、製鉄所で発生した副生ガスから所定のガス成分を分離するガス分離装置と、前記酸素分離装置の酸素分離後オフガスを前記ガス分離装置に供給するガス供給装置とを備え
前記ガス分離装置が圧力スイング吸着法によるガス分離装置であり、前記ガス分離装置は、前記ガス供給装置により供給される前記酸素分離装置からの酸素分離後オフガスを、前記ガス分離装置のガス吸着剤充填層内に流通させるガス流通ラインを有し、
前記ガス分離装置は、前記ガス分離装置の脱着工程における回収ガスに関して、真空ポンプによる前記ガス分離装置内の減圧により脱着される脱着ガスを少なくとも2系統に分離回収する第1ガス回収ラインと、前記酸素分離後オフガスを前記ガス分離装置内に流通させることにより脱着される脱着ガスを分離回収する第2ガス回収ラインとを有することを特徴とする、製鉄所副生ガスの分離設備。
An oxygen separator that separates oxygen from a raw material gas containing oxygen, a gas separator that separates a predetermined gas component from a by-product gas generated at a steel mill, and an off-gas after oxygen separation of the oxygen separator. and a gas supply device for supplying to the,
The gas separation device is a gas separation device by a pressure swing adsorption method, and the gas separation device uses off gas after oxygen separation from the oxygen separation device supplied by the gas supply device as a gas adsorbent of the gas separation device. It has a gas flow line to circulate in the packed bed,
The gas separation device includes a first gas recovery line that separates and recovers the desorption gas desorbed by decompression in the gas separation device by a vacuum pump into at least two systems with respect to the recovery gas in the desorption step of the gas separation device. characterized Rukoto the oxygen separation after off-gas having a second gas recovery line for separating and recovering a desorption gas desorbed by flowing into the gas separation apparatus, steelworks byproduct gas separation facilities.
前記副生ガスは高炉ガスである、請求項に記載の製鉄所副生ガスの分離設備。 The steel mill by-product gas separation facility according to claim 1 , wherein the by-product gas is a blast furnace gas. 前記所定のガス成分は二酸化炭素である、請求項1または2に記載の製鉄所副生ガスの分離設備。 The steel mill by-product gas separation facility according to claim 1 or 2 , wherein the predetermined gas component is carbon dioxide. 請求項のいずれか一項に記載の製鉄所副生ガスの分離設備を用いて製鉄所副生ガスから所定のガス成分を分離する方法であって、
前記酸素分離装置における酸素分離後オフガスを、前記圧力スイング吸着法によるガス分離装置のガス脱着用ガスとして用いることを特徴とする、製鉄所副生ガスの分離方法。
A method of separating a predetermined gas component from a steelworks by-product gas using the steelworks by-product gas separation facility according to any one of claims 1 to 3 .
A method for separating by-product gas from a steel mill, wherein the off-gas after oxygen separation in the oxygen separation device is used as a gas desorption gas for the gas separation device by the pressure swing adsorption method.
前記副生ガスは、前記酸素分離装置で分離された酸素により酸素富化運転を行った高炉から排出される高炉ガスであり、前記高炉ガスの組成に応じて、前記ガス分離装置における高炉ガスの流量、ガス吸着圧力、ガス脱着圧力、および前記酸素分離後オフガスの流量のうちの少なくとも1つを、前記所定のガス成分の回収ガス量およびガス組成の少なくとも一方が得られるように制御することを特徴とする、請求項に記載の製鉄所副生ガスの分離方法。 The by-product gas is a blast furnace gas discharged from a blast furnace that has been oxygen-enriched with oxygen separated by the oxygen separator, and the blast furnace gas in the gas separator depends on the composition of the blast furnace gas. Controlling at least one of the flow rate, the gas adsorption pressure, the gas desorption pressure, and the flow rate of the off-gas after oxygen separation so as to obtain at least one of the recovered gas amount and the gas composition of the predetermined gas component. The method for separating by-product gas from a steel mill according to claim 4 , which is characterized. 前記ガス分離装置の脱着工程における回収ガスに関して、真空ポンプによる前記ガス分離装置内の減圧により脱着される脱着ガスを、脱着工程の時間に応じて少なくとも2系統の第1ガス回収ラインで分離回収すると共に、前記酸素分離後オフガス流通により脱着される脱着ガスを、前記第1ガス回収ラインとは別系統の第2ガス回収ラインにて分離回収する、請求項またはに記載の製鉄所副生ガスの分離方法。

Regarding the recovered gas in the desorption step of the gas separation device, the desorption gas desorbed by decompression in the gas separation device by the vacuum pump is separated and recovered by at least two first gas recovery lines according to the time of the desorption step. The ironworks by-product according to claim 4 or 5 , wherein the desorbed gas desorbed by the off-gas flow after the oxygen separation is separated and recovered at a second gas recovery line of a system different from the first gas recovery line. Gas separation method.

JP2017188974A 2017-09-28 2017-09-28 Steelworks by-product gas separation equipment and separation method Active JP6791085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188974A JP6791085B2 (en) 2017-09-28 2017-09-28 Steelworks by-product gas separation equipment and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188974A JP6791085B2 (en) 2017-09-28 2017-09-28 Steelworks by-product gas separation equipment and separation method

Publications (2)

Publication Number Publication Date
JP2019063697A JP2019063697A (en) 2019-04-25
JP6791085B2 true JP6791085B2 (en) 2020-11-25

Family

ID=66339705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188974A Active JP6791085B2 (en) 2017-09-28 2017-09-28 Steelworks by-product gas separation equipment and separation method

Country Status (1)

Country Link
JP (1) JP6791085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240005074A (en) * 2021-06-24 2024-01-11 제이에프이 스틸 가부시키가이샤 Gas separation equipment and gas separation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261616A (en) * 1985-09-11 1987-03-18 Nippon Steel Corp Method for separating high purity gas from gaseous mixture
US5582029A (en) * 1995-10-04 1996-12-10 Air Products And Chemicals, Inc. Use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process
JP5325435B2 (en) * 2007-10-31 2013-10-23 Jfeスチール株式会社 Blast furnace gas separation method
JP5647388B2 (en) * 2008-03-19 2014-12-24 住友精化株式会社 Blast furnace gas separation method and blast furnace gas separation apparatus

Also Published As

Publication number Publication date
JP2019063697A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2006133576A1 (en) Adsorptive bulk separation for upgrading gas streams
JPH0724735B2 (en) Over-adsorption recovery system in pressure swing adsorption
JP2000129327A (en) Method for integrating blast furnace and direct reduction acting vessel using extra-low temperature rectifying method
JP2017189750A (en) Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas
EP2234696A1 (en) A plant and process for recovering carbon dioxide
CN110198775B (en) Gas separation and recovery method and equipment
JP5498661B2 (en) Blast furnace gas separation method
JP2009226257A (en) Process for separation of blast furnace gas, and system of separating blast furnace gas
JP2018071894A (en) Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas
Siriwardane et al. Adsorption and desorption of CO2 on solid sorbents
JP6791085B2 (en) Steelworks by-product gas separation equipment and separation method
AU2015281014A1 (en) Gas concentration method
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JP6930513B2 (en) Organic matter synthesizer and synthesis method
JP2007209868A (en) Stable operation method of pressure swing adsorption device
JPH0678531B2 (en) Coal gasification method and apparatus
JP2019150769A (en) Gas separation method
AU2016201267A1 (en) A plant and process for simutaneous recovering multiple gas products from petrochemical offgas
JP5500650B2 (en) Argon gas purification method and purification apparatus
JP2019156730A (en) Synthesis method of methanol
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
Bashir et al. Performance Analysis of Pressure Swing Adsorption Process for Carbon-Containing Off-Gas Separation in the Steel Industry.
JP2021094513A (en) Gas separation recovery facility and gas separation recovery method
WO2023042535A1 (en) Gas separation method
JP2003019415A (en) Method for separating gaseous mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6791085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250