JP6787621B1 - Powder deposition method, powder deposition container and ALD device - Google Patents

Powder deposition method, powder deposition container and ALD device Download PDF

Info

Publication number
JP6787621B1
JP6787621B1 JP2020531681A JP2020531681A JP6787621B1 JP 6787621 B1 JP6787621 B1 JP 6787621B1 JP 2020531681 A JP2020531681 A JP 2020531681A JP 2020531681 A JP2020531681 A JP 2020531681A JP 6787621 B1 JP6787621 B1 JP 6787621B1
Authority
JP
Japan
Prior art keywords
container
powder
gas
main body
ald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020531681A
Other languages
Japanese (ja)
Other versions
JPWO2020240893A1 (en
Inventor
英児 佐藤
英児 佐藤
坂本 仁志
仁志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creative Coatings Co Ltd
Original Assignee
Creative Coatings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Coatings Co Ltd filed Critical Creative Coatings Co Ltd
Priority claimed from PCT/JP2019/047394 external-priority patent/WO2020240893A1/en
Application granted granted Critical
Publication of JP6787621B1 publication Critical patent/JP6787621B1/en
Publication of JPWO2020240893A1 publication Critical patent/JPWO2020240893A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus

Abstract

粉体の成膜方法は、粉体Pを収容した容器(10)を分散装置本体(110)にセットして、分散装置本体(110)により容器(10)内の粉体(P)を分散させる分散工程と、分散装置本体(100)より取り出された容器(10)をガス導入及び排気可能な状態でALD装置本体(201)にセットして、容器(10)内でALDサイクルを実施するためのガスを導入して容器(10)内に充満させ、その後前記ガスを排気して、粉体(P)の表面を成膜するALD工程と、を有する。In the powder deposition method, the container (10) containing the powder P is set in the disperser main body (110), and the powder (P) in the container (10) is dispersed by the disperser main body (110). The ALD cycle is carried out in the container (10) by setting the container (10) taken out from the disperser main body (100) in the ALD device main body (201) in a state where gas can be introduced and exhausted. The container (10) is filled with a gas for this purpose, and then the gas is exhausted to form a film on the surface of the powder (P).

Description

本発明は、粉体の成膜方法、粉体成膜用容器及びALD装置等に関する。 The present invention relates to a powder deposition method, a powder deposition container, an ALD device, and the like.

半導体製造技術は、基板上に成膜するだけでなく、粉体の表面に成膜することにも利用されている。その際、粉体は凝縮し易い。特許文献1には、真空容器内の炭素担体を攪拌あるいは回転させて分散させながらスパッタリングを行うことで、炭素担体の表面に成膜することが開示されている。 The semiconductor manufacturing technology is used not only for forming a film on a substrate but also for forming a film on the surface of a powder. At that time, the powder tends to condense. Patent Document 1 discloses that a carbon carrier in a vacuum vessel is formed into a film on the surface of the carbon carrier by performing sputtering while stirring or rotating the carbon carrier to disperse the carbon carrier.

特許文献2には、真空容器自体は回転させず、真空容器内に配置された筒状の容器を真空容器に対して回転または搖動させて、粉体の表面にドライプロセスによりコーティングする技術が開示されている。 Patent Document 2 discloses a technique in which a tubular container arranged in a vacuum container is rotated or oscillated with respect to the vacuum container without rotating the vacuum container itself, and the surface of the powder is coated by a dry process. Has been done.

特許文献3には、成膜対象に酸化物薄膜を室温で形成することができる原子層堆積法(ALD:Atomic Layer Deposition)が開示されている。つまり、成膜時に強制加熱する必要がない。このことは、湿気等によって凝集し易い粉体への成膜にとっては、成膜中に凝縮を維持し易い点で不利である。 Patent Document 3 discloses an atomic layer deposition method (ALD) capable of forming an oxide thin film on a film formation target at room temperature. That is, it is not necessary to forcibly heat the film at the time of film formation. This is disadvantageous in that it is easy to maintain condensation during the film formation for the film formation on the powder which easily aggregates due to moisture or the like.

特開2008−38218号公報Japanese Unexamined Patent Publication No. 2008-38218 特開2014−159623号公報Japanese Unexamined Patent Publication No. 2014-159623 特許第5761724号公報Japanese Patent No. 5761724

成膜対象である粉体に特許文献3等に開示されたALDを応用するにあたり、特許文献1または2に開示された装置を利用することが考えられる。しかし、特許文献1及び2では、粉体への成膜動作中に、回転または揺動による粉体の分散動作を同時に実施しなければならない。成膜と同時に実施される分散のための回転速度には制約がある。そのため、比較的低い回転速度では、特に非加熱で成膜される粉体を十分に分散させることができない。さらに、回転または揺動機構を有する成膜装置が、大型化、複雑化するという課題もある。 In applying the ALD disclosed in Patent Document 3 or the like to the powder to be formed, it is conceivable to use the apparatus disclosed in Patent Document 1 or 2. However, in Patent Documents 1 and 2, the powder dispersion operation by rotation or rocking must be performed at the same time during the film formation operation on the powder. There are restrictions on the rotation speed for dispersion performed at the same time as film formation. Therefore, at a relatively low rotation speed, the powder formed without heating cannot be sufficiently dispersed. Further, there is also a problem that the film forming apparatus having a rotation or swing mechanism becomes large and complicated.

本発明は、分散装置と成膜装置とに分けて成膜装置の小型化、簡易化を図りながら、成膜対象の粉体を両装置間で移し替えるハンドリングを簡便にでき、分散された粉体の表面に確実に成膜することができる粉体の成膜方法、粉体成膜用容器及びALD装置を提供することを目的とする。 According to the present invention, it is possible to easily handle the transfer of the powder to be filmed between the dispersers and the film forming apparatus while reducing the size and simplification of the film forming apparatus, and the dispersed powder. An object of the present invention is to provide a powder film forming method, a powder film forming container, and an ALD device capable of reliably forming a film on the surface of a body.

(1)本発明の一態様は、
粉体を収容した容器を分散装置本体にセットして、前記分散装置本体により前記容器内の前記粉体を分散させる分散工程と、
前記分散装置本体より取り出された前記容器をガス導入及び排気可能な状態でALD装置本体にセットして、前記容器内でALDサイクルを実施するためのガスを導入して前記容器内に充満させ、その後前記ガスを排気して、前記粉体の表面を成膜するALD工程と、
を有する粉体の成膜方法に関する。
(1) One aspect of the present invention is
A dispersion step in which a container containing powder is set in a dispersion device main body and the powder in the container is dispersed by the dispersion device main body.
The container taken out from the disperser main body is set in the ALD device main body in a state where gas can be introduced and exhausted, and gas for carrying out the ALD cycle is introduced into the container to fill the container. After that, the ALD step of exhausting the gas to form a film on the surface of the powder, and
The present invention relates to a method for forming a powder having.

本発明の一態様(1)によれば、分散装置と成膜装置とに分けことで、成膜装置は回転または揺動による粉体(微粒子とも言う)の分散動作を同時に実施しなくて済み、その分、成膜装置が小型化、簡易化される。成膜装置では、ALDサイクルを実施するために容器内に導入されるガスが、予め分散されている粉体間に浸透する。それにより、粉体の表面を原子層レベルの薄さで成膜することができる。ここで、粉体は、主として分子間力(ファンデルワールス力)により凝縮する。つまり、粉体サイズが小さいほど凝集し易い。また、粉体は湿気等によっても凝集する。ALD工程の前に分散工程を実施することで、凝集している容器内の粉体を、予め攪拌等により十分に分散させておくことができる。そして、分散工程とALD工程とに容器が共用されるので、成膜対象の粉体を両工程間で移し替えるハンドリングを簡便にできる。 According to one aspect (1) of the present invention, by separating the disperser and the film forming apparatus, the film forming apparatus does not have to simultaneously perform the dispersion operation of powders (also referred to as fine particles) by rotation or shaking. Therefore, the film forming apparatus is downsized and simplified accordingly. In the film forming apparatus, the gas introduced into the container for carrying out the ALD cycle permeates between the powders dispersed in advance. As a result, the surface of the powder can be formed as thin as an atomic layer. Here, the powder is condensed mainly by an intermolecular force (Van der Waals force). That is, the smaller the powder size, the easier it is to aggregate. The powder also aggregates due to humidity and the like. By carrying out the dispersion step before the ALD step, the powder in the agglomerated container can be sufficiently dispersed by stirring or the like in advance. Since the container is shared between the dispersion step and the ALD step, the handling of transferring the powder to be formed into a film between the two steps can be easily performed.

(2)本発明の一態様(1)では、前記粉体を強制加熱することなく前記ALDサイクルを実施することができる。非加熱の粉体は湿気によって凝集し易いが、ALD工程の前に分散工程を実施することで、凝集している容器内の粉体を、予め攪拌して十分に分散させておくことができる。 (2) In one aspect (1) of the present invention, the ALD cycle can be carried out without forcibly heating the powder. The unheated powder tends to agglomerate due to moisture, but by carrying out the dispersion step before the ALD step, the agglomerated powder in the container can be sufficiently dispersed by stirring in advance. ..

(3)本発明の他の態様は、
本発明の一態様(1)または(2)の粉体の成膜方法に用いられる容器であって、
前記粉体を収容する容器本体と、
前記容器本体内にガスを導入するガス導入口と、
前記容器本体内を排気する排気口と、
前記容器本体内に配置され、前記ガスの通過を許容する一方で、前記粉体が前記ガス導入口に向けて通過するのを阻止する第1フィルターと、
前記容器本体内に配置され、前記ガスの通過を許容する一方で、前記粉体が前記排気口に向けて通過するのを阻止する第2フィルターと、
を有し、
前記容器本体、前記第1フィルター及び前記第2フィルターで仕切られる粉体収容室に粉体が出し入れ可能に収容される容器に関する。
(3) Another aspect of the present invention is
A container used in the method for forming a powder according to one aspect (1) or (2) of the present invention.
The container body that stores the powder and
A gas inlet for introducing gas into the container body and
An exhaust port that exhausts the inside of the container body and
A first filter, which is arranged in the container body and allows the gas to pass through, while blocking the powder from passing toward the gas inlet.
A second filter, which is arranged in the container body and allows the gas to pass through, while blocking the powder from passing toward the exhaust port.
Have,
The present invention relates to a container in which powder can be taken in and out of the container body, the first filter, and the powder storage chamber partitioned by the second filter.

本発明の一態様(3)によれば、容器本体、第1フィルター及び第2フィルターで仕切られる粉体収容室に粉体を収容した容器を分散装置にセットして、容器を回転または揺動等させることで、例えば湿気等により凝集している容器内の粉体を、予め攪拌して分散させておくことができる。この分散工程では、必ずしもガス導入口及び排気口を閉鎖しなくても、第1、第2フィルターにより粉体が漏出することを防止できる。また、分散時に容器が密閉状態ではなく、ガス導入口及び排気口を介して空気が容器に出入りされるため、容器内部の粉体を十分に分散することができる。この容器をALD装置にセットし、容器のガス導入口からガスを導入し、容器の排気口から排気することで、ALDサイクルを実施して、粉体の表面を原子層レベルの薄さで成膜することができる。 According to one aspect (3) of the present invention, the container containing the powder is set in the dispersion device in the container body, the powder storage chamber partitioned by the first filter and the second filter, and the container is rotated or rocked. By equalizing, for example, the powder in the container that has agglomerated due to moisture or the like can be stirred and dispersed in advance. In this dispersion step, it is possible to prevent the powder from leaking out by the first and second filters without necessarily closing the gas introduction port and the exhaust port. Further, since the container is not in a closed state at the time of dispersion and air enters and exits the container through the gas introduction port and the exhaust port, the powder inside the container can be sufficiently dispersed. By setting this container in the ALD device, introducing gas from the gas inlet of the container, and exhausting it from the exhaust port of the container, the ALD cycle is carried out and the surface of the powder is formed as thin as the atomic layer. Can be filmed.

(4)本発明の他の態様(3)では、前記容器本体は、蓋部と、前記蓋部が気密に装着され、前記蓋部が取り外し可能な本体部と、を含むことができる。こうすると、本体部から蓋を取り外すことで粉体収容室が開放され、粉体収容室に粉体を出し入れすることができる。粉体収容後に本体部に蓋部が気密に装着されることで、分散工程時に粉体が漏れることがなく、しかもガスが導入・排気されるALD工程を実施することができる。 (4) In another aspect (3) of the present invention, the container main body can include a lid portion and a main body portion to which the lid portion is airtightly attached and the lid portion can be removed. By doing so, the powder storage chamber is opened by removing the lid from the main body, and the powder can be taken in and out of the powder storage chamber. Since the lid is airtightly attached to the main body after the powder is stored, the ALD step in which the powder is introduced and exhausted without leaking the powder during the dispersion step can be carried out.

(5)本発明の他の態様(4)では、前記蓋部は、前記ガス導入口及び前記第1フィルターを含むことができ、前記本体部は、前記排気口及び前記第2フィルターを含むことができる。こうすると、本体部から蓋を取り外すことで、第1フィルターが切り離されて粉体収容室が開放され、粉体収容室に粉体を出し入れすることができる。また、異なる粒径粉体へのロット交換時やメインテナンス時に第1フィルターを交換するには、蓋に対して第1フィルターを交換すればよい。あるいは、第1フィルターの種別ごとに用意された蓋に交換しても良い。 (5) In another aspect (4) of the present invention, the lid portion can include the gas introduction port and the first filter, and the main body portion includes the exhaust port and the second filter. Can be done. By doing so, by removing the lid from the main body portion, the first filter is separated, the powder storage chamber is opened, and the powder can be taken in and out of the powder storage chamber. Further, in order to replace the first filter at the time of lot replacement or maintenance with a powder having a different particle size, the first filter may be replaced with respect to the lid. Alternatively, the lid may be replaced with a lid prepared for each type of the first filter.

(6)本発明の他の態様(4)では、前記本体部は、前記ガス導入口及び前記第1フィルターを含むことができ、前記蓋部は、前記排気口及び前記第2フィルターを含むことができる。こうすると、本体部から蓋を取り外すことで、第2フィルターが切り離されて粉体収容室が開放され、粉体収容室に粉体を出し入れすることができる。また、異なる粒径粉体へのロット交換時やメインテナンス時に第2フィルターを交換するには、蓋に対して第2フィルターを交換すればよい。あるいは、第2フィルターの種別ごとに用意された蓋に交換しても良い。 (6) In another aspect (4) of the present invention, the main body portion can include the gas introduction port and the first filter, and the lid portion includes the exhaust port and the second filter. Can be done. By doing so, by removing the lid from the main body portion, the second filter is separated and the powder storage chamber is opened, and the powder can be taken in and out of the powder storage chamber. Further, in order to replace the second filter at the time of lot replacement or maintenance with a powder having a different particle size, the second filter may be replaced with respect to the lid. Alternatively, the lid may be replaced with a lid prepared for each type of the second filter.

(7)本発明の他の態様(3)では、
前記容器本体は、
第1蓋部と、
第2蓋部と、
本体部と、
を含み、
前記本体部の一端に前記第1蓋部が気密に装着され、前記第1蓋部が取り外し可能であり、
前記本体部の他端に前記第2蓋部が気密に装着され、前記第1蓋部が取り外し可能とすることができる。
こうすると、異なる粒径粉体へのロット交換時やメインテナンス時に第1及び第2フィルターの交換が容易となる。つまり、第1蓋に対して第1フィルターを交換するか、第1フィルターの種別ごとに用意された第1蓋に交換することがすることができる。同様に、第2蓋に対して第2フィルターを交換するか、第2フィルターの種別ごとに用意された第2蓋に交換することがすることができる。
(7) In another aspect (3) of the present invention,
The container body
The first lid and
With the second lid
With the main body
Including
The first lid portion is airtightly attached to one end of the main body portion, and the first lid portion is removable.
The second lid portion is airtightly attached to the other end of the main body portion, and the first lid portion can be made removable.
This facilitates replacement of the first and second filters during lot replacement or maintenance for powders of different particle sizes. That is, the first filter can be replaced with respect to the first lid, or the first lid can be replaced with a first lid prepared for each type of the first filter. Similarly, the second filter can be replaced with respect to the second lid, or the second lid can be replaced with a second lid prepared for each type of the second filter.

(8)本発明のさらに他の態様は、
本発明の他の態様(3)〜(7)のいずれかの容器と、
前記容器内でALDサイクルを実施するためのガスを導入して前記容器内に充満させ、その後前記ガスを排気して、前記粉体の表面を成膜するALD装置本体と、
を有するALD装置に関する。
(8) Yet another aspect of the present invention is
The container according to any of the other aspects (3) to (7) of the present invention,
A gas for carrying out an ALD cycle in the container is introduced to fill the container, and then the gas is exhausted to form a film on the surface of the powder.
The present invention relates to an ALD device having.

本発明のさらに他の態様(8)によれば、容器をALD装置にセットし、ALDサイクルを実施するためのガスをガス導入口から導入して容器内に充満させ、容器の排気口からガスを排気することで、ALDサイクルを実施して、原子層レベルの薄さで成膜することができる。 According to still another aspect (8) of the present invention, the container is set in the ALD device, gas for carrying out the ALD cycle is introduced from the gas inlet to fill the container, and the gas is filled from the exhaust port of the container. By exhausting the gas, the ALD cycle can be carried out to form an atomic layer-level thin film.

図1(A)は本発明方法の一実施形態の分散工程を示し、図1(B)は本発明方法の一実施形態のALD工程を示す図である。FIG. 1A is a diagram showing a dispersion step of an embodiment of the method of the present invention, and FIG. 1B is a diagram showing an ALD step of an embodiment of the method of the present invention. 本発明方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of this invention method. ALDサイクルを説明するための図である。It is a figure for demonstrating the ALD cycle. 活性化装置の一例を示す図である。It is a figure which shows an example of an activator. 本発明の一実施形態である容器の断面図である。It is sectional drawing of the container which is one Embodiment of this invention. 本発明の他の実施形態である容器の断面図である。It is sectional drawing of the container which is another embodiment of this invention. 本発明のさらに他の実施形態である容器の断面図である。It is sectional drawing of the container which is still another embodiment of this invention.

以下の開示において、提示された主題の異なる特徴を実施するための多くの異なる実施形態や実施例を提供する。もちろんこれらは単なる例であり、限定的であることを意図するものではない。さらに、本開示では、様々な例において参照番号および/または文字を反復している場合がある。このように反復するのは、簡潔明瞭にするためであり、それ自体が様々な実施形態および/または説明されている構成との間に関係があることを必要とするものではない。さらに、第1の要素が第2の要素に「接続されている」または「連結されている」と記述するとき、そのような記述は、第1の要素と第2の要素とが一体的であるもの、あるいは第1の要素と第2の要素とが互いに直接的に接続または連結されている実施形態を含むとともに、第1の要素と第2の要素とが、その間に介在する1以上の他の要素を有して互いに間接的に接続または連結されている実施形態も含む。また、第1の要素が第2の要素に対して「移動する」と記述するとき、そのような記述は、第1の要素及び第2の要素の少なくとも一方が他方に対して移動する相対的な移動の実施形態を含む。 The following disclosures provide many different embodiments and examples for implementing the different features of the presented subject matter. Of course, these are just examples and are not intended to be limited. Further, in the present disclosure, reference numbers and / or letters may be repeated in various examples. This repetition is for brevity and clarity and does not itself require a relationship between the various embodiments and / or the configurations described. Further, when the first element is described as "connected" or "connected" to the second element, such a description is such that the first element and the second element are integrated. One or more, including an embodiment in which the first element and the second element are directly connected or connected to each other, and the first element and the second element intervene between them. Also included are embodiments that have other elements and are indirectly connected or linked to each other. Also, when the first element is described as "moving" with respect to the second element, such a description is relative to the movement of at least one of the first element and the second element with respect to the other. Includes embodiments of various movements.

本発明の成膜方法の一実施形態は、図1(A)に示す分散工程と、図1(B)にALD工程とを含む。 One embodiment of the film forming method of the present invention includes a dispersion step shown in FIG. 1 (A) and an ALD step in FIG. 1 (B).

1.分散工程及び分散装置
図1(A)に示す分散工程では、粉体Pが収容された容器10が分散装置本体100にセットされる。容器10と分散装置本体100とで分散装置が構成される。ここで、粉体Pはサイズが例えばミクロン、サブミクロン又はナノオーダーの微粒子とすることができ、材質は問わない。粉体Pのサイズが小さいほど凝縮し易いので、成膜前に分散させる必要性が高くなる。また、図1(A)及び図1(B)の作図の便宜上、粉体収容室70内の粉体Pは散在しているが、1バッチ処理分の例えば総重量10kgの粉体Pが容器10の粉体収容室70に満載されても良い。ただし、凝集されている粉体Pが攪拌により分散される程度に、粉体収容室70には余剰のスペースは確保される。
1. 1. Dispersion Step and Dispersion Device In the dispersion step shown in FIG. 1A, the container 10 containing the powder P is set in the disperser main body 100. The disperser is composed of the container 10 and the disperser main body 100. Here, the powder P can be fine particles having a size of, for example, micron, submicron, or nano-order, and the material is not limited. The smaller the size of the powder P, the easier it is to condense, so the need for dispersion before film formation increases. Further, for convenience of drawing in FIGS. 1 (A) and 1 (B), the powder P in the powder storage chamber 70 is scattered, but the powder P having a total weight of, for example, 10 kg for one batch processing is a container. It may be packed in the powder storage chamber 70 of 10. However, an extra space is secured in the powder storage chamber 70 to the extent that the agglomerated powder P is dispersed by stirring.

容器10は、粉体Pを収容する容器本体20と、容器本体20内にガスを導入するガス導入口30と、容器本体20内に設けられる第1フィルター40と、容器本体20内を排気する排気口50と、容器本体20内に設けられる第2フィルター60とを含むことができる。第1フィルター40は、ガスの通過を許容する一方で、粉体Pがガス導入口30に向けて通過するのを阻止する。第2フィルター60は、ガスの通過を許容する一方で、粉体Pが排気口50に向けて通過するのを阻止する。そして、容器本体20、第1フィルター40及び第2フィルター60で仕切られる粉体収容室70に、粉体Pが出し入れ可能に収容される。なお、図1(A)には、粉体収容室70の一部を開放させ、かつ、容器本体20に気密に装着される蓋部は省略されている。 The container 10 exhausts the inside of the container body 20 for accommodating the powder P, the gas introduction port 30 for introducing gas into the container body 20, the first filter 40 provided in the container body 20, and the inside of the container body 20. The exhaust port 50 and the second filter 60 provided in the container body 20 can be included. The first filter 40 allows the gas to pass through, while blocking the powder P from passing toward the gas inlet 30. The second filter 60 allows the passage of the gas while blocking the powder P from passing toward the exhaust port 50. Then, the powder P is stored in the powder storage chamber 70 partitioned by the container body 20, the first filter 40, and the second filter 60 so that the powder P can be taken in and out. Note that in FIG. 1A, a lid portion that opens a part of the powder storage chamber 70 and is airtightly attached to the container body 20 is omitted.

図1(A)に示す分散装置本体100は、第1保持部材110及び第2保持部材120を含み、容器10は第1、第2保持部材110、120間に押圧されて挟持固定される。遠心力に抗するように、容器10を第1、第2保持部材110、120の一方に位置決めする位置決め部を設けても良い。分散装置本体100は、自転軸A1の廻りに容器10を回転駆動する自転駆動部を含むことができる。分散装置本体100は、さらに、公転軸A2の廻りに容器10を回転駆動する公転駆動部を含むことができる。自転軸A1と公転軸A2とは、平行または交差する方向に延びる。なお、容器10内の粉体Pを撹拌して分散させるための駆動部は、自転及び/又は公転に限らず、揺動、振動等であっても良い。 The disperser main body 100 shown in FIG. 1A includes a first holding member 110 and a second holding member 120, and the container 10 is pressed and sandwiched and fixed between the first and second holding members 110 and 120. A positioning portion for positioning the container 10 on one of the first and second holding members 110 and 120 may be provided so as to resist the centrifugal force. The disperser main body 100 can include a rotation driving unit that rotationally drives the container 10 around the rotation shaft A1. The disperser main body 100 can further include a revolution driving unit that rotationally drives the container 10 around the revolution shaft A2. The rotation axis A1 and the revolution axis A2 extend in parallel or intersecting directions. The driving unit for stirring and dispersing the powder P in the container 10 is not limited to rotation and / or revolution, but may be rocking, vibration, or the like.

図2に示すステップ1において、先ず、図示しない蓋部を開放して容器10内に粉体Pを収容する。その後、蓋部を気密に装着して容器10内に粉体Pを封止する。この際、容器10のガス導入口30及び排気口50は開放されているが、第1、第2フィルター40、60により内部の粉体Pが外部に漏出することは阻止される。また、分散時に容器10が密閉状態ではなく、ガス導入口30及び排気口50を介して空気が容器10に出入りされるため、容器10内部の粉体Pを十分に分散することができる。 In step 1 shown in FIG. 2, first, the lid (not shown) is opened to accommodate the powder P in the container 10. After that, the lid portion is airtightly attached and the powder P is sealed in the container 10. At this time, the gas introduction port 30 and the exhaust port 50 of the container 10 are open, but the first and second filters 40 and 60 prevent the powder P inside from leaking to the outside. Further, since the container 10 is not in a closed state at the time of dispersion and air enters and exits the container 10 through the gas introduction port 30 and the exhaust port 50, the powder P inside the container 10 can be sufficiently dispersed.

次に、図2に示すステップ2において、容器10が分散装置本体100に図1(A)に示すようにしてセットされる。その後、図2に示すステップ3において、分散工程が時視される。分散工程では、第1、第2保持部材110、120間に押圧されて挟持固定される容器10が、自転軸A1及び/又は公転軸A2の廻りに回転駆動される。それにより、容器10内の粉体Pが攪拌されて分散される。特に、例えば湿気等により粉体Pが凝集していたとしても、分散工程の実施により容器10内の粉体Pは分散される。 Next, in step 2 shown in FIG. 2, the container 10 is set in the disperser main body 100 as shown in FIG. 1 (A). Then, in step 3 shown in FIG. 2, the dispersion step is timely viewed. In the dispersion step, the container 10 pressed and sandwiched and fixed between the first and second holding members 110 and 120 is rotationally driven around the rotation shaft A1 and / or the revolution shaft A2. As a result, the powder P in the container 10 is agitated and dispersed. In particular, even if the powder P is agglomerated due to humidity or the like, the powder P in the container 10 is dispersed by carrying out the dispersion step.

分散工程が終了したら、図2に示すステップ4において、容器10が分散装置本体100からALD装置本体201に移し換えられる。このために、分散装置本体100では第1、第2保持部材110、120間の押圧力が解除されることで容器10が取り出される。この容器10は、そのままの状態で、図1(B)に示すALD装置本体201に移し換えられる。従って、容器10が分散工程とALD工程とに共用されるので、成膜対象の粉体Pを両工程間で移し替えるハンドリングを簡便にすることができる。 When the dispersion step is completed, the container 10 is transferred from the dispersion device main body 100 to the ALD device main body 201 in step 4 shown in FIG. Therefore, in the disperser main body 100, the container 10 is taken out by releasing the pressing force between the first and second holding members 110 and 120. The container 10 is transferred to the ALD apparatus main body 201 shown in FIG. 1B as it is. Therefore, since the container 10 is shared between the dispersion step and the ALD step, it is possible to simplify the handling of transferring the powder P to be formed into a film between the two steps.

2.ALD工程及びALD装置
図1(B)に、容器10とALD装置本体201とを含むALD装置200の一例が示されている。ALD装置本体201は、容器10のガス導入口30に気密に接続されるガス導入管202と、容器10の排気口50に気密に接続される排気管203とを有する。
2. ALD process and ALD device FIG. 1 (B) shows an example of the ALD device 200 including the container 10 and the ALD device main body 201. The ALD device main body 201 has a gas introduction pipe 202 that is airtightly connected to the gas introduction port 30 of the container 10 and an exhaust pipe 203 that is airtightly connected to the exhaust port 50 of the container 10.

ガス導入管202には、有機金属ガス容器210が、流量制御器220を介して接続されている。ガス導入管202には、オゾン容器230が、流量制御器240を介して接続されている。また、ガス導入管202には、不活性ガス容器250が、活性化装置260を介して接続されている。なお、図1(B)には図示していないが、ガス導入管202にはパージガスとして不活性ガスが流量制御されて供給可能である。排気管203には排気ポンプ270が接続され、容器10内を真空引き可能である。なお、パージガスは容器10内の原料ガスを排気するために用いられるが、パージガスの導入に代えて、真空ポンプ270により容器10内を排気しても良い。 An organometallic gas container 210 is connected to the gas introduction pipe 202 via a flow rate controller 220. An ozone container 230 is connected to the gas introduction pipe 202 via a flow rate controller 240. Further, the inert gas container 250 is connected to the gas introduction pipe 202 via the activation device 260. Although not shown in FIG. 1B, an inert gas can be supplied to the gas introduction pipe 202 as a purge gas with a controlled flow rate. An exhaust pump 270 is connected to the exhaust pipe 203, and the inside of the container 10 can be evacuated. Although the purge gas is used to exhaust the raw material gas in the container 10, the inside of the container 10 may be exhausted by the vacuum pump 270 instead of introducing the purge gas.

図1(B)に示すように容器10をALD装置本体201にセットして、図2に示すステップ6において、ALDサイクルを実施する。図3に示すように、ALDサイクルとは、原料ガスの投入→排気(パージを含む)→反応ガスの投入→排気(パージを含む)の最小4ステップを一サイクルとする。粉体P成膜される膜の厚さはALDサイクルの数Nに比例する。よって、図2に示すステップ7において、カウントアップされるサイクル数が設定値に達したかが判断され、ステップ6のALDサイクルが必要数だけ繰り返し実施される。 As shown in FIG. 1 (B), the container 10 is set in the ALD apparatus main body 201, and the ALD cycle is carried out in step 6 shown in FIG. As shown in FIG. 3, the ALD cycle has a minimum of four steps of input of raw material gas → exhaust (including purge) → input of reaction gas → exhaust (including purge) as one cycle. The thickness of the film formed by powder P is proportional to the number N of ALD cycles. Therefore, in step 7 shown in FIG. 2, it is determined whether the number of cycles to be counted up reaches the set value, and the ALD cycle of step 6 is repeatedly executed as many times as necessary.

ALD装置200で成膜される膜種は、酸化膜または窒化膜であり、以下、酸化膜の一例としてAlを成膜する一例を説明する。この場合、2種類のプリカーサー(前駆体)として、例えばトリメチルアルミニウムAl(CHとOHラジカル(OH*)とが用いられる。原料ガスであるトリメチルアルミニウムは、有機金属ガス容器210から供給される。反応ガスを活性化して得られるOHラジカルは、活性化装置260で生成される。The film type formed by the ALD apparatus 200 is an oxide film or a nitride film, and an example of forming Al 2 O 3 as an example of the oxide film will be described below. In this case, for example, trimethylaluminum Al (CH 3 ) 3 and OH radical (OH *) are used as the two types of precursors. The raw material gas, trimethylaluminum, is supplied from the organometallic gas container 210. The OH radical obtained by activating the reaction gas is generated by the activation device 260.

このため、不活性ガス容器250からの不活性ガス例えばアルゴンArが、活性化装置260に供給される。活性化装置260は、図4に示すように、水1が蓄えられた加湿器261と、ガス導入管202に連通されるプラズマ生成室262とを含む。加湿器261には、不活性ガス容器250からの不活性ガス例えばアルゴンArが導入される。アルゴンArによりバブリングされた水1が水蒸気ガスとなって、プラズマ生成室262に供給される。例えば石英製のプラズマ生成室262の周囲には誘導コイル263が設けられる。誘導コイル263には、図示しない高周波電源が接続される。例えば、誘導コイル263によって加えられる電磁エネルギーは20Wで、周波数は13.56MHzである。誘導コイル263によってプラズマ生成室262内には反応ガスの誘導結合プラズマ2が生成される。それにより、Ar+HO→Ar*+OH*+H*となり、OHラジカル(OH*)を生成できる。OHラジカル(OH*)をガス導入管202を介して容器10に供給することにより、後述する通り、粉体Pを強制加熱することなく低温で、例えば、室温で成膜することができる。Therefore, the inert gas such as argon Ar from the inert gas container 250 is supplied to the activating device 260. As shown in FIG. 4, the activating device 260 includes a humidifier 261 in which water 1 is stored and a plasma generation chamber 262 communicating with a gas introduction pipe 202. An inert gas such as Argon Ar from the Inactive Gas Container 250 is introduced into the humidifier 261. The water 1 bubbled by Argon Ar becomes steam gas and is supplied to the plasma generation chamber 262. For example, an induction coil 263 is provided around the quartz plasma generation chamber 262. A high frequency power supply (not shown) is connected to the induction coil 263. For example, the electromagnetic energy applied by the induction coil 263 is 20 W and the frequency is 13.56 MHz. Inductively coupled plasma 2 of the reaction gas is generated in the plasma generation chamber 262 by the induction coil 263. As a result, Ar + H 2 O → Ar * + OH * + H *, and OH radical (OH *) can be generated. By supplying the OH radical (OH *) to the container 10 via the gas introduction pipe 202, as will be described later, the powder P can be formed into a film at a low temperature, for example, at room temperature, without forcibly heating the powder P.

ALDサイクルを実施するにあたり、先ず、排気ポンプ270により容器10内が真空引きされ、例えば10−4Paに設定される。次に、ALDサイクルの1ステップ目として、トリメチルアルミニウムAl(CHが容器10内に所定の圧力例えば1〜10Paで充満される。ALDサイクルの1ステップ目で、粉体P間にトリメチルアルミニウムAl(CHが浸透する。所定時間経過後、ALDサイクルの2ステップ目として、容器10内にパージガスが導入され、容器10内のトリメチルアルミニウムAl(CHがパージガスに置換される。In carrying out the ALD cycle, first, the inside of the container 10 is evacuated by the exhaust pump 270, and is set to, for example, 10 -4 Pa. Next, as the first step of the ALD cycle, the container 10 is filled with trimethylaluminum Al (CH 3 ) 3 at a predetermined pressure, for example, 1 to 10 Pa. In the first step of the ALD cycle, trimethylaluminum Al (CH 3 ) 3 permeates between the powders P. After the lapse of a predetermined time, as the second step of the ALD cycle, the purge gas is introduced into the container 10, and the trimethylaluminum Al (CH 3 ) 3 in the container 10 is replaced with the purge gas.

次に、ALDサイクルの3ステップ目として、OHラジカル(OH*)が容器10内に所定の圧力例えば1〜10Paで充満される。ALDサイクルの3ステップ目で、粉体P間にOHラジカル(OH*)が浸透する。その結果、粉体Pの表面では、トリメチルアルミニウムAl(CHがOHラジカル(OH*)と反応して、酸化アルミニウムAlが生成される。それにより、粉体Pの表面は酸化膜により被覆される。特に、粉体Pの表面のヒドロキシ基(−OH)上には、有機金属ガスは室温でも飽和吸着が可能である。よって、成膜中に粉体Pを強制加熱する必要がない。所定時間経過後、ALDサイクルの4ステップ目として、容器10内にパージガスが導入され、容器10内のOHラジカル(OH*)がパージガスに置換される。Al膜は1サイクルでおよそ1オングストローム=0.1nmずつ成膜ができるので、例えば10nmの膜厚にするにはALDサイクルを100回繰り返せばよい。成膜は単層または多層とすることができる。多層の場合、成膜種に応じた原料に切り換えられる。ALDサイクルの変形例として、OHラジカル(OH*)を容器10内に導入する前に、オゾン容器230及び流量制御器240を介して、容器10内に所定の圧力例えば1〜10Paでオゾンを充満させ、その後パージガスで排出しても良い。オゾンを導入することによって、未反応の炭素が膜中に混入されるのを防止することが可能である。Next, as the third step of the ALD cycle, the container 10 is filled with OH radicals (OH *) at a predetermined pressure, for example, 1 to 10 Pa. At the third step of the ALD cycle, OH radicals (OH *) permeate between the powders P. As a result, on the surface of the powder P, trimethylaluminum Al (CH 3 ) 3 reacts with OH radical (OH *) to generate aluminum oxide Al 2 O 3 . As a result, the surface of the powder P is covered with an oxide film. In particular, the organometallic gas can be saturated and adsorbed on the hydroxy group (−OH) on the surface of the powder P even at room temperature. Therefore, it is not necessary to forcibly heat the powder P during the film formation. After the lapse of a predetermined time, as the fourth step of the ALD cycle, the purge gas is introduced into the container 10, and the OH radical (OH *) in the container 10 is replaced with the purge gas. Since the Al 2 O 3 film can be formed by about 1 angstrom = 0.1 nm in one cycle, for example, the ALD cycle may be repeated 100 times to obtain a film thickness of 10 nm. The film formation can be a single layer or multiple layers. In the case of multiple layers, the raw material can be switched according to the film type. As a modification of the ALD cycle, before introducing OH radical (OH *) into the container 10, ozone is filled in the container 10 at a predetermined pressure, for example, 1 to 10 Pa, via the ozone container 230 and the flow rate controller 240. Then, it may be discharged with purge gas. By introducing ozone, it is possible to prevent unreacted carbon from being mixed into the film.

3.容器
図5〜図7は、蓋部21A及び/又は蓋部21Bにより開放可能な容器10A、10B、10C示す。図5は、ガス導入口30を有する蓋部21Aが、気密シール材23を介して本体部22Aと着脱可能である。蓋部21Aを取り外すことで、粉体Pを容器10Aの粉体収容室70Aに出し入れすることができる。図6は、排気口50を有する蓋部21Bが、気密シール材23を介して本体部22Bと着脱可能である。蓋部21Bを取り外すことで、粉体Pを容器10Bの粉体収容室70Bに出し入れすることができる。図7は、ガス導入口30を有する蓋部21Aと排気口50を有する蓋部21Bとが、気密シール材23を介して本体部22Cと着脱可能である。蓋部21A及び蓋部21Bの少なくとも一方を取り外すことで、粉体Pを容器10Cの粉体収容室70Cに出し入れすることができる。蓋部21A及び/又は蓋部21Bと、本体部22A、22B、22Cとの固定は、周知の螺合結合、ボルトや締め付けリング等の締結手段等を利用することができる。
3. 3. Containers FIGS. 5 to 7 show containers 10A, 10B, and 10C that can be opened by the lid portion 21A and / or the lid portion 21B. In FIG. 5, the lid portion 21A having the gas introduction port 30 is removable from the main body portion 22A via the airtight sealing material 23. By removing the lid portion 21A, the powder P can be taken in and out of the powder storage chamber 70A of the container 10A. In FIG. 6, the lid portion 21B having the exhaust port 50 is detachable from the main body portion 22B via the airtight sealing material 23. By removing the lid portion 21B, the powder P can be taken in and out of the powder storage chamber 70B of the container 10B. In FIG. 7, the lid portion 21A having the gas introduction port 30 and the lid portion 21B having the exhaust port 50 are detachable from the main body portion 22C via the airtight sealing material 23. By removing at least one of the lid portion 21A and the lid portion 21B, the powder P can be taken in and out of the powder storage chamber 70C of the container 10C. For fixing the lid portion 21A and / or the lid portion 21B to the main body portions 22A, 22B, 22C, a well-known screw coupling, a fastening means such as a bolt or a tightening ring, or the like can be used.

ここで、第1、第2フィルター40、60は、成膜対象の粉体Pのサイズに応じてメッシュのサイズが異なる複数種を用意しておくことができる。この場合、第1又は第2フィルター40、60は、蓋部21A又は蓋部21Bと一体で、あるいは蓋部21A又は蓋部21Bに着脱可能に配置することができる。成膜対象の粉体Pのサイズに応じてメッシュのサイズが異なる第1、第2フィルター40、60の交換が容易だからである。 Here, a plurality of types of the first and second filters 40 and 60 having different mesh sizes depending on the size of the powder P to be formed can be prepared. In this case, the first or second filters 40, 60 can be arranged integrally with the lid portion 21A or the lid portion 21B, or can be detachably arranged on the lid portion 21A or the lid portion 21B. This is because it is easy to replace the first and second filters 40 and 60, which have different mesh sizes depending on the size of the powder P to be formed.

なお、原料ガスとしてTDMAS(SiH[N(CH)を用い、活性化された反応ガス(酸化ガス)としてOHラジカル(OH*)を用いれば、粉体Pの表面にSiNを成膜することができ。この場合も、粉体Pの表面のヒドロキシ基(−OH)上には、有機金属ガスは室温でも飽和吸着が可能である。If TDMAS (SiH [N (CH 3 ) 2 ] 3 ) is used as the raw material gas and OH radical (OH *) is used as the activated reaction gas (oxidation gas), SiN can be generated on the surface of the powder P. Can form a film. In this case as well, the organometallic gas can be saturated and adsorbed on the hydroxy group (−OH) on the surface of the powder P even at room temperature.

また、金属酸化膜を成膜する場合に用いられる反応ガスである酸化ガスに代えて、例えば窒化ガスを用いれば、金属窒化膜を成膜することが可能である。この場合、反応ガスである窒化ガスとして例えばNHラジカルが生成されるNHを用いることができる。原料ガスとして例えばTDMAS(SiH[N(CH)を用いると、粉体Pの表面にSiNを成膜することができる。原料ガスとして例えばTDMAT(Ti[N(CH)を用いると、粉体Pの表面にTiNを成膜することができる。いずれの場合も、NHラジカルの存在により、低温プロセスを実現することができる。Further, if, for example, a nitride gas is used instead of the oxide gas which is the reaction gas used when forming the metal oxide film, the metal nitride film can be formed. In this case, for example, NH 3 in which NH radicals are generated can be used as the nitriding gas as the reaction gas. When TDMAS (SiH [N (CH 3 ) 2 ] 3 ) is used as the raw material gas, SiN can be formed on the surface of the powder P. When, for example, TDMAT (Ti [N (CH 3 ) 2 ] 4 ) is used as the raw material gas, TiN can be formed on the surface of the powder P. In either case, the presence of NH radicals can realize a low temperature process.

10、10A、10B、10C…容器、20…容器本体、21A…蓋部(第1蓋部)、21B…蓋部(第2蓋部)、22A、22B、22C…本体部、23…気密シール材、30…ガス導入口、40…第1フィルター、50…排気口、60…第2フィルター、70、70A、70B、70C 粉体収容室、100…分散装置本体、110…第1保持部材、120…第2保持部材、200…ALD装置、201…ALD装置本体、202…ガス導入管、203…排気管、210…有機金属ガス容器、220…流量制御器、230…オゾンガス容器、240…流量制御器、250…不活性ガス容器、260…活性化装置、270…排気ポンプ、A1…自転軸、A2…公転軸、P…粉体 10, 10A, 10B, 10C ... container, 20 ... container body, 21A ... lid (first lid), 21B ... lid (second lid), 22A, 22B, 22C ... body, 23 ... airtight seal Material, 30 ... gas inlet, 40 ... first filter, 50 ... exhaust port, 60 ... second filter, 70, 70A, 70B, 70C powder storage chamber, 100 ... disperser body, 110 ... first holding member, 120 ... Second holding member, 200 ... ALD device, 201 ... ALD device body, 202 ... Gas introduction pipe, 203 ... Exhaust pipe, 210 ... Organic metal gas container, 220 ... Flow controller, 230 ... Ozone gas container, 240 ... Flow rate Controller, 250 ... Inactive gas container, 260 ... Activator, 270 ... Exhaust pump, A1 ... Rotating shaft, A2 ... Revolving shaft, P ... Powder

Claims (5)

粉体を収容した容器を分散装置本体にセットして、前記分散装置本体により前記容器内の前記粉体を分散させる分散工程と、
前記分散装置本体より取り出された前記容器をガス導入及び排気可能な状態でALD装置本体にセットして、前記容器内でALDサイクルを実施するためのガスを導入して前記容器内に充満させ、その後前記ガスを排気して、前記粉体の表面を成膜するALD工程と、
を有することを特徴とする粉体の成膜方法。
A dispersion step in which a container containing powder is set in a dispersion device main body and the powder in the container is dispersed by the dispersion device main body.
The container taken out from the disperser main body is set in the ALD device main body in a state where gas can be introduced and exhausted, and gas for carrying out the ALD cycle is introduced into the container to fill the container. After that, the ALD step of exhausting the gas to form a film on the surface of the powder, and
A method for forming a powder, which comprises.
請求項1において、
前記粉体を強制加熱することなく前記ALDサイクルを実施することを特徴とする粉体の成膜方法。
In claim 1,
A method for forming a powder, which comprises carrying out the ALD cycle without forcibly heating the powder.
請求項1または2に記載の粉体の成膜方法に用いられる容器であって、
前記粉体を収容する容器本体と、
前記容器本体内にガスを導入するガス導入口と、
前記容器本体内を排気する排気口と、
前記容器本体内に配置され、前記ガスの通過を許容する一方で、前記粉体が前記ガス導入口に向けて通過するのを阻止する第1フィルターと、
前記容器本体内に配置され、前記ガスの通過を許容する一方で、前記粉体が前記排気口に向けて通過するのを阻止する第2フィルターと、
を有し、
前記容器本体、前記第1フィルター及び前記第2フィルターで仕切られる粉体収容室に粉体が出し入れ可能に収容され
前記容器本体は、
第1蓋部と、
第2蓋部と、
本体部と、
を含み、
前記本体部の一端に前記第1蓋部が気密に装着され、前記第1蓋部が取り外し可能であり、
前記本体部の他端に前記第2蓋部が気密に装着され、前記第2蓋部が取り外し可能であることを特徴とする容器。
A container used in the powder film forming method according to claim 1 or 2.
The container body that stores the powder and
A gas inlet for introducing gas into the container body and
An exhaust port that exhausts the inside of the container body and
A first filter, which is arranged in the container body and allows the gas to pass through, while blocking the powder from passing toward the gas inlet.
A second filter, which is arranged in the container body and allows the gas to pass through, while blocking the powder from passing toward the exhaust port.
Have,
The powder is stored in the container body, the first filter, and the powder storage chamber partitioned by the second filter so that the powder can be taken in and out .
The container body
The first lid and
With the second lid
With the main body
Including
The first lid portion is airtightly attached to one end of the main body portion, and the first lid portion is removable.
A container characterized in that the second lid portion is airtightly attached to the other end of the main body portion and the second lid portion is removable .
請求項において、
前記第1蓋部は、前記ガス導入口及び前記第1フィルターを含み、
前記第2蓋部は、前記排気口及び前記第2フィルターを含むことを特徴とする容器。
In claim 3 ,
The first lid includes the gas inlet and the first filter.
The second lid portion is a container including the exhaust port and the second filter .
請求項3または4に記載された容器と、
前記容器内でALDサイクルを実施するためのガスを導入して前記容器内に充満させ、その後前記ガスを排気して、前記粉体の表面を成膜するALD装置本体と、
を有することを特徴とするALD装置。
With the container according to claim 3 or 4 .
A gas for carrying out an ALD cycle in the container is introduced to fill the container, and then the gas is exhausted to form a film on the surface of the powder.
An ALD device characterized by having.
JP2020531681A 2019-05-24 2019-12-04 Powder deposition method, powder deposition container and ALD device Active JP6787621B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019098028 2019-05-24
JP2019098028 2019-05-24
PCT/JP2019/047394 WO2020240893A1 (en) 2019-05-24 2019-12-04 Method for forming coating film on powder, container for use in formation of coating film on powder, and ald device

Publications (2)

Publication Number Publication Date
JP6787621B1 true JP6787621B1 (en) 2020-11-18
JPWO2020240893A1 JPWO2020240893A1 (en) 2021-09-13

Family

ID=73220066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531681A Active JP6787621B1 (en) 2019-05-24 2019-12-04 Powder deposition method, powder deposition container and ALD device

Country Status (2)

Country Link
US (1) US11345994B2 (en)
JP (1) JP6787621B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013062B1 (en) * 2021-10-14 2022-01-31 株式会社クリエイティブコーティングス Powder film formation method and equipment
JP7039085B1 (en) 2021-08-30 2022-03-22 株式会社クリエイティブコーティングス Film forming equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520297A (en) * 2012-05-14 2015-07-16 ピコサン オーワイPicosun Oy Powder particle coating using atomic layer deposition cartridge
JP2016508544A (en) * 2013-01-23 2016-03-22 ピコサン オーワイPicosun Oy Method and apparatus for processing particulate material
WO2019098289A1 (en) * 2017-11-15 2019-05-23 国立大学法人山形大学 Metal oxide thin film formation apparatus and metal oxide thin film formation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038218A (en) 2006-08-08 2008-02-21 Takayuki Abe Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor
JP5661006B2 (en) 2011-09-02 2015-01-28 東京エレクトロン株式会社 Method for forming nickel film
JP5761724B2 (en) 2012-01-24 2015-08-12 文彦 廣瀬 Thin film forming method and apparatus
JP2014159623A (en) 2013-02-20 2014-09-04 Kyoritz Inc Coating device and method
JP6813824B2 (en) 2016-02-05 2021-01-13 国立大学法人山形大学 Oxide thin film forming method and oxide thin film forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520297A (en) * 2012-05-14 2015-07-16 ピコサン オーワイPicosun Oy Powder particle coating using atomic layer deposition cartridge
JP2016508544A (en) * 2013-01-23 2016-03-22 ピコサン オーワイPicosun Oy Method and apparatus for processing particulate material
WO2019098289A1 (en) * 2017-11-15 2019-05-23 国立大学法人山形大学 Metal oxide thin film formation apparatus and metal oxide thin film formation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMMI O. KAARIAINEN: "Surface modification of acetaminophen particles by atomic layer deposition", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 525, JPN6018052027, April 2017 (2017-04-01), pages 160 - 174, XP085022932, ISSN: 0004356072, DOI: 10.1016/j.ijpharm.2017.04.031 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039085B1 (en) 2021-08-30 2022-03-22 株式会社クリエイティブコーティングス Film forming equipment
EP4141141A1 (en) 2021-08-30 2023-03-01 Creative Coatings Co., Ltd. Film forming apparatus
KR20230032937A (en) 2021-08-30 2023-03-07 가부시키가이샤 크리에이티브 코팅즈 Film deposition apparatus
JP2023034309A (en) * 2021-08-30 2023-03-13 株式会社クリエイティブコーティングス Deposition device
JP7013062B1 (en) * 2021-10-14 2022-01-31 株式会社クリエイティブコーティングス Powder film formation method and equipment
EP4166689A1 (en) 2021-10-14 2023-04-19 Creative Coatings Co., Ltd. Method and apparatus for forming films on particles of powder
KR20230053508A (en) 2021-10-14 2023-04-21 가부시키가이샤 크리에이티브 코팅즈 Method and apparatus for forming film on powder

Also Published As

Publication number Publication date
US20210147979A1 (en) 2021-05-20
JPWO2020240893A1 (en) 2021-09-13
US11345994B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6787621B1 (en) Powder deposition method, powder deposition container and ALD device
CN105088197B (en) The control of single ALD cycle thickness in multi-drop substrate deposition system
KR100977819B1 (en) Substrate processing apparatus and semiconductor device manufacturing method
TWI588286B (en) Method, cycle and device of improved plasma enhanced ald
JP5518499B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US7758920B2 (en) Method and apparatus for forming silicon-containing insulating film
TW576873B (en) Method of growing a thin film onto a substrate
JP2012084922A (en) Method of manufacturing semiconductor device
US11694890B2 (en) Substrate processing method and substrate processing apparatus
JP5876398B2 (en) Film forming method and film forming apparatus
US20210002764A1 (en) Deposition apparatus capable of applying powder particles, and method for applying powder particles
JP2004006801A (en) Vertical semiconductor manufacturing apparatus
WO2020240893A1 (en) Method for forming coating film on powder, container for use in formation of coating film on powder, and ald device
JP7195241B2 (en) Nitride Film Forming Method and Nitride Film Forming Apparatus
JP7112793B2 (en) Film forming method and film forming apparatus
WO2022004520A1 (en) Film forming method and film forming device
US20150147487A1 (en) Method and apparatus for forming organic monolayer
WO2019124101A1 (en) Film-forming device
JP2017133067A (en) Ald apparatus
JP2007227471A (en) Substrate processing apparatus
US20180286665A1 (en) Film Forming Method and Vertical Thermal Processing Apparatus
TWI618810B (en) Method of forming titanium carbonitride film and film formation apparatus therefor
CN219637335U (en) Novel powder chemical vapor coating device
CN114134483B (en) Atomic layer deposition method and device for coating powder material
JP5357083B2 (en) Thin film forming apparatus and thin film forming method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200609

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6787621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250