JP6786375B2 - Superconducting coil, manufacturing method of superconducting coil and superconducting coil device - Google Patents

Superconducting coil, manufacturing method of superconducting coil and superconducting coil device Download PDF

Info

Publication number
JP6786375B2
JP6786375B2 JP2016245090A JP2016245090A JP6786375B2 JP 6786375 B2 JP6786375 B2 JP 6786375B2 JP 2016245090 A JP2016245090 A JP 2016245090A JP 2016245090 A JP2016245090 A JP 2016245090A JP 6786375 B2 JP6786375 B2 JP 6786375B2
Authority
JP
Japan
Prior art keywords
superconducting
current
superconducting coil
winding member
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016245090A
Other languages
Japanese (ja)
Other versions
JP2018101465A (en
Inventor
達郎 宇都
達郎 宇都
貞憲 岩井
貞憲 岩井
寛史 宮崎
寛史 宮崎
泰造 戸坂
泰造 戸坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016245090A priority Critical patent/JP6786375B2/en
Publication of JP2018101465A publication Critical patent/JP2018101465A/en
Application granted granted Critical
Publication of JP6786375B2 publication Critical patent/JP6786375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明の実施形態は、熱暴走またはクエンチを防止する機能を備えた超電導コイル、超電導コイルの製造方法及び超電導コイル装置に関する。 An embodiment of the present invention relates to a superconducting coil having a function of preventing thermal runaway or quenching, a method for manufacturing the superconducting coil, and a superconducting coil device.

NMR(核磁気共鳴装置)やMRI(磁気共鳴画像診断装置)等の超電導応用機器で用いられる超電導線材は、超電導状態を維持するためには、超電導線材を流れる電流の電流密度、超電導線材の温度、超電導線材に作用する磁場を、それぞれの臨界値以下にする必要がある。 In order to maintain the superconducting state, the superconducting wire used in superconducting application equipment such as NMR (nuclear magnetic resonance imaging) and MRI (magnetic resonance imaging) has the current density of the current flowing through the superconducting wire and the temperature of the superconducting wire. , It is necessary to keep the magnetic field acting on the superconducting wire below the respective critical values.

このため、超電導状態、すなわち、電気抵抗がほぼゼロの状態においても、超電導線材に無限量の電流を流すことはできない。電流密度、温度および磁場のいずれかが、対応する臨界値を越えると、超電導線材における超電導状態は常電導状態へ転移する。 Therefore, an infinite amount of current cannot flow through the superconducting wire even in the superconducting state, that is, in the state where the electric resistance is almost zero. When either the current density, the temperature, or the magnetic field exceeds the corresponding critical value, the superconducting state in the superconducting wire material shifts to the normal conducting state.

常電導状態に転移すると、常電導状態への転移箇所において発生するジュール熱によって、超電導線材を焼損させる熱暴走又は瞬時に多量の発熱をするクエンチが発生するおそれがある。 When the transition to the normal conduction state occurs, the Joule heat generated at the transition to the normal conduction state may cause thermal runaway that burns the superconducting wire or quenching that generates a large amount of heat instantaneously.

このため、超電導コイルにおいては、超電導状態から常電導状態に転移する際の熱暴走又はクエンチに対する保護が必要になる。従来の保護手段として、例えば、超電導コイルに並列に保護抵抗を接続する技術が知られている。この保護手段は、常電導状態への転移に伴うコイル電圧またはコイル温度の上昇をトリガーとして、励磁電源を遮断し、励磁電源の遮断後に、超電導コイルと保護抵抗によって閉回路を形成する。これにより、常電導状態の超電導コイルに流れる電流を減衰させることができる。 For this reason, the superconducting coil needs protection against thermal runaway or quenching when transitioning from the superconducting state to the normal conducting state. As a conventional protection means, for example, a technique of connecting a protection resistor in parallel with a superconducting coil is known. This protective means shuts off the exciting power supply triggered by an increase in the coil voltage or coil temperature accompanying the transition to the normal conduction state, and after the excitation power supply is cut off, a closed circuit is formed by the superconducting coil and the protection resistor. As a result, the current flowing through the superconducting coil in the normal conduction state can be attenuated.

また、超電導コイルに軸方向の圧縮力を作用させて、超電導線材がコイルの軸方向に移動することを抑制することで、クエンチの発生を抑制する手段が提案されている。
また、超電導線材の機械的動きを抑制するとともに、超電導線材間に絶縁テープを配置することで、クエンチを防止する手段が提案されている。
Further, a means for suppressing the occurrence of quenching has been proposed by applying a compressive force in the axial direction to the superconducting coil to suppress the movement of the superconducting wire in the axial direction of the coil.
Further, a means for suppressing the mechanical movement of the superconducting wire and arranging an insulating tape between the superconducting wires to prevent quenching has been proposed.

さらに、超電導線材に金属テープ線を重ね合わせて巻回し、超電導線材の一部が常電導状態になったときに、電流の一部を金属テープ線に迂回させることでクエンチ又は熱暴走の発生を防止する手段が提案されている。 Furthermore, a metal tape wire is superposed on the superconducting wire and wound, and when a part of the superconducting wire becomes a normal conducting state, a part of the current is diverted to the metal tape wire to prevent quenching or thermal runaway. Means to prevent it have been proposed.

特開平04−032207号公報Japanese Unexamined Patent Publication No. 04-032207 特開2010−267835号公報JP-A-2010-267835 特開2008−118006号公報Japanese Unexamined Patent Publication No. 2008-118006

ところで、熱暴走又はクエンチの発生を抑制するために、従来の励磁電源を遮断する防護手段やコイルの軸方向の移動を制限する防護手段では、別途、遮断機構や移動規制手段を設ける必要があり、超電導コイル装置が大型化するとともに装置構成が複雑になるという課題がある。 By the way, in order to suppress the occurrence of thermal runaway or quenching, it is necessary to separately provide a blocking mechanism and a movement regulating means for the conventional protective means for shutting off the exciting power supply and the protective means for restricting the axial movement of the coil. , There is a problem that the superconducting coil device becomes large and the device configuration becomes complicated.

また、従来の金属テープを用いた防護手段では、超電導線材を迂回した電流は、全て金属テープ線を流れるため、常電導状態の超電導線材の付近での発熱が継続する。その結果、熱暴走に至るリスクがあるという課題がある。 Further, in the conventional protective means using the metal tape, all the current bypassing the superconducting wire flows through the metal tape wire, so that heat generation continues in the vicinity of the superconducting wire in the normal conduction state. As a result, there is a problem that there is a risk of thermal runaway.

本発明は、上記課題を解決するためになされたものであり、熱暴走又はクエンチの発生を抑制することができる超電導コイル、超電導コイルの製造方法及び超電導コイル装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a superconducting coil, a method for manufacturing a superconducting coil, and a superconducting coil device capable of suppressing the occurrence of thermal runaway or quenching.

上記課題を解決するために、本発明の実施形態に係る超電導コイルは、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材と、前記巻線部材の間及び前記巻線部材の幅方向端部に形成された導電性樹脂と、前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有し、前記巻線部材同士の間隙、及び前記巻線部材の幅方向端部と前記電流迂回路の間隙に含浸により導電性樹脂が形成されることを特徴とする。 In order to solve the above problems, the superconducting coil according to the embodiment of the present invention includes a winding member in which a superconducting wire and an insulating material are co-wound around a winding frame, and between the winding members and the winding. and formed on the widthwise end portion of the member electrically conductive resin, on at least one provided in the width direction end portion, a current bypass path that is electrically connected to the superconducting wire and / or conductive resin of the winding member If, it has a, the winding members together gaps, and the conductive resin widthwise end portions of the winding member and the impregnation into the gap of the current bypass path is formed, characterized in Rukoto.

また、本発明の実施形態に係る超電導コイルは、超電導線材が巻枠の周囲に巻回されてなる巻線部材と、前記巻線部材の間及び前記巻線部材の幅方向端部に形成された導電性樹脂と、前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有し、前記巻線部材同士の間隙、及び前記巻線部材の幅方向端部と前記電流迂回路の間隙に含浸により導電性樹脂が形成される超電導コイルであって、隣接する前記超電導線材間の少なくとも一部に導電性部材を配置したことを特徴とする。 Further, the superconducting coil according to the embodiment of the present invention is formed between a winding member in which a superconducting wire is wound around a winding frame, between the winding members and at the widthwise end of the winding member. and a conductive resin is provided on at least one of widthwise end portions of the winding member, have a, a current bypass path that is electrically connected to the superconducting wire and / or conductive resin, the winding between members of the gap, and a superconducting coil conductive resin Ru is formed by impregnation on the current bypass path of the gap and the width direction end portion of the winding member, a conductive at least a portion between said superconducting wire adjacent It is characterized by arranging sex members.

また、本発明の実施形態に係る超電導コイルの製造方法は、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材を導電性樹脂に含浸させることで、前記超電導線材同士の間及び超電導線材の前記巻線部材の幅方向端部に導電性樹脂を形成し、前記巻線部材の幅方向端部の一方に電流迂回路を設けることを特徴とする。 Further, in the method for manufacturing a superconducting coil according to an embodiment of the present invention, a conductive resin is impregnated with a winding member in which a superconducting wire and an insulating material are co-wound around a winding frame to impregnate the superconducting wires with each other. It is characterized in that a conductive resin is formed at the widthwise end of the winding member of the superconducting wire and the winding member, and a current detour is provided at one of the widthwise ends of the winding member.

また、本発明の実施形態に係る超電導コイル装置は、本発明の実施形態に係る超電導コイルを含む超電導コイルを複数積層するとともに、前記積層された超電導コイルの前記巻線部材の幅方向端部に電流迂回路を設けたことを特徴とする。 Further, in the superconducting coil device according to the embodiment of the present invention, a plurality of superconducting coils including the superconducting coil according to the embodiment of the present invention are laminated, and at the widthwise end of the winding member of the laminated superconducting coil. It is characterized by providing a current detour.

本発明の実施形態によれば、超電導コイルに電流迂回路を設けることにより、熱暴走又はクエンチの発生を抑制することができる。 According to the embodiment of the present invention, the occurrence of thermal runaway or quenching can be suppressed by providing the superconducting coil with a current detour.

第1の実施形態に係る超電導コイルの模式図。The schematic diagram of the superconducting coil which concerns on 1st Embodiment. 第1の実施形態に係る超電導コイルの断面図。FIG. 3 is a cross-sectional view of the superconducting coil according to the first embodiment. 図2の領域A1の拡大断面図。An enlarged cross-sectional view of region A1 of FIG. (a)は図2の領域A1の拡大断面図で導電性樹脂が充填される前の状態を示す図、(b)は導電性樹脂が充填された後の状態を示す図。FIG. 2A is an enlarged cross-sectional view of region A1 of FIG. 2, showing a state before the conductive resin is filled, and FIG. 2B is a view showing a state after the conductive resin is filled. 超電導線材の断面図。Sectional view of superconducting wire. 第1の実施形態の第1変形例に係る巻線部材の断面図。FIG. 3 is a cross-sectional view of a winding member according to a first modification of the first embodiment. 第1の実施形態の第2変形例に係る巻線部材の断面図。FIG. 5 is a cross-sectional view of a winding member according to a second modification of the first embodiment. 図7の領域A2の拡大断面図。An enlarged cross-sectional view of region A2 of FIG. 超電導コイルに作用する磁場の形状を示す図。The figure which shows the shape of the magnetic field acting on a superconducting coil. 第1の実施形態の第3変形例に係る巻線部材の断面図。FIG. 3 is a cross-sectional view of a winding member according to a third modification of the first embodiment. 第2の実施形態に係る電流迂回路の平面図。The plan view of the current detour circuit which concerns on 2nd Embodiment. 第3の実施形態に係る電流迂回路の平面図。The plan view of the current detour circuit which concerns on 3rd Embodiment. 第4の実施形態に係る超電導コイルの模式図。The schematic diagram of the superconducting coil which concerns on 4th Embodiment. 第5の実施形態に係る超電導コイル装置の模式図。The schematic diagram of the superconducting coil device which concerns on 5th Embodiment. 第6の実施形態に係る超電導コイル装置の模式図。The schematic diagram of the superconducting coil device which concerns on 6th Embodiment.

以下、本発明に係る超電導コイル、超電導コイルの製造方法及び超電導コイル装置の実施形態について、図面を参照して説明する。なお、以下の説明において、同一又は類似の構成については同一の符号を付し、重複説明を省略する。 Hereinafter, a superconducting coil, a method for manufacturing the superconducting coil, and an embodiment of the superconducting coil device according to the present invention will be described with reference to the drawings. In the following description, the same or similar configurations will be designated by the same reference numerals, and duplicate description will be omitted.

[第1の実施形態]
第1の実施形態に係る超電導コイル及び超電導コイルの製造方法について、図1乃至図5を参照して説明する。
[First Embodiment]
The method for manufacturing the superconducting coil and the superconducting coil according to the first embodiment will be described with reference to FIGS. 1 to 5.

図1は、第1の実施形態に係る超電導コイル10の模式図、図2は超電導コイル10の断面図、図3、図4(a)、(b)は図2における領域A1の拡大断面図である。図5は、本実施形態で用いられる超電導線材20の構成例を示す模式図である。 FIG. 1 is a schematic view of the superconducting coil 10 according to the first embodiment, FIG. 2 is a sectional view of the superconducting coil 10, and FIGS. 3, 4 (a) and 4 (b) are enlarged sectional views of a region A1 in FIG. Is. FIG. 5 is a schematic view showing a configuration example of the superconducting wire 20 used in the present embodiment.

(超電導コイル10の構成)
本実施形態に係る超電導コイル10は、図1〜図3に示すように、超電導線材20が隣接する超電導線材20の間に配置された例えばテープ状の絶縁材16とともに巻枠14の周囲に同心状又は渦巻き状に共巻され、いわゆるパンケーキ形状のコイルを形成している。
(Structure of superconducting coil 10)
As shown in FIGS. 1 to 3, the superconducting coil 10 according to the present embodiment is concentric around the winding frame 14 together with, for example, a tape-shaped insulating material 16 in which the superconducting wire 20 is arranged between adjacent superconducting wires 20. It is co-wound in a shape or a spiral shape to form a so-called pancake-shaped coil.

(超電導線材20の構成)
超電導線材20は、例えば、図5に示すように、複数の層(21〜26)が積層された積層体からなる。図5の例では、超電導線材20は、金属基板21と、配向層22と、中間層23と、超電導層24と、保護層25と、安定化層26とを含む。なお、超電導線材20を構成する層のうち、超電導層24以外の層、例えば、配向層22及び/又は安定化層26は適宜省略してもよい。超電導層24は、例えば、RE123系の組成(RE等)を有する超電導体薄膜である。
(Structure of superconducting wire 20)
As shown in FIG. 5, for example, the superconducting wire 20 is composed of a laminated body in which a plurality of layers (21 to 26) are laminated. In the example of FIG. 5, the superconducting wire 20 includes a metal substrate 21, an alignment layer 22, an intermediate layer 23, a superconducting layer 24, a protective layer 25, and a stabilizing layer 26. Of the layers constituting the superconducting wire material 20, layers other than the superconducting layer 24, for example, the alignment layer 22 and / or the stabilizing layer 26 may be omitted as appropriate. The superconducting layer 24 is, for example, a superconductor thin film having a RE123-based composition (RE 1 B 2 C 3 O 7, etc.).

(巻線部材12及び電流迂回路19の構成)
超電導線材20と絶縁材16が共巻されてなる巻線部材12は、巻回後に巻枠14ごと導電性樹脂17に含浸されることにより、図4(b)に示すように、超電導線材20同士の間及び超電導線材20の上下端部に導電性樹脂17が形成される。
(Structure of winding member 12 and current bypass circuit 19)
The winding member 12 in which the superconducting wire 20 and the insulating material 16 are co-wound is impregnated with the conductive resin 17 together with the winding frame 14 after winding, so that the superconducting wire 20 is as shown in FIG. 4 (b). The conductive resin 17 is formed between the two and at the upper and lower ends of the superconducting wire 20.

このようにして作成された巻線部材12の上端面には、電流迂回路19が形成される。 電流迂回路19は、巻線部材12を巻枠14の周囲に巻回しながら、巻線部材12の上端面に設けることができるが、粘着性の導電性樹脂17により含浸された巻線部材12の上端面に電流迂回路19及び絶縁層16aを設けることで、導電性樹脂17、巻線部材12及び絶縁層16aを一体的に固着成形するようにしてもよい。
その際、巻線部材12は、図3に示すように、巻線部材12を構成する超電導線材20の全ての上端面が電流迂回路19と接触していることが好ましい。
A current detour 19 is formed on the upper end surface of the winding member 12 created in this way. The current detour circuit 19 can be provided on the upper end surface of the winding member 12 while winding the winding member 12 around the winding frame 14, but the winding member 12 impregnated with the adhesive conductive resin 17 By providing the current bypass circuit 19 and the insulating layer 16a on the upper end surface of the coil, the conductive resin 17, the winding member 12, and the insulating layer 16a may be integrally fixed and molded.
At that time, as shown in FIG. 3, it is preferable that all the upper end surfaces of the superconducting wire members 20 constituting the winding member 12 are in contact with the current detour circuit 19.

しかしながら、実際の巻線部材12の作製に際しては、超電導線材20が幅方向にばらつきを持つ場合がある。その場合、図4(a)に示すように、一部の超電導線材20の端部と電流迂回路19の間に間隙が生じ、超電導線材20の一部は電流迂回路19に接触しない可能性がある。 However, in the actual production of the winding member 12, the superconducting wire 20 may vary in the width direction. In that case, as shown in FIG. 4A, there is a possibility that a gap is formed between the end of a part of the superconducting wire 20 and the current detour, and a part of the superconducting wire 20 does not come into contact with the current detour 19. There is.

そこで、本第1の実施形態では、超電導線材20の位置が超電導線材20の幅方向にばらついている場合でも、超電導線材20と電流迂回路19を確実に電気的に接触させるために、巻線部材12の巻回後に巻枠14ごと導電性樹脂17で含浸するようにしている。
これにより、図4(b)に示すように、巻線部材12同士の間隙及び超電導線材20の幅方向(図中上下方向)端部の間隙に導電性樹脂17が形成される。
Therefore, in the first embodiment, even when the position of the superconducting wire 20 varies in the width direction of the superconducting wire 20, the winding is performed to ensure that the superconducting wire 20 and the current detour 19 are in electrical contact with each other. After winding the member 12, the entire winding frame 14 is impregnated with the conductive resin 17.
As a result, as shown in FIG. 4B, the conductive resin 17 is formed in the gap between the winding members 12 and the gap at the end in the width direction (vertical direction in the figure) of the superconducting wire member 20.

この導電性樹脂17は、例えば導電性を持たない樹脂に導電性粉末を混入させたものを用いることができる。導電性粉末としては、例えばカーボンブラック、炭素繊維またはグラファイトなどのカーボン系の粉末が用いられる。 As the conductive resin 17, for example, a resin in which a conductive powder is mixed with a non-conductive resin can be used. As the conductive powder, for example, carbon-based powder such as carbon black, carbon fiber or graphite is used.

また、導電性粉末として、金属微粒子、金属酸化物、金属繊維またはウィスカー等の金属系の粉末を用いてもよく、又は、導電性の微粒子または合成繊維をコーティングしてもよい。 Further, as the conductive powder, a metal-based powder such as metal fine particles, metal oxides, metal fibers or whiskers may be used, or conductive fine particles or synthetic fibers may be coated.

さらに、巻線部材12を、巻回後に巻枠14ごと導電性樹脂17で含浸させるのではなく、巻線部材12を巻枠14へ巻回しながら、導電性樹脂17に含浸させるようにしてもよい。 Further, instead of impregnating the winding member 12 with the conductive resin 17 together with the winding frame 14 after winding, the conductive resin 17 may be impregnated while winding the winding member 12 around the winding frame 14. Good.

この電流迂回路19の材料は、通常運転時(超電導線材20が超電導状態の時)において、超電導線材20の電気抵抗より電気抵抗が大きく、かつ、常電導転移時において、常電導転移箇所の電気抵抗より電気抵抗が小さく、さらに、導電性樹脂17の抵抗と同程度の抵抗であることが好ましい。 The material of the current detour circuit 19 has a larger electric resistance than the electric resistance of the superconducting wire 20 during normal operation (when the superconducting wire 20 is in the superconducting state), and at the time of the normal conduction transition, the electricity at the normal conduction transition portion. It is preferable that the electrical resistance is smaller than the resistance and the resistance is about the same as the resistance of the conductive resin 17.

すなわち、導電性樹脂17の抵抗が電流迂回路19の抵抗よりも大きい場合は、超電導線材20と電流迂回路19の間に介在する導電性樹脂17の厚さによっては、導電性樹脂17を通じて電流迂回路19へ流れる電流が少なくなってしまう恐れがある一方、導電性樹脂17の抵抗が電流迂回路19の抵抗よりも小さい場合は、超電導線材20を流れる電流が電流迂回路19を介さずに導電性樹脂17のみを介して流れ、電流迂回路19が電流迂回路として機能しなくなる恐れがあるからである。 That is, when the resistance of the conductive resin 17 is larger than the resistance of the current detour circuit 19, the current passes through the conductive resin 17 depending on the thickness of the conductive resin 17 interposed between the superconducting wire 20 and the current detour circuit 19. While there is a risk that the current flowing through the detour circuit 19 will decrease, if the resistance of the conductive resin 17 is smaller than the resistance of the current detour circuit 19, the current flowing through the superconducting wire 20 will not pass through the current detour circuit 19. This is because the current may flow only through the conductive resin 17, and the current bypass circuit 19 may not function as the current bypass circuit.

電流迂回路19の具体的な材料としては、ステンレス、アルミニウムもしくはインジウム等の常電導体が含まれてもよく、あるいは、半導体、半導体セラミックス材、導電性プラスチック材、または、超電導材料等が含まれてもよい。また、グラファイト、炭素繊維または炭素繊維複合材などのカーボン材料なども電流迂回路19の材料として用いることもできる。 Specific materials of the current bypass circuit 19 may include a normal conductor such as stainless steel, aluminum or indium, or may include a semiconductor, a semiconductor ceramic material, a conductive plastic material, a superconducting material or the like. You may. Further, a carbon material such as graphite, carbon fiber or a carbon fiber composite material can also be used as a material for the current bypass circuit 19.

また、図1〜図3に示す例では、電流迂回路19の図中上面が絶縁層16aで覆われている。このように、電流迂回路19は、図において絶縁層16aと巻線部材12の上端面との間に挟まれているが、必要に応じて絶縁層16aを省略してもよい。 Further, in the examples shown in FIGS. 1 to 3, the upper surface of the current detour circuit 19 in the drawing is covered with the insulating layer 16a. As described above, the current detour circuit 19 is sandwiched between the insulating layer 16a and the upper end surface of the winding member 12 in the drawing, but the insulating layer 16a may be omitted if necessary.

なお、上記の説明では電流迂回路19を巻線部材12の上端面に設ける例を説明したが、巻線部材12の下端面に設けてもよく、又は上端面及び下端面に設けてもよい。これにより超電導線材20及び導電性樹脂17と電流迂回路19との接続をより確実なものにすることができる。 In the above description, an example in which the current detour circuit 19 is provided on the upper end surface of the winding member 12 has been described, but it may be provided on the lower end surface of the winding member 12, or may be provided on the upper end surface and the lower end surface. .. As a result, the connection between the superconducting wire 20 and the conductive resin 17 and the current detour 19 can be made more reliable.

(作用)
上記のように構成された超電導コイルにおいて、通常運転時、すなわち、超電導線材20が超電導状態の時、電流の大部分は、超電導線材20を通って流れる。ここで、常電導転移の場合、すなわち、超電導線材20の少なくとも一部、例えば、図4(a)、(b)の領域(常電導領域)15が常電導状態に転移した場合を想定する。
(Action)
In the superconducting coil configured as described above, most of the current flows through the superconducting wire 20 during normal operation, that is, when the superconducting wire 20 is in the superconducting state. Here, it is assumed that the case of the normal conduction transition, that is, the case where at least a part of the superconducting wire member 20, for example, the region (normal conduction region) 15 of FIGS. 4A and 4B is transferred to the normal conduction state.

この場合、常電導領域15を含む超電導線材20の電気抵抗は、電流迂回路19の電気抵抗よりも大きくなるため、電流の大部分は、常電導領域15を含む超電導線材20を迂回して、電流迂回路19へ流れる。図3に示す例では、超電導線材20が全て電流迂回路19に接触しているため、超電導線材20の常電導転移箇所がどこであっても、電流を電流迂回路19に迂回させることができる。 In this case, since the electric resistance of the superconducting wire 20 including the normal conducting region 15 is larger than the electric resistance of the current detour circuit 19, most of the current bypasses the superconducting wire 20 including the normal conducting region 15. It flows to the current detour circuit 19. In the example shown in FIG. 3, since all the superconducting wire members 20 are in contact with the current detour circuit 19, the current can be diverted to the current detour circuit 19 regardless of the normal conduction transition point of the superconducting wire member 20.

一方、図4(a)に示すように、巻線部材12の巻回工程及び含浸工程によっては、超電導線材20の幅方向にばらつく場合があったり、導電性樹脂が十分に含浸されない場合がある。その場合、超電導線材20の一部が電流迂回路19に電気的に接続されない箇所が生じる恐れがあるが、本実施形態では、図4(b)に示すように、巻線部材12を導電性樹脂17に含浸することで、超電導線材20は電流迂回路19と直接、又は導電性樹脂17を介して電流迂回路19と電気的に接続される。これにより、巻線部材12を巻回するときに、超電導線材20の位置が線材幅方向にばらついたとしても、超電導線材20と電流迂回路19を電気的に接続することが可能となる。これにより、大きなジュール熱が継続的に発生することが抑制されるため、熱暴走又はクエンチの発生を抑制することができる。 On the other hand, as shown in FIG. 4A, depending on the winding step and the impregnation step of the winding member 12, the superconducting wire material 20 may vary in the width direction or the conductive resin may not be sufficiently impregnated. .. In that case, a part of the superconducting wire 20 may not be electrically connected to the current detour circuit 19, but in the present embodiment, as shown in FIG. 4B, the winding member 12 is conductive. By impregnating the resin 17, the superconducting wire 20 is electrically connected to the current detour 19 directly or via the conductive resin 17. As a result, even if the position of the superconducting wire 20 varies in the wire width direction when the winding member 12 is wound, the superconducting wire 20 and the current detour 19 can be electrically connected. As a result, the continuous generation of large Joule heat is suppressed, so that the occurrence of thermal runaway or quenching can be suppressed.

(効果)
ところで、超電導線材20を流れる電流の値が、通電電流の限界である臨界電流値に近づくにつれ、超電導線材20には、徐々に外部磁場が侵入する。そして、外部磁場の侵入により、超電導線材20の超電導状態が局所的に破壊され、局所的に常電導転移する部分(常電導領域15)が生じる可能性がある。この局所的な常電導転移に伴うフラックスフロー抵抗は、ジュール熱発生の原因となり、熱暴走またはクエンチの発生原因となる。
(effect)
By the way, as the value of the current flowing through the superconducting wire 20 approaches the critical current value which is the limit of the energizing current, an external magnetic field gradually invades the superconducting wire 20. Then, due to the intrusion of the external magnetic field, the superconducting state of the superconducting wire 20 may be locally destroyed, and a portion (normally conducted region 15) that locally undergoes a normal conduction transition may occur. The flux flow resistance associated with this local normal conduction transition causes the generation of Joule heat, which causes thermal runaway or quenching.

しかしながら、本実施形態によれば、巻線部材12の幅方向端部(図中上端部)に電流迂回路19を設け、幅方向にばらつきのある超電導線材20や径方向に離間した超電導線材20同士を、電流迂回路19と導電性樹脂17とを介して電気的に接続する。これにより、超電導線材20の一部、例えば常電導領域15で常電導転移に伴う局所的なフラックスフロー抵抗が発生したとしても、巻線部材12の周方向に沿って流れていた通電電流Iの一部(ΔI)が、電流迂回路19を介して、超電導コイル10の径方向に沿って流れる。その結果、電流は、局所的なフラックスフロー抵抗が発生した部分を避けて、他の超電導線材20に流れることができる。すなわち、コイルの周方向に沿って流れる通電電流はIからI−ΔIに減少する。このとき、コイルの径方向に沿って流れる電流ΔIは、電流迂回路19の電気抵抗をR1とし、フラックスフロー抵抗をR2とすると、R2/(R1+R2)に比例する。このため、フラックスフロー抵抗が増大すればするほど、より多くの通電電流が、コイルの径方向に沿って流れる(すなわち、迂回して流れる)こととなる。 However, according to the present embodiment, the current detour circuit 19 is provided at the widthwise end portion (upper end portion in the drawing) of the winding member 12, and the superconducting wire member 20 having variation in the width direction or the superconducting wire member 20 separated in the radial direction is provided. They are electrically connected to each other via a current detour circuit 19 and a conductive resin 17. As a result, even if a local flux flow resistance due to the normal conduction transition occurs in a part of the superconducting wire 20, for example, the normal conduction region 15, the energizing current I flowing along the circumferential direction of the winding member 12 A part (ΔI) flows along the radial direction of the superconducting coil 10 via the current detour circuit 19. As a result, the current can flow to the other superconducting wire 20 while avoiding the portion where the local flux flow resistance is generated. That is, the energizing current flowing along the circumferential direction of the coil decreases from I to I−ΔI. At this time, the current ΔI flowing along the radial direction of the coil is proportional to R2 / (R1 + R2), where R1 is the electrical resistance of the current bypass circuit 19 and R2 is the flux flow resistance. Therefore, as the flux flow resistance increases, more energizing current flows (that is, bypasses) along the radial direction of the coil.

このように、本実施形態では、常電導領域15に多量の電流が流れるのを未然に防止することができるため、熱暴走又はクエンチ等の発生を抑制することができる。 As described above, in the present embodiment, since it is possible to prevent a large amount of current from flowing in the normal conducting region 15, it is possible to suppress the occurrence of thermal runaway or quenching.

(第1変形例)
第1の実施形態の第1変形例に係る超電導コイル10は、図6に示すように、隣接する超電導線材20の間の少なくとも一部に常電導金属等からなる導電性部材32を配置した構成としている。なお、導電性部材32の代わりに導電性樹脂を充填してもよい。
(First modification)
As shown in FIG. 6, the superconducting coil 10 according to the first modification of the first embodiment has a configuration in which a conductive member 32 made of a normal conductive metal or the like is arranged at least a part between adjacent superconducting wires 20. It is said. A conductive resin may be filled instead of the conductive member 32.

上記のように構成された第1変形例において、超電導線材20に、局所的に常電導領域15が発生した場合を想定する。この場合、コイルの周方向に沿って流れていた通電電流Iの一部(ΔI)は、導電性部材32を横断して、隣接する超電導線材20に向かって流れる。換言すれば、通電電流Iの一部(ΔI)は、電流迂回路19又は導電性部材32を介してコイルの径方向に沿って流れる。
これにより、局所的な常電導領域15に多量の通電電流が流れるのを未然に防止することができるため、熱暴走又はクエンチ等の発生を抑制することができる。
In the first modified example configured as described above, it is assumed that the normal conducting region 15 is locally generated in the superconducting wire 20. In this case, a part (ΔI) of the energizing current I flowing along the circumferential direction of the coil flows across the conductive member 32 toward the adjacent superconducting wire 20. In other words, a part (ΔI) of the energizing current I flows along the radial direction of the coil via the current detour circuit 19 or the conductive member 32.
As a result, it is possible to prevent a large amount of energizing current from flowing in the local normal conduction region 15, and thus it is possible to suppress the occurrence of thermal runaway or quenching.

(第2変形例)
第2変形例では、第1変形例で示す巻線部材12において、図7に示すように、巻線部材12の径方向に少なくとも1つの離型層31を配置する構成としている。図7に示す例では、巻線部材12を領域12a〜12cに分けた場合、各領域の境界に離型層31を配置している。図8は、図7における領域A2の拡大断面図である。
(Second modification)
In the second modification, in the winding member 12 shown in the first modification, at least one release layer 31 is arranged in the radial direction of the winding member 12, as shown in FIG. 7. In the example shown in FIG. 7, when the winding member 12 is divided into regions 12a to 12c, the release layer 31 is arranged at the boundary of each region. FIG. 8 is an enlarged cross-sectional view of the region A2 in FIG.

この離型層31により、巻線部材12には、径方向の層間接着力が弱い箇所が形成される。すなわち、離型層31が配置されている箇所は径方向の層間接着力が弱いため、仮に、超電導コイル10の使用時等において、運転温度までの冷却時に発生するコイル径方向の熱応力又は励磁により発生する電磁応力などの剥離応力がコイル径方向に印加された場合、この離型層31によって剥離応力を吸収し、他の超電導線材20等にかかる剥離応力を緩和する。 The release layer 31 forms a portion of the winding member 12 where the interlayer adhesive force in the radial direction is weak. That is, since the interlayer adhesive force in the radial direction is weak at the location where the release layer 31 is arranged, the thermal stress or excitation in the radial direction of the coil generated during cooling to the operating temperature is assumed when the superconducting coil 10 is used. When a peeling stress such as an electromagnetic stress generated by the above is applied in the coil radial direction, the peeling stress is absorbed by the release layer 31 to relax the peeling stress applied to the other superconducting wire 20 or the like.

このように、予想される剥離応力に応じて、巻線部材12の径方向に少なくとも1つの離型層31を配置することで、超電導線材20にかかる剥離応力を緩和することができるため、多層体からなる超電導線材20(図5参照)の剥離破損を抑制することができる。 In this way, by arranging at least one release layer 31 in the radial direction of the winding member 12 according to the expected peeling stress, the peeling stress applied to the superconducting wire 20 can be relaxed, so that the multilayer members It is possible to suppress peeling damage of the superconducting wire 20 (see FIG. 5) made of the body.

ところで、熱暴走等の発生を抑制するために、図8に示すように、離型層31に隣接して超電導線材20の間隙に導電性部材32を配置している場合がある。その場合、離型層31によって導電性部材32が非接着になった箇所では、この箇所の近傍で常電導転移が発生しても通電電流Iを径方向に横断して流出させることができなくなり、熱暴走又はクエンチ等の発生を抑制することができなくなる可能性がある。 By the way, in order to suppress the occurrence of thermal runaway or the like, as shown in FIG. 8, the conductive member 32 may be arranged in the gap of the superconducting wire member 20 adjacent to the release layer 31. In that case, at the place where the conductive member 32 is not adhered by the release layer 31, even if a normal conductive transition occurs in the vicinity of this place, the energizing current I cannot flow out across the radial direction. , Thermal runaway or quenching may not be suppressed.

そこで、第2変形例では、図7、図8に示すように、離型層31を跨ぐように、巻線部材12の上面に電流迂回路19を配置する。すなわち、第2変形例では、離型層31によって径方向に電流が流れにくくなることに対応して、電流迂回路19が離型層31を跨ぐように配置される。
その結果、離型層31を跨ぐ電流迂回路19が形成される。なお、図8に示すように、電流迂回路19と導電性樹脂17を併用してもよい。
Therefore, in the second modification, as shown in FIGS. 7 and 8, the current detour 19 is arranged on the upper surface of the winding member 12 so as to straddle the release layer 31. That is, in the second modification, the current detour circuit 19 is arranged so as to straddle the release layer 31 in response to the fact that the release layer 31 makes it difficult for the current to flow in the radial direction.
As a result, the current detour circuit 19 straddling the release layer 31 is formed. As shown in FIG. 8, the current detour circuit 19 and the conductive resin 17 may be used in combination.

第2変形例によれば、離型層31によって径方向に電流が流れにくくなる部分が存在する場合であっても、離型層31を跨ぐように配置された電流迂回路19によって、熱暴走等の発生を抑制することができる。
なお、この離型層31を他の実施形態に係る巻線部材にも適用できることはもちろんである。
According to the second modification, even if there is a portion where the current is difficult to flow in the radial direction due to the release layer 31, thermal runaway is caused by the current detour circuit 19 arranged so as to straddle the release layer 31. Etc. can be suppressed.
Needless to say, the release layer 31 can be applied to the winding members according to other embodiments.

(第3変形例)
第3変形例にかかる超電導コイル10を図9〜図10を参照して説明する。
図9は、超電導コイル10に作用する磁場Bの模式図である。超電導コイル10を構成する超電導線材20を流れる通電電流Iに基づく磁場Bは、超電導コイル10の中心軸Cを含む面内を旋回し、図9に示されるように、磁場Bの一部が超電導線材20に侵入する。超電導線材20の各位置におけるフラックスフロー抵抗の大きさは、各位置を貫く磁場Bの向きおよび大きさ等によって変化するが、フラックスフロー抵抗による電界強度が最大になるのは、巻線部材12の最内周からコイル径方向の中央部付近までの位置である。
(Third modification example)
The superconducting coil 10 according to the third modification will be described with reference to FIGS. 9 to 10.
FIG. 9 is a schematic view of the magnetic field B acting on the superconducting coil 10. The magnetic field B based on the energizing current I flowing through the superconducting wire 20 constituting the superconducting coil 10 swirls in the plane including the central axis C of the superconducting coil 10, and as shown in FIG. 9, a part of the magnetic field B is superconducting. Invades the wire rod 20. The magnitude of the flux flow resistance at each position of the superconducting wire 20 changes depending on the direction and size of the magnetic field B penetrating each position, but the electric field strength due to the flux flow resistance is maximized in the winding member 12. It is the position from the innermost circumference to the vicinity of the central part in the coil radial direction.

すなわち、超電導コイル10の最内周から中央部付近までの位置では、一般に臨界電流値Icが他の位置よりも低くなる。
そこで、第3変形例では、超電導コイル10の内部で臨界電流値Icを低下させるフラックスフロー抵抗が高くなるように、図10に示すように、環状の電流迂回路19を超電導コイル10の最内周から中央部付近までの領域に設けている。
That is, at the position from the innermost circumference to the vicinity of the central portion of the superconducting coil 10, the critical current value Ic is generally lower than the other positions.
Therefore, in the third modification, as shown in FIG. 10, the annular current detour circuit 19 is the innermost part of the superconducting coil 10 so that the flux flow resistance that lowers the critical current value Ic becomes high inside the superconducting coil 10. It is provided in the area from the circumference to the vicinity of the center.

なお、図9に示す磁場Bの形状は、典型的な形状を例示したもので、電流迂回路19が配置される具体的な位置は、実際の磁場Bの形状等によって、適宜変更可能である。
このように、電流迂回路19を超電導コイル10の上面の一部にのみ設けることで、超電導線材20の内、臨界電流値Icが他の位置よりも低くなる部分を流れる電流のみを他の超電導線材20へ迂回させることができる。
The shape of the magnetic field B shown in FIG. 9 is an example of a typical shape, and the specific position where the current detour 19 is arranged can be appropriately changed depending on the actual shape of the magnetic field B and the like. ..
In this way, by providing the current detour circuit 19 only on a part of the upper surface of the superconducting coil 10, only the current flowing through the portion of the superconducting wire 20 whose critical current value Ic is lower than the other positions is superconducted. It can be detoured to the wire rod 20.

(効果)
本第3変形例によれば、超電導線材20を流れる電流をゼロから定格電流まで増加させる際に、予定された磁場形状の形成の遅れが抑制される。また、電流迂回路19における発熱の発生が抑制される。しかも、臨界電流値Icが他の領域よりも低くなる領域に、電流迂回路19を配置することで、熱暴走が発生しやすい領域における電流を好適に迂回させることが可能となる。その結果、熱暴走又はクエンチ等の発生を抑制することができる。
なお、この第3変形例を他の実施形態に係る巻線部材にも適用できることはもちろんである。
(effect)
According to the third modification, when the current flowing through the superconducting wire 20 is increased from zero to the rated current, the delay in the formation of the planned magnetic field shape is suppressed. In addition, the generation of heat generated in the current detour circuit 19 is suppressed. Moreover, by arranging the current detour circuit 19 in a region where the critical current value Ic is lower than in other regions, it is possible to suitably bypass the current in the region where thermal runaway is likely to occur. As a result, the occurrence of thermal runaway or quenching can be suppressed.
Needless to say, this third modification can be applied to the winding member according to another embodiment.

[第2の実施形態]
第2の実施形態に係る超電導コイルについて、図11を参照して説明する。
第2の実施形態では、図11に示すように、放射状に複数に分割した電流迂回路19aが用いられる。各電流迂回路19aは、巻線部材12の周方向に沿って所定の間隙11を介して配置される。その形状は扇形状である。
[Second Embodiment]
The superconducting coil according to the second embodiment will be described with reference to FIG.
In the second embodiment, as shown in FIG. 11, a current detour circuit 19a that is radially divided into a plurality of parts is used. Each current detour 19a is arranged along the circumferential direction of the winding member 12 through a predetermined gap 11. Its shape is a fan shape.

(作用)
超電導コイル10を流れる電流を増加させる時、通電電流Iの変化に起因して磁場が変動する。当該磁場の変動によって、電流迂回路19には、渦電流が発生する。当該渦電流は、磁場の変動を抑制する方向、すなわち、通電電流Iを減少させる方向に流れる。このため、渦電流の発生は好ましくない。
(Action)
When the current flowing through the superconducting coil 10 is increased, the magnetic field fluctuates due to the change in the energizing current I. An eddy current is generated in the current detour 19 due to the fluctuation of the magnetic field. The eddy current flows in a direction that suppresses fluctuations in the magnetic field, that is, in a direction that reduces the energizing current I. Therefore, the generation of eddy current is not preferable.

そこで、第2の実施形態では、電流迂回路19を超電導コイルの周方向に沿って放射状に複数に分割し、各電流迂回路19a間に間隙11を形成している。こうして、渦電流の周回経路が分断されることにより、渦電流の発生に起因する通電電流Iの損失を抑制することができる。
また、渦電流に起因する発熱が抑制されることにより、熱暴走等の発生も抑制することができる。
Therefore, in the second embodiment, the current detour circuit 19 is radially divided into a plurality of pieces along the circumferential direction of the superconducting coil, and a gap 11 is formed between the current detour circuits 19a. In this way, the circuit path of the eddy current is divided, so that the loss of the energizing current I due to the generation of the eddy current can be suppressed.
Further, by suppressing the heat generation caused by the eddy current, it is possible to suppress the occurrence of thermal runaway and the like.

(効果)
第2の実施形態における超電導コイルによれば、第1の実施形態における超電導コイルによって奏される効果に加え、超電導コイルの始動時等において、電流迂回路19に生じる渦電流に起因する通電電流Iの損失が抑制されるため、予定された磁場の形状をより早く形成することができる。
(effect)
According to the superconducting coil in the second embodiment, in addition to the effect produced by the superconducting coil in the first embodiment, the energization current I caused by the eddy current generated in the current detour 19 at the time of starting the superconducting coil or the like. Since the loss of the current is suppressed, the shape of the planned magnetic field can be formed faster.

[第3の実施形態]
第3の実施形態に係る超電導コイルについて、図12を参照して説明する。
第3の実施形態に係る電流迂回路19bは、電流迂回路19bの容積を調整するため、多数の空隙又は貫通孔18が設けられている。空隙(貫通孔)18の個数は適宜増減可能である。
[Third Embodiment]
The superconducting coil according to the third embodiment will be described with reference to FIG.
The current detour circuit 19b according to the third embodiment is provided with a large number of voids or through holes 18 in order to adjust the volume of the current detour circuit 19b. The number of voids (through holes) 18 can be increased or decreased as appropriate.

空隙18は、例えば、平板状の薄膜導電体に多数の孔を穿孔するか、導電線材を編み込むことによって形成される。また、電流迂回路19bとして、メッシュ材、パンチング材、フィラメント材、不織布、フェルト、ウールまたはスリット材など、空隙または貫通孔を有する既存の導電体製品を用いてもよく、又はこれらの組み合わせた部材を用いてもよい。
さらに、上記実施形態で説明した空隙を有さない電流迂回路19と組み合わせて使用してもよい。
The voids 18 are formed, for example, by drilling a large number of holes in a flat thin film conductor or by knitting a conductive wire rod. Further, as the current detour circuit 19b, an existing conductor product having voids or through holes such as a mesh material, a punching material, a filament material, a non-woven fabric, felt, wool or a slit material may be used, or a member obtained by combining these. May be used.
Further, it may be used in combination with the current detour circuit 19 having no gap described in the above embodiment.

(作用)
電流迂回路19の最適な導電率は超電導コイル10の性質又は用途等によって異なるため、電流迂回路19の導電率は自由に変更できることが望ましい。
(Action)
Since the optimum conductivity of the current detour circuit 19 differs depending on the properties or applications of the superconducting coil 10, it is desirable that the conductivity of the current detour circuit 19 can be freely changed.

しかし、電流迂回路19の外形形状および電流迂回路19の材質は、電流迂回路19の強度または厚みなどの観点から、変更可能な範囲に制限がある。
そこで、本第3の実施形態では、電流迂回路19bの外形形状および材質を変更することなく、空隙(貫通孔)18を有する電流迂回路19bを用いることによって、電流迂回路19cの導電率を所望の値に調節することができる。
However, the outer shape of the current bypass circuit 19 and the material of the current bypass circuit 19 are limited in a range that can be changed from the viewpoint of the strength or thickness of the current bypass circuit 19.
Therefore, in the third embodiment, the conductivity of the current detour circuit 19c is increased by using the current detour circuit 19b having a gap (through hole) 18 without changing the outer shape and material of the current detour circuit 19b. It can be adjusted to a desired value.

(効果)
第3の実施形態における超電導コイルによれば、第1の実施形態における超電導コイルによって奏される効果に加え、導電率を調整可能な電流迂回路19bを用いることで、導電率を容易に調節することが可能となる。導電率の変更は、電流迂回路19bの空隙(貫通孔)18の割合を適宜増減し、電流迂回路19bの容積を調節することによって簡便に行われる。つまり、電流迂回路19bの外形や厚み等の基本的な形状を変更することなく、電流迂回路19の導電率を、最適な導電率に調整することができる。
(effect)
According to the superconducting coil in the third embodiment, in addition to the effect produced by the superconducting coil in the first embodiment, the conductivity is easily adjusted by using the current detour circuit 19b whose conductivity can be adjusted. It becomes possible. The conductivity is easily changed by appropriately increasing or decreasing the ratio of the voids (through holes) 18 of the current detour circuit 19b and adjusting the volume of the current detour circuit 19b. That is, the conductivity of the current detour circuit 19 can be adjusted to the optimum conductivity without changing the basic shape such as the outer shape and the thickness of the current detour circuit 19b.

[第4の実施形態]
第4の実施形態に係る超電導コイルについて、図13を参照して説明する。
第4の実施形態では、電流迂回路19が、電気絶縁材16bを介して、熱伝導部材13に熱的に接続される構成としている。なお、電流迂回路19の材質として、アルミニウムまたは銅などの高熱伝導率材料が用いられる。
[Fourth Embodiment]
The superconducting coil according to the fourth embodiment will be described with reference to FIG.
In the fourth embodiment, the current detour circuit 19 is thermally connected to the heat conductive member 13 via the electric insulating material 16b. As the material of the current detour circuit 19, a high thermal conductivity material such as aluminum or copper is used.

このように、第4の実施形態では、電流迂回路19が、電気絶縁材16bを介して、熱伝導部材13に熱的に接続されているため、電流迂回路19は超電導コイル10を冷却するための熱伝導部材としても機能する。この場合、熱伝導部材13は、冷却装置に接続されていてもよい。 As described above, in the fourth embodiment, since the current detour circuit 19 is thermally connected to the heat conductive member 13 via the electric insulating material 16b, the current detour circuit 19 cools the superconducting coil 10. It also functions as a heat conductive member for the purpose. In this case, the heat conductive member 13 may be connected to the cooling device.

本第4の実施形態によれば、電流迂回路19を、冷却用の熱伝導部材として機能させることにより、超電導コイル10の厚みの増加を抑制することができるとともに、冷却効率を向上させることができる。 According to the fourth embodiment, by making the current bypass circuit 19 function as a heat conductive member for cooling, it is possible to suppress an increase in the thickness of the superconducting coil 10 and improve the cooling efficiency. it can.

[第5の実施形態]
第5の実施形態に係る超電導コイル装置50について、図14を参照して説明する。
第5の実施形態では、複数の超電導コイル10a〜10dが、超電導コイルの中心軸Cに沿って積層される構成としている。この超電導コイル装置50は複数の超電導コイル10a〜10dを支持し、磁場発生源となるフランジ部も備えている(図示せず)。
複数の超電導コイル10a〜10dうちの少なくとも1つは、常電導コイルであってもよく、又は全てが上述した実施形態の超電導コイルであってもよい。
[Fifth Embodiment]
The superconducting coil device 50 according to the fifth embodiment will be described with reference to FIG.
In the fifth embodiment, a plurality of superconducting coils 10a to 10d are laminated along the central axis C of the superconducting coils. The superconducting coil device 50 supports a plurality of superconducting coils 10a to 10d, and also includes a flange portion that serves as a magnetic field generation source (not shown).
At least one of the plurality of superconducting coils 10a to 10d may be a normal conducting coil, or all of them may be the superconducting coils of the above-described embodiment.

以下の説明では、超電導コイル装置50が全て本発明の実施形態に係る超電導コイルからなる例について説明する。
前述したように、通電電流Iによって発生した磁場Bの強度および向きは各位置によって異なる。
In the following description, an example in which the superconducting coil device 50 includes all the superconducting coils according to the embodiment of the present invention will be described.
As described above, the strength and direction of the magnetic field B generated by the energizing current I differ depending on each position.

積層される超電導コイル10a〜10dは、巻回中心方向の中央部に位置するほど、磁場Bの垂直成分が小さく、遮蔽電流の影響が小さい。
そこで、本実施形態の超電導コイル装置50では、電流迂回路19を設けた超電導線材20は、超電導コイル10a、10dなど、巻回中心Cに沿った端部近傍のものに用いられることが望ましい。
The stacked superconducting coils 10a to 10d have a smaller vertical component of the magnetic field B and are less affected by the shielding current as they are located in the central portion in the winding center direction.
Therefore, in the superconducting coil device 50 of the present embodiment, it is desirable that the superconducting wire 20 provided with the current detour 19 is used for the superconducting coils 10a and 10d near the end along the winding center C.

その場合、巻回中心Cに沿って積層された複数の超電導コイル10a〜10dは、その位置によって磁場Bに基づくフラックスフロー抵抗の大きさは異なる。
つまり、超電導コイル10a〜10dは、その積層される位置によって、臨界電流値Icは異なる。
In that case, the magnitude of the flux flow resistance based on the magnetic field B differs depending on the positions of the plurality of superconducting coils 10a to 10d stacked along the winding center C.
That is, the critical current values Ic of the superconducting coils 10a to 10d differ depending on the stacking position.

具体的には、通常、磁場Bの剥離方向(すなわち、コイル径方向)の成分が最大になる積層体38における両端の超電導コイル10a、10dにおいて、臨界電流値Icが低くなる。 Specifically, the critical current value Ic is usually low in the superconducting coils 10a and 10d at both ends of the laminated body 38 in which the component in the peeling direction (that is, the coil radial direction) of the magnetic field B is maximized.

そこで、本第5の実施形態に係る超電導コイル装置50では、上述した第1の実施形態〜第4の実施形態に示した電流迂回路19が設けられた超電導コイル10を超電導コイル装置50の両端に配置する。 Therefore, in the superconducting coil device 50 according to the fifth embodiment, the superconducting coil 10 provided with the current bypass circuit 19 shown in the first to fourth embodiments described above is used at both ends of the superconducting coil device 50. Place in.

(作用)
超電導コイル装置を構成する複数の超電導コイルのうち、臨界電流値が最も低くなる領域に配置される超電導コイルを、上述した第1乃至第4の実施形態に係る超電導コイル10とすることで、上述の第1乃至第4の実施形態に説明した作用効果を奏することができる。
(Action)
Among the plurality of superconducting coils constituting the superconducting coil device, the superconducting coil arranged in the region where the critical current value is the lowest is the superconducting coil 10 according to the first to fourth embodiments described above. It is possible to achieve the effects described in the first to fourth embodiments of the above.

なお、超電導コイル10を具体的に超電導コイル装置50に適用したこと、および超電導コイル10の配置位置を限定したこと以外は、第5実施形態は第1実施形態と同じ構造および動作手順となるので、重複説明を省略する。 The fifth embodiment has the same structure and operating procedure as the first embodiment, except that the superconducting coil 10 is specifically applied to the superconducting coil device 50 and the arrangement position of the superconducting coil 10 is limited. , Omit duplicate description.

(効果)
以上説明したように、第5実施形態にかかる超電導コイル装置50によれば、第1実施形態などと同様の効果を発揮することができる。
(effect)
As described above, according to the superconducting coil device 50 according to the fifth embodiment, the same effect as that of the first embodiment can be exhibited.

また、全ての超電導コイル10a〜10dとして、電流迂回路19が設けられた超電導コイル10を用いると、超電導コイル装置の始動時に、電流迂回路19を流れる電流が大きくなり、予定された磁場形状が形成されるまでの時間が長くなる。したがって、本第5の実施形態のように、電流迂回路19が設けられた超電導コイル10を、臨界電流値Icが低くなる両端の位置に限定して用いることで、想定した磁場形状にするまでの励磁時間の短縮化を図ることができる。 Further, if the superconducting coil 10 provided with the current detour circuit 19 is used as all the superconducting coils 10a to 10d, the current flowing through the current detour circuit 19 becomes large when the superconducting coil device is started, and the planned magnetic field shape becomes large. It takes longer to form. Therefore, as in the fifth embodiment, the superconducting coil 10 provided with the current detour circuit 19 is used only at the positions at both ends where the critical current value Ic becomes low until the expected magnetic field shape is obtained. The excitation time can be shortened.

[第6の実施形態]
第6の実施形態に係る超電導コイル装置50について、図15を参照して説明する。
第6の実施形態における超電導コイル装置50では、隣接する2つの超電導コイル(例えば、超電導コイル10a、10bと超電導コイル10c、10d)の間に、コイル間電流迂回路37を配置する構成としている。
[Sixth Embodiment]
The superconducting coil device 50 according to the sixth embodiment will be described with reference to FIG.
In the superconducting coil device 50 according to the sixth embodiment, the inter-coil current detour 37 is arranged between two adjacent superconducting coils (for example, the superconducting coils 10a and 10b and the superconducting coils 10c and 10d).

(作用)
上述した第1の実施形態に係る電流迂回路19は、通電電流Iを、超電導線材20から、他の超電導線材20に迂回させるための部材であり、超電導線材20の一部分のみで常電導転移が生じている時に、電流を好適に迂回させることができる。
(Action)
The current detour circuit 19 according to the first embodiment described above is a member for diverting the energizing current I from the superconducting wire 20 to another superconducting wire 20, and the normal conduction transition occurs only in a part of the superconducting wire 20. The current can be suitably diverted when it is occurring.

ところで、特定の超電導コイル(例えば10a)の大部分が常電導転移している場合を想定すると、通電電流Iを、隣接する他の超電導コイル(例えば10b)に迂回させることが望ましい。 By the way, assuming that most of the specific superconducting coil (for example, 10a) has undergone normal conduction transition, it is desirable to divert the energizing current I to another adjacent superconducting coil (for example, 10b).

そこで、第6の実施形態における超電導コイル装置50では、例えば超電導コイル10aと、隣接する超電導コイル10bとを、超電導コイル10aの下面に配置されたコイル間電流迂回路37を介して電気的に接続する。これにより、例えば、超電導コイル10aにおいて、常電導転移が進行した場合に、通電電流Iを、超電導コイル10aからコイル間電流迂回路37を介して超電導コイル10bに迂回させることが可能となる。 Therefore, in the superconducting coil device 50 according to the sixth embodiment, for example, the superconducting coil 10a and the adjacent superconducting coil 10b are electrically connected via an inter-coil current detour 37 arranged on the lower surface of the superconducting coil 10a. To do. Thereby, for example, in the superconducting coil 10a, when the normal conduction transition progresses, the energizing current I can be diverted from the superconducting coil 10a to the superconducting coil 10b via the inter-coil current detour 37.

なお、第5の実施形態と同様に、コイル間電流迂回路37は、すべての超電導コイルの各々に設けるのではなく、一部の超電導コイルのみに設けることが好ましい。例えば、超電導コイル10aと超電導コイル10bとが隣接しており、超電導コイル10bと超電導コイル10cとが隣接している場合を想定する。 As in the fifth embodiment, it is preferable that the inter-coil current detour 37 is not provided in each of all the superconducting coils, but is provided only in a part of the superconducting coils. For example, it is assumed that the superconducting coil 10a and the superconducting coil 10b are adjacent to each other, and the superconducting coil 10b and the superconducting coil 10c are adjacent to each other.

この場合、超電導コイル10aと超電導コイル10bとの間には、コイル間電流迂回路37を配置する一方、超電導コイル10bと超電導コイル10cとの間には、コイル間電流迂回路37を配置しなくてもよい。すなわち、超電導コイル10bと超電導コイル10cとは、電気的に絶縁されていてもよい。 In this case, the inter-coil current detour 37 is not arranged between the superconducting coil 10a and the superconducting coil 10b, while the inter-coil current detour 37 is not arranged between the superconducting coil 10b and the superconducting coil 10c. You may. That is, the superconducting coil 10b and the superconducting coil 10c may be electrically insulated.

図15に示す例では、超電導コイル10aと超電導コイル10bとの間、及び超電導コイル10cと超電導コイル10dとの間にコイル間電流迂回路37が配置されている。2つのコイル間電流迂回路37の導電率は、同じであってもよいし、異なっていてもよい。 In the example shown in FIG. 15, the inter-coil current detour 37 is arranged between the superconducting coil 10a and the superconducting coil 10b and between the superconducting coil 10c and the superconducting coil 10d. The conductivity of the two coil-to-coil current detours 37 may be the same or different.

例えば、超電導コイル10a又は超電導コイル10bが、臨界電流値Icが低くなる領域に配置され、超電導コイル10c及び超電導コイル10dが、臨界電流値Icが高い領域に配置される場合を想定する。この場合、超電導コイル10aと第2の超電導コイル10bとの間に配置されるコイル間電流迂回路37の導電率は、超電導コイル10cと超電導コイル10dとの間に配置されるコイル間電流迂回路37の導電率よりも高いことが好ましい。 For example, it is assumed that the superconducting coil 10a or the superconducting coil 10b is arranged in a region where the critical current value Ic is low, and the superconducting coil 10c and the superconducting coil 10d are arranged in a region where the critical current value Ic is high. In this case, the conductivity of the inter-coil current detour 37 arranged between the superconducting coil 10a and the second superconducting coil 10b is the inter-coil current detour arranged between the superconducting coil 10c and the superconducting coil 10d. It is preferably higher than the conductivity of 37.

コイル間電流迂回路37は、磁場の侵入が強く、臨界電流値Icが低くなる領域にある超電導コイルに設けられるのが好ましい。さらに、コイル間電流迂回路37の導電率は、電流迂回路19の導電率よりも低いのが好ましい。これは、磁場形状を予定した磁場形状にできるだけ速く形成するために、通電電流Iは、一つの超電導コイルの中でのみ迂回するのが望ましいからである。 The inter-coil current detour 37 is preferably provided in the superconducting coil in a region where the magnetic field penetrates strongly and the critical current value Ic is low. Further, the conductivity of the inter-coil current bypass circuit 37 is preferably lower than the conductivity of the current bypass circuit 19. This is because it is desirable that the energizing current I be bypassed only in one superconducting coil in order to form the magnetic field shape into the planned magnetic field shape as quickly as possible.

以上説明したように、第6の実施形態によれば、第5の実施形態によって奏される効果に加え、常電導転移が進行した特定の超電導コイルから隣接する他の超電導コイルに通電電流Iを迂回させることで、熱暴走等の発生を抑制することができる。 As described above, according to the sixth embodiment, in addition to the effect produced by the fifth embodiment, the energizing current I is applied from a specific superconducting coil in which the normal conduction transition has progressed to another adjacent superconducting coil. By detouring, the occurrence of thermal runaway or the like can be suppressed.

なお、第6の実施形態において、コイル間電流迂回路37を、臨界電流値Icが高い領域にある超電導コイルに配置することは排除されない。この場合、臨界電流値Icが高い領域にある超電導コイルにおいて、何らかの異常で予期せぬ電気抵抗が発生する場合であっても、熱暴走等の発生を抑制することができる。 In the sixth embodiment, it is not excluded that the inter-coil current detour circuit 37 is arranged in the superconducting coil in the region where the critical current value Ic is high. In this case, in the superconducting coil in the region where the critical current value Ic is high, even if an unexpected electric resistance is generated due to some abnormality, the occurrence of thermal runaway or the like can be suppressed.

以上説明したように、本実施形態に係る超電導コイルおよび超電導コイル装置によれば、常電導転移状態に転移した超電導線材又は超電導コイルに流れる電流を電流迂回路19又はコイル間電流迂回路37により迂回させることで、熱暴走またはクエンチの発生を抑制することが可能となる。 As described above, according to the superconducting coil and the superconducting coil device according to the present embodiment, the current flowing through the superconducting wire or the superconducting coil that has been transferred to the normal conduction transition state is bypassed by the current bypass circuit 19 or the inter-coil current bypass circuit 37. By doing so, it becomes possible to suppress the occurrence of thermal runaway or quenching.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
例えば、図1では、電流迂回路19が配置される超電導コイルの形状として、パンケーキ形状を例示したが、パンケーキ形状のものに限定されず、非円形に巻回したレーストラック型、鞍型、楕円またはソレノイド型でもよく、電流迂回路はいずれの形状の超電導コイルにも適用可能である。
Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention.
For example, in FIG. 1, a pancake shape is illustrated as the shape of the superconducting coil in which the current detour 19 is arranged, but the shape is not limited to the pancake shape, and the race track type and the saddle type wound in a non-circular shape are used. , Elliptical or solenoid type, and the current detour can be applied to any shape of superconducting coil.

これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10、10a〜10d…超電導コイル、11…間隙、12、12a〜12c…巻線部材、13…熱伝導部材、14…巻枠、15…常電導領域、16…絶縁材、16a…絶縁層、16b…電気絶縁材、17…導電性樹脂、18…空隙(貫通孔)、19、19a、19b…電流迂回路、20…超電導線材、31…離型層、32…導電性部材、37…コイル間電流迂回路、50…超電導コイル装置 10, 10a to 10d ... Superconducting coil, 11 ... Gap, 12, 12a to 12c ... Winding member, 13 ... Heat conductive member, 14 ... Winding frame, 15 ... Normal conducting region, 16 ... Insulating material, 16a ... Insulating layer, 16b ... Electrical insulation material, 17 ... Conductive resin, 18 ... Void (through hole), 19, 19a, 19b ... Current detour, 20 ... Superconducting wire, 31 ... Demolding layer, 32 ... Conductive member, 37 ... Coil Intercurrent detour, 50 ... Superconducting coil device

Claims (11)

超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材と
前記巻線部材の間及び前記巻線部材の幅方向端部に形成された導電性樹脂と、
前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有し、
前記巻線部材同士の間隙、及び前記巻線部材の幅方向端部と前記電流迂回路の間隙に含浸により導電性樹脂が形成されることを特徴とする超電導コイル。
A superconducting wire and the insulating material spool Kyomaki is formed with the winding member formed by the end portion in the width direction of and between the winding member of the winding member conductive resin around,
Provided at least one of widthwise end portions of the winding member, have a, a current bypass path that is electrically connected to the superconducting wire and / or conductive resin,
The winding members together of the gap, and the conductive resin is formed by impregnation on the current bypass path of the gap and the width direction end portion of the winding member superconducting coil according to claim Rukoto.
超電導線材が巻枠の周囲に巻回されてなる巻線部材と
前記巻線部材の間及び前記巻線部材の幅方向端部に形成された導電性樹脂と、
前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有し、
前記巻線部材同士の間隙、及び前記巻線部材の幅方向端部と前記電流迂回路の間隙に含浸により導電性樹脂が形成される超電導コイルであって、
隣接する前記超電導線材間の少なくとも一部に導電性部材を配置したことを特徴とする超電導コイル。
And between the formed end part in the width direction of the winding member conductive resin of the winding member superconducting wire winding member formed by being wound around the spool,
Provided at least one of widthwise end portions of the winding member, have a, a current bypass path that is electrically connected to the superconducting wire and / or conductive resin,
The winding members together gap, and a superconducting coil conductive resin Ru is formed by impregnation on the current bypass path of the gap and the width direction end portion of the winding member,
A superconducting coil characterized in that a conductive member is arranged at least a part between adjacent superconducting wires.
前記電流迂回路の上面に絶縁層を設けたことを特徴とする請求項1又は2に記載の超電導コイル。 The superconducting coil according to claim 1 or 2 , wherein an insulating layer is provided on the upper surface of the current bypass circuit. 前記電流迂回路を前記巻線部材の最内周から中央部付近まで配置したことを特徴とする請求項1乃至のいずれかに記載の超電導コイル。 The superconducting coil according to any one of claims 1 to 3 , wherein the current bypass circuit is arranged from the innermost circumference to the vicinity of the central portion of the winding member. 前記巻線部材の径方向に少なくとも1つの離型層を設け、当該離型層を跨がるよう前記電流迂回路を配置したことを特徴とする請求項1乃至のいずれかに記載の超電導コイル。 The superconductivity according to any one of claims 1 to 4 , wherein at least one release layer is provided in the radial direction of the winding member, and the current detour is arranged so as to straddle the release layer. coil. 前記電流迂回路を所定の間隙を介して複数に分割したことを特徴とする請求項1乃至のいずれかに記載の超電導コイル。 The superconducting coil according to any one of claims 1 to 5 , wherein the current bypass circuit is divided into a plurality of parts through a predetermined gap. 前記電流迂回路に複数の空隙を設けたことを特徴とする請求項1乃至のいずれかに記載の超電導コイル。 The superconducting coil according to any one of claims 1 to 6 , wherein a plurality of voids are provided in the current detour. 前記電流迂回路を、電気絶縁体を介して熱伝導部材に熱的に接続したことを特徴とする請求項1乃至のいずれかに記載の超電導コイル。 The superconducting coil according to any one of claims 1 to 7 , wherein the current bypass circuit is thermally connected to a heat conductive member via an electric insulator. 請求項1乃至のいずれかに記載の超電導コイルの製造方法において、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材を導電性樹脂に含浸させることで、前記超電導線材同士の間及び超電導線材の前記巻線部材の幅方向端部に導電性樹脂を形成し、前記巻線部材の幅方向端部の一方に電流迂回路を設けることを特徴とする超電導コイルの製造方法。 In the method for manufacturing a superconducting coil according to any one of claims 1 to 8 , the superconducting wire material is impregnated with a winding member in which a superconducting wire material and an insulating material are co-wound around a winding frame to impregnate the conductive resin. Manufacture of a superconducting coil characterized in that a conductive resin is formed between each other and at the widthwise end of the winding member of the superconducting wire, and a current detour is provided at one of the widthwise ends of the winding member. Method. 請求項1乃至のいずれかに記載の超電導コイルを含む超電導コイルを複数積層するとともに、前記積層された超電導コイルの前記巻線部材の幅方向端部に電流迂回路を設けたことを特徴とする超電導コイル装置。 A plurality of superconducting coils including the superconducting coil according to any one of claims 1 to 8 are laminated, and a current detour is provided at the widthwise end of the winding member of the laminated superconducting coil. Superconducting coil device. 前記積層された超電導コイルのうち、隣接する2つの超電導コイルを電気的に接続するコイル間電流迂回路を設けたことを特徴とする請求項10に記載の超電導コイル装置。 The superconducting coil device according to claim 10 , further comprising an inter-coil current detour that electrically connects two adjacent superconducting coils among the stacked superconducting coils.
JP2016245090A 2016-12-19 2016-12-19 Superconducting coil, manufacturing method of superconducting coil and superconducting coil device Active JP6786375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245090A JP6786375B2 (en) 2016-12-19 2016-12-19 Superconducting coil, manufacturing method of superconducting coil and superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245090A JP6786375B2 (en) 2016-12-19 2016-12-19 Superconducting coil, manufacturing method of superconducting coil and superconducting coil device

Publications (2)

Publication Number Publication Date
JP2018101465A JP2018101465A (en) 2018-06-28
JP6786375B2 true JP6786375B2 (en) 2020-11-18

Family

ID=62715506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245090A Active JP6786375B2 (en) 2016-12-19 2016-12-19 Superconducting coil, manufacturing method of superconducting coil and superconducting coil device

Country Status (1)

Country Link
JP (1) JP6786375B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3747033T3 (en) * 2018-02-01 2022-05-23 Tokamak Energy Ltd PARTIALLY INSULATED HTS COILS
JP7222622B2 (en) * 2018-07-20 2023-02-15 株式会社東芝 Superconducting coil and superconducting coil device
JP2020025014A (en) * 2018-08-07 2020-02-13 株式会社東芝 High-temperature superconducting coil and superconducting magnet device
JP2021015833A (en) * 2019-07-10 2021-02-12 株式会社東芝 Superconducting coil and superconducting coil unit
JP7247080B2 (en) * 2019-12-09 2023-03-28 株式会社東芝 Superconducting coil device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093721A (en) * 1999-09-24 2001-04-06 Toshiba Corp High-temperature superconducting magnet
JP2014022693A (en) * 2012-07-23 2014-02-03 Toshiba Corp Superconducting coil and manufacturing method therefor
JP6353674B2 (en) * 2014-03-19 2018-07-04 株式会社東芝 High temperature superconducting magnet device and high temperature superconducting magnet demagnetizing method
JP6513915B2 (en) * 2014-08-08 2019-05-15 株式会社東芝 High temperature superconducting coil and high temperature superconducting magnet device
JP6375872B2 (en) * 2014-10-29 2018-08-22 住友電気工業株式会社 Superconducting magnet and superconducting equipment
WO2016117658A1 (en) * 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet

Also Published As

Publication number Publication date
JP2018101465A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6786375B2 (en) Superconducting coil, manufacturing method of superconducting coil and superconducting coil device
US20230368953A1 (en) Superconducting coil and superconducting coil device
JP6490851B2 (en) Superconducting coil and superconducting coil device
JP4620637B2 (en) Resistive superconducting fault current limiter
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JP2009043912A (en) Superconducting coil
JPH0523485B2 (en)
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
CN105103247A (en) Superconducting magnet coil arrangement
US10510484B2 (en) Forming an electrical coil device by cutting a strip conductor winding into at least two partial coils
JP6353674B2 (en) High temperature superconducting magnet device and high temperature superconducting magnet demagnetizing method
JP6513915B2 (en) High temperature superconducting coil and high temperature superconducting magnet device
JP2001093721A (en) High-temperature superconducting magnet
JP5741094B2 (en) Superconducting coil
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
Yanagisawa et al. Suppression of catastrophic thermal runaway for a REBCO innermost coil of an LTS/REBCO NMR magnet operated at 400–600 MHz (9.4–14.1 T)
WO2020067335A1 (en) Oxide superconductive coil and production method thereof
JP7247080B2 (en) Superconducting coil device
JP2013120777A (en) Superconducting coil and superconducting transformer
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP2021015833A (en) Superconducting coil and superconducting coil unit
JP2014192182A (en) Permanent current switch
JP7404187B2 (en) Superconducting coils and superconducting coil devices
JP2023044839A (en) Superconducting coil and superconducting coil device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150