JP6785569B2 - Light source toning lens - Google Patents

Light source toning lens Download PDF

Info

Publication number
JP6785569B2
JP6785569B2 JP2016072134A JP2016072134A JP6785569B2 JP 6785569 B2 JP6785569 B2 JP 6785569B2 JP 2016072134 A JP2016072134 A JP 2016072134A JP 2016072134 A JP2016072134 A JP 2016072134A JP 6785569 B2 JP6785569 B2 JP 6785569B2
Authority
JP
Japan
Prior art keywords
light source
change
color
amount
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072134A
Other languages
Japanese (ja)
Other versions
JP2017181942A (en
Inventor
晴彦 諸井
晴彦 諸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inui Lens Co Ltd
Original Assignee
Inui Lens Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inui Lens Co Ltd filed Critical Inui Lens Co Ltd
Priority to JP2016072134A priority Critical patent/JP6785569B2/en
Publication of JP2017181942A publication Critical patent/JP2017181942A/en
Application granted granted Critical
Publication of JP6785569B2 publication Critical patent/JP6785569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eyeglasses (AREA)
  • Optical Filters (AREA)

Description

本発明は、光源の種類の変化、例えば屋外の自然光や屋内における蛍光灯などの照明光の種類の変化に応じて、眼鏡レンズの機能色(反射色、透光度、色調及びコントラストを含む)が変化する光源調色性レンズに関する。 The present invention relates to functional colors of spectacle lenses (including reflected color, translucency, color tone and contrast) in response to changes in the type of light source, for example, changes in the type of illumination light such as outdoor natural light or indoor fluorescent lamp. Regarding a light source toning lens that changes.

サングラスは、特定の色に発色させるための色素や特定波長の光を吸収する吸収剤を添加することで、自然光に含まれる紫外線などの有害光線から目を保護したり、ファッション性を高めたりすることを目的としている。このようなサングラスの中には、屋内などの暗い所に入ったときも視認性を確保するために、明るいところと暗いところで着色の濃度を異ならせ、明るいところでは着色濃度を高めて光の透過率を下げ、暗いところでは濃度を低めて透過率を上げるというように、透過率可変の調光機能を有するものも市販されている。 Sunglasses protect the eyes from harmful rays such as ultraviolet rays contained in natural light and enhance fashionability by adding pigments to develop a specific color and absorbents that absorb light of a specific wavelength. The purpose is. In order to ensure visibility even when entering a dark place such as indoors, some of these sunglasses have different coloring densities in bright and dark places, and the coloring density is increased in bright places to transmit light. There are also commercially available products having a variable transmittance dimming function, such as lowering the rate and lowering the density in dark places to increase the transmittance.

ところで、このようなサングラスのレンズの色は、どんな光源下においても目視においてほぼ同一色と認識できるものが良いとされていた。そのため、自然光の下での眼鏡レンズの色を他の光源の下でいかに忠実に再現するか、といういわゆる「演色性」の高さがこれまでの眼鏡レンズにおける着色の課題であった(特許文献1参照)。 By the way, it has been said that the color of the lens of such sunglasses should be one that can be visually recognized as almost the same color under any light source. Therefore, the high level of so-called "color rendering properties" of how to faithfully reproduce the color of spectacle lenses under natural light under other light sources has been a problem of coloring in spectacle lenses so far (Patent Documents). 1).

特開平6−250128号公報参照(例えば段落0006の記載参照)See JP-A-6-250128 (see, for example, paragraph 0006).

しかし、屋外の自然光の下でも晴れと曇りでは条件が異なり、屋内でも窓際や蛍光灯下、LED灯下、電球下では条件が異なるため、いずれの条件下においても肉眼でほぼ同じ色の眼鏡レンズになるように着色することは極めて困難である。
本発明は、このような眼鏡レンズの品質における演色性の認識を見直し、演色性が低くても眼鏡レンズに高品質感を与え、かつ、新たな価値観を創造し得る光源調色性レンズの提供を目的とする。
However, even under natural outdoor light, the conditions are different between sunny and cloudy, and even indoors, the conditions are different near windows, under fluorescent lights, under LED lights, and under light bulbs, so spectacle lenses of almost the same color with the naked eye under all conditions. It is extremely difficult to color it so that it becomes.
The present invention reviews the recognition of color rendering in the quality of such spectacle lenses, and gives a high quality feeling to spectacle lenses even if the color rendering is low, and can create a new sense of value. For the purpose of providing.

上記課題を解決するために請求項1に記載の発明は、複数色の色素によって着色され、自然光源とこの自然光源以外の他の光源との間で眼鏡レンズの反射色を変化させる光源調色性レンズであって、前記他の光源の分光分布がピークとなるピーク波長領域における前記自然光源の下と前記他の光源の下との相互間の前記分光透過率の変化量前記ピーク波長領域以外の波長領域における前記変化量よりも大きくなるようにするとともに、前記変化量が大きくなる波長領域の設定位置とこの設定位置における可視光の補色の組み合わせにより、前記反射色を調整するように構成してある。 In order to solve the above problem, the invention according to claim 1 is a light source toning that is colored by a plurality of colors of dyes and changes the reflected color of the spectacle lens between a natural light source and another light source other than the natural light source. In the sex lens, the amount of change in the spectral transmittance between under the natural light source and under the other light source in the peak wavelength region where the spectral distribution of the other light source peaks is the peak wavelength. The reflected color is adjusted by a combination of a set position of the wavelength region in which the amount of change is large and a complementary color of visible light in the set position so as to be larger than the amount of change in a wavelength region other than the region. It is configured.

このように構成すれば、装着者において、例えば自然光などの基準光源の下で自然に見える風景等を、蛍光灯や白色LEDなどの他の光源下でも色調のバランスを崩すことなく見ることができる(演色性)一方で、眼鏡レンズの前記機能色を、屋内から屋外に出たときに、屋内色から屋外色に瞬時に変化させることが可能である。 With this configuration, the wearer can see a landscape that looks natural under a reference light source such as natural light without losing the color balance even under other light sources such as fluorescent lamps and white LEDs. (Color Rendering) On the other hand, it is possible to instantly change the functional color of the spectacle lens from the indoor color to the outdoor color when going from indoors to outdoors.

機能色のうち屋内での反射色としては、例えば演色性に優れた眼鏡レンズの反射色であるグレー系やアンバー系とすることができ、屋外での反射色としては例えばブラウン系やパープル系を選択することができる。このようにすることで、常に自然光に近い状態で風景や物を見ることができる一方で、屋外に出掛けるときにはファッションに適った反射色のサングラスとすることができ、屋内及び屋外を問わずにサングラスを装着する機会を増大させることができる。 Among the functional colors, the indoor reflection color can be, for example, gray or amber, which is the reflection color of a spectacle lens having excellent color rendering properties, and the outdoor reflection color can be, for example, brown or purple. You can choose. By doing this, you can always see the scenery and things in a state close to natural light, but when you go outdoors, you can wear sunglasses with a reflective color suitable for fashion, and sunglasses regardless of indoors or outdoors. You can increase the chances of wearing sunglasses.

基準光源が自然光の場合、波長500〜640nmの範囲における分光透過率特性をフラット又は長波長側の透過率が短波長側と比較して10〜25%高いものとすれば、演色性(反射色の変化)を発現できることが知られている。そこで、請求項2に記載の発明は、前記ピーク波長領域が500〜640nmの範囲である場合に、前記変化率の最大値が500〜640nmの範囲内に位置するようにしている。 When the reference light source is natural light, if the spectral transmittance characteristics in the wavelength range of 500 to 640 nm are flat or the transmittance on the long wavelength side is 10 to 25% higher than that on the short wavelength side, the color rendering property (reflected color) It is known that it can express (changes in). Therefore, according to the second aspect of the present invention, when the peak wavelength region is in the range of 500 to 640 nm, the maximum value of the rate of change is located in the range of 500 to 640 nm.

なお、請求項3に記載するように、屋内における眼鏡レンズの反射色はグレー又はアンバーとすることができ、さらに前記分光透過率の変化率を大きくすれば、請求項4に記載するように、変化後のレンズ色をバイオレット又はブラウンとすることができる。 As described in claim 3, the reflected color of the spectacle lens indoors can be gray or amber, and if the rate of change in the spectral transmittance is further increased, as described in claim 4, The lens color after the change can be violet or brown .

請求項5に記載するように、赤、黄色、緑又は青に対応する波長領域において、前記黄色及び緑に対応する波長領域の分光透過率の変化量が、前記赤及び青の波長領域の分光透過率の変化量よりも大きくなるようにしてもよく、請求項6に記載するように、前記ピーク波長領域における前記自然光源の下と前記他の光源の下との相互間の前記分光透過率の変化量の差の絶対値を4ポイント以上とするとよい。 As described in claim 5, in the wavelength region corresponding to red, yellow, green or blue, the amount of change in the spectral transmittance of the wavelength region corresponding to yellow and green is the spectroscopy of the red and blue wavelength regions. It may be larger than the amount of change in transmittance, and as described in claim 6, the spectral transmittance between the bottom of the natural light source and the bottom of the other light source in the peak wavelength region. The absolute value of the difference in the amount of change of is 4 points or more.

本発明の原理を以下に説明する。
図1(a)は、本発明の光源調色性レンズ(以下、「眼鏡レンズ」と記載する)の原理を説明するための分光透過率曲線、図1(b)は他の光源の分光分布曲線である。
図1(a)に示すように、この眼鏡レンズは、長波長側から順に設定されたA,B,C,Dの波長領域の中の波長領域B,Cの部分で、基準光源における分光透過率特性の曲線がほぼ平坦になる特性を有するものである。基準光源が太陽光(自然光)で、波長領域B,Cが500〜640nmであれば、この眼鏡レンズは演色性の高いレンズということになる。図1(b)は、他の光源下におけるこの眼鏡レンズの分光透過率特性の曲線で、図1(c)の分光透過率の変化量のグラフ(実線)に示すように、この眼鏡レンズの基準光源下と他の光源下との間の分光透過率の変化は、可視光の波長領域B,Cにおいてピークを有している。
The principle of the present invention will be described below.
FIG. 1A is a spectral transmittance curve for explaining the principle of the light source toning lens of the present invention (hereinafter, referred to as “glass lens”), and FIG. 1B is a spectral distribution of another light source. It is a curve.
As shown in FIG. 1A, this spectacle lens is a portion of wavelength regions B and C in the wavelength regions of A, B, C and D set in order from the long wavelength side, and is spectrally transmitted by a reference light source. It has the characteristic that the curve of the rate characteristic becomes almost flat. If the reference light source is sunlight (natural light) and the wavelength regions B and C are 500 to 640 nm, this spectacle lens is a lens with high color rendering properties. FIG. 1B is a curve of the spectral transmittance characteristic of the spectacle lens under another light source, and as shown in the graph (solid line) of the amount of change in the spectral transmittance of FIG. 1C, the spectacle lens The change in spectral transmittance between under the reference light source and under other light sources has a peak in the wavelength regions B and C of visible light.

この眼鏡レンズの各色系の分光透過率を表1に示す。
表1においては、長波長側から順に符号A,B,C,Dで示される波長領域の各々に対応する色系をA,B,C,Dとし、基準光源における各色系の分光透過率をa1,b1,c1,d1としている。また、他の光源における各色系の分光透過率をa2,b2,c2,d2としている。分光透過率の変化の割合はそれぞれa1−a2、b1−b2・・・の絶対値で表される。
Table 1 shows the spectral transmittance of each color system of this spectacle lens.
In Table 1, the color systems corresponding to each of the wavelength regions indicated by the symbols A, B, C, and D are designated as A, B, C, and D in order from the long wavelength side, and the spectral transmittance of each color system in the reference light source is defined. It is referred to as a1, b1, c1, and d1. Further, the spectral transmittance of each color system in another light source is a2, b2, c2, d2. The rate of change in the spectral transmittance is represented by the absolute value of a1-a2, b1-b2, ..., Respectively.

この例の眼鏡レンズでは、変化量の絶対値が2ポイント未満を変化量小、4ポイント以上を変化量大としているが、波長領域AとDの色系で変化量が小さく、波長領域BとCの色系で変化量が大きい。そして、他の光源の分光分布(図1(c)び一点鎖線)のピーク波長領域と、分光透過率の変化量(図1(c)の実線)の大きい色系B,Cの波長領域とを一致させる。 In the spectacle lens of this example, when the absolute value of the change amount is less than 2 points , the change amount is small, and when 4 points or more is the change amount, the change amount is small. The amount of change is large in the C color system. Then, the peak wavelength region of the spectral distribution of other light sources (FIG. 1 (c) and alternate long and short dash line) and the wavelength regions of the color systems B and C having a large change in spectral transmittance (solid line of FIG. 1 (c)). To match.

このように調整した眼鏡レンズにおいては、基準光源の下と他の光源の下とにおいて演色性が発現されることにより、基準光源の下及び他の光源の下のいずれでも色調のバランスを崩すことなく風景や物を見ることができる。その一方で、眼鏡レンズの反射色は、基準光源の下から他の光源の下へ移動した際に、分光透過率の変化量の大きい色系B,Cに対応した反射色、すなわち、各色系B,Cの補色であるB′とC′とを組み合わせた反射色に変化する。 In the spectacle lens adjusted in this way, the color rendering property is exhibited under the reference light source and under the other light source, so that the color balance is lost both under the reference light source and under the other light source. You can see the scenery and things without. On the other hand, the reflected color of the spectacle lens is the reflected color corresponding to the color systems B and C in which the amount of change in the spectral transmittance is large when moving from under the reference light source to under the other light source, that is, each color system. It changes to a reflected color that is a combination of B'and C', which are complementary colors of B and C.

以下、本発明の具体的な実施例について説明する。なお、各実施例及び比較例におけるデータの収集に当たっては、各々の分光透過率を合わせて比較を行う必要があることから、一部の実施例の眼鏡レンズにおいてグラディエーションを設けるなどして分光透過率を調整した。
[実施例1]
以下の実施例で使用する「他の光源」は白色LEDで、その分光分布曲線を図2に示す。実施例1で使用した眼鏡レンズの分光透過率曲線を図3に示す。また、実施例1における各色系の基準光源及び他の光源における分光透過率とその変化量の絶対値との関係を表2に示す。
Hereinafter, specific examples of the present invention will be described. In collecting the data in each of the examples and the comparative examples, it is necessary to compare the spectral transmittances of the respective examples. Therefore, the spectacle lenses of some of the examples are provided with a gradient for spectral transmission. Adjusted the rate.
[Example 1]
The "other light source" used in the following examples is a white LED, and its spectral distribution curve is shown in FIG. The spectral transmittance curve of the spectacle lens used in Example 1 is shown in FIG. Table 2 shows the relationship between the spectral transmittance of the reference light source of each color system and other light sources in Example 1 and the absolute value of the amount of change thereof.

図3に示すように、この実施例の眼鏡レンズの分光透過率曲線は、波長500〜640nmの範囲でやや湾曲しているものの平坦に近い形状をしているため演色性が発現できている。そのため屋内では、眼鏡レンズ透過の色調はグレーであるため、屋内で使用時には裸眼に比べて色の変化が変わらず、本発明の光源調色性レンズを備えたサングラスを装着したままで、買い物などの屋内行動で一般の眼鏡と同等に使えるという利点がある。
また、図2及び表2に示すように、白色LEDの可視光のピーク波長は概ね530nm〜580nmであるが、この波長は黄系から緑系の波長に該当する。そして、この実施例の眼鏡レンズでは、黄系と緑系において分光透過率が基準光源(白色光源)と他の光源(白色LED)との間で大きく変化するようにしてある。
As shown in FIG. 3, the spectral transmittance curve of the spectacle lens of this example is slightly curved in the wavelength range of 500 to 640 nm, but has a shape close to flat, so that color rendering properties can be exhibited. Therefore, indoors, the color tone transmitted through the spectacle lens is gray, so when used indoors, the color change does not change compared to the naked eye, and while wearing sunglasses equipped with the light source toning lens of the present invention, shopping, etc. It has the advantage that it can be used in the same way as ordinary glasses for indoor activities.
Further, as shown in FIGS. 2 and 2, the peak wavelength of visible light of the white LED is approximately 530 nm to 580 nm, and this wavelength corresponds to a wavelength from yellow to green. Then, in the spectacle lens of this embodiment, the spectral transmittance changes significantly between the reference light source (white light source) and the other light source (white LED) in the yellow system and the green system.

従って、他の光源である白色LEDの下から基準光源である白熱光源(自然光)の下に移動すると、変化量の絶対値の大きい黄色の補色である紫色と緑色の補色である赤色とを合わせた赤紫色に眼鏡レンズの反射色が変化する。
この赤紫系の色は、目元が肌の色となじみ艶やかに見えるなど化粧効果を演出することができるだけでなく、光量が屋内に比べて格段に多い屋外において、眼鏡レンズの透過光(または反射光)が変わることにより、例えば運転時の信号や標識の視認性が向上するという効果がある。
Therefore, when moving from under the white LED, which is another light source, to under the incandescent light source (natural light), which is the reference light source, purple, which is the complementary color of yellow, which has a large absolute value of change, and red, which is the complementary color of green, are combined. The reflected color of the spectacle lens changes to reddish purple.
This reddish-purple color can not only produce a cosmetic effect such that the eyes look familiar with the skin color and look glossy, but also the transmitted light of the spectacle lens in the outdoors where the amount of light is much larger than indoors. Alternatively, the reflected light) has the effect of improving the visibility of signals and signs during driving, for example.

[実施例2]
この実施例2では、図4及び表3に示すように黄色と緑色における変化量の絶対値を実施例1よりも大きくすることで、白色LEDと白熱光源との間で実施例1よりも赤紫色が強く出るようにしてある。
[Example 2]
In this Example 2, as shown in FIGS. 4 and 3, the absolute value of the amount of change in yellow and green is made larger than that in Example 1, so that the white LED and the incandescent light source are redder than in Example 1. The purple color is strong.

[実施例3]
この実施例3では、図5及び表4に示すように、黄色における変化量の絶対値は実施例1よりも小さくしてあるが、緑色における変化量の絶対値を実施例2よりさらに大きくすることで、白色LEDと白熱光源との間で実施例2よりもさらに赤色が強調された赤紫色が強く出るようにしてある。
[Example 3]
In this Example 3, as shown in FIGS. 5 and 4, the absolute value of the amount of change in yellow is smaller than that of Example 1, but the absolute value of the amount of change in green is further increased than in Example 2. As a result, between the white LED and the incandescent light source, reddish purple with a stronger red color than in Example 2 is strongly emitted.

[実施例4]
この実施例4では、図6及び表5に示すように他のレンズに比べ短波調寄りで赤を強く反射するようにしている。そのため白熱光源の下では赤味の強いブラウンとなる。この実施例4では分光透過率の変化量において青一番大きく、次いで赤が大きいため、光源が白色LEDから白熱光源に変わると、赤味が抜けて黄と青が強く反射し、青の補色である橙(オレンジ)系と赤の補色である青系の色が強く出るようにしてある。
[Example 4]
In this Example 4, as shown in FIGS. 6 and 5, red is strongly reflected in a short wave tone as compared with other lenses. Therefore, it becomes a strong reddish brown under an incandescent light source. In this Example 4, blue is the largest in the amount of change in the spectral transmittance, followed by red. Therefore, when the light source is changed from a white LED to an incandescent light source, the redness is removed and yellow and blue are strongly reflected, and the complementary color of blue is obtained. The orange color and the blue color, which is the complementary color of red, are strongly emphasized.

[実施例5]
この実施例5では、図7及び表6に示すように他の実施例のレンズに比べて光源が変わっても赤が変化しにくく、黄緑味が強いブラウンである。光源が白色LEDから白熱光源に変わると、黄色、緑、青の分光透過率の変化が大きく、特に青の変化が大きいことから、橙(オレンジ)系が強く出たブラウン系になる。
[Example 5]
In this Example 5, as shown in FIGS. 7 and 6, the red color is less likely to change even if the light source is changed, and the brown color has a strong yellowish green tint as compared with the lenses of the other examples. When the light source is changed from a white LED to an incandescent light source, the change in the spectral transmittance of yellow, green, and blue is large, and the change in blue is particularly large, so that the orange (orange) system becomes a brown system.

[実施例6]
この実施例6では、図8及び表7に示すように他のレンズに比べ赤、黄、緑が変化しにくくレンズの色はブラウンとなる。光源が白色LEDから白熱光源に変わると、実施例5ほどではないものの、分光透過率の変化量が大きい青の補色である橙(オレンジ)系が強く出たブラウン系になる。
[Example 6]
In Example 6, as shown in FIGS. 8 and 7, red, yellow, and green are less likely to change than other lenses, and the color of the lens is brown. When the light source is changed from a white LED to an incandescent light source, an orange (orange) color, which is a complementary color of blue with a large change in spectral transmittance, becomes a brown color, although not as much as in Example 5.

[実施例7]
この実施例7では、図9及び表8に示すように他のレンズに比べ各色で色が変化しにくくレンズの色はブラウンとなる。光源が白色LEDから白熱光源に変わると、実施例6ほどではないが青の分光透過率の変化量が大きいため補色である橙(オレンジ)系が強くでるものの色の発色が少なく、比較的まんべんなく変化する。
[Example 7]
In this Example 7, as shown in FIGS. 9 and 8, the color of each color is less likely to change as compared with other lenses, and the color of the lens is brown. When the light source is changed from a white LED to an incandescent light source, the amount of change in the spectral transmittance of blue is large, although not as much as in Example 6, so that the complementary color orange (orange) is strong, but the color development is small and relatively even. Change.

[比較例1]
比較例では、従来の染色方法によるもので高い演色性を発現するものである。図10及び表9に示すように各色系で変化量の絶対値が小さく、光源の変化による見え方の変化を極力抑えることができる。そのため、光源がLED光から白熱光に変わっても、自然光に近い色で風景や物を見ることができ色の変化も小さい。
[Comparative Example 1]
In the comparative example, a conventional dyeing method is used to exhibit high color rendering properties. As shown in FIGS. 10 and 9, the absolute value of the amount of change is small in each color system, and the change in appearance due to the change in the light source can be suppressed as much as possible. Therefore, even if the light source is changed from LED light to incandescent light, the scenery and objects can be seen with a color close to natural light, and the color change is small.

[比較例2]
この比較例2は、実施例1〜7と同じ染色方法で染色したものであるが、図11及び表10に示すように他のレンズに比べ各色で色が変化しにくくしてあり、レンズの色はブラウンである。光源が白色LEDから白熱光源に変わると、まんべんなく演色し変化を感じにくいようにしてある。
[Comparative Example 2]
This Comparative Example 2 was dyed by the same dyeing method as in Examples 1 to 7, but as shown in FIGS. 11 and 10, the color of each color was less likely to change as compared with other lenses, and the lens of the lens. The color is brown. When the light source changes from a white LED to an incandescent light source, the color rendering is evenly performed so that the change is hard to feel.

本発明の好適な実施形態について説明したが、本発明の棚照明装置は上記の説明に限定されない。
例えば、上記の実施例の説明では基準光源として白色光源(自然光)を例に挙げ、他の光源として白色LEDを例に挙げて説明したが、本発明はこれら光源以外の光源においても、各色系における光源間の分光透過率の変化量を調整することで、所望の機能色変化が得られるようにすることが可能である。
また、光源の種類に応じて可視光のピーク波長の位置が異なるが、当該ピークの波長に応じた色系の分光透過率の変化量の絶対値を大きくすることで、上記の実施例以外の光源にも対応することが可能である。
さらに、上記の実施例では赤、黄、緑、青の4色に分けて説明したが、さらに多くの色系に分類することで、より多くの光源の種類に対応することが可能になるほか、眼鏡レンズの機能色の変化も多様にすることができる。
Although preferred embodiments of the present invention have been described, the shelf lighting device of the present invention is not limited to the above description.
For example, in the above description of the examples, a white light source (natural light) is taken as an example as a reference light source, and a white LED is taken as an example as another light source. However, the present invention has described each color system even in a light source other than these light sources. By adjusting the amount of change in the spectral transmittance between the light sources in the above, it is possible to obtain a desired functional color change.
In addition, although the position of the peak wavelength of visible light differs depending on the type of light source, by increasing the absolute value of the amount of change in the spectral transmittance of the color system according to the wavelength of the peak, other than the above-described embodiment. It is also possible to correspond to a light source.
Further, in the above embodiment, the four colors of red, yellow, green, and blue have been described separately, but by classifying them into more color systems, it becomes possible to correspond to more types of light sources. , The functional color of the spectacle lens can be changed in various ways.

図1は本発明の光源調色性レンズの原理を説明するための図で、(a)は基準光源下に光源調色性レンズの分光透過率曲線、(b)は他の光源下に光源調色性レンズの分光透過率曲線、(c)は基準光源と他の光源における分光透過率の変化量を示すグラフ(実線)及び他の光源の相対強度分布を示すグラフ(二点鎖線)である。FIG. 1 is a diagram for explaining the principle of the light source toning lens of the present invention, (a) is a spectral transmittance curve of a light source toning lens under a reference light source, and (b) is a light source under another light source. The spectral transmittance curve of the toning lens, (c) is a graph (solid line) showing the amount of change in the spectral transmittance between the reference light source and other light sources, and a graph (two-point chain line) showing the relative intensity distribution of the other light sources. is there. 実施例1における「他の光源」である白色LEDの分光分布曲線である。It is a spectral distribution curve of a white LED which is an "other light source" in Example 1. 実施例1で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 1. 実施例2で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 2. 実施例3で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 3. 実施例4で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 4. 実施例5で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 5. 実施例6で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 6. 実施例7で使用した眼鏡レンズの分光透過率曲線である。6 is a spectral transmittance curve of the spectacle lens used in Example 7. 比較例1で使用した眼鏡レンズの分光透過率曲線である。It is a spectral transmittance curve of the spectacle lens used in Comparative Example 1. 比較例2で使用した眼鏡レンズの分光透過率曲線である。It is a spectral transmittance curve of the spectacle lens used in Comparative Example 2.

Claims (6)

複数色の色素によって着色され、自然光源とこの自然光源以外の他の光源との間で眼鏡レンズの反射色を変化させる光源調色性レンズであって、
前記他の光源の分光分布がピークとなるピーク波長領域における前記自然光源の下と前記他の光源の下との相互間の前記分光透過率の変化量が、前記ピーク波長領域以外の波長領域における前記変化量よりも大きくなるようにするとともに、前記ピーク波長領域内での前記変化量の分布及び前記変化量の大きさと可視光の補色との組み合わせにより、前記反射色を調整すること、
を特徴とする光源調色性レンズ。
A light source toning lens that is colored by multiple pigments and changes the reflected color of the spectacle lens between a natural light source and another light source other than this natural light source.
The amount of change in the spectral transmittance between under the natural light source and under the other light source in the peak wavelength region where the spectral distribution of the other light source peaks is in a wavelength region other than the peak wavelength region. Adjusting the reflected color by making it larger than the amount of change and adjusting the distribution of the amount of change in the peak wavelength region and the combination of the magnitude of the amount of change and the complementary color of visible light.
A light source toning lens featuring.
前記ピーク波長領域が500〜640nmの範囲である場合に、前記変化量の最大値が500〜640nmの範囲内に位置するようにしたことを特徴とする請求項1に記載の光源調色性レンズ。 The light source toning lens according to claim 1, wherein when the peak wavelength region is in the range of 500 to 640 nm, the maximum value of the amount of change is set to be located in the range of 500 to 640 nm. .. 前記ピーク波長領域における前記反射色がグレー又はアンバーであることを特徴とする請求項1又は2に記載の光源調色性レンズ。 The light source toning lens according to claim 1 or 2, wherein the reflected color in the peak wavelength region is gray or amber. 前記ピーク波長領域における前記反射色がバイオレット又はブラウンであることを特徴とする請求項1又は2に記載の光源調色性レンズ。 The light source toning lens according to claim 1 or 2, wherein the reflected color in the peak wavelength region is violet or brown. 赤、黄色、緑又は青に対応する波長領域において、前記黄色及び緑に対応する波長領域の分光透過率の変化量が、前記赤及び青の波長領域の分光透過率の変化量よりも大きくなるようにしたこと、
を特徴とする請求項1〜4のいずれかに記載の光源調色性レンズ。
In the wavelength region corresponding to red, yellow, green or blue, the amount of change in the spectral transmittance in the wavelength region corresponding to yellow and green is larger than the amount of change in the spectral transmittance in the red and blue wavelength regions. What I did,
The light source toning lens according to any one of claims 1 to 4.
前記ピーク波長領域における前記自然光源の下と前記他の光源の下との相互間の前記分光透過率の変化量の差の絶対値が4ポイント以上であることを特徴とする請求項1〜5のいずれかに記載の光源調色性レンズ。 Claims 1 to 5 are characterized in that the absolute value of the difference in the amount of change in the spectral transmittance between under the natural light source and under the other light source in the peak wavelength region is 4 points or more. The light source toning lens described in any of.
JP2016072134A 2016-03-31 2016-03-31 Light source toning lens Active JP6785569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072134A JP6785569B2 (en) 2016-03-31 2016-03-31 Light source toning lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072134A JP6785569B2 (en) 2016-03-31 2016-03-31 Light source toning lens

Publications (2)

Publication Number Publication Date
JP2017181942A JP2017181942A (en) 2017-10-05
JP6785569B2 true JP6785569B2 (en) 2020-11-18

Family

ID=60004538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072134A Active JP6785569B2 (en) 2016-03-31 2016-03-31 Light source toning lens

Country Status (1)

Country Link
JP (1) JP6785569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709789B (en) * 2019-03-28 2020-11-11 星歐光學股份有限公司 Contact lens and contact lens product
CN114258266B (en) * 2019-08-27 2023-11-07 昕诺飞控股有限公司 Lighting device for illuminating aquarium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706097B2 (en) * 2010-04-14 2015-04-22 山本化成株式会社 Tetraazaporphyrin compound used for color correction filter and color correction filter
JP5824218B2 (en) * 2011-02-24 2015-11-25 伊藤光学工業株式会社 Anti-glare optical element
JP5985167B2 (en) * 2011-06-02 2016-09-06 伊藤光学工業株式会社 Anti-glare optical element
US9778490B2 (en) * 2011-11-04 2017-10-03 Spy Optic Inc. Therapeutic eyewear

Also Published As

Publication number Publication date
JP2017181942A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US11454827B2 (en) Optical filters affecting color vision in a desired manner and design method thereof by non-linear optimization
Holtzschue Understanding color: an introduction for designers
US10912457B2 (en) Lighting system for simulating conditions of color deficient vision and demonstrating effectiveness of color-blindness compensating eyewear
JP2018509661A5 (en)
DE602004005730D1 (en) CAR LIGHTS WITH IMPROVED RADIANT CHROMATICS
WO2018022735A1 (en) Spectrally sculpted multiple narrowband filtration for improved human vision
Durmus et al. Object color naturalness and attractiveness with spectrally optimized illumination
US10172203B2 (en) Lighting apparatus
JP6785569B2 (en) Light source toning lens
KR101212727B1 (en) Led road traffic signal light
US10034345B1 (en) Lighting apparatus
JPH0375964B2 (en)
FR2886375A1 (en) Motor vehicle indicator lamp has variable colour provided by two transparent coloured filters that interact to give a predetermined light colour
US20170257922A1 (en) Lighting apparatus
CN204285210U (en) The aobvious specular removal natural daylight street lamp of three look height
WO2012142185A3 (en) Optical glass filter for producing balanced white light from a high pressure sodium lamp source
JP3181514U (en) Microscope illumination device
US6530678B1 (en) Lightning unit
JP2015143792A (en) Spectacle lenses and spectacle
Sims et al. A Review of Various Models for Classifying Light Source Color Rendition and Guide to Using LEDs to Achieve Fidelity Color Rendering for Retail and Other Indoor Environments
JP3237501B2 (en) Lighting lamps and lighting equipment
Ni Advanced Modeling Techniques for high performance and human centered LED lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250