JP6783159B2 - Light diffusing member made of composite silica glass - Google Patents

Light diffusing member made of composite silica glass Download PDF

Info

Publication number
JP6783159B2
JP6783159B2 JP2017016833A JP2017016833A JP6783159B2 JP 6783159 B2 JP6783159 B2 JP 6783159B2 JP 2017016833 A JP2017016833 A JP 2017016833A JP 2017016833 A JP2017016833 A JP 2017016833A JP 6783159 B2 JP6783159 B2 JP 6783159B2
Authority
JP
Japan
Prior art keywords
silica glass
porous
light diffusing
diffusing member
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016833A
Other languages
Japanese (ja)
Other versions
JP2017165643A (en
Inventor
由希 阿部
由希 阿部
岩崎 武士
武士 岩崎
晃 菅野
晃 菅野
創太郎 武田
創太郎 武田
裕 橋本
裕 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to US15/446,915 priority Critical patent/US10222519B2/en
Priority to KR1020170029444A priority patent/KR101893482B1/en
Publication of JP2017165643A publication Critical patent/JP2017165643A/en
Application granted granted Critical
Publication of JP6783159B2 publication Critical patent/JP6783159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、特に紫外線又は紫外線を含む光源光の拡散に用いられる複合シリカガラス製光拡散部材に関する。 The present invention particularly relates to a light diffusing member made of composite silica glass used for diffusing ultraviolet rays or light from a light source including ultraviolet rays.

一般に、光拡散部材には、光透過性の基材中に、基材と屈折率の異なる微細な粒子や気泡を存在させた光拡散部材や、すりガラスのように光透過性の基材表面にサンドブラスト又はエッチングなどの処理によって微細な凹凸を設けた光拡散部材等がある。これらの光拡散部材は、基材内部の微細な粒子や、表面の微細な凹凸形状によって紫外線などの光を散乱又は拡散させる。 Generally, the light diffusing member includes a light diffusing member in which fine particles or bubbles having a refractive index different from that of the base material are present in the light transmitting base material, or a light transmitting base material surface such as frosted glass. There is a light diffusing member or the like in which fine irregularities are provided by a process such as sandblasting or etching. These light diffusing members scatter or diffuse light such as ultraviolet rays due to the fine particles inside the base material and the fine uneven shape of the surface.

基材と屈折率の異なる微細な粒子による光拡散部材においては、粒子の屈折率、粒子形状又は濃度によって光拡散の程度を変えられるものの、通常は光透過率が40〜60%程度であり光の透過ロスが大きい。また、すりガラスのように基材表面に微細な凹凸を設けた光拡散部材においては、紫外線を拡散することはできても、拡散角度が狭く、十分な拡散性を得ることは難しい。 In a light diffusing member made of fine particles having a different refractive index from that of the base material, the degree of light diffusing can be changed depending on the refractive index, particle shape or concentration of the particles, but usually the light transmittance is about 40 to 60% and light. Transmission loss is large. Further, in a light diffusing member having fine irregularities on the surface of a base material such as frosted glass, although it is possible to diffuse ultraviolet rays, the diffusion angle is narrow and it is difficult to obtain sufficient diffusivity.

このような光拡散部材として、例えば、特許文献1では、シリカ多孔体同士、又は、シリカ多孔体と、石英ガラス等のシリカ緻密体とがシリカ粉を介して接合されたシリカ接合体が開示されている。特許文献1では、シリカ多孔体とシリカ緻密体とを接着するのに、これらの材料と同質のシリカ粉を用いることで、多孔体の気孔全体を目詰まりさせることがなく、高い接合強度で接合されたシリカ接合体が得られることが開示されている。 As such a light diffusing member, for example, Patent Document 1 discloses a silica bonded body in which silica porous bodies are bonded to each other or a silica porous body and a silica dense body such as quartz glass are bonded via silica powder. ing. In Patent Document 1, by using silica powder of the same quality as these materials to bond the silica porous body and the silica dense body, the entire pores of the porous body are not clogged and the silica is bonded with high bonding strength. It is disclosed that the silica conjugate obtained is obtained.

しかしながら、特許文献1に記載のシリカ接合体では、石英ガラスとなるシリカ緻密体と、シリカ多孔体とをそれぞれ製造してから接合するため、加工のリードタイムが長く、コストも多大となり、生産性が十分といえるものではなかった。また、シリカ緻密体とシリカ多孔体との界面近傍にシリカ粉を用いた接着層が存在するため、シリカ接合体において、紫外線の透過効率が劣る傾向があり、また、シリカ粉が介在する接着層の厚さが不均一となる傾向があり、スポット光源から照射された紫外線強度の面内均一性が十分なものではなかった。 However, in the silica bonded body described in Patent Document 1, since the silica dense body to be quartz glass and the silica porous body are respectively manufactured and then joined, the lead time for processing is long, the cost is high, and the productivity is high. Was not enough. Further, since an adhesive layer using silica powder is present near the interface between the silica dense body and the silica porous body, the ultraviolet transmission efficiency tends to be inferior in the silica bonded body, and the adhesive layer in which the silica powder is interposed tends to be inferior. The thickness of silica tends to be non-uniform, and the in-plane uniformity of the intensity of ultraviolet rays emitted from the spot light source is not sufficient.

特開2014−114186号公報Japanese Unexamined Patent Publication No. 2014-114186

本発明は、緻密質シリカガラス及び多孔質シリカガラスからなる複合体で構成され、紫外線の透過率に優れ、紫外線強度の面内バラツキのない複合シリカガラス製光拡散部材を提供することを課題とする。 An object of the present invention is to provide a composite silica glass light diffusing member which is composed of a composite composed of dense silica glass and porous silica glass, has excellent ultraviolet transmittance, and has no in-plane variation in ultraviolet intensity. To do.

本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなり、前記多孔質シリカガラスが、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、前記球状シリカガラスは平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値が0.8〜4.0nmであり、かつ、前記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有することを特徴とする。 The light diffusing member made of composite silica glass of the present invention is made of dense silica glass and porous silica glass formed on the surface thereof, and the porous silica glass has a skeleton made of a plurality of spherical silica glasses. A porous body having a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%, in which continuous ventilation holes are formed by gaps, and the spherical silica glass has an average diameter of 30 to 100 μm and is exposed to the outer surface. The average value obtained by measuring the arithmetic average roughness Ra of the spherical silica glass at a measurement length of 1 μm 10 times is 0.8 to 4.0 nm, and the porous silica glass is from the interface with the dense silica glass. It is characterized by having a uniform pore distribution up to the outer surface.

前記球状シリカガラスの断面真円度は0.80以上であることが好ましい。
前記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量はいずれも0.2ppm以下であり、Cuの含有量は0.05ppm以下であることが好ましい。
The cross-sectional roundness of the spherical silica glass is preferably 0.80 or more.
The contents of Na, Mg, Al, K, and Fe in the porous silica glass are all 0.2 ppm or less, and the Cu content is preferably 0.05 ppm or less.

本発明の複合シリカガラス製光拡散部材は、上記構成を有することにより、紫外線の透過率に優れ、紫外線強度の面内均一性を高めることが可能となる。 By having the above-mentioned structure, the composite silica glass light diffusing member of the present invention has excellent ultraviolet transmittance and can enhance the in-plane uniformity of ultraviolet intensity.

図1は、複合シリカガラス製光拡散部材を厚さ方向に切断した後の多孔質シリカガラス部分のSEM写真である。FIG. 1 is an SEM photograph of a porous silica glass portion after cutting a light diffusing member made of composite silica glass in the thickness direction. 図2は、複合シリカガラス製光拡散部材中の緻密質シリカガラスと多孔質シリカガラスとの界面近傍のSEM写真である。FIG. 2 is an SEM photograph of the vicinity of the interface between the dense silica glass and the porous silica glass in the light diffusing member made of composite silica glass. 図3は、複合シリカガラス製光拡散部材を構成する多孔質シリカガラスの細孔径粒子径分布を表すグラフである。FIG. 3 is a graph showing the pore size particle size distribution of the porous silica glass constituting the light diffusing member made of composite silica glass. 図4は、複合シリカガラス製光拡散部材を構成する多孔質シリカガラス中の受光角度(°)に対する相対透過率(%)の関係を表すグラフである。FIG. 4 is a graph showing the relationship of the relative transmittance (%) with respect to the light receiving angle (°) in the porous silica glass constituting the light diffusing member made of composite silica glass.

以下、本発明について詳細に説明する。
本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなり、前記多孔質シリカガラスは、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、前記球状シリカガラスの平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値は0.8〜4.0nmであり、かつ、前記多孔質シリカガラスは、前記緻密質シリカガラスの界面から外表面まで均質な気孔分布を有する。
本発明の複合シリカガラス製光拡散部材において、多孔質シリカガラスは、緻密質シリカガラス上に位置する。
Hereinafter, the present invention will be described in detail.
The light diffusing member made of composite silica glass of the present invention is made of dense silica glass and porous silica glass formed on the surface thereof, and the porous silica glass has a skeleton made of a plurality of spherical silica glasses. A porous body having a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%, in which continuous ventilation holes are formed by gaps, and the spherical silica glass has an average diameter of 30 to 100 μm and is exposed to the outer surface. The average value obtained by measuring the arithmetic average roughness Ra of the spherical silica glass at a measurement length of 1 μm 10 times is 0.8 to 4.0 nm, and the porous silica glass is outside the interface of the dense silica glass. It has a uniform porosity distribution to the surface.
In the light diffusing member made of composite silica glass of the present invention, the porous silica glass is located on the dense silica glass.

上記多孔質シリカガラスは、複数の球状シリカガラスからなる骨格構造を有している。シリカガラス破砕物を用いた非球状骨格からなる多孔体では、光源から照射される紫外線強度にバラツキが生じ易いことから、球状シリカガラスの骨格構造とすることが好ましい。本発明の複合シリカガラス製光拡散部材において、緻密質シリカガラスの表面に形成される多孔質シリカガラスは、その間隙により連通気孔部を形成した中心気孔径が10μm〜20μmで気孔率が25〜40%の多孔体である。前記中心気孔径が10μm未満、前記気孔率が25%未満では、出射される紫外線の透過率が不十分であり効率性が悪い。また前記中心気孔径が20μm超、前記気孔率が40%超では、上記多孔質シリカガラスの強度が低く、実用性に劣り、また紫外線の拡散性が不十分となる。 The porous silica glass has a skeleton structure composed of a plurality of spherical silica glasses. In a porous body made of a non-spherical skeleton using a crushed silica glass, the skeleton structure of spherical silica glass is preferable because the intensity of ultraviolet rays emitted from a light source tends to vary. In the light diffusing member made of composite silica glass of the present invention, the porous silica glass formed on the surface of the dense silica glass has a central pore diameter of 10 μm to 20 μm and a porosity of 25 to 25 to which a continuous ventilation hole portion is formed by the gap. It is a 40% porous body. If the central pore diameter is less than 10 μm and the porosity is less than 25%, the transmittance of the emitted ultraviolet rays is insufficient and the efficiency is poor. When the central pore diameter exceeds 20 μm and the porosity exceeds 40%, the strength of the porous silica glass is low, the practicality is poor, and the diffusivity of ultraviolet rays is insufficient.

上記球状シリカガラスは中実で透明なガラス構造体であることが好ましい。これにより、紫外線の透過率をより高く、かつ、より均一化することができるからである。
ここで、上述の中心気孔径とは、多孔質シリカガラス中の粒子同士の間に形成される間隙、及び気孔同士が連結した連通気孔径の中央値をいう。
The spherical silica glass is preferably a solid and transparent glass structure. This is because the transmittance of ultraviolet rays can be made higher and more uniform.
Here, the above-mentioned central pore diameter refers to the median value of the gap formed between the particles in the porous silica glass and the continuous ventilation hole diameter in which the pores are connected to each other.

また、上記球状シリカガラスは、平均径が30〜100μm、好ましくは50〜80μmの球状体とされる。前記平均径が30μm未満では、紫外線の透過率が不十分であり、また前記平均径を30μm未満とするために、30μm未満の粒子径を多量に含むシリカガラス粒子(原料)を用いると、焼結時の収縮率が高く、応力集中が生じ、多孔質シリカガラスが反りやクラックを有するものとなり、光拡散部材として用いることができない。また、前記平均径が100μmを超える場合、紫外線の拡散性が不十分となり、また、多孔体の強度不足により、粒子の脱落が生じるといった不具合が生じる。さらに、球状シリカガラスの粒子径の最小値は10μmであり、最大値は250μmであり、この範囲内に粒子径分布のピーク値を1つ有することがより好ましい。これにより、紫外線透過の面内均一性が得られ、安定した拡散光を実現することができる。 The spherical silica glass has an average diameter of 30 to 100 μm, preferably 50 to 80 μm. If the average diameter is less than 30 μm, the transmittance of ultraviolet rays is insufficient, and in order to make the average diameter less than 30 μm, silica glass particles (raw materials) containing a large amount of particle diameter less than 30 μm are used for baking. The shrinkage rate at the time of binding is high, stress concentration occurs, and the porous silica glass has warpage and cracks, so that it cannot be used as a light diffusing member. Further, when the average diameter exceeds 100 μm, the diffusivity of ultraviolet rays becomes insufficient, and the lack of strength of the porous body causes problems such as particles falling off. Further, the minimum value of the particle size of the spherical silica glass is 10 μm, the maximum value is 250 μm, and it is more preferable to have one peak value of the particle size distribution within this range. As a result, in-plane uniformity of ultraviolet transmission can be obtained, and stable diffused light can be realized.

また、上記多孔質シリカガラスにおいては、この骨格をなす球状シリカガラスの平均径が30〜100μmであり、この骨格の間隙に形成される連通気孔部の中心気孔径が10〜20μmであって、かつ、前記中心気孔径が前記平均径の20%±5%の関係にあることがより最適である。これによって、光源からの紫外線の出射効率をより高めることができ、また出射される紫外線の拡散性をより高めることができる。 Further, in the porous silica glass, the average diameter of the spherical silica glass forming the skeleton is 30 to 100 μm, and the central pore diameter of the continuous ventilation holes formed in the gaps of the skeleton is 10 to 20 μm. Moreover, it is more optimal that the central pore diameter has a relationship of 20% ± 5% of the average diameter. As a result, the efficiency of emitting ultraviolet rays from the light source can be further increased, and the diffusivity of the emitted ultraviolet rays can be further increased.

上記球状シリカガラスについて、外表面に露出する各球状シリカガラスにおける測定長1μmでの算術平均粗さRaを10回測定した平均値は0.8〜4.0nmであり、好ましくは2.0〜3.0nmである。これによって、光源からの紫外線の透過性が高く、紫外線の出射効率をより高めることができ、さらに出射される紫外線の散乱性をより向上させることができる。 With respect to the spherical silica glass, the average value obtained by measuring the arithmetic mean roughness Ra of each spherical silica glass exposed on the outer surface 10 times at a measurement length of 1 μm is 0.8 to 4.0 nm, preferably 2.0 to 2.0 nm. It is 3.0 nm. As a result, the transparency of the ultraviolet rays from the light source is high, the emission efficiency of the ultraviolet rays can be further improved, and the scattering property of the emitted ultraviolet rays can be further improved.

上記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有する。これによって、紫外線が入射され、前記多孔質シリカガラスから出射される紫外線強度の面内バラツキが低い複合シリカガラス製光拡散部材を提供することができる。 The porous silica glass has a uniform pore distribution from the interface with the dense silica glass to the outer surface. As a result, it is possible to provide a light diffusing member made of composite silica glass having low in-plane variation in the intensity of ultraviolet rays emitted from the porous silica glass when ultraviolet rays are incident.

前記均質な気孔分布とは、上述の従来技術の如く、前記界面近傍の多孔質ガラスの気孔部にシリカ粉が密に或いは分散されて介在することで、気孔径及び/又は気孔率が前記界面近傍と外表面近傍とで5%を超えて相違することがなく、5%以下の均質性があることを意味する。これによって、前記出射される紫外線強度の面内バラツキを極めて低減することができる。 The uniform pore distribution means that silica powder is densely or dispersedly interspersed in the pores of the porous glass near the interface as in the above-mentioned conventional technique, so that the pore diameter and / or the porosity is the interface. There is no difference of more than 5% between the vicinity and the vicinity of the outer surface, which means that there is a homogeneity of 5% or less. As a result, the in-plane variation in the intensity of the emitted ultraviolet rays can be extremely reduced.

本発明の複合シリカガラス製光拡散部材について、当該球状シリカガラスの任意の断面における、断面真円度が0.80以上であることが好ましい。前記断面真円度が0.80以上であると、複数の球状シリカガラスにより形成される気孔、又は、これらの球状シリカガラスの間隙により形成される連通気孔部の径バラツキが十分に小さく、光源からの紫外線の出射先での拡散性をより高めることができる。本発明の複合シリカガラス製光拡散部材においては、上記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量が、いずれも0ppm以上0.2ppm以下であり、Cuの含有量は0ppm以上0.05ppm以下であることが好ましい。これらの金属は、多孔質シリカガラスの原料であるシリカガラス球状粒子の製造時に混入し得るものである。これらの金属の含有量を上記のとおり0ppm以上0.2ppm以下又は0ppm以上0.05ppm以下とすることによって、紫外線照射を受けても、これらの成分が蛍光等を発することがなく、また紫外線による多孔体の局部的劣化を生じることもなく、複合シリカガラス製光拡散部材の耐用寿命をより長くすることができる。 The light diffusing member made of the composite silica glass of the present invention preferably has a cross-sectional roundness of 0.80 or more in an arbitrary cross section of the spherical silica glass. When the cross-sectional roundness is 0.80 or more, the diameter variation of the pores formed by the plurality of spherical silica glasses or the continuous ventilation holes formed by the gaps between the spherical silica glasses is sufficiently small, and the light source It is possible to further enhance the diffusivity of the ultraviolet rays from the source. In the light diffusing member made of composite silica glass of the present invention, the contents of Na, Mg, Al, K, and Fe in the porous silica glass are all 0 ppm or more and 0.2 ppm or less, and the Cu content. Is preferably 0 ppm or more and 0.05 ppm or less. These metals can be mixed in during the production of silica glass spherical particles, which are raw materials for porous silica glass. By setting the content of these metals to 0 ppm or more and 0.2 ppm or less or 0 ppm or more and 0.05 ppm or less as described above, these components do not fluoresce even when irradiated with ultraviolet rays, and are also due to ultraviolet rays. The service life of the composite silica glass light diffusing member can be extended without causing local deterioration of the porous body.

また、上記緻密質シリカガラスは、気孔率が0.1%以下であり、380〜450nmの波長の紫外線に対して90%以上の透過率を有することが好ましい。これにより、上記多孔質シリカガラスとの積層構造によって、十分な耐使用強度が確保され、上述の多孔質シリカガラス特性を有効に機能させた複合シリカガラス製光拡散部材を構成することができる。 Further, the dense silica glass preferably has a porosity of 0.1% or less and a transmittance of 90% or more with respect to ultraviolet rays having a wavelength of 380 to 450 nm. As a result, it is possible to construct a composite silica glass light diffusing member in which sufficient use resistance is secured by the laminated structure with the porous silica glass and the above-mentioned porous silica glass characteristics are effectively functioned.

前記多孔質シリカガラスの厚さは0.5mm以上3mm以下であり、前記緻密質シリカガラスの暑さは0.5mm以上5mm以下である。この組み合わせによって、実用的な強度が確保されるとともに、より効率的な紫外線の出射及び十分な拡散性が得られる複合シリカガラス製光拡散部材とすることができる。 The thickness of the porous silica glass is 0.5 mm or more and 3 mm or less, and the heat of the dense silica glass is 0.5 mm or more and 5 mm or less. By this combination, it is possible to obtain a light diffusing member made of composite silica glass, which can secure practical strength, emit ultraviolet rays more efficiently, and obtain sufficient diffusivity.

前記多孔質シリカガラスは、OH基含有量を550ppm以上1000ppm以下、Cl含有量を1ppm以下とするのがより好ましい。
これによって、紫外線照射に伴うシリカガラスの経時的劣化をより抑制することができる。
The porous silica glass preferably has an OH group content of 550 ppm or more and 1000 ppm or less, and a Cl content of 1 ppm or less.
As a result, deterioration of the silica glass over time due to ultraviolet irradiation can be further suppressed.

また、上記緻密質シリカガラスは、多孔質シリカガラスと同等の純度にすることが好ましい。具体的には、上記したNa、Mg、Al、K、及びFeの含有量をいずれも0ppm以上0.2ppm以下、Cuの含有量を0ppm以上0.05ppm以下とし、かつ、多孔質シリカガラスと同等、すなわち、Na、Mg、Al、K、及びFeは差が0.04ppm以下、Cuは差が0.01ppm以下に近似させることがより好ましい。これによって、緻密質シリカガラスと多孔質シリカガラスとを一体化するに際して、上記金属のような不純物が多孔質シリカガラスに熱拡散し、蛍光等を発することがなく、また紫外線による多孔体の局部的劣化も防止することができ、複合シリカガラス製光拡散部材の耐用寿命をより長くすることができる。 Further, it is preferable that the dense silica glass has the same purity as the porous silica glass. Specifically, the contents of Na, Mg, Al, K, and Fe described above are all 0 ppm or more and 0.2 ppm or less, the content of Cu is 0 ppm or more and 0.05 ppm or less, and the porous silica glass is used. It is more preferable that Na, Mg, Al, K, and Fe have a difference of 0.04 ppm or less, and Cu has a difference of 0.01 ppm or less. As a result, when the dense silica glass and the porous silica glass are integrated, impurities such as the above metal are thermally diffused to the porous silica glass without emitting fluorescence or the like, and the porous body is locally generated by ultraviolet rays. Deterioration can also be prevented, and the service life of the composite silica glass light diffusing member can be extended.

本発明の複合シリカガラス製光拡散部材は、緻密質シリカガラスとして、例えば、石英ガラスを樹脂型に戴置し、ここに、結合材に分散させた中実の透明シリカガラス球状粒子を鋳込み、所定の温度下で一体化させることにより製造する。 In the light diffusing member made of composite silica glass of the present invention, for example, quartz glass is placed in a resin mold as dense silica glass, and solid transparent silica glass spherical particles dispersed in a binder are cast therein. Manufactured by integrating under a predetermined temperature.

このような方法を用いることで、緻密質シリカガラス及び多孔質シリカガラスは、それぞれその表面のみが溶融状態となり、相互の接触点にいわゆるネック部が形成された状態となるため、シリカ粉などの接着剤を使用しなくても、高い接合強度が得られる。 By using such a method, only the surfaces of the dense silica glass and the porous silica glass are in a molten state, and a so-called neck portion is formed at the mutual contact point. High bonding strength can be obtained without using an adhesive.

前記一体化させるときの温度は、通常1200〜1350℃である。1200℃未満であると、緻密質シリカガラスと多孔質シリカガラスとの接合が弱く、剥離し易い傾向がある。一方、1350℃を超えると、緻密質シリカガラスが失透することがある。
上記温度で一体化させることにより、得られる複合シリカガラス製光拡散部材において、多孔質シリカガラスは、緻密質シリカガラスとの界面近傍からその外表面まで均質な気孔分布を有することが可能となる。
上記結合材には、種々の汎用の材料を用いることができるが、例えば、シリカゾルが、高純度の複合シリカガラス製光拡散部材が得られる点から好ましい。
The temperature at the time of integration is usually 1200 to 1350 ° C. If the temperature is lower than 1200 ° C., the bond between the dense silica glass and the porous silica glass is weak and tends to be easily peeled off. On the other hand, if the temperature exceeds 1350 ° C., the dense silica glass may be devitrified.
By integrating at the above temperature, in the obtained composite silica glass light diffusing member, the porous silica glass can have a uniform pore distribution from the vicinity of the interface with the dense silica glass to the outer surface thereof. ..
Various general-purpose materials can be used as the binder, and for example, silica sol is preferable because a high-purity composite silica glass light diffusing member can be obtained.

このような方法で製造した複合シリカガラス製光拡散部材において、緻密質シリカガラスと多孔質シリカガラスとの界面における前記中実の透明シリカガラス球状粒子は略変形することなく、球状のまま、緻密質シリカガラスと接合していることがより好ましい。 In the composite silica glass light diffusing member manufactured by such a method, the solid transparent silica glass spherical particles at the interface between the dense silica glass and the porous silica glass are dense without being substantially deformed. More preferably, it is bonded to quality silica glass.

本発明の複合シリカガラス製光拡散部材の評価に用いた装置及び方法を以下に示す。 The apparatus and method used for the evaluation of the composite silica glass light diffusing member of the present invention are shown below.

〔実施例1〕
(シリカゾルの調製)
結合剤となるシリカゾルは、オルトケイ酸テトラメチル(TEOS;tetramethylorthosilicate)、超純水、0.1mol/L塩酸、及びプロピレングリコールを、TEOS:超純水:0.1mol/L塩酸:プロピレングリコール=11.7:9:1:3の重量比で、スターラーで2.5時間攪拌した後、0.1mol/LアンモニアでpH4.5〜5.0に調整した。
[Example 1]
(Preparation of silica sol)
The silica sol used as a binder is tetramethyl orthosilicate (TEOS), ultrapure water, 0.1 mol / L hydrochloric acid, and propylene glycol, and TEOS: ultrapure water: 0.1 mol / L hydrochloric acid: propylene glycol = 11. After stirring with a stirrer for 2.5 hours at a weight ratio of 7.7: 9: 1: 3, the pH was adjusted to 4.5 to 5.0 with 0.1 mol / L ammonia.

(複合シリカガラス製光拡散部材の作製)
多孔質シリカガラスの原料粉として中実の透明シリカガラス球状粒子を湿式分級することで平均粒子径が75μmとなるようにし、十分な酸洗浄を行い、乾燥後、シリカゾルと該原料粉とを5:12の重量比で混合し、このスラリー状の混合物を超音波洗浄機を用いて分散させた後、樹脂型に石英ガラス板状体(外径20mm;厚さ2mm)を型内下部に配置し、その上方より鋳込み、50℃で3時間放置しゲル化させた。このゲルと前記石英ガラス板状体の一体物を離型し、焼成冶具に高純度アルミナ材料を用いて、昇温速度0.5℃/minで1300℃まで昇温し、12時間保持することで焼成し、多孔質シリカガラスの厚さが1mmとなるように加工した。得られた焼成体を純水洗浄した後、乾燥した。
得られた複合シリカガラス製光拡散部材は、剥がれ等もなく、良好に接合されていた。
(Manufacturing of light diffusing member made of composite silica glass)
As a raw material powder for porous silica glass, solid transparent silica glass spherical particles are wet-classified so that the average particle size becomes 75 μm, and after sufficient acid cleaning and drying, the silica sol and the raw material powder are separated into 5 parts. After mixing at a weight ratio of: 12 and dispersing this slurry-like mixture using an ultrasonic cleaner, a quartz glass plate (outer diameter 20 mm; thickness 2 mm) is placed in the lower part of the mold in a resin mold. Then, it was cast from above and left at 50 ° C. for 3 hours to gel. The gel and the quartz glass plate-like body are separated from each other, and a high-purity alumina material is used as a firing jig to raise the temperature to 1300 ° C. at a heating rate of 0.5 ° C./min and hold it for 12 hours. And processed so that the thickness of the porous silica glass was 1 mm. The obtained fired body was washed with pure water and then dried.
The obtained composite silica glass light diffusing member was well bonded without peeling or the like.

(評価)
(1)組織観察
得られた複合シリカガラス製光拡散部材を厚さ方向に切断した後の多孔体部分をSEM装置で観察したところ、図1に示すように、中実の透明シリカガラス球状粒子が接合され、その隙間に連通孔が形成された骨格を有する多孔質構造が確認できた。
なお、SEM写真中に、球状粒子が一部融着したような構造が確認されたが、これは原料(中実の透明シリカガラス球状粒子)の製造段階で混入したものである。本発明においては、このような粒状体は存在しないほうがよいが、球状粒子の全個数の10%以下、好ましくは5%以下までは許容される。
(Evaluation)
(1) Structure Observation When the porous portion of the obtained composite silica glass light diffusing member after being cut in the thickness direction was observed with an SEM device, as shown in FIG. 1, solid transparent silica glass spherical particles. Was joined, and a porous structure having a skeleton in which communication holes were formed was confirmed.
In the SEM photograph, a structure in which the spherical particles were partially fused was confirmed, but this was mixed in at the manufacturing stage of the raw material (solid transparent silica glass spherical particles). In the present invention, such granules should not be present, but 10% or less, preferably 5% or less of the total number of spherical particles is allowed.

また、緻密質シリカガラスと多孔質シリカガラスとの界面近傍をSEMで観察したところ、図2に示すように、従来のシリカ接合体において認められたような、界面近傍の多孔質シリカガラス部にシリカ粉などの接着剤の残留がなく、多孔質シリカガラスが界面近傍からその外表面まで均質な気孔分布を有していることが確認された。 Further, when the vicinity of the interface between the dense silica glass and the porous silica glass was observed by SEM, as shown in FIG. 2, the porous silica glass portion near the interface as observed in the conventional silica bonded body was formed. It was confirmed that the porous silica glass had a uniform pore distribution from the vicinity of the interface to the outer surface thereof without residual adhesive such as silica powder.

(2)多孔質シリカガラスの細孔径分布
得られた複合シリカガラス光拡散部材中の多孔質シリカガラスを厚さ約0.8mmに切り出し、細孔径分布を測定したところ、図3に示すように、孔径は約5μmから約30μmの範囲に分布し、その中心気孔径は16.8μm、気孔率は37.7%であった。
なお、この測定は、JIS R 1634に基づき、以下の測定機器を用いて行った。
水銀ポロシメータ:AutoPore IV 9500((株)島津製作所製)
水銀表面張力:485.0dynes/cm
水銀接触角:130.0°
水銀密度:13.5335g/ml
(2) Porosity distribution of porous silica glass The porous silica glass in the obtained composite silica glass light diffusing member was cut out to a thickness of about 0.8 mm, and the pore size distribution was measured. As shown in FIG. The pore diameter was distributed in the range of about 5 μm to about 30 μm, the central pore diameter was 16.8 μm, and the porosity was 37.7%.
This measurement was performed using the following measuring instruments based on JIS R 1634.
Mercury Porocimeter: AutoPore IV 9500 (manufactured by Shimadzu Corporation)
Mercury surface tension: 485.0 days / cm
Mercury contact angle: 130.0 °
Mercury density: 13.535g / ml

(3)多孔質シリカガラス中の球状シリカガラスの粒子径分布及び真円度
SEM写真から、粒子が結合した形状のものを除く、20個の粒子をランダムに選択し、その最長径(l1)と最短径(l2)を計測し、その平均値を各粒子の粒子径とした。球状シリカガラス粒子断面の真円度はl2/l1で算出した。
(3) Particle size distribution and roundness of spherical silica glass in porous silica glass From SEM photographs, 20 particles excluding those having a shape in which particles are bonded are randomly selected, and the longest diameter (l 1) thereof. ) And the shortest diameter (l 2 ) were measured, and the average value was taken as the particle diameter of each particle. The roundness of the cross section of the spherical silica glass particles was calculated as l 2 / l 1 .

この結果は、粒子径は約20μmから約100μmの範囲に分布し、その平均粒子径は39.2μmであった。
球状シリカガラス断面の真円度は0.93以上であった。
As a result, the particle size was distributed in the range of about 20 μm to about 100 μm, and the average particle size was 39.2 μm.
The roundness of the spherical silica glass cross section was 0.93 or more.

(4)多孔質シリカガラス中の外表面に露出する測定長1μmの球状シリカガラスの表面粗さRa
算術平均粗さRaは、バネ定数3N/m、共振周波数75kHzのカンチレバー(シリコンカンチレバー)を用いて、ACモード(タッピングモード)で原子間力顕微鏡(Digital Instruments製)を使用し、各サンプルの表面形状をスキャンすることで測定した。測定は標準スキャナの最大範囲10μm四方で走査し、その後に、表面形状の特徴が反映されるように視野の絞込み(拡大)を行った。算術平均粗さRaの算出は1μm長さにて実施した。上記算術平均粗さRaを10回(n=10)測定し、平均値をとった。
(4) Surface roughness Ra of spherical silica glass with a measurement length of 1 μm exposed on the outer surface of porous silica glass
Arithmetic mean roughness Ra is the surface of each sample using an atomic force microscope (manufactured by Digital Instruments) in AC mode (tapping mode) using a cantilever (silicon cantilever) with a spring constant of 3 N / m and a resonance frequency of 75 kHz. It was measured by scanning the shape. The measurement was performed by scanning in a maximum range of 10 μm square of a standard scanner, and then the field of view was narrowed (enlarged) so as to reflect the characteristics of the surface shape. The arithmetic mean roughness Ra was calculated with a length of 1 μm. The arithmetic average roughness Ra was measured 10 times (n = 10), and the average value was taken.

多孔質シリカガラス中の表面に露出する球状シリカガラス20個につき、各々10回、上記方法により算術表面粗さRaの測定を行った。その結果は、各々10回平均値で3.1〜3.9nmの範囲内にあった。 Arithmetic surface roughness Ra was measured 10 times for each of 20 spherical silica glasses exposed on the surface of the porous silica glass by the above method. The results were in the range of 3.1 to 3.9 nm on average 10 times each.

(5)多孔質シリカガラスの光学特性
積分球式測定装置を用い、相対透過率の測定を行った。相対透過率は以下の式で定義され、各サンプルの出射角θ=0°の出射光量に対する角θの光量の割合を示す。
(5) Optical Characteristics of Porous Silica Glass The relative transmittance was measured using an integrating sphere measuring device. The relative transmittance is defined by the following equation, and indicates the ratio of the amount of light at the angle θ to the amount of emitted light at the emission angle θ = 0 ° of each sample.

受光角0(θ=0)°における透過光量を100とした場合に相対透過率が50%の光量となる出射角度(分散度)は53°であり、広い拡散性が確認された。 When the transmitted light amount at the light receiving angle 0 (θ = 0) ° is 100, the emission angle (dispersity) at which the relative transmittance is 50% is 53 °, and a wide diffusivity is confirmed.

(6)緻密質シリカガラス及び多孔質シリカガラスの純度分析
得られた複合シリカガラス製光拡散部材の緻密質シリカガラス側から、加熱(130℃)したフッ化水素酸(50%)と硫酸(20%)との混酸で10μm厚さのエッチングを5回行い、5回目のエッチング液について、冷却後、純水で濃度調整し、ICP質量分析装置で測定した。また、多孔質シリカガラスを一部破砕し、この破砕粒につき、上記加熱混酸でエッチングを行い、このエッチング液について同様にして測定を行った。その結果を表1に示す。
(6) Purity analysis of dense silica glass and porous silica glass Hydrofluoric acid (50%) and sulfuric acid (50%) heated (130 ° C.) from the dense silica glass side of the obtained composite silica glass light diffusing member. Etching with a thickness of 10 μm was performed 5 times with a mixed acid of 20%), and the concentration of the 5th etching solution was adjusted with pure water after cooling, and the measurement was performed with an ICP mass analyzer. Further, the porous silica glass was partially crushed, and the crushed particles were etched with the above-mentioned heated mixed acid, and the etching solution was measured in the same manner. The results are shown in Table 1.

〔比較例1〕
以下に示すように、特許文献1に記載の方法に従って、シリカ接合体を作製した。
(シリカ多孔体の作製)
粒径30〜60μm、平均粒子径50μmのシリカ粉末500gに、純水80g及び1%ポリビニルアルコール水溶液500gを添加してヘンシェルミキサーで混合し、シリカの造粒粉を得た。得られた造粒粉を直径200mm、高さ12mmの金型に入れ、0.5kN/cm2の圧力で加圧成形し、成形体を得た。
この成形体を、120℃で2時間乾燥させた後、1250〜1500℃の焼成温度にて10時間保持してシリカ多孔体を得た。
なお、得られたシリカ多孔体は、焼結シリカ粒子の平均粒子径が50μm、粒子分布幅が該平均粒子径の±50%以内にあり、気孔径が20μm、気孔率が45%、及び見掛け密度が2.2g/cm3であった。
[Comparative Example 1]
As shown below, a silica conjugate was prepared according to the method described in Patent Document 1.
(Preparation of silica porous body)
80 g of pure water and 500 g of a 1% polyvinyl alcohol aqueous solution were added to 500 g of silica powder having a particle size of 30 to 60 μm and an average particle diameter of 50 μm and mixed with a Henchel mixer to obtain silica granulated powder. The obtained granulated powder was placed in a mold having a diameter of 200 mm and a height of 12 mm and pressure-molded at a pressure of 0.5 kN / cm 2 to obtain a molded product.
This molded product was dried at 120 ° C. for 2 hours and then held at a firing temperature of 1.25 to 1500 ° C. for 10 hours to obtain a silica porous body.
In the obtained porous silica, the average particle size of the sintered silica particles is 50 μm, the particle distribution width is within ± 50% of the average particle size, the pore diameter is 20 μm, the porosity is 45%, and the appearance. The density was 2.2 g / cm 3 .

(シリカ接合体の作製)
得られたシリカ多孔体(10mm×10mm×30mm)の接合面(10mm×10mm)に、平均粒径15μmのシリカ粗粉と平均粒子径2μmのシリカ微粉とを6.5:3.5の重量比で混合したシリカ粉に対して、アクリルエマルジョン0.1重量%と、TEOS15重量%を添加した接合剤を塗布して、石英ガラス(10mm×10mm×30mm)の接合面(10mm×10mm)と合わせた。これを、大気中、1200℃で3時間熱処理して接合した。
(Preparation of silica conjugate)
On the joint surface (10 mm × 10 mm) of the obtained silica porous body (10 mm × 10 mm × 30 mm), a silica coarse powder having an average particle diameter of 15 μm and a silica fine powder having an average particle diameter of 2 μm are weighted at 6.5: 3.5. A bonding agent containing 0.1% by weight of acrylic emulsion and 15% by weight of TEOS was applied to the silica powder mixed in a ratio to form a bonded surface (10 mm × 10 mm) of quartz glass (10 mm × 10 mm × 30 mm). I matched it. This was heat-treated at 1200 ° C. for 3 hours in the air for bonding.

比較例1のシリカ接合体では、シリカ多孔体と石英ガラスとの界面近傍にシリカ粉が介在するため、実施例1に比べて、紫外線の透過効率が劣る、紫外線強度のシリカ接合体面内でのバラツキが大きくなる、といった結果となった。 In the silica bonded body of Comparative Example 1, since silica powder is interposed near the interface between the porous silica body and the quartz glass, the transmission efficiency of ultraviolet rays is inferior to that of Example 1, and the ultraviolet intensity is in the surface of the silica bonded body. The result was that the variation became large.

Claims (3)

緻密質シリカガラス及びこの表面に形成された多孔質シリカガラスからなる複合シリカガラス製光拡散部材であって、
前記多孔質シリカガラスが、複数の球状シリカガラスからなる骨格を有し、その間隙により連通気孔部を形成した、中心気孔径が10〜20μmで気孔率が25〜40%の多孔体であり、
前記球状シリカガラスの平均径が30〜100μmであり、外表面に露出する各球状シリカガラスにおける測定長1μmの算術平均粗さRaを10回測定した平均値が0.8〜4.0nmであり、かつ、
前記多孔質シリカガラスは、前記緻密質シリカガラスとの界面から外表面まで均質な気孔分布を有することを特徴とする複合シリカガラス製光拡散部材。
A light diffusing member made of composite silica glass made of dense silica glass and porous silica glass formed on the surface thereof.
The porous silica glass is a porous body having a skeleton made of a plurality of spherical silica glasses and having continuous ventilation holes formed by the gaps thereof, having a central pore diameter of 10 to 20 μm and a porosity of 25 to 40%.
The average diameter of the spherical silica glass is 30 to 100 μm, and the arithmetic mean roughness Ra of each spherical silica glass exposed on the outer surface having a measurement length of 1 μm is measured 10 times and the average value is 0.8 to 4.0 nm. ,And,
The porous silica glass is a light diffusing member made of composite silica glass, which has a uniform pore distribution from the interface with the dense silica glass to the outer surface.
前記球状シリカガラスの断面真円度が0.80以上であることを特徴とする請求項1に記載の複合シリカガラス製光拡散部材。 The light diffusing member made of composite silica glass according to claim 1, wherein the spherical silica glass has a cross-sectional roundness of 0.80 or more. 前記多孔質シリカガラス中のNa、Mg、Al、K、及びFeの含有量がいずれも0.2ppm以下であり、Cuの含有量が0.05ppm以下であることを特徴とする請求項1又は2に記載の複合シリカガラス製光拡散部材。 Claim 1 or claim 1, wherein the content of Na, Mg, Al, K, and Fe in the porous silica glass is 0.2 ppm or less, and the content of Cu is 0.05 ppm or less. 2. The composite silica glass light diffusing member according to 2.
JP2017016833A 2016-03-10 2017-02-01 Light diffusing member made of composite silica glass Active JP6783159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/446,915 US10222519B2 (en) 2016-03-10 2017-03-01 Composite silica glass made light diffusion member
KR1020170029444A KR101893482B1 (en) 2016-03-10 2017-03-08 Composite silica glass made light diffusion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046569 2016-03-10
JP2016046569 2016-03-10

Publications (2)

Publication Number Publication Date
JP2017165643A JP2017165643A (en) 2017-09-21
JP6783159B2 true JP6783159B2 (en) 2020-11-11

Family

ID=59912885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016833A Active JP6783159B2 (en) 2016-03-10 2017-02-01 Light diffusing member made of composite silica glass

Country Status (2)

Country Link
JP (1) JP6783159B2 (en)
KR (1) KR101893482B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283222B2 (en) * 2019-05-17 2023-05-30 Agc株式会社 Glass substrate and in-vehicle display device
JP7369573B2 (en) * 2019-09-13 2023-10-26 信越石英株式会社 Method for manufacturing reflective members and glass laminated members
DE112022002016T5 (en) * 2021-04-07 2024-01-18 AGC Inc. POROUS QUARTZ GLASS BODY AND PRODUCTION PROCESS THEREOF

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394320B2 (en) * 1994-04-28 2003-04-07 信越石英株式会社 Method for producing laminated quartz glass member having transparent layer and opaque layer
JP4101339B2 (en) * 1997-09-25 2008-06-18 大日本印刷株式会社 Light diffusing film, manufacturing method thereof, polarizing plate with diffusing layer, and liquid crystal display device
JPH11292568A (en) * 1997-12-09 1999-10-26 Nippon Sheet Glass Co Ltd Antireflection glass sheet, its production and coating composition for antireflection film
JP4407111B2 (en) * 2002-10-24 2010-02-03 東ソー株式会社 Quartz glass sprayed parts and manufacturing method thereof
JP2008032824A (en) * 2006-07-26 2008-02-14 Kyodo Printing Co Ltd Light diffusing sheet
EP2630525B1 (en) * 2010-10-20 2018-09-05 3M Innovative Properties Company Low refractive index diffuser element having interconnected voids
JP6080349B2 (en) * 2010-11-26 2017-02-15 キヤノン株式会社 Optical member and imaging device
DE102011115379B4 (en) * 2011-10-10 2018-09-27 Schott Ag Coated glass or glass ceramic substrate with haptic properties and glass ceramic hob
JP6094308B2 (en) * 2012-03-27 2017-03-15 三菱化学株式会社 Silica porous membrane
JP6059523B2 (en) * 2012-12-11 2017-01-11 クアーズテック株式会社 Silica bonded body and method for producing the same
KR101493601B1 (en) * 2013-07-17 2015-02-13 쌩-고벵 글래스 프랑스 A laminate for a light emitting device and process for preparing thereof
JP6187115B2 (en) * 2013-10-04 2017-08-30 三菱ケミカル株式会社 Silica porous membrane

Also Published As

Publication number Publication date
JP2017165643A (en) 2017-09-21
KR20170106217A (en) 2017-09-20
KR101893482B1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6783159B2 (en) Light diffusing member made of composite silica glass
TWI392110B (en) Method for producing luminescence-conversion led
WO2009104356A1 (en) Wavelength conversion member and method for manufacturing the same
US10222519B2 (en) Composite silica glass made light diffusion member
EP3075719B1 (en) Porous material and heat insulating film
JP6708460B2 (en) Method for manufacturing joined body
JP2014015359A (en) Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
JP4966527B2 (en) Transparent silica sintered body and method for producing the same
JP5845078B2 (en) Silica porous body for vacuum chuck
TW201532949A (en) Bowl-metal nanostructure array
EP3010051A1 (en) Window material for ultraviolet-ray-emitting element and method for producing same
JP2008166312A (en) Vacuum chuck and vacuum sucker employing it
TWI616341B (en) Method for producing a composite body of a material with a high silicic acid content
JP4704971B2 (en) Vacuum adsorption device
US11920068B2 (en) Method of manufacturing wavelength conversion member and wavelength conversion member
JP2009107880A (en) Joined body, adsorption member, adsorption device, and working apparatus
CN112867698B (en) Method for producing multilayer silica glass body
JP2017216389A (en) Silica glass member for hermetic seal of ultraviolet smd type led element
CN110494956B (en) Temporary fixing substrate and molding method of electronic component
KR20090093777A (en) Heat treating setter for glass substrate, Manufacturing method thereof, and Heat treatment method for glass substrate
JP4707591B2 (en) Black ceramic sintered body, optical analysis cell using the same, and semiconductor / liquid crystal manufacturing apparatus member
JP7156935B2 (en) Silica porous material for vacuum chuck
JP6169836B2 (en) Light-emitting element mounting substrate and light-emitting device using the same
JP7335506B2 (en) Manufacturing method of ceramic composite
KR102203690B1 (en) Phosphor plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6783159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350