JP6782916B2 - Energy system management equipment, energy system management methods, and energy systems - Google Patents

Energy system management equipment, energy system management methods, and energy systems Download PDF

Info

Publication number
JP6782916B2
JP6782916B2 JP2016176418A JP2016176418A JP6782916B2 JP 6782916 B2 JP6782916 B2 JP 6782916B2 JP 2016176418 A JP2016176418 A JP 2016176418A JP 2016176418 A JP2016176418 A JP 2016176418A JP 6782916 B2 JP6782916 B2 JP 6782916B2
Authority
JP
Japan
Prior art keywords
heat
power
amount
price
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016176418A
Other languages
Japanese (ja)
Other versions
JP2018042420A (en
Inventor
貴之 杉本
貴之 杉本
英介 下田
英介 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016176418A priority Critical patent/JP6782916B2/en
Publication of JP2018042420A publication Critical patent/JP2018042420A/en
Application granted granted Critical
Publication of JP6782916B2 publication Critical patent/JP6782916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、エネルギシステム管理装置、エネルギシステム管理方法、およびエネルギシステムに関する。 The present invention relates to an energy system management device, an energy system management method, and an energy system.

特許文献1には、複数の施設の需要電力を統合的に制御するためのエネルギシステムの一例が記載されている。特許文献1に記載されているエネルギシステムでは、買電電力等に対応する第1の評価値と各施設で需要電力を得るための運用コスト等に対応する第2の評価値とを用いて、第1の評価値に対する最適化を行った後、第2の評価値に対する最適化が行われる。 Patent Document 1 describes an example of an energy system for integrally controlling the power demand of a plurality of facilities. In the energy system described in Patent Document 1, the first evaluation value corresponding to the purchased power and the like and the second evaluation value corresponding to the operating cost and the like for obtaining the demand power at each facility are used. After the optimization for the first evaluation value is performed, the optimization for the second evaluation value is performed.

また、特許文献2には、買電した電力と発電電力と廃熱による熱を施設に対して供給するエネルギシステムの一例が記載されている。特許文献2に記載されているエネルギシステムでは、コージェネレーションシステムの運転条件、買電条件および電力利用施設の所定条件に基づいて、コストを最小化するコージェネレーションシステムの運転条件が決定される。 Further, Patent Document 2 describes an example of an energy system that supplies purchased electric power, generated electric power, and heat from waste heat to a facility. In the energy system described in Patent Document 2, the operating conditions of the cogeneration system that minimizes the cost are determined based on the operating conditions of the cogeneration system, the power purchase conditions, and the predetermined conditions of the power utilization facility.

なお、本願では、廃熱を回収可能な発電設備をコージェネレーションシステム(熱電併給設備)(以下、CGSとも称する)と呼ぶ。また、CGSと、そのCGSが発電した電力や発電の際に回収した廃熱を利用するための設備とを含むシステムを、エネルギシステムと呼ぶ。 In the present application, a power generation facility capable of recovering waste heat is referred to as a cogeneration system (combined heat and power facility) (hereinafter, also referred to as CGS). Further, a system including a CGS and a facility for utilizing the electric power generated by the CGS and the waste heat recovered at the time of power generation is called an energy system.

特開2014−230337号公報Japanese Unexamined Patent Publication No. 2014-230337 特開2000−274308号公報Japanese Unexamined Patent Publication No. 2000-274308

ところで、エネルギシステムに対しては例えば次のようなニーズがある。 By the way, there are the following needs for energy systems, for example.

(1)今後、CGSの導入促進やピークカットのインセンティブ強化等の政策が進められるため、CGSの導入案件が増加し、電力だけでなく熱管理も重要となる。そのため、発電制御(電力)と排熱利用制御(熱)の双方を両立した最適運転計画機能が必要になると考えられる。ここで、最適運転計画機能とは、天気予報情報や過去の運転実績データなどから負荷予測(電力・熱)を行い、その結果に基づいて設備機器の運転計画を立案する機能である。 (1) In the future, policies such as promoting the introduction of CGS and strengthening incentives for peak cuts will be promoted, so the number of CGS introduction projects will increase, and not only electric power but also thermal management will be important. Therefore, it is considered that an optimum operation planning function that balances both power generation control (electric power) and exhaust heat utilization control (heat) is required. Here, the optimum operation planning function is a function of performing load prediction (electric power / heat) from weather forecast information, past operation record data, etc., and formulating an operation plan of equipment based on the result.

(2)スマートコミュニティ、CEMS(Cluster/Community Energy Management System)の展開を進めている状況を受け、電力・熱エネルギーの面的利用(複数建物におけるエネルギー融通)の重要度が高まっている。またCGSの導入促進を目的に、電気事業法上の「特定供給」に関する許可基準が緩和されている。そのため、電力・熱エネルギーの面的利用や特定供給制度に対応した最適運転計画機能が必要となる。ここで、特定供給とは、供給者・需要者間の関係で、需要家保護の必要性の低い密接な関係(生産工程、資本関係、人的関係)を有する者の間での電力供給(本社工場と子会社工場間での電力供給等)である。 (2) With the development of smart communities and CEMS (Cluster / Community Energy Management System), the importance of area use of electric power and thermal energy (energy interchange in multiple buildings) is increasing. In addition, for the purpose of promoting the introduction of CGS, the permission criteria for "specified supply" under the Electricity Business Act have been relaxed. Therefore, it is necessary to have an optimum operation planning function corresponding to the area use of electric power and thermal energy and the specific supply system. Here, the specific supply is a relationship between a supplier and a consumer, and is a power supply between a person who has a close relationship (production process, capital relationship, human relationship) with a low need for consumer protection (production process, capital relationship, human relationship). Power supply between the head office factory and the subsidiary factory, etc.).

(3)低容量のCGSなど定格出力一定しか出せないCGSを使用する場合、電力・熱負荷に応じて出力を細かく制御するにはCGSを複数台構成にするため、CGS複数台対応の最適運転計画機能が必要となる。なお、発電効率の観点からCGSは定格出力で一定運転することが望ましいので、部分負荷運転を避けるため、複数台構成にする場合もある。 (3) When using a CGS that can output only a constant rated output, such as a low-capacity CGS, in order to finely control the output according to the power and heat load, multiple CGS are configured, so optimal operation for multiple CGS. Planning function is required. From the viewpoint of power generation efficiency, it is desirable that the CGS be operated at a constant output at the rated output. Therefore, in order to avoid partial load operation, a plurality of units may be configured.

上記のようなニーズに対し、特許文献1に記載のシステムはCGSを利用するものではなく、また、特許文献2に記載のシステムはCGSを利用するものではあるものの、もっぱらコスト面での最適化を図るためのものであるため、上述したような種々のニーズに応えることが難しいという課題があった。 In response to the above needs, the system described in Patent Document 1 does not use CGS, and the system described in Patent Document 2 uses CGS, but is exclusively optimized in terms of cost. Therefore, there is a problem that it is difficult to meet the various needs as described above.

本発明は、上記の事情を考慮してなされたものであり、CGSを備えるエネルギシステムに対する種々のニーズに容易に応えることができるエネルギシステム管理装置、エネルギシステム管理方法、およびエネルギシステムを提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and provides an energy system management device, an energy system management method, and an energy system that can easily meet various needs for an energy system including CGS. With the goal.

上記課題を解決するため、本発明の一態様は、熱電併給設備と前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備とを備えるエネルギシステムにおいて、前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理する装置であって、負荷電力と負荷熱量とを所定時間毎に予測する負荷予測部と、前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定する運転優先度決定部と、前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定する発電量決定部と、予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定する供給熱量決定部とを備えるエネルギシステム管理装置である。
In order to solve the above problems, one aspect of the present invention is an energy system including a heat and power combined equipment and a heat storage equipment for storing heat from waste heat recovered by the heat and power combined equipment, the power generation amount of the heat and power combined equipment and the above. It is a device that manages the amount of heat supplied from the heat storage facility, and corresponds to the load prediction unit that predicts the load power and the load heat amount at predetermined time intervals, and the load power and the load heat amount predicted by the load prediction unit. Based on the power generation price, heat recovery price, and power purchase price, the total value of the power generation price and heat recovery price is the power purchase price in the first mode, which is set when the power generation price is smaller than the power purchase price. It is set when the second mode, which determines the amount of power generation according to the amount of heat stored in the heat storage facility, which is set when the price is smaller, and the total value of the power generation price and the heat recovery price are not smaller than the purchase price. The operation priority determination unit that determines one of the third modes that prioritize power purchase at each predetermined time, and the determination result of any one of the first mode to the third mode by the operation priority determination unit. Energy including a power generation amount determination unit that determines the power generation amount at the predetermined time intervals and a heat supply amount determination unit that determines the heat supply amount at the predetermined time intervals based on the predicted heat storage amount of the heat storage facility. It is a system management device.

また、本発明の一態様は、上記エネルギシステム管理装置であって、前記発電量決定部が、予め設定した前記熱電併給設備からの電力の最大供給条件および最低供給条件に基づき、前記第1モードの場合に前記最大供給条件を満たすように前記発電量を前記所定時間毎に決定し、前記第2モードの場合に前記最大供給条件または前記最低供給条件を満たすように前記発電量を前記所定時間毎に決定し、前記第3モードの場合に前記最低供給条件を満たすように前記発電量を前記所定時間毎に決定する。 Further, one aspect of the present invention is the first mode of the energy system management device, based on the maximum supply condition and the minimum supply condition of electric power from the combined heat and power supply facility set in advance by the power generation amount determination unit. In the case of, the power generation amount is determined every predetermined time so as to satisfy the maximum supply condition, and in the case of the second mode, the power generation amount is determined for the predetermined time so as to satisfy the maximum supply condition or the minimum supply condition. It is determined every time, and the amount of power generation is determined every predetermined time so as to satisfy the minimum supply condition in the case of the third mode.

また、本発明の一態様は、上記エネルギシステム管理装置であって、前記最低供給条件および前記買電の目標条件を満足するように、前記発電量決定部が決定した発電量を、前記負荷電力の実際の計測結果に基づき略実時間で補正する運転補正部をさらに備える。 Further, one aspect of the present invention is the energy system management device, in which the power generation amount determined by the power generation amount determination unit so as to satisfy the minimum supply condition and the target power purchase condition is set to the load power. It is further provided with an operation correction unit that corrects in substantially real time based on the actual measurement result of.

また、本発明の一態様は、上記エネルギシステム管理装置であって、前記供給熱量決定部が、前記予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を増大させる場合の前記蓄熱量の設定値と前記供給熱量を減少させる場合の前記蓄熱量の設定値とを異ならせて、前記供給熱量を前記所定時間毎に決定する。 Further, one aspect of the present invention is the energy system management device, in which the heat supply amount determination unit sets the heat storage amount when the heat supply amount is increased based on the predicted heat storage amount of the heat storage facility. The heat supply amount is determined every predetermined time by making the value different from the set value of the heat storage amount when the heat supply amount is reduced.

また、本発明の一態様は、熱電併給設備と前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備とを備えたエネルギシステムにおいて、前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理する方法であって、負荷予測部によって、負荷電力と負荷熱量とを所定時間毎に予測し、運転優先度決定部によって、前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定し、発電量決定部によって、前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定し、供給熱量決定部によって、予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定するエネルギシステム管理方法である。
Further, one aspect of the present invention is an energy system including a heat and power combined equipment and a heat storage equipment that stores heat from waste heat recovered by the heat and power combined equipment, and the amount of heat generated by the heat and power combined equipment and the heat storage equipment. It is a method of managing the amount of heat supplied, in which the load prediction unit predicts the load power and the load heat amount at predetermined time intervals, and the operation priority determination unit predicts the load power and the load. Based on the power generation price, heat recovery price, and power purchase price corresponding to the amount of heat, the first mode that prioritizes power generation that is set when the power generation price is smaller than the power purchase price, and the sum of the power generation price and heat recovery price When the total value of the power generation price and the heat recovery price is not smaller than the power purchase price, and the second mode in which the power generation amount is determined according to the heat storage amount of the heat storage facility set when the value is smaller than the power purchase price. one of the set is power purchase a priority third mode determined for each of the predetermined time, the power generation amount determining unit, one of the first mode-the third mode by the operation priority determining unit Energy system management that determines the power generation amount at the predetermined time according to the determination result of the above, and determines the heat supply amount at the predetermined time based on the predicted heat storage amount of the heat storage facility by the heat supply amount determination unit. The method.

また、本発明の一態様は、熱電併給設備と、前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備と、前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理するエネルギシステム管理装置とを備え、前記エネルギシステム管理装置が、負荷電力と負荷熱量とを所定時間毎に予測する負荷予測部と、前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定する運転優先度決定部と、前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定する発電量決定部と、予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定する供給熱量決定部とを有するエネルギシステムである。 Further, one aspect of the present invention manages a heat and power combined equipment, a heat storage equipment that stores heat from waste heat recovered by the heat and power combined equipment, a power generation amount of the heat and power combined equipment, and a heat supply amount from the heat storage equipment. The energy system management device includes a load prediction unit that predicts a load power and a load heat amount at predetermined time intervals, and the load power and the load heat amount predicted by the load prediction unit. Based on the corresponding power generation price, heat recovery price, and power purchase price, the first mode that prioritizes power generation set when the power generation price is smaller than the power purchase price, and the total value of the power generation price and heat recovery price are purchased. It is set when the second mode, which determines the amount of power generation according to the amount of heat stored in the heat storage facility, which is set when the price is smaller than the electricity price, and the total value of the power generation price and the heat recovery price are not smaller than the purchase price. The operation priority determination unit that determines one of the third modes that prioritize the purchase of power and the determination result of any one of the first mode to the third mode by the operation priority determination unit. It has a power generation amount determination unit that determines the power generation amount at each predetermined time, and a heat supply amount determination unit that determines the heat supply amount at each predetermined time based on the predicted heat storage amount of the heat storage facility. It is an energy system.

本発明によれば、予測した負荷電力と負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき運転の形態が第1〜第3モードのいずれかに決定され、その決定結果に応じて発電量が所定時間毎に決定される。この構成によれば、第1〜第3モードに分けずに発電量と供給熱量とを管理する場合と比較して、発電量を容易に適切に管理することができる。また、予測した蓄熱量に基づき供給熱量が決定されるので、熱管理を効率的に行うことができる。 According to the present invention, the mode of operation is determined to be one of the first to third modes based on the power generation price, the heat recovery price, and the power purchase price corresponding to the predicted load power and load heat quantity, and the determination result. The amount of power generation is determined at predetermined time intervals according to the above. According to this configuration, the power generation amount can be easily and appropriately managed as compared with the case where the power generation amount and the heat supply amount are managed without dividing into the first to third modes. Moreover, since the amount of heat supplied is determined based on the predicted amount of heat storage, heat management can be performed efficiently.

本発明の一実施形態に係る構成例を示す図である。It is a figure which shows the structural example which concerns on one Embodiment of this invention. 図1に示すエネルギシステム管理装置1の構成例を示すブロック図である。It is a block diagram which shows the structural example of the energy system management apparatus 1 shown in FIG. 図2に示すパラメータ設定部11の動作例を説明するための図である。It is a figure for demonstrating the operation example of the parameter setting part 11 shown in FIG. 図2に示すエネルギシステム管理装置1の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the energy system management apparatus 1 shown in FIG. 図4のステップS12における処理を示すフローチャートである。It is a flowchart which shows the process in step S12 of FIG. 図4のステップS13における処理を示すフローチャートである。It is a flowchart which shows the process in step S13 of FIG. 図6のステップS33における処理を示すフローチャートである。It is a flowchart which shows the process in step S33 of FIG. 図4のステップS14における処理を示すフローチャートである。It is a flowchart which shows the process in step S14 of FIG. 図4のステップS14における処理を示すフローチャートである。It is a flowchart which shows the process in step S14 of FIG. 図4のステップS13およびS14における処理を説明するための図である。It is a figure for demonstrating the process in steps S13 and S14 of FIG.

以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の一実施形態に係るエネルギシステム100の構成例を示す図である。図1に示すエネルギシステム100は、エネルギシステム管理装置1と、複数のCGS21(熱電併給設備)と、蓄熱槽22(蓄熱設備)と、冷凍機23と、空調熱源24と、複数の熱供給ポンプ31および32とを備える。エネルギシステム100は、CGS21が発電した電力と電力会社等の電力系統2から買電した電力とを電線71〜73を介して電力の需要施設である施設81〜83へ供給する。エネルギシステム100は、また、各CGS21が発電の際に回収した廃熱を、直接または冷凍機23を介して蓄熱槽22へ移動して蓄熱する。そして、蓄熱槽22に蓄積された熱は、例えば、配管64、熱供給ポンプ31および配管65を介して施設81へ空調用の熱として供給される。また、蓄熱槽22に蓄積されている熱は、配管64、熱供給ポンプ32および配管66を介して施設82へ空調用の熱として供給される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration example of an energy system 100 according to an embodiment of the present invention. The energy system 100 shown in FIG. 1 includes an energy system management device 1, a plurality of CGS 21 (combined heat and power equipment), a heat storage tank 22 (heat storage equipment), a refrigerator 23, an air conditioning heat source 24, and a plurality of heat supply pumps. 31 and 32 are provided. The energy system 100 supplies the electric power generated by the CGS 21 and the electric power purchased from the electric power system 2 of the electric power company or the like to the facilities 81 to 83 which are power demand facilities via the electric wires 71 to 73. The energy system 100 also transfers the waste heat recovered by each CGS 21 during power generation to the heat storage tank 22 directly or via the refrigerator 23 to store heat. Then, the heat stored in the heat storage tank 22 is supplied to the facility 81 as heat for air conditioning via, for example, the pipe 64, the heat supply pump 31, and the pipe 65. Further, the heat stored in the heat storage tank 22 is supplied to the facility 82 as heat for air conditioning via the pipe 64, the heat supply pump 32, and the pipe 66.

エネルギシステム管理装置1は、例えばサーバ、パーソナルコンピュータ等のコンピュータであり、CPU(中央処理装置)、記憶装置、入出力装置、通信装置等を備える。エネルギシステム管理装置1は、複数のCGS21の発電量を制御線51を用いて制御するとともに、複数の熱供給ポンプ31および32を制御線52または53を用いて制御して蓄熱槽22から施設81または施設82への供給される熱量を管理する。 The energy system management device 1 is, for example, a computer such as a server or a personal computer, and includes a CPU (central processing unit), a storage device, an input / output device, a communication device, and the like. The energy system management device 1 controls the amount of power generated by the plurality of CGS 21 by using the control line 51, and controls the plurality of heat supply pumps 31 and 32 by using the control line 52 or 53 to control the heat storage tank 22 to the facility 81. Alternatively, the amount of heat supplied to the facility 82 is managed.

各CGS21は、同一構成であり、発電設備とその発電設備で発電の際に発生した廃熱の回収設備とを有する。各CGS21は、エンジン、タービン、燃料電池等の発電設備を有し、天然ガス、LPガス(液化石油ガス)等を燃料として発電する。各CGS21が有する発電設備の定格発電容量は同一である。本実施形態において、各CGS21は、エネルギシステム管理装置1から出力された所定の制御信号を制御線51を介して受信し、受信した制御信号に応じて、それぞれの発電設備を定格出力を目標として運転するか、あるいは停止するかのいずれかの運転状態で動作する。また、各CGS21は、回収設備で回収した廃熱を温水として一点鎖線の矢印で示す配管61を介して蓄熱槽22へ移動するか、あるいは、回収設備で回収した廃熱を温水として二点鎖線の矢印で示す配管62を介して冷凍機23へ移動して冷水に変換し、さらに冷凍機23が冷水とした熱を二点鎖線の矢印で示す配管63を介して蓄熱槽22へ移動する。なお、配管61を通した熱の移動は、例えばエネルギシステム100の冬期における運転形態の一例に対応する。配管62および配管63を通した熱の移動は、例えばエネルギシステム100の夏期における運転形態の一例に対応する。 Each CGS 21 has the same configuration, and has a power generation facility and a waste heat recovery facility generated during power generation in the power generation facility. Each CGS21 has power generation facilities such as an engine, a turbine, and a fuel cell, and generates power using natural gas, LP gas (liquefied petroleum gas), or the like as fuel. The rated power generation capacity of the power generation equipment of each CGS 21 is the same. In the present embodiment, each CGS 21 receives a predetermined control signal output from the energy system management device 1 via the control line 51, and targets each power generation facility with a rated output according to the received control signal. It operates in either the operating state of operating or stopping. Further, each CGS 21 either moves the waste heat recovered by the recovery facility as hot water to the heat storage tank 22 via the pipe 61 indicated by the arrow of the alternate long and short dash line, or uses the waste heat recovered by the recovery facility as hot water and uses the two-dot chain line. It moves to the refrigerator 23 via the pipe 62 indicated by the arrow and converts it into cold water, and further transfers the heat generated by the refrigerator 23 to the heat storage tank 22 via the pipe 63 indicated by the dashed line arrow. The transfer of heat through the pipe 61 corresponds to, for example, an example of the operation mode of the energy system 100 in winter. The transfer of heat through the pipes 62 and 63 corresponds to, for example, an example of the operation mode of the energy system 100 in the summer.

なお、CGS21の台数は、図1に示す2台に限らず、1台であってもよいし、3台以上の複数であってもよい。上述したように、本実施形態では、2台のCGS21は、定格出力が同一であり、また、エネルギシステム管理装置1の制御によって定格出力での発電または発電停止のいずれかの状態で運転される。ただし、CGS21を1台とする場合には発電電力を定格出力以下の所定の範囲でエネルギシステム管理装置1の制御によって可変できるようにする。また、複数のCGS21の定格出力はすべて同一としてもよいし、同一でなくてもよい。ただし、後述する動作例の説明では、エネルギシステム100が同一定格出力の少なくとも2台のCGS21を備えているものとする。 The number of CGS21s is not limited to the two shown in FIG. 1, and may be one or a plurality of three or more. As described above, in the present embodiment, the two CGS 21s have the same rated output, and are operated in a state of either power generation or power generation stop at the rated output under the control of the energy system management device 1. .. However, when one CGS21 is used, the generated power can be changed by the control of the energy system management device 1 within a predetermined range of the rated output or less. Further, the rated outputs of the plurality of CGS 21s may or may not be the same. However, in the description of the operation example described later, it is assumed that the energy system 100 includes at least two CGS 21s having the same rated output.

熱供給ポンプ31は、エネルギシステム管理装置1から出力された所定の制御信号を制御線53を介して受信し、受信した制御信号に応じて、定格出力で運転するか、あるいは停止するかのいずれかの運転状態で動作する。また、熱供給ポンプ32は、エネルギシステム管理装置1から出力された所定の制御信号を制御線52を介して受信し、受信した制御信号に応じて、定格出力で運転するか、あるいは停止するかのいずれかの運転状態で動作する。 The heat supply pump 31 receives a predetermined control signal output from the energy system management device 1 via the control line 53, and either operates at the rated output or stops according to the received control signal. It operates in the operating state. Further, the heat supply pump 32 receives a predetermined control signal output from the energy system management device 1 via the control line 52, and operates or stops at the rated output according to the received control signal. Operates in any of the operating conditions of.

なお、本実施形態では、熱供給ポンプ31と熱供給ポンプ32に次のように異なる優先度が設定されている。すなわち、熱供給ポンプ31の優先度が、熱供給ポンプ32の優先度より高く設定されている。この熱供給ポンプの優先度は、熱供給ポンプ31または熱供給ポンプ32が熱を供給する供給先の施設の熱供給に係る優先度に対応する。すなわち、この場合、熱供給ポンプ31の熱供給先の施設81(A棟)の優先度が、熱供給ポンプ32の熱供給先の施設82(B棟)の優先度より高い。例えば、蓄熱槽22に所定量以上の熱が蓄熱されている場合、熱供給ポンプ31と熱供給ポンプ32の両方が運転される。また、例えば、蓄熱槽22の蓄熱量が所定の値未満である場合、優先度が高い熱供給ポンプ31のみが運転される。なお、熱供給ポンプ31および32は、それぞれ1台の熱供給ポンプから構成されていてもよいし、並列に接続された複数台の熱供給ポンプから構成されていてもよい。 In this embodiment, the heat supply pump 31 and the heat supply pump 32 have different priorities as follows. That is, the priority of the heat supply pump 31 is set higher than the priority of the heat supply pump 32. The priority of the heat supply pump corresponds to the priority related to the heat supply of the facility to which the heat supply pump 31 or the heat supply pump 32 supplies heat. That is, in this case, the priority of the facility 81 (building A) of the heat supply destination of the heat supply pump 31 is higher than the priority of the facility 82 (building B) of the heat supply destination of the heat supply pump 32. For example, when a predetermined amount or more of heat is stored in the heat storage tank 22, both the heat supply pump 31 and the heat supply pump 32 are operated. Further, for example, when the amount of heat stored in the heat storage tank 22 is less than a predetermined value, only the heat supply pump 31 having a high priority is operated. The heat supply pumps 31 and 32 may each be composed of one heat supply pump, or may be composed of a plurality of heat supply pumps connected in parallel.

空調熱源24は、例えば電力系統2から供給される電力を電源として動作して温水または冷水を発生し、発生した温水または冷水を配管67を介して施設83へ空調用の熱として供給したり、配管67および配管65を介して施設81へ空調用の熱として供給したり、配管67および配管66を介して施設82へ空調用の熱として供給したりする。空調熱源24は、温水を発生する運転状態と、冷水を発生する運転状態とのどちらかに切り替えて運転される。また、空調熱源24は、例えば、運転される場合には、定格出力での動作または停止のいずれかの状態で運転される。空調熱源24は、例えば図示していない制御線を介してエネルギシステム管理装置1と接続されていて、エネルギシステム管理装置1によって運転状態が制御される。 For example, the air conditioning heat source 24 operates by using the power supplied from the power system 2 as a power source to generate hot or cold water, and supplies the generated hot or cold water to the facility 83 as heat for air conditioning via the pipe 67. It is supplied as heat for air conditioning to the facility 81 via the pipe 67 and the pipe 65, or is supplied as heat for air conditioning to the facility 82 via the pipe 67 and the pipe 66. The air-conditioning heat source 24 is operated by switching between an operating state in which hot water is generated and an operating state in which cold water is generated. Further, when the air conditioning heat source 24 is operated, for example, it is operated in a state of either operation or stop at the rated output. The air conditioning heat source 24 is connected to the energy system management device 1 via, for example, a control line (not shown), and the operating state is controlled by the energy system management device 1.

施設81〜83は、エネルギシステム100が供給する電力および熱の需要設備である。本実施形態では、施設81、82および83が、それぞれ建物であり、建物名がA棟、B棟、およびC棟であるとする。また、施設81(A棟)と各CGS21の運営主体は同一である。一方、施設81(A棟)の運営主体と施設82(B棟)および施設83(C棟)の運営主体とは別であるが、密接な関係を有する。本実施形態では、各CGS21から施設82(B棟)または施設83(C棟)への電力供給は上述した特定供給に該当するものとする。 Facilities 81-83 are power and heat demand facilities supplied by the energy system 100. In the present embodiment, it is assumed that the facilities 81, 82 and 83 are buildings, respectively, and the building names are A building, B building, and C building. In addition, the operating entity of the facility 81 (Building A) and each CGS 21 is the same. On the other hand, the operating entity of facility 81 (building A) and the operating entity of facility 82 (building B) and facility 83 (building C) are different, but have a close relationship. In the present embodiment, the power supply from each CGS 21 to the facility 82 (building B) or the facility 83 (building C) corresponds to the above-mentioned specific supply.

次に、図2を参照して、図1に示すエネルギシステム管理装置1の構成例について説明する。図2は、図1に示すエネルギシステム管理装置1を構成するコンピュータが内部のCPUによって内部の記憶装置に格納されている所定のプログラムを実行することによって内部の入出力装置や記憶装置、通信装置等を制御することで提供する機能を、機能の種別毎にブロックに分けて示す図である。図2に示すように、エネルギシステム管理装置1は、パラメータ設定部11と、負荷電力取得部12と、蓄熱量取得部13と、負荷予測部14と、CGS運転計画部15と、熱供給ポンプ運転台数管理部16と、CGS運転補正部17と、デマンドレスポンス制御部18と、CGSローテーション管理部19とを備える。また、CGS運転計画部15は、CGS運転優先度決定部151と、CGS運転台数決定部152とを有する。エネルギシステム管理装置1は、各部の動作に応じて、内部の入出力装置あるいは通信装置および制御線51〜53を介して所定の制御信号を各CGS21、各熱供給ポンプ31および32に出力し、各CGS21、各熱供給ポンプ31および32の動作状態を運転状態または停止状態に制御する。 Next, a configuration example of the energy system management device 1 shown in FIG. 1 will be described with reference to FIG. FIG. 2 shows an internal input / output device, a storage device, and a communication device when a computer constituting the energy system management device 1 shown in FIG. 1 executes a predetermined program stored in the internal storage device by an internal CPU. It is a figure which shows the function provided by controlling, etc., divided into blocks for each type of function. As shown in FIG. 2, the energy system management device 1 includes a parameter setting unit 11, a load power acquisition unit 12, a heat storage amount acquisition unit 13, a load prediction unit 14, a CGS operation planning unit 15, and a heat supply pump. It includes an operation number management unit 16, a CGS operation correction unit 17, a demand response control unit 18, and a CGS rotation management unit 19. Further, the CGS operation planning unit 15 has a CGS operation priority determination unit 151 and a CGS operation number determination unit 152. The energy system management device 1 outputs a predetermined control signal to each CGS 21, each heat supply pump 31 and 32 via an internal input / output device or communication device and control lines 51 to 53 according to the operation of each part. The operating state of each CGS 21, each of the heat supply pumps 31 and 32 is controlled to an operating state or a stopped state.

パラメータ設定部11は、運用に先立ち、エネルギシステム管理装置1が有する入力装置、通信装置等を用いて図3に示すようなパラメータを入力し、所定の記憶装置に記憶する。図3は、パラメータ設定部11が入力および記憶するパラメータの一例を示す図である。図3に示す例では、設定値として、ガス単価(円/m)、ガス使用量(CGS1台あたり)(m/h)、買電単価(円/kWh)、発電容量(CGS1台あたり)(kWh/h)、熱回収容量(CGS1台あたり)(kWh/h)、熱源定格消費電力(冷)(kWh/h)、熱源定格消費電力(温)(kWh/h)、熱源定格生産熱量(冷)(kWh/h)、熱源定格生産熱量(温)(kWh/h)、蓄熱量下下限設定(GJ)、蓄熱量下限設定(GJ)、蓄熱量上限設定(GJ)、蓄熱量上上限設定(GJ)、蓄熱量満蓄設定(GJ)、買電目標値(kW)、CGS最低発電率(特定供給)(%)、CGS定格発電容量(kWh/h/台)、CGS熱回収容量(GJ/h/台)、CGS台数(台)、A棟ポンプ定格熱供給量(GJ/h/台)、B棟ポンプ定格熱供給量 (GJ/h/台)、A棟熱供給ポンプ台数(台)およびB棟熱供給ポンプ台数(台)が含まれている。ここで括弧内は各設定値の単位を示す。 Prior to operation, the parameter setting unit 11 inputs parameters as shown in FIG. 3 using an input device, a communication device, and the like included in the energy system management device 1, and stores them in a predetermined storage device. FIG. 3 is a diagram showing an example of parameters input and stored by the parameter setting unit 11. In the example shown in FIG. 3, the set values include gas unit price (yen / m 3 ), gas usage (per CGS) (m 3 / h), power purchase unit price (yen / kWh), and power generation capacity (per CGS). ) (KWh / h), heat recovery capacity (per CGS) (kWh / h), heat source rated power consumption (cold) (kWh / h), heat source rated power consumption (temperature) (kWh / h), heat source rated production Heat quantity (cold) (kWh / h), heat source rated production heat quantity (heat) (kWh / h), heat storage amount lower limit setting (GJ), heat storage amount lower limit setting (GJ), heat storage amount upper limit setting (GJ), heat storage amount Upper upper limit setting (GJ), heat storage amount full storage setting (GJ), power purchase target value (kW), CGS minimum power generation rate (specific supply) (%), CGS rated power generation capacity (kWh / h / unit), CGS heat Recovery capacity (GJ / h / unit), number of CGS (unit), A building pump rated heat supply amount (GJ / h / unit), B building pump rated heat supply amount (GJ / h / unit), A building heat supply The number of pumps (units) and the number of heat supply pumps in Building B (units) are included. Here, the unit of each setting value is shown in parentheses.

ガス単価(円/m)は、CGS21の燃料の1m当たりの価格である。ガス使用量(CGS1台あたり)(m/h)は、CGS21を、発電容量(CGS1台あたり)(kWh/h)で運転した場合のガス使用量である。買電単価(円/kWh)は、電力系統2から買電する際の1kWhの電力量の価格である。発電容量(CGS1台あたり)(kWh/h)は、ガス使用量を算出する際に基準となる電力である。熱回収容量(CGS1台あたり)(kWh/h)は、CGS21を発電容量(CGS1台あたり)(kWh/h)で運転した場合に回収される単位時間当たりの熱量である。熱源定格消費電力(冷)(kWh/h)は、空調熱源24の冷水発生時の定格消費電力である。熱源定格消費電力(温)(kWh/h)は、空調熱源24の温水発生時の定格消費電力である。熱源定格生産熱量(冷)(kWh/h)は、空調熱源24の冷水発生時の定格出力時の単位時間当たりの熱量である。熱源定格生産熱量(温)(kWh/h)は、空調熱源24の温水発生時の定格出力時の単位時間当たりの熱量である。蓄熱量下下限設定(GJ)、蓄熱量下限設定(GJ)、蓄熱量上限設定(GJ)、蓄熱量上上限設定(GJ)、および蓄熱量満蓄設定(GJ)は、それぞれ蓄熱槽22の蓄熱量の下下限設定値、下限設定値、上限設定値、上上限設定値および満蓄設定値である。これらの設定値は、下下限設定値<下限設定値<上限設定値<上上限設定値<満蓄設定値の関係を有する。買電目標値(kW)は、電力系統2からの買電電力の上限の目標値である。CGS最低発電率(特定供給)(%)は、特定供給先(本実施形態では施設82(B棟)および施設83(C棟))で消費される電力に対するCGS21から供給される電力の比率の契約上求められる最低値である。例えば最低発電率(特定供給)(%)が50%の場合、特定供給先で消費される電力のうち買電電力を50%未満、CGS21から供給される電力を50%以上とすることが要求される。CGS定格発電容量(kWh/h/台)は、1台のCGS21の定格発電電力である。CGS熱回収容量(GJ/h/台)は、1台のCGS21の定格出力時の回収熱量である。CGS台数(台)は、CGS21の台数である。A棟ポンプ定格熱供給量(GJ/h/台)は、熱供給ポンプ31の1台当たりの供給定格熱量である。B棟ポンプ定格熱供給量 (GJ/h/台)は、熱供給ポンプ32の1台当たりの供給定格熱量である。A棟熱供給ポンプ台数(台)は、熱供給ポンプ31の台数である。そして、B棟熱供給ポンプ台数(台)は、熱供給ポンプ32の台数である。 The gas unit price (yen / m 3 ) is the price per 1 m 3 of the fuel of CGS21. The gas consumption (per CGS) (m 3 / h) is the amount of gas used when the CGS 21 is operated at the power generation capacity (per CGS) (kWh / h). The power purchase unit price (yen / kWh) is the price of the electric energy of 1 kWh when power is purchased from the power system 2. The power generation capacity (per CGS) (kWh / h) is a reference power when calculating the amount of gas used. The heat recovery capacity (per CGS) (kWh / h) is the amount of heat recovered per unit time when the CGS 21 is operated at the power generation capacity (per CGS) (kWh / h). The heat source rated power consumption (cold) (kWh / h) is the rated power consumption of the air conditioning heat source 24 when cold water is generated. The heat source rated power consumption (temperature) (kWh / h) is the rated power consumption of the air conditioning heat source 24 when hot water is generated. The heat source rated production heat quantity (cold) (kWh / h) is the heat quantity per unit time at the rated output when the chilled water of the air conditioning heat source 24 is generated. The heat source rated production heat quantity (temperature) (kWh / h) is the heat quantity per unit time at the rated output when the hot water of the air conditioning heat source 24 is generated. The lower and lower limits of heat storage (GJ), the lower limit of heat storage (GJ), the upper limit of heat storage (GJ), the upper limit of heat storage (GJ), and the full storage of heat (GJ) are set in the heat storage tank 22. These are the lower and lower limit set values, the lower limit set value, the upper limit set value, the upper upper limit set value, and the full storage set value of the heat storage amount. These set values have a relationship of lower lower limit set value <lower limit set value <upper limit set value <upper upper limit set value <full amount set value. The power purchase target value (kW) is a target value of the upper limit of the power purchase from the power system 2. The CGS minimum power generation rate (specified supply) (%) is the ratio of the power supplied from CGS 21 to the power consumed at the specified supply destination (facility 82 (building B) and facility 83 (building C) in this embodiment). This is the minimum value required by contract. For example, when the minimum power generation rate (specific supply) (%) is 50%, it is required that the purchased power be less than 50% and the power supplied from CGS21 be 50% or more among the power consumed at the specific supply destination. Will be done. The CGS rated power generation capacity (kWh / h / unit) is the rated power generation capacity of one CGS21. The CGS heat recovery capacity (GJ / h / unit) is the amount of heat recovered at the rated output of one CGS21. The number of CGS (units) is the number of CGS21. The rated heat supply amount (GJ / h / unit) of the pump in Building A is the rated heat supply amount per unit of the heat supply pump 31. The rated heat supply amount (GJ / h / unit) of the building B pump is the rated heat supply amount per unit of the heat supply pump 32. The number of heat supply pumps (units) in Building A is the number of heat supply pumps 31. The number of heat supply pumps (units) in Building B is the number of heat supply pumps 32.

上記設定値のうち、ガス単価および買電単価は、一般に、時間毎、日毎、月毎、季節毎等により変化する。したがって、ガス単価および買電単価は、所定の期間毎に複数の設定値を含んでいる。また、他の設定値は、設備の更新時や、目標の変更時等に更新される。 Of the above set values, the gas unit price and the power purchase unit price generally change depending on the hour, day, month, season, and the like. Therefore, the gas unit price and the power purchase unit price include a plurality of set values for each predetermined period. In addition, other set values are updated when the equipment is updated or when the target is changed.

負荷電力取得部12は、施設81〜83で消費された単位時間当たりの電力量を所定時間毎(例えば1分ごと等ほぼリアルタイム)に取得し、所定の記憶装置に記憶する。負荷電力取得部12は、例えば施設81〜83がそれぞれ備える通信機能を備えた電力量計と通信することで電力量を取得する。 The load power acquisition unit 12 acquires the amount of power consumed per unit time in the facilities 81 to 83 at predetermined time intervals (for example, every minute or the like in substantially real time) and stores it in a predetermined storage device. The load power acquisition unit 12 acquires the electric power by communicating with, for example, a watt-hour meter having a communication function provided in each of the facilities 81 to 83.

蓄熱量取得部13は、蓄熱槽22から蓄熱量を所定時間毎に取得し、所定の記憶装置に記憶する。 The heat storage amount acquisition unit 13 acquires the heat storage amount from the heat storage tank 22 at predetermined time intervals and stores it in a predetermined storage device.

負荷予測部14は、施設81〜83で消費される負荷電力と負荷熱量とを所定時間毎(予測単位期間毎)に予測する。なお、本実施形態では、負荷電力の予測と負荷熱量の予測を合わせて負荷予測と称する。この予測単位期間は例えば30分間である。本実施形態では、一例として、負荷予測部14が、1日3回(22:00〜、8:00〜、13:00〜)、30分単位で24時間分の負荷予測を行うこととする。負荷予測は、公知の手法を用いて行うことができ、例えば、天気予報情報や過去の運転実績データ等に基づき、ニューラルネットワーク、カルマンフィルタ等を用いて行うことができる。図1に示す構成例において負荷予測部14が負荷予測を行う項目は以下の通りである。 The load prediction unit 14 predicts the load power and the load heat amount consumed by the facilities 81 to 83 at predetermined time intervals (prediction unit period). In the present embodiment, the prediction of the load power and the prediction of the load heat amount are collectively referred to as load prediction. This prediction unit period is, for example, 30 minutes. In the present embodiment, as an example, the load prediction unit 14 performs load prediction for 24 hours in 30-minute units three times a day (22:00 to 8:00 to 13:00). .. The load prediction can be performed by using a known method, and for example, it can be performed by using a neural network, a Kalman filter, or the like based on weather forecast information, past driving record data, or the like. In the configuration example shown in FIG. 1, the items for which the load prediction unit 14 performs load prediction are as follows.

すなわち、負荷予測の項目は、(A1)A棟の負荷電力+B棟の負荷電力+C棟の負荷電力(kWh/h)、(A2)B棟の負荷電力+C棟の負荷電力(kWh/h)、(A3)A棟の負荷熱量+B棟の負荷熱量(kWh/h)、(A4)A棟の負荷熱量(kWh/h)、および(A5)B棟の負荷熱量(kWh/h)である。 That is, the items of load prediction are (A1) load power of building A + load power of building B + load power of building C (kWh / h), (A2) load power of building B + load power of building C (kWh / h). , (A3) Loaded heat in Building A + Loaded heat in Building B (kWh / h), (A4) Loaded heat in Building A (kWh / h), and (A5) Loaded heat in Building B (kWh / h). ..

上記、5項目の予測値は、(B1)A棟の負荷電力(kWh/h)、(B2)B棟の負荷電力(kWh/h)、(B3)C棟の負荷電力(kWh/h)、(B4)A棟の負荷熱量(kWh/h)および(B5)B棟の負荷熱量(kWh/h)を個別に予測し、各々の合算値から作成することができる。 The predicted values of the above five items are (B1) load power of building A (kWh / h), (B2) load power of building B (kWh / h), and (B3) load power of building C (kWh / h). , (B4) Load heat quantity (kWh / h) of Building A and (B5) Load heat quantity (kWh / h) of Building B can be individually predicted and created from the total value of each.

CGS運転計画部15は、下記の運転条件(C1)〜(C4)を満たすように、複数のCGS21の運転計画を予測単位期間毎に決定する。運転計画は、複数のCGS21による発電量の各予測単位期間における各目標値を表す情報を含む。 The CGS operation planning unit 15 determines the operation plans of a plurality of CGS 21 for each prediction unit period so as to satisfy the following operation conditions (C1) to (C4). The operation plan includes information representing each target value in each prediction unit period of the amount of power generated by the plurality of CGS 21.

(C1)CGS最低供給条件:
全ての時間帯(30分単位)で、CGS21の発電電力が、(B棟の負荷電力+C棟の負荷電力)の図3に示すCGS最低発電率以上となるように発電量を設定する。この条件は、例えば特定供給において要求される条件である。以下、CGS最低発電率が50%であるとして説明する。
(C1) Minimum supply condition of CGS:
The amount of power generation is set so that the generated power of CGS 21 becomes equal to or higher than the CGS minimum power generation rate shown in FIG. 3 (load power of building B + load power of building C) in all time zones (in units of 30 minutes). This condition is, for example, a condition required for a specific supply. Hereinafter, it will be described assuming that the minimum CGS power generation rate is 50%.

(C2)CGS最大供給条件:
全ての時間帯(30分単位)で、(A棟の負荷電力+B棟の負荷電力+C棟の負荷電力)以下でCGS21で発電する。これは、電力系統2への逆潮流を行わないようにするための条件である。
(C2) CGS maximum supply condition:
In all time zones (in units of 30 minutes), power is generated by CGS21 at (load power of building A + load power of building B + load power of building C) or less. This is a condition for preventing reverse power flow to the power system 2.

(C3)買電目標の条件:
全ての時間帯(30分単位)で、(A棟+B棟+C棟)全体での買電電力を図3に示す目標値以下にする。
(C3) Conditions for power purchase target:
In all time zones (30-minute units), the power purchase power for the entire (A building + B building + C building) shall be below the target value shown in FIG.

(C4)CGS排熱利用条件:
CGS21からの排熱はA棟への供給を優先し、余剰熱をB棟へ供給する。
(C4) CGS exhaust heat utilization conditions:
The exhaust heat from CGS21 gives priority to the supply to the A building, and the surplus heat is supplied to the B building.

CGS運転計画部15は、上記C1〜C4の条件を満たす運転計画を、CGS運転優先度決定部151およびCGS運転台数決定部152によって以下のように作成する。 The CGS operation planning unit 15 creates an operation plan satisfying the above conditions C1 to C4 by the CGS operation priority determination unit 151 and the CGS operation number determination unit 152 as follows.

CGS運転優先度決定部151は、負荷予測部14が予測した負荷電力と負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電を優先するCGS最優先モード(第1モード)と、蓄熱量に応じて発電量を決定するCGS熱優先モード(第2モード)と、買電を優先する買電優先モード(第3モード)とのいずれかを、負荷予測部14における予測単位期間と同一の所定時間毎(30分単位)に決定する。CGS運転優先度決定部151は、図3に示す設定値のガス単価(円/m)、ガス使用量(m)、買電単価(円/kWh)、発電容量(kWh/h)、熱回収容量(kWh/h)、熱源定格消費電力(kWh/h)、および熱源定格生産熱量(kWh/h)を基に、以下のD1〜D3の決め方でCGS運転優先度を決定する。 The CGS operation priority determination unit 151 prioritizes power generation based on the power generation price, heat recovery price, and power purchase price corresponding to the load power and the load heat quantity predicted by the load prediction unit 14 (first). Mode), CGS heat priority mode (second mode) in which the amount of power generation is determined according to the amount of heat stored, and power purchase priority mode (third mode) in which power purchase is prioritized are set in the load prediction unit 14. Prediction unit Determined every predetermined time (30 minutes unit) same as the period. The CGS operation priority determination unit 151 has set gas unit prices (yen / m 3 ), gas usage (m 3 ), power purchase unit price (yen / kWh), power generation capacity (kWh / h), and the like shown in FIG. Based on the heat recovery capacity (kWh / h), the heat source rated power consumption (kWh / h), and the heat source rated production heat quantity (kWh / h), the CGS operation priority is determined by the following method of determining D1 to D3.

(D1)ガス単価×ガス使用量<買電単価×発電容量の場合、CGS最優先モードに設定する。左辺のガス使用量は、右辺の発電容量を発電するのに要する値である。発電容量は、負荷予測部14が予測した負荷電力(上記(A1))である。このガス単価×ガス使用量<買電単価×発電容量という条件は、発電価格<買電価格という条件に対応する。 (D1) When gas unit price x gas usage <power purchase unit price x power generation capacity, the CGS highest priority mode is set. The amount of gas used on the left side is the value required to generate the power generation capacity on the right side. The power generation capacity is the load power ((A1) above) predicted by the load prediction unit 14. The condition of gas unit price x gas usage <power purchase unit price x power generation capacity corresponds to the condition of power generation price <power purchase price.

(D2)ガス単価×ガス使用量<買電単価×発電容量+買電単価×(熱源定格消費電力×熱回収容量÷熱源定格生産熱量)の場合、CGS熱優先モードに設定する。左辺のガス使用量と右辺の熱回収容量は、右辺の発電容量を発電するのに要する値および発電の際に回収される値である。発電容量は、負荷予測部14が予測した負荷電力(上記(A1))である。熱源定格消費電力および熱源定格生産熱量は、図3に示す設定値である。このガス単価×ガス使用量<買電単価×発電容量+買電単価×(熱源定格消費電力×熱回収容量÷熱源定格生産熱量)という条件は、発電価格+熱回収価格<買電価格という条件に対応する。 (D2) In the case of gas unit price x gas usage <power purchase unit price x power generation capacity + power purchase unit price x (heat source rated power consumption x heat recovery capacity ÷ heat source rated production heat quantity), the CGS heat priority mode is set. The amount of gas used on the left side and the heat recovery capacity on the right side are the values required to generate power on the right side and the values recovered during power generation. The power generation capacity is the load power ((A1) above) predicted by the load prediction unit 14. The heat source rated power consumption and the heat source rated production heat quantity are the set values shown in FIG. The condition of this gas unit price x gas usage <power purchase unit price x power generation capacity + power purchase unit price x (heat source rated power consumption x heat recovery capacity ÷ heat source rated production heat quantity) is the condition of power generation price + heat recovery price <power purchase price. Corresponds to.

(D3)ガス単価×ガス使用量≧買電単価×発電容量+買電単価×(熱源定格消費電力×熱回収容量÷熱源定格生産熱量)の場合、買電優先モードに設定する。各パラメータは、上記(D2)の場合と同じである。このガス単価×ガス使用量≧買電単価×発電容量+買電単価×(熱源定格消費電力×熱回収容量÷熱源定格生産熱量)という条件は、発電価格+熱回収価格≧買電価格という条件に対応する。 (D3) In the case of gas unit price × gas consumption ≧ power purchase unit price × power generation capacity + power purchase unit price × (heat source rated power consumption × heat recovery capacity ÷ heat source rated production heat quantity), the power purchase priority mode is set. Each parameter is the same as in the case of (D2) above. The condition of this gas unit price x gas usage ≥ power purchase unit price x power generation capacity + power purchase unit price x (heat source rated power consumption x heat recovery capacity ÷ heat source rated production heat quantity) is the condition that power generation price + heat recovery price ≥ power purchase price. Corresponds to.

CGS運転台数決定部152は、CGS運転優先度決定部151によるCGS最優先モード、CGS熱優先モード、または買電優先モードのいずれかの決定結果に応じて、発電量を負荷予測部14における予測単位期間と同一の所定時間毎(30分単位)に決定する。CGS運転台数決定部152(発電量決定部)は、予め設定した条件である、CGS21からの電力の最大供給条件(上記(C2))および最低供給条件(上記(C1))に基づき、優先度の決定結果に応じて次のように発電量を決定する。すなわち、CGS運転台数決定部152は、CGS最優先モード(第1モード)の場合に最大供給条件を満たすように発電量を所定時間毎に決定する。CGS運転台数決定部152は、CGS熱優先モード(第2モード)の場合に最大供給条件または最低供給条件を満たすように発電量を所定時間毎に決定する。CGS運転台数決定部152は、買電優先モード(第3モード)の場合に最低供給条件を満たすように発電量を所定時間毎に決定する。なお、本実施形態では、上述したように、発電量の増減をCGS21を運転する台数を増減することで行う。 The CGS operation number determination unit 152 predicts the amount of power generation by the load prediction unit 14 according to the determination result of any of the CGS top priority mode, the CGS heat priority mode, and the power purchase priority mode by the CGS operation priority determination unit 151. It is determined every predetermined time (30 minutes unit) which is the same as the unit period. The CGS operating number determination unit 152 (power generation amount determination unit) has a priority based on the preset conditions, that is, the maximum supply condition ((C2)) and the minimum supply condition ((C1)) of the electric power from the CGS 21. The amount of power generation is determined as follows according to the determination result of. That is, the CGS operating number determination unit 152 determines the amount of power generation at predetermined time intervals so as to satisfy the maximum supply condition in the case of the CGS highest priority mode (first mode). The CGS operating number determination unit 152 determines the amount of power generation at predetermined time intervals so as to satisfy the maximum supply condition or the minimum supply condition in the case of the CGS heat priority mode (second mode). The CGS operating number determination unit 152 determines the amount of power generation at predetermined time intervals so as to satisfy the minimum supply condition in the power purchase priority mode (third mode). In the present embodiment, as described above, the amount of power generation is increased or decreased by increasing or decreasing the number of CGS 21 operating units.

図1に示す構成では、CGS運転台数決定部152が、各時間帯のCGS21の運転台数を次のように決定する。なお、当該時間帯の運転台数を運転台数(t)、予測蓄熱量を蓄熱量(t)、予測負荷熱量を予測負荷熱量(t)として示す。また、当該時間帯の1つ前の時間帯の予測蓄熱量を蓄熱量(t−1)、運転台数(t−1)として示し、当該時間帯の1つ後の時間帯の予測蓄熱量を蓄熱量(t+1)として示す。 In the configuration shown in FIG. 1, the CGS operating number determination unit 152 determines the operating number of the CGS 21 in each time zone as follows. The number of operating units in the time zone is shown as the number of operating units (t), the predicted heat storage amount is shown as the heat storage amount (t), and the predicted load heat amount is shown as the predicted load heat amount (t). In addition, the predicted heat storage amount in the time zone immediately before the time zone is shown as the heat storage amount (t-1) and the number of operating units (t-1), and the predicted heat storage amount in the time zone immediately after the time zone is shown. It is shown as the amount of heat storage (t + 1).

(E1)CGS最優先モードの場合、CGS運転台数決定部152は、発電電力が、(A棟予測負荷電力+B棟予測負荷電力+C棟予測負荷電力)を、を上回らない範囲で(すなわちCGS最大供給条件を満たす範囲で)最大台数を選択する。 (E1) In the case of the CGS highest priority mode, the CGS operating number determination unit 152 determines the generated power within the range (that is, the CGS maximum) within the range where the generated power does not exceed (A building predicted load power + B building predicted load power + C building predicted load power). Select the maximum number (within the supply conditions).

(E2)CGS熱優先モードの場合、CGS運転台数決定部152は、各時間帯の蓄熱槽22の蓄熱量に応じて、下記(E2−1)〜(E2−3)の条件に基づいてCGS21の運転台数を決定する。なお、各蓄熱量の設定値と運転台数との関係の一例を図10に示す。図10は、蓄熱槽22の蓄熱量を横軸にとり、上から順に、蓄熱量の設定値(ゼロ〜満蓄)と、CGS21の運転台数と、A棟用の熱供給ポンプ31の運転または停止の状態と、B棟用の熱供給ポンプ32の運転または停止の状態とを示す。熱供給ポンプ31および熱供給ポンプ32の運転状態については後述する。 (E2) In the case of the CGS heat priority mode, the CGS operation number determination unit 152 determines the CGS21 based on the following conditions (E2-1) to (E2-3) according to the amount of heat stored in the heat storage tank 22 in each time zone. Determine the number of units in operation. An example of the relationship between the set value of each heat storage amount and the number of operating units is shown in FIG. In FIG. 10, the heat storage amount of the heat storage tank 22 is taken on the horizontal axis, and in order from the top, the set value of the heat storage amount (zero to full storage), the number of operating CGS21s, and the operation or stop of the heat supply pump 31 for the building A The state of the above and the state of operation or stop of the heat supply pump 32 for the building B are shown. The operating states of the heat supply pump 31 and the heat supply pump 32 will be described later.

(E2−1)蓄熱量(t−1)>蓄熱上限(設定値)かつ蓄熱量(t)<蓄熱上限の場合、運転台数(t)は発電電力が((A棟予測負荷電力+B棟予測負荷電力+C棟予測負荷電力)÷安全率)を上回らない範囲で(すなわちCGS最大供給条件を満たす範囲で)最大台数を選択する。ここで安全率は1未満の整数である。なお、CGS運転台数決定部152は、各時間帯の蓄熱量を次のように求めて予測する。 (E2-1) When the heat storage amount (t-1)> heat storage upper limit (set value) and the heat storage amount (t) <heat storage upper limit, the operating number (t) is the generated power ((A building predicted load power + B building predicted). Select the maximum number of units within the range that does not exceed (load power + predicted load power of building C) ÷ safety factor) (that is, within the range that satisfies the CGS maximum supply condition). Here, the safety factor is an integer less than 1. The CGS operating number determination unit 152 calculates and predicts the amount of heat stored in each time zone as follows.

蓄熱量(t+1)=蓄熱量(t)+熱回収容量×運転台数(t)−{予測負荷熱量(t)} Heat storage amount (t + 1) = Heat storage amount (t) + Heat recovery capacity x Number of operating units (t)-{Predicted load heat amount (t)}

蓄熱量(t)>満蓄熱量(設定値)の場合、蓄熱量(t)=満蓄熱量とする。 When the amount of heat storage (t)> the amount of full heat storage (set value), the amount of heat storage (t) = the amount of full heat storage.

蓄熱量(t)<ゼロの場合、蓄熱量(t)=ゼロとする。 When the amount of heat storage (t) <zero, the amount of heat storage (t) = zero.

蓄熱量の初期値は計算時点の現在値を使用する。 The current value at the time of calculation is used as the initial value of the amount of heat storage.

(E2−2)蓄熱量(t−1)>蓄熱上上限(設定値)の場合、運転台数(t)は発電電力が(B棟予測負荷電力+C棟予測負荷電力)のCGS最低発電率(50%)を上回る範囲で(すなわちCGS最低供給条件を満たす範囲で)最低台数を選択する。 (E2-2) When the amount of heat storage (t-1)> the upper limit of heat storage (set value), the number of operating units (t) is the CGS minimum power generation rate (predicted load power of building B + predicted load power of building C). Select the minimum number of units in the range exceeding (50%) (that is, in the range that satisfies the CGS minimum supply condition).

(E2−3)上記以外の場合、運転台数(t)は運転台数(t−1)の状態を保持する。 (E2-3) In cases other than the above, the number of operating units (t) maintains the state of the number of operating units (t-1).

(E3)買電優先モードの場合、CGS運転台数決定部152は、発電電力が、(B棟予測負荷電力+C棟予測負荷電力)のCGS最低発電率(50%)(すなわちCGS最低供給条件を満たす範囲で)最低台数を選択する。 (E3) In the power purchase priority mode, the CGS operating number determination unit 152 sets the CGS minimum power generation rate (50%) (that is, the CGS minimum supply condition) in which the generated power is (building B predicted load power + building C predicted load power). Select the minimum number (as long as it meets).

次に、熱供給ポンプ運転台数管理部16(供給熱量決定部)は、CGS運転計画部15が予想した蓄熱量に従って、優先度が高いA棟用の熱供給ポンプ31、優先度が低いB棟用の熱供給ポンプ32の運転可否を以下のルールにより決定する(図10参照)。すなわち、熱供給ポンプ運転台数管理部16は、CGS運転計画部15が予測した蓄熱槽22の蓄熱量に基づき、供給熱量を負荷予測部14における予測単位期間と同一の所定時間毎(30分単位)に決定する。 Next, the heat supply pump operation number management unit 16 (heat supply amount determination unit) has a heat supply pump 31 for building A having a high priority and a building B having a low priority according to the heat storage amount predicted by the CGS operation planning unit 15. Whether or not the heat supply pump 32 can be operated is determined according to the following rules (see FIG. 10). That is, the heat supply pump operation number management unit 16 sets the heat supply amount every predetermined time (30 minutes unit) which is the same as the prediction unit period in the load prediction unit 14 based on the heat storage amount of the heat storage tank 22 predicted by the CGS operation planning unit 15. ).

(F1)蓄熱量(t)<蓄熱下下限(設定値)の場合、A棟用の熱供給ポンプ31を停止するとともに、B棟用の熱供給ポンプ32を停止する。なお、すでに停止している場合には停止状態を保持する。 (F1) When the amount of heat storage (t) <lower limit of heat storage (set value), the heat supply pump 31 for building A is stopped and the heat supply pump 32 for building B is stopped. If it has already stopped, the stopped state is maintained.

(F2)蓄熱量(t−1)<蓄熱下限(設定値)かつ蓄熱量(t)>蓄熱下限の場合、A棟用の熱供給ポンプ31を運転するとともに、B棟用の熱供給ポンプ32を停止する。なお、すでに停止している場合には停止状態を保持する。 (F2) When the heat storage amount (t-1) <heat storage lower limit (set value) and heat storage amount (t)> heat storage lower limit, the heat supply pump 31 for building A is operated and the heat supply pump 32 for building B is operated. To stop. If it has already stopped, the stopped state is maintained.

(F3)蓄熱量(t−1)>蓄熱上上限(設定値)かつ蓄熱量(t)<蓄熱上上限の場合、
A棟用の熱供給ポンプ31を運転するとともに、B棟用の熱供給ポンプ32を停止する。なお、すでに停止している場合には運転状態を保持する。
(F3) When the amount of heat storage (t-1)> the upper limit of heat storage (set value) and the amount of heat storage (t) <the upper limit of heat storage
The heat supply pump 31 for the building A is operated, and the heat supply pump 32 for the building B is stopped. If it has already stopped, the operating state is maintained.

(F4)蓄熱量(t)=満蓄熱量の場合、A棟用の熱供給ポンプ31を運転するとともに、B棟用の熱供給ポンプ32を運転する。なお、すでに運転している場合には運転状態を保持する。 (F4) When the heat storage amount (t) = full heat storage amount, the heat supply pump 31 for the building A is operated and the heat supply pump 32 for the building B is operated. If it is already in operation, the operating state is maintained.

(F5)上記以外の場合、A棟用の熱供給ポンプ31の運転可否(t)は、運転可否(t−1)の状態と同じとする。B棟用の熱供給ポンプ32の運転可否(t)は、運転可否(t−1)の状態と同じとする。 (F5) In cases other than the above, the operability (t) of the heat supply pump 31 for the building A is the same as the operability (t-1) state. The operability (t) of the heat supply pump 32 for the building B is the same as the operability (t-1).

以上のルールによれば、図10に示すように、停止しているA棟用の熱供給ポンプ31は、蓄熱量が蓄熱下限を上回った場合に運転され、運転しているA棟用の熱供給ポンプ31は、蓄熱量が蓄熱下下限を下回った場合に停止される。また、停止しているB棟用の熱供給ポンプ32は、蓄熱量が満蓄を上回った場合に運転され、運転しているB棟用の熱供給ポンプ32は、蓄熱量が蓄熱上上限を下回った場合に停止される。 According to the above rule, as shown in FIG. 10, the stopped heat supply pump 31 for building A is operated when the amount of heat storage exceeds the lower limit of heat storage, and the heat for building A that is operating is operated. The supply pump 31 is stopped when the amount of heat storage falls below the lower limit of heat storage. Further, the stopped heat supply pump 32 for building B is operated when the amount of heat storage exceeds the full storage amount, and the operating heat supply pump 32 for building B is operated when the amount of heat storage exceeds the upper limit of heat storage. If it falls below, it will be stopped.

次に、熱供給ポンプ運転台数管理部16は、上記ルールにより、A棟用の熱供給ポンプ31およびB棟用の熱供給ポンプ32またはA棟用の熱供給ポンプ31が『運転』と判断された場合、以下のルールによりA棟用の熱供給ポンプ31およびB棟用の熱供給ポンプ32またはA棟用の熱供給ポンプ31の運転台数を決定する。 Next, the heat supply pump operating number management unit 16 determines that the heat supply pump 31 for building A and the heat supply pump 32 for building B or the heat supply pump 31 for building A are "operating" according to the above rules. In this case, the number of operating units of the heat supply pump 31 for building A and the heat supply pump 32 for building B or the heat supply pump 31 for building A is determined according to the following rules.

(G1)A棟予測負荷熱量<A棟ポンプ定格熱供給量×最大台数の場合、A棟用の熱供給ポンプ31の運転台数を、(A棟予測負荷熱量<A棟ポンプ定格熱供給量×運転台数)を満たす最小となる運転台数とする。ただし、本実施形態では、熱供給ポンプ31の台数を1台としているため、0台の運転(すなわち停止)が決定される。これに対し、熱供給ポンプ31の台数を複数台とする場合は、(A棟予測負荷熱量<A棟ポンプ定格熱供給量×運転台数)を満たす最小となる運転台数が選択される。 (G1) When the predicted load heat amount of building A <rated heat supply amount of pump in building A x maximum number, the number of operating heat supply pumps 31 for building A is calculated as (estimated load heat amount of building A <rated heat supply amount of pump in building A x). The minimum number of operating units that satisfies the number of operating units). However, in the present embodiment, since the number of heat supply pumps 31 is one, the operation (that is, stop) of zero is determined. On the other hand, when the number of heat supply pumps 31 is a plurality of units, the minimum number of operating units satisfying (predicted load heat amount in building A <rated heat supply amount of pumps in building A x number of operating units) is selected.

(G2)A棟予測負荷熱量>A棟ポンプ定格熱供給量×最大台数の場合、A棟用の熱供給ポンプ31の運転台数を最大台数とする。ただし、本実施形態では、熱供給ポンプ31の台数を1台としているため、1台の運転が決定される。これに対し、熱供給ポンプ31の台数を複数台とする場合は、最大の運転台数が選択される。 (G2) When the predicted load heat amount in Building A> the rated heat supply amount of the pump in Building A x the maximum number, the number of operating heat supply pumps 31 for Building A is the maximum number. However, in the present embodiment, since the number of heat supply pumps 31 is one, the operation of one is determined. On the other hand, when the number of heat supply pumps 31 is a plurality of units, the maximum number of operating units is selected.

(G3)B棟予測負荷熱量<B棟ポンプ定格熱供給量×最大台数の場合、B棟用の熱供給ポンプ32の運転台数を、B棟予測負荷熱量<B棟ポンプ定格熱供給量×運転台数を満たす最小となる運転台数とする。ただし、本実施形態では、熱供給ポンプ32の台数を1台としているため、0台の運転(すなわち停止)が決定される。これに対し、熱供給ポンプ32の台数を複数台とする場合は、(B棟予測負荷熱量<B棟ポンプ定格熱供給量×運転台数)を満たす最小となる運転台数が選択される。 (G3) When the predicted load heat amount of building B <rated heat supply amount of pump in building B x maximum number, the number of operating heat supply pumps 32 for building B is calculated as the predicted load heat amount of building B <rated heat supply amount of pump in building B x operation. The minimum number of operating units that satisfies the number of units. However, in the present embodiment, since the number of heat supply pumps 32 is one, the operation (that is, stop) of zero is determined. On the other hand, when the number of heat supply pumps 32 is a plurality of units, the minimum number of operating units satisfying (predicted load heat amount in building B <rated heat supply amount of pumps in building B x number of operating units) is selected.

(G4)B棟予測負荷熱量>B棟ポンプ定格熱供給量×最大台数の場合、B棟用の熱供給ポンプ32の運転台数を最大台数とする。ただし、本実施形態では、熱供給ポンプ32の台数を1台としているため、1台の運転が決定される。これに対し、熱供給ポンプ32の台数を複数台とする場合は、最大の運転台数が選択される。 (G4) When the predicted load heat amount in Building B> the rated heat supply amount of the pump in Building B × the maximum number, the number of operating heat supply pumps 32 for Building B is set to the maximum number. However, in the present embodiment, since the number of heat supply pumps 32 is one, the operation of one is determined. On the other hand, when the number of heat supply pumps 32 is a plurality of units, the maximum number of operating units is selected.

また、CGS運転補正部17は、負荷電力取得部12を用いてほぼリアルタイム(略実時間で)で施設81〜83の負荷電力(実際の計測結果)を監視し、上記(C1)のCGS最低供給条件および(C3)の買電目標の条件を満足するように、次のようにしてCGS21の運転台数をCGS運転計画部15が決定した値から増減する(値を補正する)。このCGS運転補正部17による発電量の補正をリアルタイムに実行することで、最低供給条件および買電目標の条件をほぼすべての時間帯で実際に満足することができる。 Further, the CGS operation correction unit 17 monitors the load power (actual measurement result) of the facilities 81 to 83 in almost real time (in substantially real time) using the load power acquisition unit 12, and the CGS minimum of the above (C1). The number of operating units of the CGS 21 is increased / decreased (corrected) from the value determined by the CGS operation planning unit 15 as follows so as to satisfy the supply condition and the condition of the power purchase target of (C3). By executing the correction of the amount of power generation by the CGS operation correction unit 17 in real time, the minimum supply condition and the power purchase target condition can be actually satisfied in almost all time zones.

(H1)CGS運転補正部17は、リアルタイムで(B棟の負荷電力+C棟の負荷電力)を監視し、30分単位で(B棟の負荷電力+C棟負荷電力)のCGS最低発電率(50%)(CGS最低供給条件)以上発電できない場合、CGS21の台数を増加させる。 (H1) The CGS operation correction unit 17 monitors (load power of building B + load power of building C) in real time, and CGS minimum power generation rate (50) of (load power of building B + load power of building C) in 30-minute units. %) (CGS minimum supply condition) or more, the number of CGS21 is increased.

(H2)CGS運転補正部17は、また、リアルタイムで(A棟の負荷電力+B棟の負荷電力+C棟の負荷電力)を監視し、30分単位で買電目標を超過する場合、CGS21の台数を増加させる。 (H2) The CGS operation correction unit 17 also monitors (load power of building A + load power of building B + load power of building C) in real time, and if the power purchase target is exceeded in 30-minute units, the number of CGS 21 units. To increase.

また、デマンドレスポンス制御部18は、負荷電力取得部12を用いてリアルタイムで施設81〜83の負荷電力を監視し、以下の場合に、デマンドレスポンス、すなわち、予め定めた1または複数の施設81〜83に対して負荷電力の低減要求を送信する。デマンドレスポンスを受けた1または複数の施設81〜83では、例えば照明や空調を調整することで消費電力を低下させる。 Further, the demand response control unit 18 monitors the load power of the facilities 81 to 83 in real time by using the load power acquisition unit 12, and in the following cases, the demand response, that is, one or a plurality of predetermined facilities 81 to 81 A load power reduction request is transmitted to 83. In one or more facilities 81 to 83 that have received the demand response, power consumption is reduced by, for example, adjusting lighting and air conditioning.

(I1)デマンドレスポンス制御部18は、リアルタイムでB棟負荷電力+C棟負荷電力を監視し、CGS運転補正部17によるCGS運転補正後も30分単位で(B棟の負荷電力+C棟負荷電力)のCGS最低発電率(50%)(CGS最低供給条件)以上発電できない場合、B棟およびC棟のデマンドレスポンスを実施する。 (I1) The demand response control unit 18 monitors the load power of building B + the load power of building C in real time, and even after the CGS operation correction by the CGS operation correction unit 17, it is in units of 30 minutes (load power of building B + load power of building C). If power cannot be generated above the CGS minimum power generation rate (50%) (CGS minimum supply condition), demand response for buildings B and C will be implemented.

(I2)デマンドレスポンス制御部18は、リアルタイムで(A棟の負荷電力+B棟の負荷電力+C棟の負荷電力)を監視し、30分単位で買電目標を超過する場合、A棟、B棟およびC棟のデマンドレスポンスを実施する。 (I2) The demand response control unit 18 monitors (load power of building A + load power of building B + load power of building C) in real time, and when the power purchase target is exceeded in 30-minute units, buildings A and B And the demand response of Building C will be implemented.

また、CGSローテーション管理部19は、CGS21の運転頻度にできるだけ偏りが生じないようにするため、上述したようにしてCGS21の台数を増減する場合に次の制御を行う。すなわち、CGSローテーション管理部19は、CGS21の台数を増加させる際、運転時間(積算発電量、起動回数)が小さいものを優先起動する。また、CGSローテーション管理部19は、CGS21の台数を減少する際、運転時間(積算発電量、起動回数)が大きいものを優先停止する。 Further, the CGS rotation management unit 19 performs the following control when increasing or decreasing the number of CGS 21 as described above in order to prevent the operation frequency of the CGS 21 from being biased as much as possible. That is, when increasing the number of CGS 21, the CGS rotation management unit 19 preferentially activates the one having a small operation time (integrated power generation amount, number of activations). Further, when the number of CGS 21s is reduced, the CGS rotation management unit 19 preferentially stops the one having a long operation time (integrated power generation amount, number of starts).

次に、図4〜図9を参照して、エネルギシステム管理装置1の処理の流れについて説明する。図4は、図2に示すエネルギシステム管理装置1の動作例を示すフローチャートである。図5は、図4のステップS12における処理を示すフローチャートである。図6は、図4のステップS13における処理を示すフローチャートである。図7は、図6のステップS33における処理を示すフローチャートである。図8および図9は、図4のステップS14における処理を示すフローチャートである。 Next, the processing flow of the energy system management device 1 will be described with reference to FIGS. 4 to 9. FIG. 4 is a flowchart showing an operation example of the energy system management device 1 shown in FIG. FIG. 5 is a flowchart showing the process in step S12 of FIG. FIG. 6 is a flowchart showing the process in step S13 of FIG. FIG. 7 is a flowchart showing the process in step S33 of FIG. 8 and 9 are flowcharts showing the processing in step S14 of FIG.

エネルギシステム管理装置1は、ユーザの指示に従い、運用に先立ち、パラメータ設定部11によって図3に示すような各種設定値を入力して、記憶する。運用を開始すると、エネルギシステム管理装置1は、例えば1日3回(22:00〜、8:00〜、13:00〜)、図4に示す処理を実行する。 The energy system management device 1 inputs and stores various setting values as shown in FIG. 3 by the parameter setting unit 11 prior to the operation according to the instruction of the user. When the operation is started, the energy system management device 1 executes the process shown in FIG. 4 three times a day (22:00 to 8:00 to 13:00), for example.

エネルギシステム管理装置1は、まず、負荷予測部14によって30分単位で24時間分の負荷予測を行う(ステップS11)。 First, the energy system management device 1 performs load prediction for 24 hours in 30-minute units by the load prediction unit 14 (step S11).

次に、CGS運転計画部15が、運転優先度決定部151によって図5に示すフローを繰り返し実行し、24時間分の30分毎の運転優先度を決定する(ステップS12)。図5に示すフローでは、運転優先度決定部151が、当該時間帯の予測負荷を発電した場合の発電価格が同電力を買電した場合の買電価格より小さいか否かを判定する(ステップS21)。発電価格が買電価格より小さい場合(ステップS21:Yes)、運転優先度決定部151は、CGS運転優先度をCGS最優先モードに決定する(ステップS22)。発電価格が買電価格より小さくない場合(ステップS21:No)、運転優先度決定部151は、当該時間帯の予測負荷を発電した場合の発電価格と熱回収価格との合算値が同電力を買電した場合の買電価格より小さいか否かを判定する(ステップS23)。発電価格と熱回収価格との合算値が買電価格より小さい場合(ステップS23:Yes)、運転優先度決定部151は、CGS運転優先度をCGS熱優先モードに決定する(ステップS24)。発電価格と熱回収価格との合算値が買電価格より小さくない場合(ステップS23:No)、運転優先度決定部151は、CGS運転優先度を買電優先モードに決定する(ステップS25)。 Next, the CGS operation planning unit 15 repeatedly executes the flow shown in FIG. 5 by the operation priority determination unit 151, and determines the operation priority every 30 minutes for 24 hours (step S12). In the flow shown in FIG. 5, the operation priority determination unit 151 determines whether or not the power generation price when the predicted load in the time zone is generated is smaller than the power purchase price when the same power is purchased (step). S21). When the power generation price is smaller than the power purchase price (step S21: Yes), the operation priority determination unit 151 determines the CGS operation priority to the CGS highest priority mode (step S22). When the power generation price is not smaller than the power purchase price (step S21: No), the operation priority determination unit 151 determines that the total value of the power generation price and the heat recovery price when the predicted load in the time zone is generated is the same power. It is determined whether or not the price is smaller than the power purchase price when the power is purchased (step S23). When the total value of the power generation price and the heat recovery price is smaller than the power purchase price (step S23: Yes), the operation priority determination unit 151 determines the CGS operation priority to the CGS heat priority mode (step S24). When the total value of the power generation price and the heat recovery price is not smaller than the power purchase price (step S23: No), the operation priority determination unit 151 determines the CGS operation priority to the power purchase priority mode (step S25).

次に、CGS運転計画部15は、CGS運転台数決定部152によって図6に示すフローを繰り返し実行し、24時間分の30分毎の運転台数を決定する(ステップS13)。CGS運転台数決定部152は、ステップS12で決定されたCGS運転優先度がCGS最優先モードの場合(ステップS31:CGS最優先モード)、CGS最大供給条件を上回らない範囲で最大台数を選択する(ステップS32)。また、CGS運転台数決定部152は、ステップS12で決定されたCGS運転優先度がCGS熱優先モードの場合(ステップS31:CGS熱優先モード)、各時間帯の蓄熱槽22の蓄熱量に応じてCGS21の運転台数を決定する(ステップS33)。また、CGS運転台数決定部152は、ステップS12で決定されたCGS運転優先度が買電優先モードの場合(ステップS31:買電優先モード)、CGS最低供給条件を上回る範囲で最低台数を選択する(ステップS34)。 Next, the CGS operation planning unit 15 repeatedly executes the flow shown in FIG. 6 by the CGS operation number determination unit 152, and determines the operation number every 30 minutes for 24 hours (step S13). When the CGS operation priority determined in step S12 is the CGS highest priority mode (step S31: CGS highest priority mode), the CGS operation number determination unit 152 selects the maximum number within a range not exceeding the CGS maximum supply condition (step S31: CGS highest priority mode). Step S32). Further, when the CGS operation priority determined in step S12 is the CGS heat priority mode (step S31: CGS heat priority mode), the CGS operation number determination unit 152 responds to the heat storage amount of the heat storage tank 22 in each time zone. The number of CGS21s in operation is determined (step S33). Further, when the CGS operation priority determined in step S12 is the power purchase priority mode (step S31: power purchase priority mode), the CGS operation number determination unit 152 selects the minimum number within the range exceeding the CGS minimum supply condition. (Step S34).

また、図6のステップS33の処理では、図7に示すように、CGS運転台数決定部152が、蓄熱量(t−1)>蓄熱上限(設定値)かつ蓄熱量(t)<蓄熱上限であるか否かを判定する(ステップS41)。蓄熱量(t−1)>蓄熱上限(設定値)かつ蓄熱量(t)<蓄熱上限が成立する場合(ステップS41:Yes)、CGS運転台数決定部152は、運転台数(t)としてCGS最大供給条件を上回らない範囲で最大台数を選択する(ステップS42)。一方、蓄熱量(t−1)>蓄熱上限(設定値)かつ蓄熱量(t)<蓄熱上限が不成立の場合(ステップS41:No)、CGS運転台数決定部152は、蓄熱量(t−1)>蓄熱上上限(設定値)であるか否かを判定する(ステップS43)。蓄熱量(t−1)>蓄熱上上限(設定値)が成立する場合(ステップS43:Yes)、CGS運転台数決定部152は、運転台数(t)としてCGS最低供給条件を上回る範囲で最低台数を選択する(ステップS44)。他方、ステップS41の条件およびステップS43の条件が不成立の場合(ステップS41:NoおよびステップS43:No)、CGS運転台数決定部152は、運転台数(t)を運転台数(t−1)の状態で保持する(ステップS45)。 Further, in the process of step S33 of FIG. 6, as shown in FIG. 7, the CGS operating number determination unit 152 has the heat storage amount (t-1)> heat storage upper limit (set value) and the heat storage amount (t) <heat storage upper limit. It is determined whether or not there is (step S41). When the heat storage amount (t-1)> heat storage upper limit (set value) and the heat storage amount (t) <heat storage upper limit is satisfied (step S41: Yes), the CGS operating number determination unit 152 sets the maximum CGS as the operating number (t). The maximum number of units is selected within a range that does not exceed the supply conditions (step S42). On the other hand, when the heat storage amount (t-1)> the heat storage upper limit (set value) and the heat storage amount (t) <the heat storage upper limit is not established (step S41: No), the CGS operating number determination unit 152 determines the heat storage amount (t-1). )> It is determined whether or not it is the upper limit (set value) for heat storage (step S43). When the heat storage amount (t-1)> the upper limit (set value) for heat storage is satisfied (step S43: Yes), the CGS operating number determination unit 152 is the minimum number of operating units (t) within the range exceeding the CGS minimum supply condition. Is selected (step S44). On the other hand, when the condition of step S41 and the condition of step S43 are not satisfied (step S41: No and step S43: No), the CGS operating number determination unit 152 sets the operating number (t) to the operating number (t-1) state. Hold in (step S45).

以上のようにして図1のステップS13の処理が終了すると、熱供給ポンプ運転台数管理部16が図8および図9に示すフローを繰り返し実行し、24時間分の30分毎の熱供給ポンプ運転台数を決定する(ステップS14)。図8のフローでは、熱供給ポンプの運転可否すなわち運転状態を運転に設定するのか停止に設定するのかを決定する。図9のフローでは、図8のフローで運転可すなわち運転状態を運転に設定した熱供給ポンプについて運転する台数を決定する。 When the process of step S13 of FIG. 1 is completed as described above, the heat supply pump operation number management unit 16 repeatedly executes the flow shown in FIGS. 8 and 9, and operates the heat supply pump every 30 minutes for 24 hours. The number of units is determined (step S14). In the flow of FIG. 8, it is determined whether or not the heat supply pump can be operated, that is, whether the operating state is set to operation or stop. In the flow of FIG. 9, the number of heat supply pumps that can be operated, that is, the heat supply pump whose operating state is set to operation is determined in the flow of FIG.

図8のフローでは、熱供給ポンプ運転台数管理部16が、蓄熱量(t)<蓄熱下下限が成立するか否かを判定し(ステップS51)、成立する場合には(ステップS51:Yes)、すべての熱供給ポンプを運転状態を停止に設定する(ステップS52)。他方、成立しない場合には(ステップS51:No)、熱供給ポンプ運転台数管理部16が、蓄熱量(t−1)<蓄熱下限(設定値)かつ蓄熱量(t)>蓄熱下限が成立するか否かを判定し(ステップS53)、成立する場合には(ステップS53:Yes)、優先度が高い熱供給ポンプ(この例ではA棟用の熱供給ポンプ31)の運転状態を運転に設定し、優先度が低い熱供給ポンプ(この例ではB棟用の熱供給ポンプ32)を運転状態を停止に設定する(ステップS54)。 In the flow of FIG. 8, the heat supply pump operating number management unit 16 determines whether or not the heat storage amount (t) <the lower limit of the heat storage is satisfied (step S51), and if it is satisfied (step S51: Yes). , All heat supply pumps are set to stop operating (step S52). On the other hand, if it is not satisfied (step S51: No), the heat supply pump operating number management unit 16 establishes the heat storage amount (t-1) <heat storage lower limit (set value) and heat storage amount (t)> heat storage lower limit. It is determined whether or not (step S53), and if it is established (step S53: Yes), the operating state of the heat supply pump having a high priority (heat supply pump 31 for building A in this example) is set to operation. Then, the heat supply pump having a low priority (heat supply pump 32 for building B in this example) is set to stop in the operating state (step S54).

他方、成立しない場合には(ステップS53:No)、熱供給ポンプ運転台数管理部16が、蓄熱量(t−1)>蓄熱上上限(設定値)かつ蓄熱量(t)<蓄熱上上限が成立するか否かを判定し(ステップS55)、成立する場合には(ステップS55:Yes)、優先度が高い熱供給ポンプ(この例ではA棟用の熱供給ポンプ31)を運転状態を運転に設定し、優先度が低い熱供給ポンプ(この例ではB棟用の熱供給ポンプ32)を運転状態を停止に設定する(ステップS56)。 On the other hand, if it is not satisfied (step S53: No), the heat supply pump operating number management unit 16 determines that the heat storage amount (t-1)> the heat storage upper limit (set value) and the heat storage amount (t) <heat storage upper limit. It is determined whether or not it is satisfied (step S55), and if it is satisfied (step S55: Yes), the heat supply pump having a high priority (heat supply pump 31 for building A in this example) is operated. Is set to, and the heat supply pump having a low priority (heat supply pump 32 for building B in this example) is set to stop in the operating state (step S56).

他方、成立しない場合には(ステップS55:No)、熱供給ポンプ運転台数管理部16が、蓄熱量(t)=満蓄熱量が成立するか否かを判定し(ステップS57)、成立する場合には(ステップS57:Yes)、すべての熱供給ポンプを運転状態を運転に設定する(ステップS58)。他方、成立しない場合には(ステップS57:No)、熱供給ポンプ運転台数管理部16が、運転可否(t)を運転可否(t−1)の状態と同じとする。 On the other hand, if it does not hold (step S55: No), the heat supply pump operating number management unit 16 determines whether or not the heat storage amount (t) = full heat storage amount holds (step S57), and if it holds. (Step S57: Yes), all heat supply pumps are set to operation (step S58). On the other hand, if it is not satisfied (step S57: No), the heat supply pump operating number management unit 16 sets the operation enable / not (t) as the operation enable / not (t-1) state.

図9のフローは、図8のフローで運転可に設定された熱供給ポンプ毎に実行される。図9のフローでは、熱供給ポンプ運転台数管理部16が、まず、供給先予測負荷熱量<ポンプ定格熱供給量×最大台数が成立するか否かを判定し(ステップS61)、成立する場合には(ステップS61:Yes)、当該供給先向け熱供給ポンプの運転台数を、「供給先予測負荷熱量<ポンプ定格熱供給量×運転台数」を満たす最小となる運転台数とする(ステップS62)。一方、成立しない場合には(ステップS61:No)、当該供給先向け熱供給ポンプの運転台数を最大台数とする(ステップS63)。 The flow of FIG. 9 is executed for each heat supply pump set to be operable in the flow of FIG. In the flow of FIG. 9, the heat supply pump operating number management unit 16 first determines whether or not the predicted supply destination heat amount <pump rated heat supply amount × maximum number of units is satisfied (step S61), and if it is satisfied. (Step S61: Yes) sets the number of operating heat supply pumps for the supply destination to the minimum number of operations that satisfies "predicted load heat amount of supply destination <rated heat supply amount of pump x number of operating units" (step S62). On the other hand, if it is not satisfied (step S61: No), the number of operating heat supply pumps for the supply destination is set to the maximum number (step S63).

図9のフローを図1に示す構成例に対応させると次のように読み替えることができる。すなわち、A棟用の熱供給ポンプ31が運転に設定されている場合、熱供給ポンプ運転台数管理部16は、A棟予測負荷熱量<A棟ポンプ定格熱供給量×最大台数の場合(ステップS61:Yes)、A棟用の熱供給ポンプ31の運転台数を、「A棟予測負荷熱量<A棟ポンプ定格熱供給量×運転台数」を満たす最小となる運転台数とする(ステップS62)。また、熱供給ポンプ運転台数管理部16は、A棟予測負荷熱量≧A棟ポンプ定格熱供給量×最大台数の場合(ステップS61:No)、A棟用の熱供給ポンプ31の運転台数を最大台数とする(ステップS63)。 When the flow of FIG. 9 corresponds to the configuration example shown in FIG. 1, it can be read as follows. That is, when the heat supply pump 31 for the building A is set to operate, the heat supply pump operating number management unit 16 is in the case where the predicted load heat amount in the building A <rated heat supply amount of the pump in the building A × the maximum number (step S61). : Yes), the number of operating heat supply pumps 31 for building A is set to the minimum number of operating units that satisfies "estimated load heat amount in building A <rated heat supply amount of pump in building A x number of operating units" (step S62). Further, the heat supply pump operating number management unit 16 maximizes the operating number of the heat supply pump 31 for building A when the predicted load heat amount in building A ≥ the rated heat supply amount of the pump in building A × the maximum number (step S61: No). The number is set (step S63).

また、B棟用の熱供給ポンプ32が運転に設定されている場合、熱供給ポンプ運転台数管理部16は、B棟予測負荷熱量<B棟ポンプ定格熱供給量×最大台数の場合(ステップS61:Yes)、B棟用の熱供給ポンプ32の運転台数を、「B棟予測負荷熱量<B棟ポンプ定格熱供給量×運転台数」を満たす最小となる運転台数とする(ステップS62)。また、熱供給ポンプ運転台数管理部16は、B棟予測負荷熱量≧B棟ポンプ定格熱供給量×最大台数の場合(ステップS61:No)、B棟用の熱供給ポンプ32の運転台数を最大台数とする(ステップS63)。 Further, when the heat supply pump 32 for the building B is set to operate, the heat supply pump operating number management unit 16 is in the case where the predicted load heat amount in the building B <rated heat supply amount of the pump in the building B × the maximum number (step S61). : Yes), the number of operating heat supply pumps 32 for building B is set to the minimum number of operating units that satisfies "estimated load heat amount of building B <rated heat supply amount of pump of building B x number of operating units" (step S62). Further, the heat supply pump operating number management unit 16 maximizes the operating number of the heat supply pump 32 for building B when the predicted load heat amount in building B ≥ the rated heat supply amount of the pump in building B × the maximum number (step S61: No). The number is set (step S63).

以上のようにしてエネルギシステム管理装置1は、図4に示す処理を実行することで、24時間分のCGS21および熱供給ポンプ31および32の運転計画を作成し、各時間帯において計画した内容でCGS21および熱供給ポンプ31および32を制御する。
本実施形態のエネルギシステム管理装置1によれば、図3に示す設定値(設計条件)を入力するだけで、運転条件に従った最適な設備運転計画(例えば30分単位で24時間分のCGSの台数と熱供給ポンプの台数)が出力される。
As described above, the energy system management device 1 creates an operation plan for the CGS 21 and the heat supply pumps 31 and 32 for 24 hours by executing the process shown in FIG. 4, and the contents planned in each time zone are used. It controls the CGS 21 and the heat supply pumps 31 and 32.
According to the energy system management device 1 of the present embodiment, only by inputting the set value (design condition) shown in FIG. 3, the optimum equipment operation plan according to the operating condition (for example, CGS for 24 hours in 30-minute units) And the number of heat supply pumps) are output.

また、本実施形態によれば、予測した負荷電力と負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき運転の形態がCGS最優先モード、CGS熱優先モードまたは買電優先モードのいずれかに決定され、その決定結果に応じて発電量が所定時間毎に決定される。この構成によれば、各モードに分けずに発電量と供給熱量とを管理する場合と比較して、発電量を容易に適切に管理することができる。また、予測した蓄熱量に基づき供給熱量が決定されるので、熱管理を効率的に行うことができる。 Further, according to the present embodiment, the operation mode is CGS top priority mode, CGS heat priority mode, or power purchase priority based on the power generation price, heat recovery price, and power purchase price corresponding to the predicted load power and load heat quantity. It is determined to be one of the modes, and the amount of power generation is determined at predetermined time intervals according to the determination result. According to this configuration, the amount of power generation can be easily and appropriately managed as compared with the case where the amount of power generation and the amount of heat supplied are managed without dividing into each mode. Moreover, since the amount of heat supplied is determined based on the predicted amount of heat storage, heat management can be performed efficiently.

また、エネルギシステム管理装置1は、負荷電力をほぼリアルタイムで監視し、CGS21による発電量を補正することでCGS最低供給条件(特定供給等の条件)と買電の目標条件とを精度良く管理することができる。 Further, the energy system management device 1 monitors the load power in almost real time and corrects the amount of power generated by the CGS 21 to accurately manage the CGS minimum supply condition (condition such as specific supply) and the target condition for purchasing power. be able to.

なお、本発明の実施の形態は上記のものに限定されない。例えば、エネルギシステム管理装置1は、複数のコンピュータを有し、各コンピュータが分散して配置されていたり、CGS21や熱供給ポンプ31および32の制御を、エネルギシステム管理装置1とは別のコンピュータが行うようになっていたりしてもよい。また、エネルギシステム管理装置1は、例えばBEMS(Building Energy Management System)の管理装置等に含まれていてもよい。また、図2に示すエネルギシステム管理装置1が有する各機能ブロックは、他のブロックと統合されていたり、各ブロックが複数のブロックに分割されていたりしてもよい。また、図3に示すパラメータの構成は一例であって、例えば施設の優先度、特定供給関係の有無等を表すデータを含んでいてもよい。また、本実施形態のエネルギシステム管理装置1を構成するプログラムの一部または全部は、コンピュータ読取可能な記録媒体や通信回線を介して頒布することができる。 The embodiment of the present invention is not limited to the above. For example, the energy system management device 1 has a plurality of computers, and each computer is distributed and arranged, or a computer different from the energy system management device 1 controls the CGS 21 and the heat supply pumps 31 and 32. You may be able to do it. Further, the energy system management device 1 may be included in, for example, a management device of a BEMS (Building Energy Management System) or the like. Further, each functional block included in the energy system management device 1 shown in FIG. 2 may be integrated with other blocks, or each block may be divided into a plurality of blocks. Further, the configuration of the parameters shown in FIG. 3 is an example, and may include data indicating, for example, the priority of the facility, the presence or absence of a specific supply relationship, and the like. Further, a part or all of the programs constituting the energy system management device 1 of the present embodiment can be distributed via a computer-readable recording medium or a communication line.

100 エネルギシステム
1 エネルギシステム管理装置
11 パラメータ設定部(設定部)
12 負荷電力取得部
13 蓄熱量取得部
14 負荷予測部
15 CGS運転計画部
151 CGS運転優先度決定部(運転優先度決定部)
152 CGS運転台数決定部(発電量決定部)
16 熱供給ポンプ運転台数管理部(供給熱量決定部)
17 CGS運転補正部(運転補正部)
18 デマンドレスポンス制御部
19 CGSローテーション管理部
2 電力系統
21 CGS(コージェネレーションシステム;熱電併給設備)
22 蓄熱槽(蓄熱設備)
23 冷凍機
24 空調熱源
31 熱供給ポンプ
32 熱供給ポンプ
81 施設(A棟)
82 施設(B棟)
83 施設(C棟)
100 Energy system 1 Energy system management device 11 Parameter setting unit (setting unit)
12 Load power acquisition unit 13 Heat storage amount acquisition unit 14 Load prediction unit 15 CGS operation planning unit 151 CGS operation priority determination unit (operation priority determination unit)
152 CGS operating number determination unit (power generation amount determination unit)
16 Heat supply pump operation number management unit (heat supply amount determination unit)
17 CGS operation correction unit (operation correction unit)
18 Demand response control unit 19 CGS rotation management unit 2 Power system 21 CGS (cogeneration system; combined heat and power equipment)
22 Heat storage tank (heat storage equipment)
23 Refrigerator 24 Air conditioning heat source 31 Heat supply pump 32 Heat supply pump 81 Facility (Building A)
82 facilities (building B)
83 facilities (building C)

Claims (6)

熱電併給設備と前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備とを備えるエネルギシステムにおいて、前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理する装置であって、
負荷電力と負荷熱量とを所定時間毎に予測する負荷予測部と、
前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定する運転優先度決定部と、
前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定する発電量決定部と、
予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定する供給熱量決定部と
を備えるエネルギシステム管理装置。
A device that manages the amount of power generated by the combined heat and power equipment and the amount of heat supplied from the combined heat and power equipment in an energy system including a combined heat and power equipment and a heat storage equipment that stores heat from waste heat recovered by the combined heat and power equipment. ,
A load prediction unit that predicts load power and load heat at predetermined time intervals,
Based on the power generation price, heat recovery price, and power purchase price corresponding to the load power and the load heat quantity predicted by the load prediction unit, priority is given to power generation set when the power generation price is smaller than the power purchase price . The first mode , the second mode in which the power generation amount is determined according to the heat storage amount of the heat storage facility set when the total value of the power generation price and the heat recovery price is smaller than the power purchase price, and the power generation price and heat recovery An operation priority determination unit that determines one of the third modes for prioritizing power purchase, which is set when the total value with the price is not smaller than the power purchase price, at the predetermined time intervals.
A power generation amount determination unit that determines the power generation amount at predetermined time intervals according to the determination result of any one of the first mode to the third mode by the operation priority determination unit.
An energy system management device including a heat supply amount determining unit that determines the heat supply amount at predetermined time intervals based on the predicted heat storage amount of the heat storage facility.
前記発電量決定部が、予め設定した前記熱電併給設備からの電力の最大供給条件および最低供給条件に基づき、前記第1モードの場合に前記最大供給条件を満たすように前記発電量を前記所定時間毎に決定し、前記第2モードの場合に前記最大供給条件または前記最低供給条件を満たすように前記発電量を前記所定時間毎に決定し、前記第3モードの場合に前記最低供給条件を満たすように前記発電量を前記所定時間毎に決定する
請求項1に記載のエネルギシステム管理装置。
Based on the maximum supply condition and the minimum supply condition of the electric power from the combined heat and power supply facility set in advance, the power generation amount determination unit determines the power generation amount for the predetermined time so as to satisfy the maximum supply condition in the case of the first mode. The amount of power generation is determined every predetermined time so as to satisfy the maximum supply condition or the minimum supply condition in the case of the second mode, and the minimum supply condition is satisfied in the case of the third mode. The energy system management device according to claim 1, wherein the amount of power generation is determined every predetermined time.
前記最低供給条件および前記買電の目標条件を満足するように、前記発電量決定部が決定した発電量を、前記負荷電力の実際の計測結果に基づき略実時間で補正する運転補正部を
さらに備える請求項2に記載のエネルギシステム管理装置。
Further, an operation correction unit that corrects the power generation amount determined by the power generation amount determination unit in substantially real time based on the actual measurement result of the load power so as to satisfy the minimum supply condition and the target condition for power purchase. The energy system management device according to claim 2.
前記供給熱量決定部が、前記予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を増大させる場合の前記蓄熱量の設定値と前記供給熱量を減少させる場合の前記蓄熱量の設定値とを異ならせて、前記供給熱量を前記所定時間毎に決定する
請求項1〜3いずれか1項に記載のエネルギシステム管理装置。
Based on the predicted heat storage amount of the heat storage facility, the heat supply amount determining unit sets a set value of the heat storage amount when the heat supply amount is increased and a set value of the heat storage amount when the heat supply amount is decreased. The energy system management device according to any one of claims 1 to 3, wherein the amount of heat supplied is determined at each predetermined time.
熱電併給設備と前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備とを備えたエネルギシステムにおいて、前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理する方法であって、
負荷予測部によって、負荷電力と負荷熱量とを所定時間毎に予測し、
運転優先度決定部によって、前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定し、
発電量決定部によって、前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定し、
供給熱量決定部によって、予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定する
エネルギシステム管理方法。
It is a method of managing the amount of power generated by the combined heat and power equipment and the amount of heat supplied from the combined heat and power equipment in an energy system including the combined heat and power equipment and the heat storage equipment that stores the heat generated by the waste heat recovered by the combined heat and power equipment. hand,
The load prediction unit predicts the load power and the load heat amount at predetermined time intervals.
Set when the power generation price is smaller than the power purchase price based on the power generation price, heat recovery price, and power purchase price corresponding to the load power and the load heat quantity predicted by the load prediction unit by the operation priority determination unit. The first mode that gives priority to the power generation to be generated and the second mode that determines the power generation amount according to the heat storage amount of the heat storage facility set when the total value of the power generation price and the heat recovery price is smaller than the power purchase price. And , one of the third mode in which the power purchase price is prioritized, which is set when the total value of the power generation price and the heat recovery price is not smaller than the power purchase price , is determined every predetermined time.
The power generation amount determination unit determines the power generation amount at each predetermined time according to the determination result of any one of the first mode to the third mode by the operation priority determination unit.
An energy system management method in which the heat supply amount is determined at predetermined time intervals based on the predicted heat storage amount of the heat storage facility by the heat supply amount determination unit.
熱電併給設備と、
前記熱電併給設備が回収した廃熱による熱を蓄熱する蓄熱設備と、
前記熱電併給設備の発電量と前記蓄熱設備からの供給熱量とを管理するエネルギシステム管理装置と
を備え、
前記エネルギシステム管理装置が、
負荷電力と負荷熱量とを所定時間毎に予測する負荷予測部と、
前記負荷予測部が予測した前記負荷電力と前記負荷熱量とに対応する発電価格と熱回収価格と買電価格とに基づき、発電価格が買電価格より小さい場合に設定される発電を優先する第1モードと、発電価格と熱回収価格との合算値が買電価格より小さい場合に設定される前記蓄熱設備の蓄熱量に応じて前記発電量を決定する第2モードと、発電価格と熱回収価格との合算値が買電価格より小さくない場合に設定される買電を優先する第3モードとのいずれかを前記所定時間毎に決定する運転優先度決定部と、
前記運転優先度決定部による前記第1モード〜前記第3モードのいずれかの決定結果に応じて、前記発電量を前記所定時間毎に決定する発電量決定部と、
予測した前記蓄熱設備の蓄熱量に基づき、前記供給熱量を前記所定時間毎に決定する供給熱量決定部と
を有する
エネルギシステム。
Combined heat and power equipment and
A heat storage facility that stores heat from waste heat recovered by the combined heat and power supply facility, and a heat storage facility.
It is equipped with an energy system management device that manages the amount of power generated by the combined heat and power equipment and the amount of heat supplied from the heat storage equipment.
The energy system management device
A load prediction unit that predicts load power and load heat at predetermined time intervals,
Based on the power generation price, heat recovery price, and power purchase price corresponding to the load power and the load heat quantity predicted by the load prediction unit, priority is given to power generation set when the power generation price is smaller than the power purchase price . The first mode , the second mode in which the power generation amount is determined according to the heat storage amount of the heat storage facility set when the total value of the power generation price and the heat recovery price is smaller than the power purchase price, and the power generation price and heat recovery An operation priority determination unit that determines one of the third modes for prioritizing power purchase, which is set when the total value with the price is not smaller than the power purchase price, at the predetermined time intervals.
A power generation amount determination unit that determines the power generation amount at predetermined time intervals according to the determination result of any one of the first mode to the third mode by the operation priority determination unit.
An energy system having a heat supply amount determining unit that determines the heat supply amount at predetermined time intervals based on the predicted heat storage amount of the heat storage facility.
JP2016176418A 2016-09-09 2016-09-09 Energy system management equipment, energy system management methods, and energy systems Active JP6782916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016176418A JP6782916B2 (en) 2016-09-09 2016-09-09 Energy system management equipment, energy system management methods, and energy systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176418A JP6782916B2 (en) 2016-09-09 2016-09-09 Energy system management equipment, energy system management methods, and energy systems

Publications (2)

Publication Number Publication Date
JP2018042420A JP2018042420A (en) 2018-03-15
JP6782916B2 true JP6782916B2 (en) 2020-11-11

Family

ID=61626631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176418A Active JP6782916B2 (en) 2016-09-09 2016-09-09 Energy system management equipment, energy system management methods, and energy systems

Country Status (1)

Country Link
JP (1) JP6782916B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539738B (en) * 2018-05-10 2020-04-21 国网山东省电力公司电力科学研究院 Short-term load prediction method based on gradient lifting decision tree
JP2022182642A (en) 2021-05-28 2022-12-08 株式会社日立製作所 Energy management device, energy management system, and energy management method

Also Published As

Publication number Publication date
JP2018042420A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
JP6182238B2 (en) Automatic demand response energy management system
US11238474B2 (en) Distributed energy control
US9772643B2 (en) Methods, apparatus and systems for managing energy assets
Ahmadi et al. Information-gap decision theory for robust security-constrained unit commitment of joint renewable energy and gridable vehicles
EP2485189A1 (en) Energy management system and power feed control device
JP5981313B2 (en) Power suppression type storage energy storage optimization device, optimization method, and optimization program
JP6758881B2 (en) Power supply and demand management support system, power supply and demand management support method and power supply and demand management support program
O’Neill et al. Recent ISO software enhancements and future software and modeling plans
WO2013157481A1 (en) Energy management system, energy management method, program, server device, and client device
Kia et al. An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
WO2008009986A2 (en) Aggregated management system
JP6129768B2 (en) Consumer equipment operation management system and method
JP2006352933A (en) Power supply control method and system
JP7074724B2 (en) Information processing equipment, information processing methods and programs
CN110571795A (en) arrangement method of energy storage unit in high-wind-force penetration power system
JP6782916B2 (en) Energy system management equipment, energy system management methods, and energy systems
JP5736983B2 (en) Simultaneous same amount control system, purchased power plan generation device
JP6903531B2 (en) Distributed power control device, distributed power control system and distributed power control method
JP3880471B2 (en) Power generation planning method
JP2005287252A (en) Method, device, and program for preparing optimum procurement plan for system operator
Zhao Electricity-gas systems: operations and expansion planning under uncertainty
JP2018152962A (en) Distributed power generation system, and method for giving at least part of operation plan of system to outside of system
JP2005135266A (en) Electric power transaction support system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6782916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150