JP6781459B2 - Underwater hardened sandbags and methods for repairing waterfront structures using them - Google Patents

Underwater hardened sandbags and methods for repairing waterfront structures using them Download PDF

Info

Publication number
JP6781459B2
JP6781459B2 JP2016224340A JP2016224340A JP6781459B2 JP 6781459 B2 JP6781459 B2 JP 6781459B2 JP 2016224340 A JP2016224340 A JP 2016224340A JP 2016224340 A JP2016224340 A JP 2016224340A JP 6781459 B2 JP6781459 B2 JP 6781459B2
Authority
JP
Japan
Prior art keywords
water
underwater
sandbag
bag body
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224340A
Other languages
Japanese (ja)
Other versions
JP2017096089A (en
Inventor
廣義 中村
廣義 中村
考宏 中村
考宏 中村
Original Assignee
クリアーシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリアーシステム株式会社 filed Critical クリアーシステム株式会社
Publication of JP2017096089A publication Critical patent/JP2017096089A/en
Application granted granted Critical
Publication of JP6781459B2 publication Critical patent/JP6781459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Revetment (AREA)

Description

本発明は、護岸構造物や堤防等の水際構造物に流水や波浪等の浸食で形成された間隙や腐食***等の背面の土砂が波浪で洗掘されてできた空洞部の補修に好適な水中硬化土嚢及びそれを用いた水際構造物の補修方法に関する。 INDUSTRIAL APPLICABILITY The present invention is suitable for repairing a cavity formed by scouring the back sediment such as gaps and corroded small holes formed by erosion such as running water or waves in a seawall structure such as a revetment structure or an embankment. The present invention relates to an underwater hardened sandbag and a method for repairing a waterfront structure using the same.

近年、護岸構造物や堤防、排水溝等の水際構造物の経年劣化が問題になってきている。護岸に用いられる鋼矢板や鋼管杭は、海面より上部の波浪の飛沫帯は打ち寄せる波が砕けて飛び散る飛沫や紫外線を受けて、非常に腐食しやすい環境にある。飛沫帯の腐食が進むと護岸としての寿命が尽きることになる。例えば、鋼矢板護岸で築造から50年以上経過した鋼矢板護岸は、飛沫帯の経年劣化腐食により腐食***や間隙が開き、そこから海水等による浸食でそれらの背後の土砂が洗掘されて空洞部が発生し、それが年々成長して大きな空洞部を形成しその上部の地盤を陥没させその周囲の地盤沈下を引き起こすという問題が生じている。そこで、この問題を解決するために、近年、コンクリートや発泡モルタルを注入し空洞部に充填し補修を行う方法が行われてきている。これらの方法は恒久的に空洞化を防止する優れた方法であるが、かかる注入材は流動性を有するため、海水等の水の出入りにより注入材が固化する前に流出したり、水で希釈されてしまって固化し難いという課題を有していた。
この課題を解決するために、(特許文献1)には、地盤注入材として、セメントミルク、水ガラス等の水硬性硬化剤と水膨潤性繊維との混合物を用いる技術が開示されている。
また、他の方法として(特許文献2)には、鋼矢板により構築された鋼矢板護岸の前面に、所定の透水係数及び体積含水率を有する多孔質焼結体製のセラミック平板により景観修復壁を構築し合わせて鋼矢板護岸を保護する技術が開示されている。
In recent years, aging deterioration of revetment structures, embankments, drainage ditches and other waterfront structures has become a problem. Steel sheet piles and steel pipe piles used for revetments are in an environment where the wave droplet zone above the sea surface is extremely susceptible to corrosion due to the crushing waves and the scattered droplets and ultraviolet rays. As the corrosion of the splash zone progresses, the life of the revetment will end. For example, a steel sheet pile revetment that has been built for more than 50 years has corroded small holes and gaps due to aged deterioration and corrosion of the splash zone, and the earth and sand behind them are scoured and hollowed out by erosion by seawater. There is a problem that a part is generated and grows year by year to form a large hollow part, which causes the ground above it to sink and cause the ground subsidence around it. Therefore, in order to solve this problem, in recent years, a method of injecting concrete or foamed mortar to fill the cavity and repair it has been performed. These methods are excellent methods for permanently preventing cavitation, but since the injection material is fluid, it may flow out before the injection material solidifies due to the inflow and outflow of water such as seawater, or it may be diluted with water. It had the problem that it was hard to solidify.
In order to solve this problem, (Patent Document 1) discloses a technique of using a mixture of a hydraulic curing agent such as cement milk and water glass and a water-swellable fiber as a ground injection material.
As another method (Patent Document 2), a landscape restoration wall is provided on the front surface of the steel sheet pile revetment constructed of steel sheet piles by using a ceramic flat plate made of a porous sintered body having a predetermined hydraulic conductivity and volume moisture content. The technology to protect the steel sheet pile revetment by constructing the steel sheet pile is disclosed.

特開平7−34442JP-A-7-34442 特開2003−253647Japanese Patent Application Laid-Open No. 2003-253647

しかしながら、上記先行技術文献に記載の技術は以下の課題を有していた。
すなわち、(特許文献1)の技術は、水膨潤性繊維が混入されているので、注入箇所に注入材を滞留させ鋼矢板護岸の空洞部を充填し、恒久的に空洞化を防止する優れた方法である。しかし、鋼矢板護岸等の護岸構造物や堤防、排水溝等の水際構造物は永年の波浪腐食や酸化腐食による経年劣化により、断面損傷が発生し、特に、喫水面付近の波による飛沫帯は経年劣化が激しく大小合わせて多数発生した腐食***や、堤防や岸壁に台風や地震等による応力で発生した間隙や腐食***の背面の空洞部の体積も大小さまざまなので、空洞部の充填作業に要するコンクリート等の注入量の予測が困難なことから作業やコンクリートの無駄が多く作業性に欠けるだけでなく省力性や省資源性にも欠け、また、その作業に伴うコンクリートポンプ車等の機材や人員の手配も予測が困難で、作業性に欠けるという課題を有していた。更に、これらの作業は水中での作業が主要部分を占め、専門の技能を有する潜水士により鋼矢板護岸に、コンクリート等を注入するための注入孔を水中で削孔し、注入孔からコンクリートの水中打設を行うため、多大の労力と時間を要していた。
また、作業が潜水士等の特殊作業員で行われるため、専門の人員が少なく人員の確保が困難で、また費用も高額なため、予算確保も厳しく当面の応急補修が追い付かないという課題を有していた。
更に、鋼矢板護岸における鋼矢板の腐食***の背面の空洞部にコンクリートや発泡モルタルを注入充填すると、過剰な注入圧力により地盤の盤膨れが発生し易いという課題があった。
また、該背面空洞部の体積が場所により大きく異なり、更に地上部と空洞部上壁の地盤の厚みもまちまちなため、打設場所ごとに該背面空洞部を細かく計測するとともに、海面の干満圧力の影響も考慮しながら注入圧力を調整する高度な注入管理が必要であり、極めて専門的で多大の時間と労力を要するという課題を有していた。
更に、空洞部の洗掘は腐食***の上部が特に激しく洗掘されるが、コンクリートミルクは比重が大きいため腐食***の上部の空洞部を充填することが極めて困難という重大な欠点を有していた。
また(特許文献2)の技術は、景観向上のため植物生育を目的の一部としているが、植栽生育のためには植生基盤となる土壌が必要であるが、土壌中には空気中の酸素や水分が常時存在することから、鋼矢板護岸の酸化腐食を促進させる虞がある。また、セラミック平板が、時化や台風等の暴風波浪に対し耐久性があるか、更に波浪によって打ち寄せるガラス瓶や丸太等により破損しないかという課題を有している。更に、経年劣化や酸化腐食による断面損傷や背面の空洞化により強度低下を起こしている既設の鋼矢板護岸が多孔質焼結体や植栽補填材を締結するボルトやアンカーの締め付け圧力に耐えうる構造厚みや強度を備えているかが課題である。
However, the technique described in the above prior art document has the following problems.
That is, the technique of (Patent Document 1) is excellent in that since water-swellable fibers are mixed, the injection material is retained at the injection site to fill the cavity of the steel sheet pile revetment and permanently prevent the cavity. The method. However, revetment structures such as steel sheet pile revetments and waterfront structures such as embankments and drainage ditches suffer cross-sectional damage due to long-term wave corrosion and oxidative corrosion, especially in the splash zone due to waves near the water surface. Corrosion small holes that are severely deteriorated over time and occur in large and small sizes, gaps generated by stress caused by typhoons and earthquakes on embankments and revetments, and the volume of cavities on the back of corroded small holes vary in size, so it is necessary to fill the cavities. Since it is difficult to predict the injection amount of concrete, etc., there is a lot of waste in work and concrete, which not only lacks workability, but also lacks labor and resource saving, and equipment and personnel such as concrete pump trucks associated with the work. It was difficult to predict the arrangement of concrete, and there was a problem that workability was lacking. Furthermore, the main part of these operations is underwater work, and a diver with specialized skills drills an injection hole in the water for injecting concrete etc. into the steel sheet pile revetment, and the concrete is made from the injection hole. It took a lot of labor and time to perform the underwater casting.
In addition, since the work is carried out by special workers such as divers, it is difficult to secure personnel due to the small number of specialized personnel, and the cost is high, so it is difficult to secure a budget and there is a problem that emergency repairs cannot catch up for the time being. Was.
Further, when concrete or foamed mortar is injected and filled into the cavity on the back surface of the corroded small hole of the steel sheet pile in the steel sheet pile revetment, there is a problem that the ground swelling is likely to occur due to the excessive injection pressure.
In addition, since the volume of the back cavity varies greatly depending on the location and the thickness of the ground on the ground and the upper wall of the cavity varies, the back cavity is measured in detail for each placement location and the ebb and flow pressure on the sea surface. It is necessary to perform advanced injection control to adjust the injection pressure while considering the influence of the above, and there is a problem that it is extremely specialized and requires a lot of time and labor.
Furthermore, scouring of cavities has a serious drawback that it is extremely difficult to fill the cavities above the corroded pits due to the high specific gravity of concrete milk, although the upper part of the corroded pits is scoured particularly violently. It was.
In addition, the technique of (Patent Document 2) aims at plant growth to improve the landscape, but soil that serves as a vegetation base is required for plant growth, but the soil is in the air. Since oxygen and moisture are always present, there is a risk of promoting oxidative corrosion of the steel sheet pile revetment. Further, there is a problem that the ceramic flat plate is durable against storm waves such as storms and typhoons, and is not damaged by glass bottles, logs, etc. that are hit by the waves. Furthermore, the existing steel sheet pile guard, whose strength is reduced due to cross-sectional damage due to aging and oxidative corrosion and hollowing of the back surface, can withstand the tightening pressure of bolts and anchors for fastening porous sintered bodies and planting fillers. The issue is whether it has structural thickness and strength.

本発明は上記従来の課題を解決するもので、潜水士が鋼矢板護岸等の水際構造物にできた腐食***や間隙の背面にできた空洞部に挿入し設置する簡単な作業で、後は空洞部や間隙の内部で自然に水を吸収しゲル化膨潤し短時間で空洞部や間隙を充填し閉塞するので短時間で補修することが可能で、特に、腐食***の上部の空洞部も完全に充填し、空洞部上部の地盤の陥没も防ぐことができる作業性や省力性に優れた水中硬化土嚢の提供、および、鋼矢板護岸等の補修作業が簡単でかつ短時間で済み、補修部の経時的安定性に優れ補修後の地盤沈下を防ぐことができる作業性や省力性、省資源性に優れ、また、その作業に伴うコンクリートポンプ車等の機材や人員の手配も不要で、極めて作業効率の高い水際構造物の補修方法を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and is a simple operation in which a diver inserts and installs a corrosive small hole formed in a waterside structure such as a steel sheet pile revetment or a cavity formed on the back surface of a gap. It naturally absorbs water inside the cavities and gaps, gels and swells, fills the cavities and gaps in a short time and closes, so it can be repaired in a short time, especially the cavities above the corroded small holes. Providing underwater hardened soil sac with excellent workability and labor saving that can be completely filled and prevent the ground from sinking in the upper part of the cavity, and repair work such as steel sheet pile revetment can be done easily and in a short time. It has excellent stability over time and can prevent ground subsidence after repairs. It has excellent workability, labor saving, and resource saving, and there is no need to arrange equipment and personnel such as concrete pump trucks for the work. It is an object of the present invention to provide a method for repairing a waterfront structure with extremely high work efficiency.

上記目的を達成するために本発明は以下の構成を有している。
請求項1に記載の水中硬化土嚢は、a.透水性シート材で形成された内袋体と、b.前記内袋体の内部に収容された吸水性樹脂を有する吸水体と、c.水中硬化マット材で形成され前記内袋体を収納し少なくとも1縁部で積層固定され一体化された外袋体と、を備えた構成を有している。
この構成により、以下の作用・効果を有する。
(a)水中硬化土嚢の内袋体が透水性シート材で形成されているので、水中で外袋体から滲出してくる水や接合部での毛細管現象で侵入してくる水で内袋体内部の吸水体の吸水性樹脂が短時間で吸水しゲル化膨潤しながら水中硬化土嚢を所定の倍率、形状を有した剛性袋体に膨張させることができる。
(b)水中硬化マット材で形成された外袋体を備えているので、水中で水中硬化マット材の水中硬化性のセメント組成物や石膏系組成物等の水硬性硬化剤が水和反応で硬化して剛性を増強するので、内袋体の吸収体の膨潤により立体形状の剛性袋体に膨張した外袋体で、空洞部の内部の鋭利な凹凸部との摺動摩擦や圧迫圧力により水中硬化土嚢が損傷を受けるのを防ぎ、形状安定性や耐久性を向上させることができる。
(c)外袋体の水中硬化マット材を複数に分けて積層することにより、水中硬化マット材間の隙間から内袋体に迅速に給水することができる。
In order to achieve the above object, the present invention has the following configuration.
The underwater hardened sandbag according to claim 1 is a. An inner bag body made of a water-permeable sheet material and b. An outer bag body having a water-absorbent resin housed inside the inner bag body and c. an outer bag body formed of an underwater curing mat material, which houses the inner bag body and is laminated and fixed at at least one edge. And, it has a configuration including.
With this configuration, it has the following actions and effects.
(A) Since the inner bag of the water-hardened sandbag is made of a water-permeable sheet material, the inner bag is made of water that seeps out from the outer bag in water or water that invades due to the capillary phenomenon at the joint. The water-absorbent resin of the water-absorbing body inside absorbs water in a short time, gels and swells, and the underwater-hardened sandbag can be expanded into a rigid bag having a predetermined magnification and shape.
(B) Since the outer bag body made of the water-curable mat material is provided, the water-curable cement composition or the gypsum-based composition of the water-curable mat material in water undergoes a hydration reaction. Since it hardens and enhances rigidity, the outer bag body expands into a three-dimensional rigid bag body due to the swelling of the absorbent body of the inner bag body, and underwater due to sliding friction and compression pressure with sharp uneven parts inside the cavity. It can prevent the hardened sandbag from being damaged and improve shape stability and durability.
(C) By dividing the underwater-curing mat material of the outer bag body into a plurality of layers and laminating them, water can be quickly supplied to the inner bag body through the gap between the underwater-curing mat materials.

請求項2に記載の水中硬化土嚢は、請求項1に記載の発明において前記水中硬化マット材がスリットを備えている構成を有している。
この構成により、以下の作用・効果を有する。
(a)内袋体を内包し周囲が該内袋体の縁部で接合され、水中硬化マット材のスリットから侵入する水で内袋体の内部に収容された吸水体の吸水性樹脂が吸水し、水中硬化土嚢を所定の設計値の倍率に膨張させることができる。
The underwater-cured sandbag according to claim 2 has a configuration in which the underwater-curable mat material has a slit in the invention according to claim 1.
With this configuration, it has the following actions and effects.
(A) The water-absorbent resin of the water-absorbent body, which contains the inner bag body and is joined at the edge of the inner bag body and is contained inside the inner bag body by water entering through the slit of the underwater-curing mat material, absorbs water. Then, the water-hardened sandbag can be expanded to a predetermined magnification of the design value.

請求項3に記載の水中硬化土嚢は、請求項1または2において、前記接合部を貫通して前記内袋体の前記吸水体の内部まで延設された通水材を備えた構成を有している。
この構成によって、請求項1または2の水中硬化土嚢に加えて、以下の作用・効果が得られる。
(a)通水材から外部の水が速やかに内袋体に侵入し内袋体内の吸水性樹脂に直接吸水され水中硬化土嚢を所定の倍率に短時間で膨張させることができる。
The underwater-cured sandbag according to claim 3 has a configuration in claim 1 or 2 provided with a water-permeable material extending through the joint portion to the inside of the water-absorbing body of the inner bag body. ing.
With this configuration, in addition to the water-cured sandbags of claim 1 or 2, the following actions and effects can be obtained.
(A) External water quickly invades the inner bag body from the water-permeable material and is directly absorbed by the water-absorbent resin inside the inner bag body, so that the water-cured sandbag can be expanded to a predetermined magnification in a short time.

ここで、透水性シート材としては、液体は通過させるがポリマーゲルは通過させない通水性の不織布や織布等の他に、軟質合成樹脂製やゴム製のシート等の非透水性シートに多数の微小孔を設けて通水できるようにしたもの等を用いることができる。
不織布としては、スパンボンド法、水流交絡法等により得られるポリプロピレン、ポリエステル、ポリオレフィン、ポリビニールアルコール、アクリル、ポリアミド等の繊維からなるものが使用できる。
織布としては、セルロース繊維、タンパク繊維等の天然繊維を用いたものの他に、ビスコース法レーヨン等の再生繊維、酢酸セルロース繊維等の半合成繊維、ポリアミド、ポリエステル、アクリル等の合成繊維を素材としたものを用いることができる。
また、PETボトル等の合成樹脂を回収して再生したリサイクル品を用いたりして、水中硬化土嚢を環境にも配慮したものとすることができる。
内袋体が透水性シート材で作成されているので、水中で、内袋体内の吸水性樹脂が吸水しゲル化膨潤し、次いで外袋体の水中硬化マット材の水硬性硬化剤が水和反応で硬化して立体形状の剛性袋体を形成するので、波浪による空洞部内の凹凸部との摩擦により、ポリマー間の摩擦でポリマー粒子が微細化され、内袋体からポリマーゲルが抜け出るのを防止できる。
水中硬化土嚢を腐食***等の背後の空洞部に挿入するだけで、後は自立して空洞部を充填することができる。
Here, as the water-permeable sheet material, in addition to water-permeable non-woven fabrics and woven fabrics that allow liquids to pass through but not polymer gels, many non-water-permeable sheets such as soft synthetic resin sheets and rubber sheets are used. It is possible to use a material having micropores to allow water to pass through.
As the non-woven fabric, one made of fibers such as polypropylene, polyester, polyolefin, polyvinyl alcohol, acrylic and polyamide obtained by a spunbond method, a water flow entanglement method or the like can be used.
As the woven fabric, in addition to those using natural fibers such as cellulose fibers and protein fibers, recycled fibers such as biscous rayon, semi-synthetic fibers such as cellulose acetate fibers, and synthetic fibers such as polyamide, polyester and acrylic are used as materials. Can be used.
In addition, the water-cured sandbags can be made environmentally friendly by using recycled products obtained by collecting and reusing synthetic resin such as PET bottles.
Since the inner bag body is made of a water-permeable sheet material, the water-absorbent resin inside the inner bag absorbs water and gels and swells, and then the water-hardening agent of the water-curing mat material of the outer bag body hydrates. Since it is cured by the reaction to form a three-dimensional rigid bag body, the friction between the uneven parts in the cavity due to the waves causes the polymer particles to become finer due to the friction between the polymers, and the polymer gel does not come out from the inner bag body. Can be prevented.
By simply inserting the underwater hardened sandbag into the cavity behind the corroded small hole or the like, the cavity can be filled independently afterwards.

吸水性樹脂は水中硬化土嚢の使用場所により使い分けられる。具体的には、湖沼や河川等の淡水や海岸等の電解質を含む海水に対して各々適合した吸水性樹脂が用いられる。また、水中硬化マット材の使用形態により粒状、顆粒状、繊維状、ペレット状、フレーク状のものが含まれる。
これら吸水性樹脂は自重の数倍から千倍近くまで水分を急速に吸収して、ゲル化し膨潤し、硬化した硬化性組成物の形状を固定化する作用を有する。
水中硬化マット材については、後述する。
The water-absorbent resin is used properly depending on the place where the water-cured sandbag is used. Specifically, water-absorbent resins suitable for fresh water such as lakes and rivers and seawater containing electrolytes such as coasts are used. Further, depending on the usage pattern of the underwater curing mat material, granular, granular, fibrous, pellet-shaped and flake-shaped ones are included.
These water-absorbent resins have the function of rapidly absorbing water from several times to nearly 1,000 times their own weight, gelling and swelling, and fixing the shape of the cured curable composition.
The underwater curing mat material will be described later.

請求項4に記載の水中硬化土嚢は、請求項1乃至3のいずれか1において、前記吸水体が、淡水を吸収する吸水性樹脂、又は海水等の電解質水を吸収する吸水性樹脂を有して構成されている。
この構成によって、請求項1乃至3で得られる作用・効果の他、以下の作用・効果が得られる。
補修個所に応じた吸水体を有する水中硬化土嚢を選択することにより、淡水や海水により空洞部や間隙の内部で水中硬化土嚢を膨張させこれらを埋めて補修をすることができる。
The underwater-cured clay sac according to claim 4 has, in any one of claims 1 to 3, the water-absorbent resin having a water-absorbent resin that absorbs fresh water or an electrolyte water such as seawater. It is composed of.
With this configuration, in addition to the actions / effects obtained in claims 1 to 3, the following actions / effects can be obtained.
By selecting an underwater hardened sandbag having a water absorber according to the repaired part, it is possible to expand the underwater hardened sandbag inside a cavity or a gap with fresh water or seawater and fill it for repair.

ここで、河川や湖沼等の淡水を吸収する吸水性樹脂としては、澱粉にアクリル酸塩をグラフト重合させた澱粉系、カルボキシセルロースにアクリル酸塩をグラフト重合させたセルロース系、アクリル酸・ビニルアルコール共重合体、アクリル酸重合体、アクリル酸・アクリルアミド重合体、ポリエチレンオキサイド変性物等の合成系のカルボキシル基、水酸基、エーテル基、アミド基等の親水性の官能基を有する高分子が用いられる。
海水等の電解質を含む水の場合には、イオン解離するノニオン型高分子、高分子アニオンに解離するアニオン型高分子、高分子カチオンに解離するカチオン型高分子、カチオンとアニオンに解離する基をもつ両性高分子等が用いられる。
具体例としては、合成ポリマー系ではポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系、ポリアクリルアミド系、ポリビニールアルコール系、ポリエチレンオキシド系等が挙げられる。また、天然物由来系としてはポリアスパラギン酸塩系、ポリグルタミン酸塩系、ポリアルギン酸塩系、澱粉系、セルロース系、スルホン酸基含有架橋ポリアクリル酸の部分金属塩等のポリアクリル酸塩をベースとしたもの等が挙げられる。
吸水性樹脂がアルカリ性の水に弱い場合は、水中硬化マット材と内袋体の間に、遮水材として天然ゴムまたは合成ゴムのシートを積層したり、防水剤を塗布するのが好ましい。但し、その場合は、通水材の数を多めに配置するのが好ましい。
Here, as the water-absorbent resin that absorbs fresh water such as rivers and lakes, a starch-based resin obtained by graft-polymerizing acrylic acid salt on starch, a cellulose-based resin obtained by graft-polymerizing acrylic acid salt on carboxycellulose, and acrylic acid / vinyl alcohol. Polymers having hydrophilic functional groups such as carboxyl groups, hydroxyl groups, ether groups, and amide groups of synthetic systems such as copolymers, acrylic acid polymers, acrylic acid / acrylamide polymers, and modified polyethylene oxides are used.
In the case of water containing an electrolyte such as seawater, a nonionic polymer that dissociates ions, an anionic polymer that dissociates into a polymer anion, a cation type polymer that dissociates into a polymer cation, and a group that dissociates into a cation and an anion are used. An amphoteric polymer or the like is used.
Specific examples of the synthetic polymer system include polyacrylate-based, polysulfonate-based, maleic anhydride-based, polyacrylamide-based, polyvinyl alcohol-based, polyethylene oxide-based, and the like. In addition, as natural product-derived systems, polyaspartates, polyglutamates, polyargates, starches, celluloses, and polyacrylic acid salts such as partial metal salts of sulfonic acid group-containing crosslinked polyacrylic acid are used as bases. And so on.
When the water-absorbent resin is vulnerable to alkaline water, it is preferable to laminate a sheet of natural rubber or synthetic rubber as a water-shielding material between the underwater-curing mat material and the inner bag body, or to apply a waterproofing agent. However, in that case, it is preferable to arrange a large number of water-permeable materials.

請求項5に記載の水中硬化土嚢は、請求項1乃至4のいずれか1において、前記吸水体が前記吸水性樹脂と繊維状通水材の混合物を含む構成を有している。
これによって、請求項1乃至4のいずれか1で得られる作用・効果の他、以下の作用・効果が得られる。
(a)吸水材が粒状やフレーク状等の吸水性樹脂と繊維状通水材の混合物を含むので、繊維状通水材により内袋体内部の吸水性樹脂の集合体の深部にまで淡水や海水等の水が円滑に供給され,吸水性樹脂をむらなく一体的にゲル化膨潤させることができる。
(b)繊維状通水材を有しているので、短時間に内袋体を所定の大きさで均一にゲル化膨潤させそれに合わせて水中硬化土嚢全体を速やかに膨張させることができ作業性に優れる。
Underwater curing sandbags according to claim 5, in any one of claims 1 to 4, wherein the water absorber has a structure comprising a mixture of the water-absorbent resin and a fibrous water passage member.
As a result, in addition to the action / effect obtained in any one of claims 1 to 4, the following action / effect can be obtained.
(A) Since the water-absorbent material contains a mixture of a water-absorbent resin such as granules or flakes and a fibrous water-permeable material, the fibrous water-absorbent material allows fresh water to reach deep into the aggregate of the water-absorbent resin inside the inner bag. Water such as seawater is smoothly supplied, and the water-absorbent resin can be uniformly gelled and swollen.
(B) Since it has a fibrous water-permeable material, the inner bag body can be uniformly gelled and swollen to a predetermined size in a short time, and the entire water-hardened sandbag can be rapidly expanded accordingly. Excellent for.

ここで、繊維状通水材としては、短繊維セルロース、吸水性樹脂で成型された紐状物や帯状物等が用いられる。
吸水性樹脂(a)と繊維状通水材(b)の混合比は、a/b=1〜10%好ましくはa/b=3〜7%が用いられる。a/bが3%よりも小さくなるにつれ、水のポリマー間への浸透速度が遅くなるという傾向があり、また、a/bが7%よりも大きくなるにつれ、吸水したゲルの離水が多くなるという傾向があるので好ましくない。特に、a/bが1%よりも小さくなるか、a/bが10%よりも大きくなるにつれこれらの傾向が著しいので好ましくない。
Here, as the fibrous water-permeable material, a string-shaped material, a strip-shaped material, or the like molded from short-fiber cellulose or a water-absorbent resin is used.
The mixing ratio of the water-absorbent resin (a) and the fibrous water-permeable material (b) is a / b = 1 to 10%, preferably a / b = 3 to 7%. As a / b is less than 3%, the rate of permeation of water between polymers tends to be slower, and as a / b is greater than 7%, the water absorbed gels take off more. It is not preferable because it tends to be. In particular, as a / b becomes smaller than 1% or a / b becomes larger than 10%, these tendencies become remarkable, which is not preferable.

請求項6に記載の水中硬化土嚢は、請求項1又は2に記載の発明において、前記水中硬化マット材が、上下に配設された透水性の布地前記布地間を所定の位置で連結し内部空間を形成する連結材とを有し、前記内部間に水硬性硬化剤が内包されマット状に形成された構成を有している。
これによって、請求項1又は2で得られる作用の他、以下の作用が得られる。
(a)水中硬化マット材は、柔軟性を有するので水中で内袋体の吸水性樹脂のゲル化膨潤に合わせて内袋体が膨張しながら外袋体の水中硬化マット材の水硬性硬化剤の水和反応が進行し、空洞部内部の凹凸に沿った立体的形状をした剛性の構造物を形成することができる。
(b)水中硬化マット材の表面は高強度で柔軟性の織布や不織布で形成されているので、波浪等の外力で、水中硬化土嚢が空洞部の内部の瓦礫等による凹凸と衝突や摩擦が原因で、亀裂等の損傷による破袋が生じるのを防止できる。
(c)剛性表面を有する水中硬化土嚢が、空洞部に充填されて固定化されるので、長期間の鋼矢板等の水中構造物の腐食***や間隙からの波浪や潮汐による土砂の洗掘を防止することができる。
(d)柔軟性を有する織布又は不織布の間に水中硬化性の水硬性硬化剤を内包しマット状に形成された構成なので、水中硬化マット材から外部の水を、内袋体に滲出させ、内袋体の吸水性樹脂に吸水することができる。
Underwater curing sandbags according to claim 6 is the invention according to claim 1 or 2, wherein the water cured mat member, connecting the permeability aqueous fabric disposed vertically, between the fabric at a predetermined position and a connecting member which forms an internal space, and has the hydraulic curing agent between the internal air is formed on the encapsulated mat structure.
As a result, in addition to the action obtained in claim 1 or 2, the following actions can be obtained.
(A) Since the water-curable mat material has flexibility, the water-curable mat material of the outer bag body is a water-hardening agent while the inner bag body expands in accordance with the gelation and swelling of the water-absorbent resin of the inner bag body in water. The hydration reaction of the above proceeds, and a rigid structure having a three-dimensional shape along the unevenness inside the cavity can be formed.
(B) Since the surface of the underwater-curing mat material is made of a high-strength and flexible woven fabric or non-woven fabric, the underwater-curing sandbag collides with or rubs against unevenness due to rubble inside the cavity due to external force such as waves. It is possible to prevent the bag from breaking due to damage such as cracks.
(C) Since the underwater sandbag having a rigid surface is filled in the cavity and fixed, it is possible to scour the earth and sand by waves and tides from corroded small holes and gaps of underwater structures such as steel sheet piles for a long period of time. Can be prevented.
(D) Since the structure is formed in the form of a mat by encapsulating a water-curable water-curable curing agent between flexible woven fabrics or non-woven fabrics, external water is exuded from the water-curable mat material into the inner bag body. , Water can be absorbed by the water-absorbent resin of the inner bag body.

ここで、水中硬化マット材としては、特許第5736024号や特許第5638538号、国際公開第2007−144559号、USP.NO4495235等に開示されているように上下に配置された通水性で柔軟性の織布や不織布とうからなるシートと前記シート間を所定の位置で連結し該水硬性硬化剤が充填される充填空間を形成する連結材を有し、前記シート間に水中硬化性のモルタルセメントやコンクリートセメント等のセメント組成物や石膏系組成物等の水硬性硬化剤を充填したものが挙げられる。具体的には、コンクリート キャンバス テクノロジー リミテッド製のコンクリートキャンバス(登録商標)、石膏系組成物を上下に配置された織布や不織布の間に充填したマット状物等が挙げられる。 Here, as the underwater curing mat material, Japanese Patent No. 5736024, Japanese Patent No. 5638538, International Publication No. 2007-144559, USP. A filling space in which a sheet made of water-permeable and flexible woven fabric or non-woven fabric arranged above and below and the sheet are connected at a predetermined position and filled with the water-hardening agent as disclosed in NO449525 and the like. Examples thereof include those having a connecting material for forming the above-mentioned sheet and filling the sheet with a cement composition such as a water-curable mortar cement or concrete cement or a water-hardening agent such as a gypsum-based composition. Specific examples include a concrete canvas (registered trademark) manufactured by Concrete Canvas Technology Limited, a mat-like material in which a gypsum-based composition is filled between woven fabrics and non-woven fabrics arranged one above the other.

請求項7に記載の水中硬化土嚢は、請求項1または2のいずれか1項において、外袋体が外表面に金属系材料又は発泡樹脂製やゴム製で形成された突起物や突条物の表面保護材を備えた構成を有している。
これによって、請求項1又は2得られる作用・効果の他、以下の作用・効果が得られる。
(a)表面保護材が形成されているので、水中硬化土嚢を腐食***から護岸等の内部の空洞部に挿入する際や空洞部でゲル化膨張する際に、空洞部内の鋭角を有する凹凸部と接触しても表面保護材が緩衝材となって、水中硬化土嚢が損傷されるのを防止できる。
ここで、表面保護材としては、鉄やアルミニウム等の金属系材料で形成された鋲状、ポッチ状の突起物や、突条等に形成された発泡樹脂やゴム等が用いられる。
The underwater-cured sandbag according to claim 7 is a protrusion or a protrusion whose outer bag body is made of a metal-based material or a foamed resin or rubber on the outer surface in any one of claims 1 or 2. It has a structure provided with a surface protective material of.
As a result, in addition to the actions / effects obtained in claim 1 or 2, the following actions / effects can be obtained.
(A) Since the surface protective material is formed, when the underwater hardened sandbag is inserted into the internal cavity such as a revetment from the corroded small hole or when gelling and expanding in the cavity, the uneven portion having an acute angle in the cavity. Even if it comes into contact with the water, the surface protective material acts as a cushioning material and can prevent the underwater hardened sandbag from being damaged.
Here, as the surface protective material, stud-like or potch-like protrusions formed of a metal-based material such as iron or aluminum, foamed resin or rubber formed on ridges or the like are used.

請求項8に記載の水中硬化土嚢を用いた水際構造物の補修方法は、護岸構造物や堤防等の水際構造物に流水や波浪による浸食で形成された腐食***や間隙の背面に洗掘されてできた空洞部内に、請求項1乃至7の内いずれか1に記載の水中硬化土嚢を水中で腐食***や間隙から空洞部内に挿入する挿入工程と、挿入された前記水中硬化土嚢を周囲の水で内袋体の吸水体をゲル化膨潤させるとともに外袋体内の水硬性硬化剤を水和反応させ硬化させて該空洞部や間隙を充填する水中硬化土嚢充填工程を備えた構成を有している。
これによって、以下の作用・効果が得られる。
(a)挿入工程で潜水士が、水際構造物の流水や波浪による浸食で形成された間隙や腐食***の背面にできた空洞部内に、空洞部の容積に合わせて1乃至複数の水中硬化土嚢を挿入し配設するだけで、水中硬化土嚢が自立して周囲の水を吸って立体形状の剛性袋体にゲル化膨潤しながら水和反応を起しつつ硬化して空洞部の内部を充填し水中硬化土嚢充填工程で空洞部を埋設し補強し安定化することができる。
(b)水中硬化マット材の外袋体が剛性を有するので、耐摩耗性に優れ、波浪等により繰り返し衝撃を受けても空洞部内の凹凸で損傷することがなく、長期間安定して護岸構造物や堤防等の水際構造物を保護することができる。
(c)補修作業が、水中硬化土嚢を腐食***等に挿入し配設するだけなので、従来のような水中でのコンクリート等の注入等の大掛りな作業を省くことができる。また、コンクリート等の注入作業に伴うコンクリートポンプ車等の機材や人員の手配を省くことができる。
(d)空洞部に充填された水中硬化土嚢は、立体形状を有する剛性袋体なので、空洞部の上部の地盤の陥没を防ぎ、地盤沈下を防止することができる。
(e)水中硬化土嚢の内袋体の吸水体が、比重が小さいので、水中硬化土嚢を貫通口や間隙から空洞部内に挿入すると、空洞部内の上部へとゲル化膨張しながら移動するので、空洞部内の上部から充填していくことができる。従来は、貫通口から空洞部にコンクリートミキサーでコンクリートを打設しても貫通口よりも上部の空洞部内にはコンクリートを打設することが不可能で、地盤等の陥没を防ぐことができなかったが、本発明によれば空洞部の上部まで完全に充填することが可能で地盤等の陥没を防ぐことができるようになった。
The method for repairing a waterfront structure using an underwater hardened sandbag according to claim 8 is that the waterside structure such as a revetment structure or an embankment is scoured on the back surface of corroded small holes or gaps formed by erosion by running water or waves. The underwater-cured sandbag according to any one of claims 1 to 7 is inserted into the cavity through a corroded small hole or gap in water, and the inserted underwater-hardened sandbag is placed around the cavity. It has a configuration including an underwater sandbag filling step in which the water absorber of the inner bag is gelled and swollen with water, and the water-hardening agent in the outer bag is hydrated and hardened to fill the cavities and gaps. ing.
As a result, the following actions and effects can be obtained.
(A) In the insertion step, a diver performs one or more underwater hardened sandbags in the cavities formed on the back surface of the gaps and corroded small holes formed by erosion by running water or waves of the waterfront structure according to the volume of the cavities. Just by inserting and arranging, the underwater sandbag will stand on its own and absorb the surrounding water to gel and swell into a three-dimensional rigid bag, causing a hydration reaction and hardening to fill the inside of the cavity. In the underwater hardened sandbag filling process, the cavity can be buried, reinforced and stabilized.
(B) Since the outer bag body of the underwater curing mat material has rigidity, it has excellent wear resistance, and even if it is repeatedly impacted by waves, etc., it will not be damaged by the unevenness in the cavity, and it has a stable revetment structure for a long period of time. It is possible to protect objects and waterfront structures such as embankments.
(C) Since the repair work only involves inserting and arranging the underwater hardened sandbags in the corroded small holes or the like, it is possible to omit the conventional large-scale work such as injecting concrete or the like in water. In addition, it is possible to omit the arrangement of equipment and personnel such as concrete pump trucks for injecting concrete and the like.
(D) the cavity-water cured sandbags filled in, because rigid bag body having a three-dimensional shape, prevents depression of the ground at the top of the cavity, it is possible to prevent subsidence.
(E) Since the water absorber of the inner bag of the water-cured sandbag has a small specific gravity, when the water-cured sandbag is inserted into the cavity through a through hole or a gap, it moves to the upper part of the cavity while gelling and expanding. It can be filled from the upper part in the cavity. Conventionally, even if concrete is poured from the through-hole into the cavity with a concrete mixer, it is impossible to place concrete in the cavity above the through-hole, and it is not possible to prevent the ground from sinking. However, according to the present invention, it is possible to completely fill the upper part of the cavity, and it is possible to prevent the ground from sinking.

請求項9に記載の水中硬化土嚢を用いた水際構造物の補修方法は、請求項8において、水中硬化土嚢を水中で挿入し配設する前に、前記水中硬化土嚢が円柱状に丸められ、その外周に水溶性の拘束材で拘束する拘束工程を備えた構成を有している。
これによって、請求項8で得られる作用・効果の他、以下の作用・効果が得られる。
(a)拘束工程で水中硬化土嚢が丸められ拘束されているので嵩張らず、補修現場への持ち運びが容易で、かつ潜水士が水中で腐食***や間隙への挿入作業時に挿入が容易で、作業性を著しく高めることができる。
(b)水中硬化土嚢の外周を水溶性の拘束材で拘束しているので、挿入作業終了後には水中で拘束材が溶解し、水中硬化土嚢の拘束が解け、自然に広がりながらゲル化膨潤し立体形状の剛性袋体に膨張し空洞部内の形状に沿ってを充填することができる。
ここで、拘束材としては、水溶性の合成繊維や合成樹脂フィルム等で作成された紐状や帯状のものが用いられる。また、水溶性の合成繊維や合成樹脂フィルム等で袋状物を作成しその中に水中硬化土嚢を丸めて収容してもよい。
水溶性の合成繊維や合成樹脂等としては、デンプンやゼラチン、カルボキシメチルセルロース、メチルセルロース等のセルロース誘導体、ポリビニルアルコールやポリアクリル酸系ポリマー、ポリアクリルアミド等の繊維が好適に用いられる。
The method for repairing a waterfront structure using the underwater hardened sandbag according to claim 9 is the method of claim 8, wherein the underwater hardened sandbag is rolled into a columnar shape before the underwater hardened sandbag is inserted and arranged in water. It has a configuration provided with a restraining step of restraining with a water-soluble restraining material on the outer periphery thereof.
As a result, in addition to the action / effect obtained in claim 8, the following action / effect can be obtained.
(A) Since the underwater hardened sandbag is rolled and restrained in the restraint process, it is not bulky and easy to carry to the repair site, and it is easy for the diver to insert it into a corroded small hole or gap in water. Sex can be significantly enhanced.
(B) Since the outer circumference of the water-cured sandbag is restrained by a water-soluble restraining material, the restraining material dissolves in water after the insertion work is completed, the restraint of the water-cured sandbag is released, and gelation and swelling occur while spreading naturally. It can be expanded into a three-dimensional rigid bag and filled along the shape inside the cavity.
Here, as the restraining material, a string-shaped or band-shaped material made of a water-soluble synthetic fiber, a synthetic resin film, or the like is used. Alternatively, a bag-shaped material may be prepared from a water-soluble synthetic fiber, a synthetic resin film, or the like, and the water-cured sandbag may be rolled and contained therein.
As the water-soluble synthetic fiber, synthetic resin and the like, cellulose derivatives such as starch, gelatin, carboxymethyl cellulose and methyl cellulose, and fibers such as polyvinyl alcohol, polyacrylic acid polymer and polyacrylamide are preferably used.

請求項10に記載の水中硬化土嚢を用いた水際構造物の補修方法は、請求項8又は9において、前記水中硬化土嚢を、前記空洞部内に挿入した後、前記腐食***から前記空洞部内にモルタルやコンクリート、合成樹脂組成物の間隙充填剤を注入し充填する間隙充填剤充填工程を備えた構成を有している。
これによって、請求項8又は9で得られる作用・効果の他、以下の作用・効果が得られる。
(a)水際構造物が鋼板等の金属製やコンクリート製の場合、モルタルのアルカリ性で鋼板やコンクリートの鉄筋の防錆効果を得ることができる。
(b)間隙充填剤がモルタルやコンクリートの場合、セメントのアルカリ性で鋼板の腐食***の拡大やコンクリートの鉄筋の腐食の進行を防ぐとともにコンクリートの割れの発生を防ぎ、鋼矢板やコンクリートの耐久性を向上させることができる。
(c)水中硬化土嚢間の空隙にも間隙充填剤が充填されるので高強度で耐久性のある補修工事を行うことができる。
ここで、間隙充填剤としては、モルタル、発泡セメント組成物、水硬性アルミナ、水硬性ポリウレタン系等の水中硬化樹脂と細骨材等の合成樹脂組成物等が用いられる。
The method for repairing a waterfront structure using the underwater hardened sandbag according to claim 10 is the method of claim 8 or 9, in which the underwater hardened sandbag is inserted into the cavity, and then the mortar is inserted into the cavity through the corroded small hole. It has a configuration including a gap filler filling step of injecting and filling a gap filler of concrete, concrete, or synthetic resin composition.
As a result, in addition to the action / effect obtained in claim 8 or 9, the following action / effect can be obtained.
(A) When the waterside structure is made of metal such as steel plate or concrete, the rust preventive effect of the reinforcing bar of the steel plate or concrete can be obtained by the alkalinity of the mortar.
(B) When the gap filler is mortar or concrete, the alkalinity of the cement prevents the expansion of corroded small holes in the steel plate and the progress of corrosion of the reinforcing bars of the concrete, prevents the occurrence of cracks in the concrete, and improves the durability of the steel sheet pile and concrete. Can be improved.
(C) Since the gap filler is also filled in the gaps between the water-hardened sandbags, high-strength and durable repair work can be performed.
Here, as the gap filler, a water-curable resin such as mortar, foamed cement composition, hydraulic alumina, or hydraulic polyurethane, and a synthetic resin composition such as fine aggregate are used.

請求項11に記載の水中硬化土嚢を用いた水際構造物の補修方法は、請求項9又は10において、水際構造物が、鋼矢板護岸で形成された構成を有している。
これによって、請求項9又は10で得られる作用・効果の他、以下の作用・効果が得られる。
(a)築造から50年以上経過した鋼矢板護岸は、飛沫帯の経年劣化腐食により腐食***が開いているが、各腐食***の形状に合わせて水中硬化土嚢を丸めたり、折り曲げたり、折り畳んだり、袋に収容したりして、空洞部内部の容積に相当する水中硬化土嚢を簡単に挿入でき、作業性に優れる。
(b)鋼矢板護岸の寿命を著しく延命化できる。
(c)水中硬化土嚢の形状や大きさ、厚みを自由に選択できるので、補修現場に最適な水中硬化土嚢を選択して迅速に作業を進めることができる。
(d)小さい径の貫通口や間隙の大きさに合わせて、水中硬化土嚢を丸めたり折り曲げたりできるので、従来コンクリートの打設が不可能であった補修現場も簡単かつ迅速に補修することができる。
The method for repairing a waterfront structure using an underwater hardened sandbag according to claim 11 has a structure in which the waterfront structure is formed by a steel sheet pile revetment in claim 9 or 10.
As a result, in addition to the action / effect obtained in claim 9 or 10, the following action / effect can be obtained.
(A) Steel sheet pile revetments that have been built for more than 50 years have small corroded holes due to aged deterioration and corrosion of the splash zone, but the underwater hardened sandbags can be rolled, bent, or folded according to the shape of each corroded small hole. , The underwater hardened sandbag corresponding to the volume inside the cavity can be easily inserted by storing it in a bag, and the workability is excellent.
(B) The life of the steel sheet pile revetment can be significantly extended.
(C) Since the shape, size, and thickness of the underwater hardened sandbag can be freely selected, it is possible to select the most suitable underwater hardened sandbag for the repair site and proceed with the work quickly.
(D) Since the underwater hardened sandbag can be rolled or bent according to the size of the through hole or gap with a small diameter, it is possible to easily and quickly repair the repair site where concrete could not be placed in the past. it can.

実施の形態1の水中硬化土嚢の内袋体の斜視図Perspective view of the inner bag of the underwater hardened sandbag of the first embodiment 図1のA−A線の断面端面図Cross-sectional end view of line AA in FIG. 外袋体材の斜視図Perspective view of outer bag body material 吸水前の状態を示す水中硬化土嚢の斜視図Perspective view of underwater hardened sandbags showing the state before water absorption 図4のB−B線の要部断面端面図Cross-sectional end view of the main part of line BB in FIG. 実施の形態1の水中硬化土嚢が水中で吸水し膨張した状態を示す要部側面断面図Side sectional view of a main part showing a state in which the underwater hardened sandbag of the first embodiment absorbs water and expands in water. 水中硬化土嚢を丸め水溶性の拘束材で丸めた状態を示す要部斜視図A perspective view of a main part showing a state in which an underwater hardened sandbag is rolled and rolled with a water-soluble restraining material. 水際構造物の1種である鋼矢板護岸の貫通口の後部の空洞部内に水中硬化土嚢を充填している状態を示す模式図Schematic diagram showing a state in which an underwater hardened sandbag is filled in the cavity at the rear of the through-hole of a steel sheet pile revetment, which is a kind of waterfront structure. 鋼矢板護岸の貫通口の後部の空洞部壁と水中硬化土嚢の間の空隙部にモルタル等の水硬性硬化剤を充填している状態を示す模式図Schematic diagram showing a state in which a hydraulic hardening agent such as mortar is filled in the gap between the hollow wall at the rear of the through hole of the steel sheet pile revetment and the underwater hardened sandbag.

以下、本発明の実施の形態につき図面を用いて説明する。尚、本発明は実施例に限定されるものではない。
(実施の形態1)
図1は実施の形態1の水中硬化土嚢の内袋体の斜視図であり、図2は図1のA−A線の断面端面図である。
図1及び図2において、1は実施の形態1の水中硬化土嚢の内袋体、2は透水性シート材、3は内部に吸水してゲル化膨潤する吸水性樹脂等からなる吸水体を収容し周辺部が接着や縫合で固定された縁部、4は内袋体1の縁部3を貫通し内部や吸水体の集合部の内部まで挿通された短繊維セルロース等で作成された繊維状の若しくは吸水性合成繊維等で作成された通水材、5は内袋体2に内包された粒状や顆粒状、フレーク状、ペレット状、繊維状の吸水性樹脂等や後述する導水材からなる吸水体、6は吸水体5に混合された短繊維セルロース等からなり吸水体5にまんべんなく水を行き渡らせる導水材である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the examples.
(Embodiment 1)
FIG. 1 is a perspective view of the inner bag body of the underwater hardened sandbag of the first embodiment, and FIG. 2 is a cross-sectional end view of the line AA of FIG.
In FIGS. 1 and 2, 1 is an inner bag body of the water-hardened clay sac of the first embodiment, 2 is a water-permeable sheet material, and 3 is a water-absorbing body made of a water-absorbent resin or the like that absorbs water inside and gels and swells. The edge part 4 whose peripheral part is fixed by adhesion or suturing is a fibrous form made of short-fiber cellulose or the like that penetrates the edge part 3 of the inner bag body 1 and is inserted into the inside or the inside of the gathering part of the water absorber. Or, the water-permeable material 5 made of water-absorbent synthetic fiber or the like is composed of granular, granular, flake-like, pellet-like, fibrous water-absorbent resin or the like contained in the inner bag body 2 or a water-conducting material described later. The water absorbent body 6 is a water guiding material made of short-fiber cellulose or the like mixed with the water absorbing body 5 and evenly distributes water to the water absorbing body 5.

ここで、内袋体1は、透水性シート材2で厚みが3〜20mmの矩形状に作成されるのが好ましい。また、吸水時には、厚みが約5〜50倍程度に膨張するように作成されるのが好ましい。
袋状に形成される透水性シート材2は、例えば最終膨張形状より少し大きめ(縫い代分等)の2枚の布地を重ねて縫製又は接着剤を用いて形成される。ここで使用する接着剤には、合成ゴム系接着剤等の他に、熱可塑性樹脂を主成分とするホットメルト型接着剤、エポキシ系接着剤や、シアノアクリレート系接着剤等を用いることも可能である。
透水性シート材2の材質としては、液体は通過させるが吸水性樹脂は通過させない透水性の植物繊維等の天然繊維や、再生、半合成及び合成繊維等の化学繊維の織布や不織布が用いられる。
縁部3は外袋体の縁部と縫合または積層される幅(約4〜20mm)で形成される。
通水材4としては吸水性のフェルト系や不織布、織布の紐状物や帯状物等が用いられる。通水材4は外袋体と内袋体の両者を貫通して挿設される。通水材4の毛細管現象により外袋体の水中硬化マット材の水硬性硬化剤が水和反応して硬化する前に、内袋体の内部の吸水性樹脂に水を速やかに供給しゲル化膨張させることができる。
Here, the inner bag body 1 is preferably made of a water-permeable sheet material 2 in a rectangular shape having a thickness of 3 to 20 mm. Further, when water is absorbed, it is preferably made so that the thickness expands about 5 to 50 times.
The bag-shaped water-permeable sheet material 2 is formed by stacking two fabrics slightly larger than the final expanded shape (sewing allowance, etc.) and sewing or using an adhesive. As the adhesive used here, in addition to synthetic rubber adhesives and the like, hot melt type adhesives mainly composed of thermoplastic resins, epoxy adhesives, cyanoacrylate adhesives and the like can also be used. Is.
As the material of the water-permeable sheet material 2, natural fibers such as water-permeable plant fibers that allow liquids to pass through but not water-absorbent resins, and woven fabrics and non-woven fabrics of chemical fibers such as recycled, semi-synthetic and synthetic fibers are used. Be done.
The edge portion 3 is formed with a width (about 4 to 20 mm) that is sewn or laminated with the edge portion of the outer bag body.
As the water-permeable material 4, a water-absorbent felt-based material, a non-woven fabric, a woven fabric string-like material, a strip-like material, or the like is used. The water-permeable material 4 is inserted so as to penetrate both the outer bag body and the inner bag body. Before the water-hardening agent of the water-curing mat material of the outer bag body undergoes a hydration reaction and hardens due to the capillary phenomenon of the water-permeable material 4, water is quickly supplied to the water-absorbent resin inside the inner bag body to gel. Can be inflated.

吸水体5の吸水性樹脂は、水中硬化土嚢の補修現場の電解質の多寡に応じて淡水用や海水用に使い分けられる。
河川や湖沼等の淡水の場合、澱粉にアクリル酸塩をグラフト重合させた澱粉系、カルボキシセルロースにアクリル酸塩をグラフト重合させたセルロース系、アクリル酸・ビニルアルコール共重合体、アクリル酸重合体、アクリル酸・アクリルアミド重合体、ポリエチレンオキサイド変性物等の合成系のカルボキシル基、水酸基、エーテル基、アミド基等の親水性の官能基を有する高分子が用いられる。
海水等の電解質を含む場合には、イオン解離するノニオン型吸水性樹脂、高分子アニオンに解離するアニオン型吸水性樹脂、高分子カチオンに解離するカチオン型吸水性樹脂(ポリアクリルアミド・ターシャリーブチルスルホン酸等)、カチオンとアニオンに解離する基をもつ両性吸水性樹脂等が好適に用いられる。例としては、スルホン酸基含有架橋ポリアクリル酸の部分金属塩等のポリアクリル酸塩やポリエチレンオキサイド系、CMC架橋物、ランエース(登録商標)等の高吸水性樹脂が挙げられる。
なお、吸水性樹脂としては、粒状、顆粒状、繊維状、ペレット状、フレーク状のものが用いられる。
これら吸水性樹脂は自重の数倍から千倍近くまで水分を急速に吸収して、ゲル化膨潤し空洞部の形状等に沿って膨張し水中硬化土嚢を空洞部の所定部に固定化する作用を有する。
The water-absorbent resin of the water-absorbent body 5 is used properly for fresh water and seawater depending on the amount of electrolyte at the repair site of the underwater-hardened sandbag.
In the case of fresh water such as rivers and lakes, a starch type in which acrylic acid is graft-polymerized on starch, a cellulose type in which acrylic acid is graft-polymerized on carboxycellulose, acrylic acid / vinyl alcohol copolymer, acrylic acid polymer, A polymer having a hydrophilic functional group such as a carboxyl group, a hydroxyl group, an ether group, or an amide group of a synthetic system such as an acrylic acid / acrylamide polymer or a modified polyethylene oxide is used.
When an electrolyte such as seawater is contained, a nonionic water-absorbent resin that dissociates ions, an anionic water-absorbent resin that dissociates into a polymer anion, and a cationic water-absorbent resin that dissociates into a polymer cation (polyacrylamide / tertiary butyl sulfone). Acids, etc.), amphoteric water-absorbent resins having groups that dissociate into cations and anions, and the like are preferably used. Examples include polyacrylates such as partial metal salts of crosslinked polyacrylic acid containing a sulfonic acid group, polyethylene oxides, crosslinked CMCs, and superabsorbent polymers such as Lanace (registered trademark).
As the water-absorbent resin, granular, granular, fibrous, pellet-shaped, and flake-shaped ones are used.
These water-absorbent resins rapidly absorb water from several times to nearly 1,000 times their own weight, gelling and swelling, swelling along the shape of the cavity, etc., and immobilize the hydrosetting sandbag in a predetermined part of the cavity. Has.

導水材6は、短繊維セルロース等の毛細管現象で水を移動させるものであればよく、セルロースパウダー等が用いられる。尚、通水剤と同一の材料を用いても良い。内袋体内部の吸水性樹脂は水中ではその表面から吸水していくので、吸水性樹脂全体が水で飽和するまで時間を要するが、導水材6を混合することにより、吸水性樹脂の集合体の深部まで速やかに水を移動させ吸水性樹脂全体を水で飽和することができる。 The water guiding material 6 may be any material that moves water by a capillary phenomenon such as short fiber cellulose, and cellulose powder or the like is used. The same material as the water-passing agent may be used. Since the water-absorbent resin inside the inner bag absorbs water from its surface in water, it takes time until the entire water-absorbent resin is saturated with water. However, by mixing the water-conducting material 6, the water-absorbent resin aggregates. Water can be quickly moved to the deep part of the water-absorbent resin to saturate the entire water-absorbent resin with water.

図3は外袋体材の斜視図であり、(a)は水中硬化マット材からなる外袋体材、(b)は透水性シート材の一面に積層されたスリットを有する水中硬化マット材で形成された外袋体材、(c)は透水性シート材の一面に所定間隔をあけて積層された水中硬化マット材で形成された外袋体材である。
図3において、7は水中硬化マット材8からなる外袋体材、7aは所定間隔を開けてスリット8aが形成された水中硬化マット材8と透水性シート材2が積層された外袋体材、7bは所定の間隙8bを空けて透水性シート材2に積層された水中硬化マット材8で作成された外袋体材である。
ここで、外袋体材7は透水性の織布や不織布等の布地間にコンクリートやモルタル等のセメント系組成物又は石膏系組成物を内包した可撓性のマット状に形成された水中硬化マット材8で作成されている。
スリット8aや間隙8bは5〜20mmの間隔で形成される。これにより、内袋体の吸水体に速やかに給水することができる。
FIG. 3 is a perspective view of the outer bag body material, (a) is an outer bag body material made of an underwater curing mat material, and (b) is an underwater curing mat material having slits laminated on one surface of a water permeable sheet material. The formed outer bag body material, (c), is an outer bag body material formed of an underwater-curing mat material laminated on one surface of a water-permeable sheet material at predetermined intervals.
In FIG. 3, 7 is an outer bag body material made of an underwater curing mat material 8, and 7a is an outer bag body material in which an underwater curing mat material 8 having slits 8a formed at predetermined intervals and a water permeable sheet material 2 are laminated. , 7b is an outer bag body material made of an underwater curing mat material 8 laminated on the water permeable sheet material 2 with a predetermined gap 8b.
Here, the outer bag body material 7 is cured in water formed in a flexible mat shape containing a cement-based composition such as concrete or mortar or a gypsum-based composition between fabrics such as a water-permeable woven fabric or a non-woven fabric. It is made of matte material 8.
The slits 8a and the gap 8b are formed at intervals of 5 to 20 mm. As a result, water can be quickly supplied to the water absorbing body of the inner bag body.

図4は吸水前の状態を示す水中硬化土嚢の斜視図であり、図5は図4のB−B線の断面端面図である。
図4及び図5において、3aは外袋体9の周囲で内袋体1の縁部3と上下の外袋体材7の縁部を重合させて縫合または接合して形成された土嚢縁部、4は通水材、5は吸水体、6は導水材、9は内袋体1を内蔵した上下2枚の水中硬化マット材8からなる外袋体材7で袋状に形成された外袋体、10は実施の形態1の水中硬化土嚢である。
ここで、土嚢縁部3aは、上下の外袋体9同士又は外袋体9の縁部間に内袋体の縁部3を挟持して縫合または接着等で接合され、内袋体1の膨張圧や波浪等により護岸の鋼矢板等の背面の空洞部内部での凹凸との衝突による外力で破壊されない程度(幅:4〜20mm)に形成されている。
通水材4は、外袋体9の通水性が低いので、外袋体9の外部から吸水体5に迅速に給水して膨張させるために配設されるもので、複数本が外袋体9又は内袋体1及び外袋体9を貫通して吸水体5の内部まで配設固定されている。
水中硬化土嚢10の大きさや厚みは、空洞部や間隙の径や奥行に合わせて選択される。形状は矩形状に作成されるのが好ましい。また、外袋体9は内蔵した内袋体1の吸水時には、内袋体1の吸水性樹脂のゲル化膨潤に応じて外観厚みが約5〜50倍程度に膨張する体積を有するように作成されるのが好ましい。
FIG. 4 is a perspective view of an underwater hardened sandbag showing a state before water absorption, and FIG. 5 is a cross-sectional end view of the line BB of FIG.
In FIGS. 4 and 5, 3a is a sandbag edge formed by superimposing the edge 3 of the inner bag 1 and the edges of the upper and lower outer bag materials 7 and stitching or joining them around the outer bag 9. 4 is a water-permeable material, 5 is a water-absorbing material, 6 is a water-conducting material, and 9 is an outer bag-shaped outer bag body material 7 composed of two upper and lower underwater-curing mat materials 8 containing an inner bag body 1. The bag body 10 is the underwater hardened sandbag of the first embodiment.
Here, the sandbag edge portion 3a is joined by suturing or adhering the edge portion 3 of the inner bag body between the upper and lower outer bag bodies 9 or between the edges of the outer bag body 9, and the inner bag body 1 is joined. It is formed to such an extent that it is not destroyed by an external force (width: 4 to 20 mm) due to collision with unevenness inside the cavity on the back surface of the steel sheet pile of the revetment due to expansion pressure or waves.
Since the water permeability of the outer bag body 9 is low, the water-permeable material 4 is arranged so that water can be quickly supplied to the water-absorbing body 5 from the outside of the outer bag body 9 to expand it. 9 or the inner bag body 1 and the outer bag body 9 are penetrated and arranged and fixed to the inside of the water absorbing body 5.
The size and thickness of the underwater hardened sandbag 10 are selected according to the diameter and depth of the cavity and the gap. The shape is preferably made rectangular. Further, the outer bag body 9 is created so as to have a volume in which the outer bag body 1 expands in appearance thickness about 5 to 50 times according to the gelation and swelling of the water-absorbent resin of the inner bag body 1 when the inner bag body 1 absorbs water. It is preferable to be done.

以上のように構成された本実施の形態の水中硬化土嚢について、以下その作用を図面を用いて説明する。
図6は実施の形態1の水中硬化土嚢が水中で吸水し膨張した状態を示す要部側面断面図である。
水中硬化土嚢10を、海水や淡水の中に沈めると、外袋体9から滲出し透水性シート材で作成された内袋体1に浸透した水が、吸水体5の表面の吸水性樹脂に給水されるとともに、通水材4から通水される水で吸水性樹脂の集合体の深部にも給水される。また吸水体5の内部は導水材6により吸水性樹脂に水が給水される。吸水体5が水を吸収しゲル化膨潤するのに合わせて内袋体1が膨張し合わせて外袋体9が膨張する。また、外袋体9を構成する水中硬化マット材8のセメント系組成物又は石膏系組成物等の水硬性硬化剤8aが周囲の水との水和反応により硬化が進み、水中硬化土嚢10の表面が剛性を有する構造材10aとなる。
The action of the underwater hardened sandbag of the present embodiment configured as described above will be described below with reference to the drawings.
FIG. 6 is a side sectional view of a main part showing a state in which the underwater hardened sandbag of the first embodiment absorbs water and expands in water.
When the submerged hardened clay bag 10 is submerged in seawater or fresh water, the water that seeps out from the outer bag body 9 and permeates the inner bag body 1 made of the water-permeable sheet material becomes the water-absorbent resin on the surface of the water-absorbent body 5. At the same time as the water is supplied, the water passed from the water passing material 4 is also supplied to the deep part of the water-absorbent resin aggregate. Further, inside the water absorbing body 5, water is supplied to the water absorbing resin by the water conducting material 6. As the water absorbing body 5 absorbs water and gels and swells, the inner bag body 1 expands and the outer bag body 9 expands. Further, the hydraulic curing agent 8a such as the cement-based composition or the gypsum-based composition of the underwater-curing mat material 8 constituting the outer bag body 9 is cured by the hydration reaction with the surrounding water, and the underwater-curing sandbag 10 is cured. The structural material 10a has a rigid surface.

次に、実施の形態の水中硬化土嚢を用いた水際構造物の補修方法を、図面を用いて説明する。
図7は水中硬化土嚢を丸め水溶性の拘束材で拘束した状態を示す要部斜視図であり、図8は水際構造物の1種である鋼矢板護岸の貫通口の後部の空洞部内に水中硬化土嚢を充填している状態を示す模式図であり、図9は鋼矢板護岸の貫通口の後部の空洞部壁と水中硬化土嚢の間や水中硬化土嚢間の空隙部にモルタル等の水硬性硬化剤を充填している状態を示す模式図である。
図7乃至図9において、3aは水中硬化土嚢10の土嚢縁部、4は外袋体9及び内袋体1の各縁部に挿通されて吸水性樹脂の集合体の内部まで挿通された通水材、9は水中硬化マット材8で形成された外袋体、10は水中硬化土嚢、11は補修作業を容易にするために丸められた水中硬化土嚢10の外周に巻着され拘束した水溶性の帯状物や紐状物からなる拘束材である。
図8において、20は地表面、21は海水面、22は水際構造物の1種である鋼矢板護岸、23は鋼矢板護岸22の喫水面付近で海水の波の飛沫がかかる飛沫帯、24は波浪腐食や酸化腐食で鋼矢板護岸22の鋼矢板に開いた腐食***、25は鋼矢板護岸22の腐食***24の背後の軽量混合処理土や裏込石等の盛り土が波浪等で洗掘されてできた空洞部であり腐食***24の上部がより大きく洗掘されている。26、27は空洞部25内部の凸部及び凹部、28は補修作業を行っている潜水士である。
図9において、10aは空洞部25内の水中で拘束材11が溶解し水中硬化土嚢10が広がりながら外袋体9から浸透した水で内袋体1の吸水性樹脂5aが膨張しながら外袋体9の内部の水硬性硬化剤8aが水を吸って膨張硬化した構造材、29は補修域近くの地上に設置されたモルタル注入ポンプ、30はモルタル輸送管、31はモルタル注入ガン、32は空洞部25内の凸部26や凹部27等と膨張し固化した構造材10aとの間の間隙部や膨張し固化して構造物となって固定された構造材10a間の間隙部に充填されたモルタルである。
Next, a method of repairing the waterfront structure using the underwater hardened sandbag of the embodiment will be described with reference to the drawings.
FIG. 7 is a perspective view of a main part showing a state in which an underwater hardened sandbag is rolled up and restrained with a water-soluble restraining material, and FIG. It is a schematic view which shows the state which the hardened sandbag is filled, and FIG. It is a schematic diagram which shows the state which the hardener is filled.
In FIGS. 7 to 9, 3a is the sandbag edge of the underwater hardened sandbag 10, and 4 is inserted into each edge of the outer bag 9 and the inner bag 1 to the inside of the water-absorbent resin aggregate. Water material, 9 is an outer bag body made of a water-curing mat material 8, 10 is a water-curing sandbag, and 11 is a water-soluble sandbag wound and restrained around the outer circumference of a rolled water-curing sandbag 10 to facilitate repair work. It is a restraining material composed of sex strips and strings.
In FIG. 8, 20 is the ground surface, 21 is the seawater surface, 22 is a steel sheet pile protection bank which is a kind of waterfront structure, 23 is a splash zone where seawater waves are splashed near the water surface of the steel sheet pile protection bank 22, 24. Is a corroded small hole opened in the steel sheet pile of the steel sheet pile protection 22 due to wave corrosion or oxidative corrosion, and 25 is a light mixed treatment soil behind the corroded small hole 24 of the steel sheet pile protection 22 and a filling such as a backfill stone is scoured by waves. It is a hollow part formed by the steel, and the upper part of the corroded small hole 24 is more scoured. 26 and 27 are convex portions and concave portions inside the cavity 25, and 28 are divers performing repair work.
In FIG. 9, 10a shows the outer bag while the water-absorbent resin 5a of the inner bag body 1 expands with the water permeated from the outer bag body 9 while the restraining material 11 is dissolved in the water in the cavity 25 and the underwater hardened mortar 10 spreads. A structural material in which the water-hardening agent 8a inside the body 9 absorbs water and expands and hardens, 29 is a mortar injection pump installed on the ground near the repair area, 30 is a mortar transport pipe, 31 is a mortar injection gun, and 32 is. The gap between the convex portion 26 or the concave portion 27 in the cavity 25 and the structural material 10a that has expanded and solidified, and the gap between the structural material 10a that has expanded and solidified to form a structure are filled. It is a mortar.

鋼矢板護岸22の補修方法は、まず、補修対象の空洞部25の容積にあった水中硬化土嚢10を準備する。次いで、鋼矢板の腐食***24に挿入できるように水中硬化土嚢10を丸め、水溶性の拘束材11で拘束する。次いで、拘束された水中硬化土嚢10を準備し、特殊作業員である潜水士28が補修現場の海域に潜り、該腐食***24から空洞部25の中へ吸水して膨張したときの体積が空洞部25の容積にほぼ相当する個数の拘束された水中硬化土嚢10を挿入する(水中硬化土嚢充填工程)。
挿入された水中硬化土嚢10は通水材4から水が浸入し、内袋体1内の吸水体5の吸水性樹脂5aの集合体内部等に水を給水する。又、透水性シート材2で作成された内袋体1の縁部や外袋体9から滲出した水が毛細管現象で内袋体1内の吸水体5の吸水性樹脂5aや導水材6に給水される。吸水した吸水性樹脂5aは、ゲル化膨潤し内袋体1を空洞部25の内部形状に沿って立体形状に膨張する。一方、外袋体9は内袋体1とともに膨張しつつ、外袋体9の水中硬化マット材8の水中硬化型のセメント系組成物や石膏系組成物等からなる水硬性硬化剤は水和反応をしながら硬化し剛性の構造体10aに成長し空洞部25を充填し閉塞する。次いで、必要に応じて、腐食***24から陸上のモルタル注入ポンプ29からモルタル輸送菅30をとうして潜水士28がモルタルガン31で水中硬化型の発泡モルタル等を注入し、空洞部25内の凸部26や凹部27等と膨張し固化した構造材10aとの間の間隙部や膨張し固化して構造物となって固定された構造材10a間の間隙部、更に鋼矢板護岸22と盛り土の間にモルタル32を充填(間隙充填剤工程)することにより空洞部25を塞いで補修する。
尚、水中硬化土嚢10の吸水体として、吸水性樹脂5aを単独で用いてもよい。
また、モルタルの代わりにコンクリートミルクや細骨材等と合成樹脂との合成樹脂組成物を使用しても良い。
As a method of repairing the steel sheet pile revetment 22, first, an underwater hardened sandbag 10 having a volume of the cavity 25 to be repaired is prepared. Next, the underwater hardened sandbag 10 is rolled so that it can be inserted into the corroded small hole 24 of the steel sheet pile, and is restrained by the water-soluble restraining material 11. Next, the restrained underwater hardened sandbag 10 is prepared, and the volume when the diver 28, who is a special worker, dives into the sea area of the repair site and absorbs water from the corroded small hole 24 into the cavity 25 and expands is hollow. A number of restrained underwater hardened sandbags 10 corresponding to the volume of the portion 25 are inserted (underwater hardened sandbag filling step).
Water infiltrates from the water-permeable material 4 into the inserted underwater hardened sandbag 10, and water is supplied to the inside of the aggregate of the water-absorbing resin 5a of the water-absorbing body 5 in the inner bag body 1. In addition, the water exuded from the edge of the inner bag body 1 and the outer bag body 9 made of the water-permeable sheet material 2 becomes the water-absorbent resin 5a and the water-conducting material 6 of the water-absorbing body 5 in the inner bag body 1 due to the capillary phenomenon. Water is supplied. The water-absorbing water-absorbent resin 5a gels and swells, and the inner bag body 1 expands into a three-dimensional shape along the internal shape of the cavity 25. On the other hand, while the outer bag body 9 expands together with the inner bag body 1, the hydraulic curing agent composed of the water-curable cement-based composition, the gypsum-based composition, etc. of the underwater-curing mat material 8 of the outer bag body 9 is hydrated. It hardens while reacting, grows into a rigid structure 10a, fills the cavity 25, and closes. Then, if necessary, the diver 28 injects water-curable foamed mortar or the like with the mortar gun 31 from the corroded small hole 24 through the mortar transport tube 30 from the land-based mortar injection pump 29, and in the cavity 25. The gap between the convex portion 26 and the concave portion 27 and the structural material 10a that has expanded and solidified, the gap between the structural material 10a that has expanded and solidified to form a structure, and the steel sheet pile revetment 22 and the embankment. By filling the mortar 32 between the two (gap filling agent step), the cavity 25 is closed and repaired.
The water-absorbent resin 5a may be used alone as the water-absorbent body of the underwater-cured sandbag 10.
Further, instead of the mortar, a synthetic resin composition of concrete milk, fine aggregate or the like and a synthetic resin may be used.

以上のように、本実施の形態の水中硬化土嚢の補修方法によれば、以下の作用・効果が得られる。
(a)丸めて水溶性の拘束材で拘束された水中硬化土嚢の所定量を、潜水士が鋼矢板の腐食***から空洞部内に挿入するだけで、後は自然に任せるだけで、拘束材が水中に溶け、水中硬化土嚢の内袋体内の吸水性樹脂がゲル化膨潤しながら外袋体を膨張させつつ空洞部の形状に沿って立体形状の剛性袋体となり空洞部内を充填するので、短時間で作業が済み作業性に著しく優れる。
(b)通水材を備えているので、吸水性樹脂に速やかに給水でき、作業性を早める。
(c)立体形状で水中で水和反応して硬化してできた剛性袋体の水中硬化土嚢が空洞部の形状に沿って膨張しながら充填され固定化されるので、長期間にわたって腐食***からの護岸の洗掘を防止でき、高い補修効果が得られるとともに、鋼矢板護岸の延命化を図ることができる。
(d)空洞部を充填する水中硬化土嚢が剛性袋体となるので、波浪や潮汐による外力で破袋するのを防止できる。
(e)水中硬化土嚢は空洞部内に挿入した当初は比重が軽いので、空洞部内の水中で浮きながら上部へ移動しつつゲル化膨張し剛性の袋体と成長していくので、従来のように、陸上からポンプでコンクリートミルクを充填することが困難であった空洞部上部の洗掘場所を極めて簡単にかつ隙間なく充填し、空洞部内をほぼ完全に充填できるので、空洞部の上部の地盤の陥没を防ぐことができる。
(f)発泡モルタルを水中硬化土嚢が硬化後、充填した場合、空洞部の隅々や膨張した構造材間の隙間を埋めることができ、地盤沈下を防ぐことができる。
(g)アルカリ性の発泡モルタルにより鋼矢板やコンクリートの鉄筋の防錆化を行い、護岸の耐久性を著しく向上させることができる。
(h)水中硬化土嚢が、軽量で運搬し易く取り扱い易いので、少人数で、かつ、短時間で施工でき、省力性や作業性に優れる。
(i)モルタル等の間隙充填剤が鋼矢板護岸の背面と盛り土の隙間にもれなく充填されることにより、海水や、地下水、空気の浸入を防ぎ、塩分や水分、酸素等の鋼矢板護岸の酸化要因を遮断するとともに、セメントモルタルのアルカリ成分が鋼矢板護岸の背面に長期間作用することで鋼矢板護岸の酸化劣化を防ぎ防食効果を持続させることができる。
As described above, according to the method for repairing the underwater hardened sandbags of the present embodiment, the following actions and effects can be obtained.
(A) A diver simply inserts a predetermined amount of water-cured sandbags that have been rolled up and restrained with a water-soluble restraining material into the cavity through a corroded small hole in a steel sheet pile, and the rest is naturally left to the restraining material. It dissolves in water, and the water-absorbent resin inside the inner bag of the hardened sandbag gels and swells while expanding the outer bag, forming a three-dimensional rigid bag along the shape of the cavity and filling the inside of the cavity. Work is completed in time and workability is remarkably excellent.
(B) Since the water-permeable material is provided, water can be quickly supplied to the water-absorbent resin, and workability is accelerated.
(C) The underwater-cured sandbag of the rigid bag body, which has a three-dimensional shape and is hardened by hydration reaction in water, is filled and fixed while expanding along the shape of the cavity, so that it can be fixed from the corroded small holes for a long period of time. It is possible to prevent the scouring of the revetment, obtain a high repair effect, and extend the life of the steel sheet pile revetment.
(D) Since the underwater hardened sandbag that fills the cavity becomes a rigid bag body, it is possible to prevent the bag from being broken by an external force due to waves or tides.
(E) Since the underwater hardened sandbag has a light specific gravity when it is inserted into the cavity, it floats in the water inside the cavity and moves upward while gelling and expanding to grow into a rigid bag. Since it is extremely easy and tight to fill the scouring area in the upper part of the cavity where it was difficult to fill concrete milk with a pump from land, and the inside of the cavity can be filled almost completely, the ground above the cavity can be filled. You can prevent the depression.
(F) When the foamed mortar is filled after the underwater hardened sandbag is hardened, it is possible to fill the corners of the cavity and the gaps between the expanded structural materials, and it is possible to prevent the ground subsidence.
(G) Alkaline foam mortar can prevent rust on steel sheet piles and concrete reinforcing bars, and can significantly improve the durability of revetments.
(H) Since the underwater hardened sandbag is lightweight, easy to carry and easy to handle, it can be constructed with a small number of people in a short time, and is excellent in labor saving and workability.
(I) By filling the gap between the back of the steel sheet pile revetment and the filling with a gap filler such as mortar, seawater, groundwater and air are prevented from entering, and the steel sheet pile revetment is oxidized with salt, water and oxygen. While blocking the factors, the alkaline component of the cement mortar acts on the back surface of the steel sheet pile revetment for a long period of time to prevent oxidative deterioration of the steel sheet pile revetment and maintain the anticorrosion effect.

水中硬化土嚢は、吸水性樹脂等を内蔵した内袋体と、水中硬化性のセメント組成物等の水硬性硬化剤を内包した水中硬化マット材等からなる外袋体とで構成されたマット状なので、波浪腐食や酸化腐食等により鋼矢板護岸の鋼矢板に開いた腐食***及びその背面に波浪で洗掘されてできた空洞部に、潜水士が挿入するだけで、吸水性樹脂がゲル化膨潤し内袋体及び外袋体を膨張させながら水中硬化マット材の水硬性硬化剤が硬化し、立体形状の剛性袋体を形成して空洞部を充填するので、少ない人員で、かつ短時間で補修作業が可能なので作業性や省力生に優れるとともに、鋼矢板護岸の耐久性を向上させることができる。
また、水中硬化土嚢を用いた水際構造物の補修方法は、鋼矢板の腐食***の径に合わせて水中硬化土嚢を丸めて水溶性の拘束材で拘束し、腐食***の背面の空洞部に挿入する作業だけで、空洞部を耐摩擦性等の機械的強度に優れた剛性の袋体で充填し、空洞部の上部の地盤を支えるので地盤の陥没を防ぐことができるので、少人数でかつ短時間に補修作業を行うことができるとともに、鋼矢板護岸等の水際構造物の耐久性を著しく向上させることができる。
The underwater-cured sandbag is a mat-like body composed of an inner bag body containing a water-absorbent resin and the like and an outer bag body made of an underwater-curing mat material containing a water-curable curing agent such as a water-curable cement composition. Therefore, the water-absorbent resin gels just by inserting it into the small corrosion hole opened in the steel sheet pile of the steel sheet pile protection due to wave corrosion or oxidative corrosion and the cavity created by scouring with waves on the back surface. The water-hardening agent of the underwater curing mat material cures while expanding the inner bag body and the outer bag body to form a three-dimensional rigid bag body and fill the cavity, so that the number of personnel is small and the time is short. Since the repair work can be done with, it is excellent in workability and labor saving, and the durability of the steel sheet pile protection can be improved.
In addition, the method of repairing waterfront structures using underwater hardened sandbags is to roll the underwater hardened sandbags according to the diameter of the corroded small holes of the steel sheet pile, restrain them with a water-soluble restraining material, and insert them into the cavity on the back of the corroded small holes. The hollow part is filled with a rigid bag body with excellent mechanical strength such as abrasion resistance, and the ground above the hollow part is supported, so that the ground can be prevented from sinking, so a small number of people can do it. Repair work can be performed in a short time, and the durability of waterside structures such as steel sheet pile revetments can be significantly improved.

1 内袋体
2 透水性シート材
3 縁部
3a 土嚢縁部
4 通水材
5 吸水体
5a 吸水性樹脂
6 導水材
7、7a、7b 外袋体材
8 水中硬化マット材
8a スリット
8b 間隙
8c 水和反応で硬化した水硬性硬化剤
9 外袋体
10 水中硬化土嚢
10a 構造材
11 拘束材
20 地表面
21 海水面
22 鋼矢板護岸
23 飛沫帯
24 腐食***
25 空洞部
26 凸部
27凹部
28 潜水士
29 モルタル注入ポンプ
30 モルタル輸送管
31 モルタル注入ガン
32 モルタル
1 Inner bag 2 Water-permeable sheet material 3 Edge 3a Sandbag edge 4 Water-permeable material 5 Water-absorbent resin 6 Water-absorbing resin 6 Water-conducting material 7, 7a, 7b Outer bag body material 8 Underwater-curing mat material 8a Slit 8b Gap 8c Water Water-hardening hardener hardened by sum reaction 9 Outer bag body 10 Underwater-hardened sandbag 10a Structural material 11 Restraint material 20 Ground surface 21 Seawater surface 22 Steel sheet pile protection 23 Splash zone 24 Corrosion small hole 25 Hollow part 26 Convex part 27 Concave part 28 Diver 29 Mortar injection pump 30 Mortar transport pipe 31 Mortar injection gun 32 Mortar

Claims (11)

a.柔軟性を有する透水性シート材で形成された内袋体と、b.前記内袋体の内部に収容された吸水性樹脂を有する吸水体と、c.水中硬化マット材で形成され前記内袋体を収納し少なくとも1縁部で積層固定され一体化された外袋体と、を備えていることを特徴とする水中硬化土嚢。 a. An inner bag body made of a flexible water-permeable sheet material and b. An outer bag body having a water-absorbent resin housed inside the inner bag body and c. an outer bag body formed of an underwater curing mat material, which houses the inner bag body and is laminated and fixed at at least one edge. A water-hardened clay sac characterized by being equipped with. 前記水中硬化マット材がスリットを備えていることを特徴とする請求項1に記載の水中硬化土嚢。 The underwater-curing sandbag according to claim 1, wherein the underwater-curing mat material includes a slit. 前記縁部を貫通して前記内袋体の前記吸水体の内部まで延設された通水材を備えていることを特徴とする請求項1または2に記載の水中硬化土嚢。 The underwater hardened sandbag according to claim 1 or 2, wherein the water-permeable material is provided so as to penetrate the edge portion and extend to the inside of the water absorbing body of the inner bag body. 前記吸水体が、淡水を吸収する吸水性樹脂又は海水等の電解質水溶液を吸収する吸水性樹脂を有することを特徴とする請求項1乃至3のいずれか1に記載の水中硬化土嚢。 The underwater cured sandbag according to any one of claims 1 to 3, wherein the water absorbent has a water-absorbent resin that absorbs fresh water or an aqueous electrolyte solution such as seawater. 前記吸水体が前記吸水性樹脂と繊維状通水材の混合物を含む構成を有していることを特徴とする請求項1乃至4のいずれか1に記載の水中硬化土嚢。 Underwater curing sandbags according to any one of claims 1 to 4, characterized in that said absorbent core has a structure comprising a mixture of the water-absorbent resin and a fibrous water passage member. 前記水中硬化マット材が、上下に配設された透水性の布地前記布地間を所定の位置で連結し内部空間を形成する連結材とを有し、前記内部間に水硬性硬化剤が内包されマット状に形成されていることを特徴とする請求項1又は2に記載の水中硬化土嚢。 The underwater curable mat member, and permeable aqueous fabric disposed vertically, and a connecting member which forms an internal space connecting between the fabric in place, hydraulic curing agent between the internal space The underwater hardened sandbag according to claim 1 or 2, wherein the sandbag is encapsulated and formed in a mat shape. 前記外袋体が外表面に金属系材料又は発泡樹脂製やゴム製で形成された突起状物や突条状物の表面保護材を備えていることを特徴とする請求項1又は2に記載の水中硬化土嚢。 The invention according to claim 1 or 2, wherein the outer bag body is provided with a surface protective material for a protrusion or a ridge formed of a metal-based material or a foamed resin or rubber on the outer surface. Underwater hardened sandbags. 護岸構造物や堤防等の水際構造物に流水や波浪による浸食で形成された腐食***や間隙の背面に洗掘されてできた空洞部に、請求項1乃至7の内いずれか1に記載の水中硬化土嚢を水中で前記腐食***や間隙から前記空洞部内に挿入し前記水中硬化土嚢を周囲の水でゲル化膨潤させるとともに水硬性硬化剤を水和反応させ硬化させて前記空洞部や間隙を充填させる水中硬化土嚢充填工程備えていることを特徴とする水際構造物の補修方法。 The present invention according to any one of claims 1 to 7, wherein a corrugated small hole formed by erosion by running water or waves in a waterfront structure such as a revetment structure or an embankment or a cavity formed by scouring on the back surface of a gap is formed. The underwater hardened sandbag is inserted into the cavity through the corroded small holes and gaps in water, and the underwater hardened sandbag is gelled and swollen with the surrounding water, and the water hardening agent is hydrated and hardened to form the hollow part and the gap. A method for repairing a waterfront structure, which comprises a submersible sandbag filling step for filling. 前記水中硬化土嚢を水中で腐食***に挿入する前に、前記水中硬化土嚢が円柱状に丸められ、その外周に水溶性の拘束材で拘束されていることを特徴とする請求項8に記載の水際構造物の補修方法。 The eighth aspect of the present invention, wherein the underwater-cured sandbag is rolled into a columnar shape and restrained by a water-soluble restraining material on the outer periphery thereof before the underwater-cured sandbag is inserted into a corroded small hole in water. How to repair waterside structures. 前記水中硬化土嚢を、前記空洞部内に充填した後、前記腐食***や前記間隙から前記空洞部内にモルタルや合成樹脂組成物の間隙充填剤を注入し充填する間隙充填剤充填工程を備えていることを特徴とする請求項8又は9に記載の水際構造物の補修方法。 A gap filler filling step is provided in which the underwater hardened sandbag is filled in the cavity, and then a gap filler of a mortar or a synthetic resin composition is injected into the cavity through the corroded small holes or the gap to fill the cavity. The method for repairing a waterfront structure according to claim 8 or 9. 前記水際構造物が、鋼矢板護岸であることを特徴とする請求項8乃至10のいずれか1に記載の水際構造物の補修方法。 The method for repairing a waterfront structure according to any one of claims 8 to 10, wherein the waterside structure is a steel sheet pile revetment.
JP2016224340A 2015-11-18 2016-11-17 Underwater hardened sandbags and methods for repairing waterfront structures using them Active JP6781459B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015225535 2015-11-18
JP2015225535 2015-11-18

Publications (2)

Publication Number Publication Date
JP2017096089A JP2017096089A (en) 2017-06-01
JP6781459B2 true JP6781459B2 (en) 2020-11-04

Family

ID=58803391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224340A Active JP6781459B2 (en) 2015-11-18 2016-11-17 Underwater hardened sandbags and methods for repairing waterfront structures using them

Country Status (1)

Country Link
JP (1) JP6781459B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778789B (en) * 2018-04-04 2020-08-25 水利部交通运输部国家能源局南京水利科学研究院 Concrete panel rock-fill dam panel goaf underwater repair system
KR102298841B1 (en) * 2021-04-21 2021-09-08 주식회사 아이앤엘 Method of repairing scour of underwater concrete structure
CN115784705A (en) * 2022-11-16 2023-03-14 天津大学 Emergency grouting material and process for leakage cavity plugging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183521A (en) * 1985-02-07 1986-08-16 Oyo Kikaku:Kk Method of stabilizing vegetation foundation on face of slope
JP2001159114A (en) * 1999-12-02 2001-06-12 Hiroshi Kataoka Sandbag
JP4212497B2 (en) * 2004-03-09 2009-01-21 有限会社リズム sandbag
US20090103981A1 (en) * 2007-10-19 2009-04-23 Giancarlo Tagini Expansion Device For Containing Overflows
JP6166095B2 (en) * 2013-05-07 2017-07-19 株式会社九コン Sandbag-like civil engineering materials
JP6216212B2 (en) * 2013-10-25 2017-10-18 株式会社キ−ストン Sandbag and sandbag laying method
JP6313631B2 (en) * 2014-03-31 2018-04-18 大王製紙株式会社 sandbag

Also Published As

Publication number Publication date
JP2017096089A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6781459B2 (en) Underwater hardened sandbags and methods for repairing waterfront structures using them
JP4920057B2 (en) Strengthening of water structure foundations
CN205530139U (en) Dykes and dams cut flow net
CN103233444A (en) Underwater riprap foundation bed and side slope erosion resisting structure and construction method thereof
CN207862857U (en) A kind of bank protection structure of harbour
CN109881634A (en) A kind of flood season dike breach rapid rescue method shut off using geosynthetics
JP6161924B2 (en) Revegetation method of earthquake-resistant seawall embankment slope
JP2020070608A (en) Composite sheet and bag made of the composite sheet
US20080219772A1 (en) Berm System
JP2005023635A (en) Protection method for bearing ground of ocean structure and protective mat
KR20150026163A (en) Eco-friendly slope stabilization method using vegetation grid reinforcement mats
CN203188174U (en) Underwater riprap foundation bed and side-slope erosion prevention structure
JP6915844B2 (en) Work space formation for wall surface repair and work space formation method for wall surface repair
JPH08199154A (en) Injection grouting material and water-stopping for joint of vertical steel pipe sheathing
KR101221465B1 (en) Anti-Scouring and Anti-Erosion Form Structure and Process therefor
JP2002275850A (en) Waterproof tool
KR102105326B1 (en) Porous injection material and grouting method for preventing wasing-away using the same
JPH04194209A (en) Sheet formwork material
JP2706679B2 (en) Seawall and seaport repair work
KR200369898Y1 (en) Scour prevention member for underwater structures
CN221236087U (en) Waterproof structure of anti-floating anchor rod
JP2015078488A (en) Embankment scour part repairing method and embankment scour prevention device
CN109056641A (en) Multifunctional movable dike
JP4482859B2 (en) Stabilization method behind the revetment
KR100691502B1 (en) The scour part repair method of a underwater structure of having used scour prevention member for underwater structures, and this

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6781459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150