JP6780188B2 - Low boiling point substance recovery device and recovery method - Google Patents

Low boiling point substance recovery device and recovery method Download PDF

Info

Publication number
JP6780188B2
JP6780188B2 JP2016197083A JP2016197083A JP6780188B2 JP 6780188 B2 JP6780188 B2 JP 6780188B2 JP 2016197083 A JP2016197083 A JP 2016197083A JP 2016197083 A JP2016197083 A JP 2016197083A JP 6780188 B2 JP6780188 B2 JP 6780188B2
Authority
JP
Japan
Prior art keywords
steam
boiling point
low boiling
point substance
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016197083A
Other languages
Japanese (ja)
Other versions
JP2018058025A (en
Inventor
幸則 紀平
幸則 紀平
和彦 石田
和彦 石田
直忠 前田
直忠 前田
升夫 湯淺
升夫 湯淺
龍洋 川瀬
龍洋 川瀬
昭昌 小田
昭昌 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Refine Holdings Co., Ltd.
Sasakura Engineering Co Ltd
Original Assignee
Refine Holdings Co., Ltd.
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Refine Holdings Co., Ltd., Sasakura Engineering Co Ltd filed Critical Refine Holdings Co., Ltd.
Priority to JP2016197083A priority Critical patent/JP6780188B2/en
Priority to TW106116704A priority patent/TWI732870B/en
Priority to TW109142454A priority patent/TWI758987B/en
Priority to CN201710416334.0A priority patent/CN107913525B/en
Publication of JP2018058025A publication Critical patent/JP2018058025A/en
Priority to JP2020074790A priority patent/JP6948677B2/en
Application granted granted Critical
Publication of JP6780188B2 publication Critical patent/JP6780188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/02Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in boilers or stills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2803Special features relating to the vapour to be compressed

Description

本発明は、アンモニア等の低沸点物質を含有する排水から低沸点物質を分離回収する回収装置及び回収方法に関する。 The present invention relates to a recovery device and a recovery method for separating and recovering a low boiling point substance from wastewater containing a low boiling point substance such as ammonia.

アンモニア含有排水を分離除去する方法としては、スチームストリッピング法が知られている。このスチームストリッピング法を用いた一般的なアンモニア回収装置では、スチームストリッピングを行う蒸留塔を備え、該蒸留塔の塔頂部から排出されるアンモニア含有蒸気を凝縮器で分縮し、凝縮水は還流液として蒸留塔の塔頂部に戻され、残りの濃縮されたアンモニア含有蒸気は吸収塔に供給され水に吸収させて回収アンモニア水として取り出されている。 A steam stripping method is known as a method for separating and removing ammonia-containing wastewater. A general ammonia recovery device using this steam stripping method is provided with a distillation column for steam stripping, and the ammonia-containing steam discharged from the top of the distillation column is fractionated by a condenser to generate condensed water. It is returned to the top of the distillation column as a reflux liquid, and the remaining concentrated vapor containing ammonia is supplied to the absorption column, absorbed by water, and taken out as recovered ammonia water.

ところで、このようなアンモニア回収装置に用いられるスチームストリッピング法は、蒸留塔の塔底部に水蒸気を直接吹き込む方法であり、水蒸気を多量に使用するため、ランニングコストが高く処理コストの削減が求められている。一方、この方法では、投入された水蒸気とほぼ同量のアンモニア含有の水蒸気が発生するが、これを蒸留塔の塔頂部への還流液および回収アンモニア液とするには、塔頂部に設置された熱交換器(凝縮器)により冷却する必要があり、エネルギーは使い捨てとなっている。 By the way, the steam stripping method used in such an ammonia recovery device is a method of directly blowing steam into the bottom of a distillation column, and since a large amount of steam is used, the running cost is high and the processing cost is required to be reduced. ing. On the other hand, in this method, almost the same amount of ammonia-containing steam as the charged steam is generated, but in order to use this as a reflux liquid to the top of the distillation column and a recovered ammonia liquid, it was installed at the top of the column. It needs to be cooled by a heat exchanger (condenser), and the energy is disposable.

このような課題を解消するため、蒸留塔の塔頂部から排出された蒸気を蒸気圧縮機により圧縮し、リボイラーにより熱回収を行って水蒸気量を低減するものが提案されている(以下の特許文献1参照)。また、蒸留塔の塔頂部から排出されるアンモニア含有蒸気を分縮する凝縮器に補給水を供給して、補給水をアンモニア含有蒸気と熱交換させて蒸発させ、蒸気圧縮機に導いて圧縮・昇温して水蒸気として再利用する構成が提案されている(以下の特許文献2参照)。 In order to solve such a problem, a method has been proposed in which steam discharged from the top of a distillation column is compressed by a steam compressor and heat is recovered by a reboiler to reduce the amount of steam (the following patent documents). 1). In addition, make-up water is supplied to a condenser that fractionates the ammonia-containing steam discharged from the top of the distillation tower, and the make-up water is heat-exchanged with the ammonia-containing steam to evaporate, and is guided to a steam compressor for compression. A configuration has been proposed in which the temperature is raised and reused as steam (see Patent Document 2 below).

特開2002−28637号公報JP-A-2002-28637 特開2004−114029号公報JP-A-2004-114029

上記の特許文献1,2に開示の従来例は、蒸留塔の塔頂部から排出されるアンモニア含有蒸気の熱を有効利用して、省エネルギー化が図られ、ランニングコストの低減が図られている。 In the conventional examples disclosed in Patent Documents 1 and 2 above, energy saving is achieved and running cost is reduced by effectively utilizing the heat of the ammonia-containing steam discharged from the top of the distillation column.

しかし、このような、少なくとも蒸留塔、熱交換器(リボイラー若しくは凝縮器:これらリボイラー若しくは凝縮器は本願の蒸発器に相当)、及び蒸気圧縮機を含む従来例の構成において、例えば20wt%以上の高濃度アンモニアを回収しようとすると、以下のような問題が生じる。即ち、熱交換器(本願の蒸発器に相当)だけで、高濃度にまで上げようとすると、熱交換器におけるアンモニア含有蒸気の入口と出口の温度差が大きくなり、その分蒸気圧縮機の負荷が大きくなりすぎて、蒸気圧縮機の使用により省エネルギーを図る要請に反することになる。なお、上記の課題は、アンモニアに限らず広く低沸点物質を含む回収装置に共通している。
そこで、従来からアンモニアを高濃度で回収できると共に、省エネルギー化が図られた低沸点物質回収装置が要望されていた。
However, in a conventional configuration including at least a distillation column, a heat exchanger (reboiler or condenser: these reboilers or condensers correspond to the evaporator of the present application), and a steam compressor, for example, 20 wt% or more. Attempts to recover high concentrations of ammonia cause the following problems. That is, if an attempt is made to raise the concentration to a high concentration using only the heat exchanger (corresponding to the evaporator of the present application), the temperature difference between the inlet and outlet of the ammonia-containing steam in the heat exchanger becomes large, and the load of the steam compressor increases accordingly. Will become too large, which goes against the demand for energy saving by using a steam compressor. The above-mentioned problems are common not only to ammonia but also to recovery devices containing a wide range of low boiling point substances.
Therefore, conventionally, there has been a demand for a low boiling point substance recovery device capable of recovering ammonia at a high concentration and saving energy.

本願発明は、上記課題に鑑みて考え出されたものであり、その目的は、低沸点物質を高濃度で回収できると共に、省エネルギー化が図られた低沸点物質回収装置および回収方法を提供することである。 The present invention has been conceived in view of the above problems, and an object of the present invention is to provide a low boiling point substance recovery device and a recovery method capable of recovering a low boiling point substance at a high concentration and saving energy. Is.

上記目的を達成する発明は、低沸点物質回収装置であって、低沸点物質を含む原液を加熱用水蒸気に接触させ、前記原液から低沸点物質を分離しガス化させ低沸点物質を含む蒸気として塔頂部から排出すると共に、原液から低沸点物質が除去された処理水を塔底部に貯留する蒸留塔と、前記蒸留塔の塔頂部から排出される低沸点物質を含む蒸気と、水とを熱交換させることにより、前記低沸点物質を含む蒸気を分縮させ前記低沸点物質を含む蒸気を濃縮させ、且つ、前記水を蒸発させ水蒸気として排出する蒸発器と、前記蒸発器から排出される水蒸気を圧縮昇温し、この圧縮昇温された水蒸気を前記蒸留塔に導き、蒸留塔で使用される加熱用水蒸気として利用する圧縮装置と、前記蒸発器で分縮した後の低沸点物質を含む蒸気を取り込み、当該蒸気を冷却して水分を除去して低沸点物質を含む蒸気をさらに濃縮する濃縮塔と、を備えたことを特徴とする。 The present invention that achieves the above object is a low boiling point substance recovery device, in which a stock solution containing a low boiling point substance is brought into contact with steam for heating, and the low boiling point substance is separated from the stock solution and gasified to vaporize the steam containing the low boiling point substance. A distillation tower that stores treated water from which low boiling point substances have been removed from the undiluted solution at the bottom of the tower, steam containing low boiling point substances discharged from the top of the distillation tower, and water. By exchanging heat, the steam containing the low boiling point substance is fractionated to concentrate the steam containing the low boiling point substance, and the water is evaporated and discharged as steam, and the vapor is discharged from the evaporator. A compression device that compresses and raises the temperature of steam, guides the compressed and heated steam to the distillation tower, and uses it as the heating steam used in the distillation tower, and a low boiling point substance after being fractionated by the evaporator. It is characterized by including a concentrating tower that takes in the containing steam, cools the steam to remove water, and further concentrates the steam containing a low boiling point substance.

上記構成によれば、蒸発器と、蒸発器の後段に配置される濃縮塔を設け、蒸留塔から排出されたアンモニア含有蒸気を、蒸発器と、濃縮塔とによる2段階の濃縮により所定の高濃度(例えば20wt%以上)の低沸点物質を含む蒸気を生成することができる。このような構成により、蒸発器だけで所定の高濃度(例えば20wt%以上)まで濃縮する構成に比べて、圧縮装置の負荷が大きくなりすぎることを防止できる。この結果、省エネルギー化が図れ、且つ、高濃度(例えば20wt%以上)の低沸点物質含有蒸気を生成することができる回収装置が得られることになる。
「低沸点物質」としては、アンモニア、メタノール等のアルコール類、アセトン等のケトン類、酢酸メチル等のエステル類等が適用できる。
「水」としては、純水、軟水、イオン交換水等が適用できる。
According to the above configuration, an evaporator and a concentration tower arranged after the evaporator are provided, and the ammonia-containing vapor discharged from the distillation column is concentrated at a predetermined height by two-step concentration by the evaporator and the concentration column. It is possible to generate a vapor containing a low boiling point substance having a concentration (for example, 20 wt% or more). With such a configuration, it is possible to prevent the load on the compression device from becoming too large as compared with the configuration in which the compressor concentrates to a predetermined high concentration (for example, 20 wt% or more) by itself. As a result, it is possible to obtain a recovery device capable of saving energy and producing a steam containing a low boiling point substance having a high concentration (for example, 20 wt% or more).
As the "low boiling point substance", alcohols such as ammonia and methanol, ketones such as acetone, esters such as methyl acetate and the like can be applied.
As "water", pure water, soft water, ion-exchanged water and the like can be applied.

本発明の一実施形態においては、上記低沸点物質回収装置であって、前記蒸留塔の塔底部に貯留される処理水を外部に排出する排出ラインの途中に設けられ、前記蒸発器において使用される水を、予め前記処理水と熱交換して加熱する予熱器を備えたことを特徴とするものが示される In one embodiment of the present invention, the low boiling point substance recovery device is provided in the middle of a discharge line for discharging treated water stored in the bottom of the distillation column to the outside, and is used in the evaporator. that the water, which comprising the preheater for heating in advance the treated water and the heat exchange are shown.

上記構成によれば、蒸発器において使用される水が予熱されることにより、蒸発器における熱交換の際の省エネルギー化が図られる。 According to the above configuration, the water used in the evaporator is preheated, so that energy saving at the time of heat exchange in the evaporator can be achieved.

本発明の別の一実施形態においては、上記低沸点物質回収装置であって、前記濃縮塔の塔底部に貯留される貯留液を塔頂部に導く循環ラインの途中に設けられ、循環ラインを流れる前記貯留液を冷却水と熱交換し、貯留液を冷却する熱交換器と、前記濃縮塔の塔底部に貯留される貯留液の温度を検出する温度センサと、前記温度センサの検出結果に応じて、前記熱交換器を通過する冷却水の流量を調整する制御弁と、を備えたことを特徴とするものが示される In another embodiment of the present invention, the low boiling point substance recovery device is provided in the middle of a circulation line that guides the stored liquid stored in the bottom of the concentration tower to the top of the tower, and flows through the circulation line. Depending on the detection results of the heat exchanger that exchanges heat with the cooling water to cool the stored liquid, the temperature sensor that detects the temperature of the stored liquid stored in the bottom of the concentrating tower, and the temperature sensor. Te, which is characterized in that and a control valve for adjusting the flow rate of the coolant passing through the heat exchanger is shown.

上記構成によれば、温度センサの検出結果に応じて制御弁の開度が制御され、熱交換器を通過する冷却水の流量が調整される。これにより、濃縮塔の塔底部に貯留される貯留液(低沸点物質含有蒸気の凝縮液)を所定温度まで冷却して噴霧することにより、所定の高濃度(例えば20wt%以上)のアンモニア含有蒸気を生成することができる。 According to the above configuration, the opening degree of the control valve is controlled according to the detection result of the temperature sensor, and the flow rate of the cooling water passing through the heat exchanger is adjusted. As a result, the stored liquid (condensed liquid of low boiling point substance-containing vapor) stored at the bottom of the concentrating tower is cooled to a predetermined temperature and sprayed to obtain a predetermined high concentration (for example, 20 wt% or more) of ammonia-containing vapor. Can be generated.

本発明の別の一実施形態においては、上記低沸点物質回収装置であって、前記圧縮装置は複数の蒸気圧縮機が並列に接続されて構成されていることを特徴とするものが示される In another embodiment of the present invention, the low boiling point substance recovery device, wherein the compression device is configured by connecting a plurality of steam compressors in parallel is shown .

本発明の別の一実施形態においては、上記低沸点物質の回収装置であって、前記低沸点物質はアンモニアであることを特徴とするものが示される In another embodiment of the present invention, there is provided a recovery device of the low-boiling substances, which is characterized in that the low-boiling substance is ammonia is shown.

上記目的を達成する本発明はまた、低沸点物質の回収方法であって、蒸留塔に加熱用水蒸気を吹き込み、低沸点物質を含む原液に加熱用水蒸気を接触させ、前記原液から低沸点物質を分離しガス化させ低沸点物質を含む蒸気として蒸留塔の塔頂部から排出すると共に、原液から低沸点物質が除去された処理水を蒸留塔の塔底部に貯留する第1工程と、前記蒸留塔の塔
頂部から排出される低沸点物質を含む蒸気と、水とを熱交換させることにより、前記低沸点物質を含む蒸気を分縮させ前記低沸点物質を含む蒸気を濃縮させ、且つ、前記水を蒸発させ水蒸気として排出する第2工程と、前記蒸発器から排出される水蒸気を圧縮昇温し、この圧縮昇温された水蒸気を前記蒸留塔に導き、蒸留塔で使用される加熱用水蒸気として利用する第3工程と、前記蒸発器で分縮した後の低沸点物質を含む蒸気を取り込み、当該蒸気を冷却して水分を除去して低沸点物質を含む蒸気をさらに濃縮する第4工程と、を備えたことを特徴とする。
The present invention, which achieves the above object, is also a method for recovering a low boiling point substance, in which steam for heating is blown into a distillation tower, steam for heating is brought into contact with a stock solution containing the low boiling point substance, and the low boiling point substance is removed from the stock solution. The first step of separating and gasifying and discharging it from the top of the distillation tower as steam containing a low boiling point substance, and storing the treated water from which the low boiling point substance has been removed from the stock solution at the bottom of the distillation tower, and the distillation tower. By exchanging heat between the steam containing the low boiling point substance discharged from the top of the tower and water, the steam containing the low boiling point substance is fractionated to concentrate the steam containing the low boiling point substance, and the water In the second step of evaporating and discharging as steam, the steam discharged from the evaporator is compressed and heated, and the compressed and heated steam is guided to the distillation tower as steam for heating used in the distillation tower. The third step to be used and the fourth step of taking in the steam containing the low boiling point substance after being fractionated by the evaporator, cooling the steam to remove water, and further concentrating the steam containing the low boiling point substance. It is characterized by having.

上記構成によれば、低沸点物質を高濃度で回収できると共に、省エネルギー化が図られた低沸点物質の回収方法が構築される。 According to the above configuration, a method for recovering a low boiling point substance can be constructed in which a low boiling point substance can be recovered at a high concentration and energy saving is achieved.

本発明によれば、低沸点物質を高濃度で回収できると共に、省エネルギー化を図ることができる。 According to the present invention, a low boiling point substance can be recovered at a high concentration, and energy saving can be achieved.

実施の形態に係るアンモニア回収装置の全体構成図。The whole block diagram of the ammonia recovery apparatus which concerns on embodiment. 蒸発器付近の拡大図。Enlarged view near the evaporator. 濃縮塔付近の拡大図。Enlarged view near the enrichment tower.

以下、本発明を実施の形態に基づいて詳述する。なお、以下の実施の形態では、低沸点物質回収装置としては、アンモニア含有排水を原液とし、このアンモニア含有排水からアンモニアを分離除去して回収するアンモニア回収装置を例示して説明する。低沸点物質としては、アンモニア以外に、メタノール等のアルコール類、アセトン等のケトン類、酢酸メチル等のエステル類にも適用できる。 Hereinafter, the present invention will be described in detail based on the embodiments. In the following embodiment, as the low boiling point substance recovery device, an ammonia recovery device in which ammonia-containing wastewater is used as a stock solution and ammonia is separated and removed from the ammonia-containing wastewater and recovered will be described as an example. As the low boiling point substance, in addition to ammonia, alcohols such as methanol, ketones such as acetone, and esters such as methyl acetate can also be applied.

(実施の形態)
図1は実施の形態に係るアンモニア回収装置の全体構成図である。アンモニア回収装置(本願発明の低沸点物質回収装置に相当)1は、加熱用水蒸気が吹き込まれスチームストリッピングを行う蒸留塔2と、蒸留塔2の塔頂部から排出されるアンモニア含有蒸気と水とを熱交換し水を蒸発させる蒸発器3と、蒸発器3から排出される水蒸気を圧縮昇温して加熱用水蒸気として蒸留塔2に排出する圧縮装置4と、蒸発器3で濃縮されたアンモニア含有蒸気を取り込み、当該蒸気を冷却して水分を除去してアンモニア含有蒸気の濃度を高濃度(例えば20wt%以上)に上げる濃縮塔5と、濃縮塔5からのアンモニア含有蒸気に水分を吸収させ所定濃度の回収アンモニア水を生成する第1吸収塔6と、第1吸収塔内の未凝縮のアンモニア含有蒸気が外部に排出されることを防止する第2吸収塔7とを備える。ここで、本実施の形態1に係るアンモニア回収装置1の特徴の概略を説明すれば、蒸発器3と、蒸発器3の後段に配置される濃縮塔5を設け、蒸留塔2から排出されたアンモニア含有蒸気を、蒸発器3と濃縮塔5とによる2段階の濃縮により所定の高濃度(例えば20wt%以上)のアンモニア水を回収することができるように構成されていることである。
(Embodiment)
FIG. 1 is an overall configuration diagram of an ammonia recovery device according to an embodiment. The ammonia recovery device (corresponding to the low boiling point substance recovery device of the present invention) 1 includes a distillation tower 2 in which steam for heating is blown to perform steam stripping, and ammonia-containing steam and water discharged from the top of the distillation tower 2. A evaporator 3 that exchanges heat to evaporate water, a compressor 4 that compresses and raises the temperature of steam discharged from the evaporator 3 and discharges it to a distillation tower 2 as steam for heating, and ammonia concentrated by the evaporator 3. The concentration tower 5 that takes in the contained steam, cools the steam to remove water, and raises the concentration of the ammonia-containing steam to a high concentration (for example, 20 wt% or more), and the ammonia-containing steam from the concentration tower 5 absorbs the water. It includes a first absorption tower 6 that produces recovered ammonia water having a predetermined concentration, and a second absorption tower 7 that prevents uncondensed ammonia-containing vapor in the first absorption tower from being discharged to the outside. Here, to explain the outline of the features of the ammonia recovery device 1 according to the first embodiment, the evaporator 3 and the concentrating column 5 arranged after the evaporator 3 are provided and discharged from the distillation column 2. The ammonia-containing steam is configured so that a predetermined high concentration (for example, 20 wt% or more) of ammonia water can be recovered by two-step concentration by the evaporator 3 and the concentration column 5.

以下、上記の特徴的構成を含めて、アンモニア回収装置1の具体的構成を説明する。
蒸留塔2には、多段のものを用いてもよく、また、これに限定されず、多段でないものを用いてもよい。即ち、蒸留塔2には、棚段塔や充填塔を用いることができる。この蒸留塔2の塔頂部には、原液(アンモニア含有排水)が原液供給管L1を介して供給される。なお、原液を事前にpH調整するようにしてもよい。
Hereinafter, the specific configuration of the ammonia recovery device 1 including the above characteristic configuration will be described.
A multi-stage distillation column 2 may be used, and the distillation column 2 may be non-multi-stage. That is, a shelf column or a filling column can be used for the distillation column 2. The stock solution (ammonia-containing wastewater) is supplied to the top of the distillation column 2 via the stock solution supply pipe L1. The pH of the stock solution may be adjusted in advance.

蒸留塔2の塔底部には、蒸気エゼクター10からの加熱用水蒸気が加熱用蒸気供給管L3を介して供給されるようになっている。蒸留塔2の塔底部は管L4を介して熱回収槽11に接続されており、該塔底部の貯留液(低濃度アンモニア水)が管L2を介して熱回収槽11に供給されるようになっている。蒸気エゼクター10は、蒸気の吸引・圧縮を行う蒸気圧縮手段であり、蒸気吸い込み側10aには、ボイラー等の高圧蒸気源(図示せず)から供給される蒸気が流通する蒸気供給管L5及び熱回収槽11から延びる蒸気再利用管L6が接続されている。このような構成により、熱回収槽11内の貯留液がフラッシュ蒸発して蒸気エゼクター10によって吸引、圧縮され、蒸気供給管L5からの蒸気と混合して、加熱用蒸気として蒸留塔2の塔底部に吹き込まれる。このように熱回収槽11内の貯留液がフラッシュ蒸発して加熱用蒸気の一部として再利用され、熱の回収が行われるようになっている。 The heating steam from the steam ejector 10 is supplied to the bottom of the distillation column 2 via the heating steam supply pipe L3. The bottom of the distillation column 2 is connected to the heat recovery tank 11 via the pipe L4, so that the stored liquid (low-concentration ammonia water) at the bottom of the distillation column 2 is supplied to the heat recovery tank 11 via the pipe L2. It has become. The steam ejector 10 is a steam compression means for sucking and compressing steam, and a steam supply pipe L5 and heat through which steam supplied from a high-pressure steam source (not shown) such as a boiler flows to the steam suction side 10a. A steam recycling pipe L6 extending from the recovery tank 11 is connected. With such a configuration, the stored liquid in the heat recovery tank 11 is flash evaporated, sucked and compressed by the steam ejector 10, mixed with the steam from the steam supply pipe L5, and used as heating steam at the bottom of the distillation column 2. Is blown into. In this way, the stored liquid in the heat recovery tank 11 is flash-evaporated and reused as a part of the heating steam, so that heat can be recovered.

なお、熱回収槽11の底部には、処理水(例えば30ppm以下の低濃度アンモニア水)を排出する排出管L7が接続されており、この排出管L7上には、処理水排出用ポンプP1、及び3つの熱交換器H1,H2,H3が設けられている。熱交換器H1は、水と処理水とを熱交換し、水を加熱する水加熱器である。この熱交換器H1により加熱された水は、水供給管L8を介して蒸発器3の底部に供給される。熱交換器H2は、原液と処理水とを熱交換し、原液を予め加熱する原液予熱器である。この熱交換器H2により予熱された原液は、原液供給管L1を介して蒸留塔2の塔頂部に供給される。熱交換器H3は、冷却水と処理水とを熱交換し、処理水を冷却する冷却器である。この熱交換器H3により冷却された処理水は、排出管L7を介して系外に排出される。
熱交換器H1,H2,H3は、排出管L7上において処理水排出用ポンプP1よりも下流側に位置しており、且つ、以下の順序で設置されている。即ち、排出管L7上において、熱交換器H1は熱交換器H2より上流側に設置されている。このような順序で設置することにより、処理水から水へ与えられる熱量が最も大きくなるため、水を加熱する蒸発器3において省エネルギー化が図られる。また、熱交換器H3を設置する理由が処理水の冷却を目的とすることから、熱交換器H3は熱交換器H1,H2より下流側に設置されている。
A discharge pipe L7 for discharging treated water (for example, low-concentration ammonia water of 30 ppm or less) is connected to the bottom of the heat recovery tank 11, and a treated water discharge pump P1 is connected on the discharge pipe L7. And three heat exchangers H1, H2 and H3 are provided. The heat exchanger H1 is a water heater that heats water by exchanging heat between water and treated water. The water heated by the heat exchanger H1 is supplied to the bottom of the evaporator 3 via the water supply pipe L8. The heat exchanger H2 is a stock solution preheater that heats the stock solution in advance by exchanging heat between the stock solution and the treated water. The undiluted solution preheated by the heat exchanger H2 is supplied to the top of the distillation column 2 via the undiluted solution supply pipe L1. The heat exchanger H3 is a cooler that cools the treated water by exchanging heat between the cooling water and the treated water. The treated water cooled by the heat exchanger H3 is discharged to the outside of the system via the discharge pipe L7.
The heat exchangers H1, H2, and H3 are located on the discharge pipe L7 on the downstream side of the treated water discharge pump P1 and are installed in the following order. That is, on the discharge pipe L7, the heat exchanger H1 is installed on the upstream side of the heat exchanger H2. By installing in such an order, the amount of heat given from the treated water to the water is the largest, so that energy saving can be achieved in the evaporator 3 that heats the water. Further, since the reason for installing the heat exchanger H3 is to cool the treated water, the heat exchanger H3 is installed on the downstream side of the heat exchangers H1 and H2.

蒸発器3は、水平管型蒸発缶12で構成され、散布器13及び間接式加熱器14を備えている。なお、水平管型に限らず、例えば薄膜流下(縦チューブ)式等の蒸発缶を用いてもよい。間接式加熱器14は、図2に示すように、1または複数の水平伝熱管からなる伝熱管群15と、左右一対のヘッダー16A,16Bを備えている。また、蒸発缶12の底部は、管L8を介して供給される水を貯留する貯留部17となっている。貯留部17の貯留液(水)は、循環ポンプP2によって管L9を介して、蒸発缶12内の上部に設けた散布器13に供給され、この散布器13から伝熱管群15の外表面に向かって散布したのち、蒸発缶12内の下部の貯留部17に流下するという循環を行うように構成されている。 The evaporator 3 is composed of a horizontal tube type evaporator 12, and includes a spreader 13 and an indirect heater 14. The type is not limited to the horizontal tube type, and for example, an evaporation can of a thin film flow (vertical tube) type or the like may be used. As shown in FIG. 2, the indirect heater 14 includes a heat transfer tube group 15 composed of one or a plurality of horizontal heat transfer tubes, and a pair of left and right headers 16A and 16B. Further, the bottom of the evaporation can 12 is a storage portion 17 for storing water supplied through the pipe L8. The stored liquid (water) of the storage unit 17 is supplied by the circulation pump P2 to the spreader 13 provided at the upper part in the evaporation can 12 via the pipe L9, and is supplied from the spreader 13 to the outer surface of the heat transfer tube group 15. After spraying toward the evaporative can, it is configured to circulate by flowing down to the lower storage portion 17 in the evaporation can 12.

ヘッダー16Bは蒸留塔2の塔頂部と蒸気供給管L10を介して接続されており、蒸留塔2の塔頂部から排出される塔頂蒸気(アンモニア含有蒸気)は、蒸気供給管L10を通ってヘッダー16Bに導かれ、更に、伝熱管群15内を流通する。ここで、蒸発器3は塔頂蒸気の圧力よりも低い圧力になっており、そのため、散布器13にて散布された循環液(水)は、伝熱管群15の表面で薄膜蒸発し、水蒸気が発生する。この水蒸気は圧縮装置4に供給されるようになっている。ここで、蒸発器3において水を蒸気化させる原理をより詳しく説明すると、蒸発器3において、加熱源となる塔頂蒸気(伝熱管内側)より、加熱される水がある伝熱管外側の圧力が低いため、水が蒸発する。なお、当該圧力差は、圧縮装置4(具体的には蒸気圧縮機18,19)により発生する。なぜなら、圧縮装置4の吸込み側に接続された蒸発器伝熱管外側が低く、圧縮装置4の吐出側に接続された蒸留塔2内ひいては塔頂蒸気の圧力が高くなるからである。加えて、蒸気エゼクター10から供給される蒸気によっても蒸留塔2内の圧力が上がり、蒸発器3内の水が蒸発する一因となる。
また、伝熱管群15内を流通して凝縮した凝縮水(低濃度アンモニア水)は、ヘッダー16Aに貯留され、凝縮水ポンプP3の駆動により管L11を介して還流液として蒸留塔2の塔頂部に戻される。残りの余剰蒸気(濃縮されたアンモニア含有蒸気)は管L12を介して濃縮塔5の塔頂部に排出される。
The header 16B is connected to the top of the distillation column 2 via a steam supply pipe L10, and the top steam (steam containing ammonia) discharged from the top of the distillation column 2 passes through the steam supply pipe L10 to the header. It is guided to 16B and further circulates in the heat transfer tube group 15. Here, the pressure of the evaporator 3 is lower than the pressure of the top steam, so that the circulating liquid (water) sprayed by the spreader 13 evaporates in a thin film on the surface of the heat transfer tube group 15 and becomes steam. Occurs. This water vapor is supplied to the compression device 4. Here, the principle of vaporizing water in the evaporator 3 will be described in more detail. In the evaporator 3, the pressure on the outside of the heat transfer tube containing the water to be heated is higher than that of the top steam (inside the heat transfer tube) which is the heating source. Because it is low, water evaporates. The pressure difference is generated by the compression device 4 (specifically, the steam compressors 18 and 19). This is because the outside of the evaporator heat transfer tube connected to the suction side of the compression device 4 is low, and the pressure inside the distillation column 2 connected to the discharge side of the compression device 4 and thus the steam at the top of the column is high. In addition, the steam supplied from the steam ejector 10 also raises the pressure in the distillation column 2 and contributes to the evaporation of the water in the evaporator 3.
Further, the condensed water (low-concentration ammonia water) that has flowed and condensed in the heat transfer tube group 15 is stored in the header 16A, and is driven by the condensed water pump P3 to be a reflux liquid through the tube L11 at the top of the distillation column 2. Returned to. The remaining surplus steam (concentrated ammonia-containing steam) is discharged to the top of the concentrating tower 5 via the pipe L12.

圧縮装置4は、2台の蒸気圧縮機18,19を備えており、これら蒸気圧縮機18,19は蒸留塔2の塔底部と蒸発缶10の上部を並列に接続して構成されている。即ち、蒸気圧縮機18の入口側18aは管L15を介して蒸発缶12の上部と接続され、蒸気圧縮機18の出口側18bは管L15を介して蒸留塔2の塔底部に接続されている。蒸気圧縮機19の入口側19aは管L5から分岐した分岐管L17を介して蒸発缶10の上部と接続され、蒸気圧縮機19の出口側19bは管L18を介して蒸留塔2の塔底部に接続されている。 The compressor 4 includes two steam compressors 18 and 19, and these steam compressors 18 and 19 are configured by connecting the bottom of the distillation column 2 and the top of the evaporation can 10 in parallel. That is, the inlet side 18a of the steam compressor 18 is connected to the upper part of the evaporation can 12 via the pipe L15, and the outlet side 18b of the steam compressor 18 is connected to the bottom of the distillation column 2 via the pipe L15. .. The inlet side 19a of the steam compressor 19 is connected to the upper part of the evaporation can 10 via a branch pipe L17 branched from the pipe L5, and the outlet side 19b of the steam compressor 19 is connected to the bottom of the distillation column 2 via the pipe L18. It is connected.

ここで、蒸気圧縮機18,19としては、最大差圧の大きいルーツ形蒸気圧縮機が用いられている。但し、本発明においては、ルーツ形蒸気圧縮機に限らず、ターボ形蒸気圧縮機、スクリュー形蒸気圧縮機、ベーン形蒸気圧縮機、あるいはその他の蒸気圧縮機のいずれを用いてもよい。また、圧縮装置4は本実施の形態では2台の蒸気圧縮機18,19で構成されたけれども、1台の蒸気圧縮機あるいは3台以上の蒸気圧縮機で構成してもよい。 Here, as the steam compressors 18 and 19, roots type steam compressors having a large maximum differential pressure are used. However, in the present invention, not only the roots type steam compressor but also a turbo type steam compressor, a screw type steam compressor, a vane type steam compressor, or any other steam compressor may be used. Further, although the compressor 4 is composed of two steam compressors 18 and 19 in the present embodiment, it may be composed of one steam compressor or three or more steam compressors.

濃縮塔5はスプレー式のスクラバーで構成されている。濃縮塔5の塔底部に貯留される貯留液(凝縮液)は、スプレー管(本願発明の循環ラインに相当)L20を流れ、塔頂部に導かれ、塔頂部内に向けて噴霧されるようになっている。このスプレー管L20の途中には、循環ポンプP4及び熱交換器H4が設けられている。スプレー管L20を流れる貯留液は、熱交換器H4において、冷却水と熱交換され、冷却される。なお、図3に示すように、冷却水が流れる管L21には制御弁V1が設けられ、濃縮塔5の塔底部に貯留する貯留液の温度を検出する温度センサTによって開度が制御されている。即ち、温度センサTの検出結果に応じて制御弁V1開度が制御され、熱交換器H4を通過する冷却水の流量が調整されるようになっている。これにより、貯留液(凝縮液)を所定温度まで冷却して噴霧することにより、所定の高濃度(例えば20wt%以上)のアンモニア含有蒸気を生成することができる。 The concentration tower 5 is composed of a spray-type scrubber. The stored liquid (condensate) stored in the bottom of the concentration tower 5 flows through the spray pipe (corresponding to the circulation line of the present invention) L20, is guided to the top of the tower, and is sprayed into the top of the tower. It has become. A circulation pump P4 and a heat exchanger H4 are provided in the middle of the spray tube L20. The stored liquid flowing through the spray tube L20 is heat-exchanged with the cooling water in the heat exchanger H4 and cooled. As shown in FIG. 3, a control valve V1 is provided in the pipe L21 through which the cooling water flows, and the opening degree is controlled by the temperature sensor T that detects the temperature of the stored liquid stored in the bottom of the concentrating tower 5. There is. That is, the opening degree of the control valve V1 is controlled according to the detection result of the temperature sensor T, and the flow rate of the cooling water passing through the heat exchanger H4 is adjusted. Thereby, by cooling the stored liquid (condensate) to a predetermined temperature and spraying it, it is possible to generate a predetermined high concentration (for example, 20 wt% or more) of ammonia-containing vapor.

また、スプレー管L20は、図2に示すように、途中で分岐しており、この分岐した分岐管L22は蒸留塔2の塔頂部に接続されている。分岐管L22の途中には制御弁V2が設けられている。また、濃縮塔5には、図2に示すように、貯留液の液面を検知する液面レベルセンサS1が設けられている。液面レベルセンサSは、上限設定レベルを検知するレベルスイッチS1aと、下限設定レベルを検知するレベルスイッチS1bを有する。この液面レベルセンサS1により、制御弁V2の開度が制御され、貯留液が所定液面に維持されるとともに、所定液面をオーバフローした貯留液は蒸留塔2の塔頂部に還流されるようになっている。 Further, as shown in FIG. 2, the spray pipe L20 is branched in the middle, and the branched branch pipe L22 is connected to the top of the distillation column 2. A control valve V2 is provided in the middle of the branch pipe L22. Further, as shown in FIG. 2, the concentration tower 5 is provided with a liquid level sensor S1 for detecting the liquid level of the stored liquid. The liquid level sensor S has a level switch S1a for detecting the upper limit set level and a level switch S1b for detecting the lower limit set level. The liquid level sensor S1 controls the opening degree of the control valve V2 so that the stored liquid is maintained at a predetermined liquid level and the stored liquid that overflows the predetermined liquid level is returned to the top of the distillation column 2. It has become.

第1吸収塔6は、濃縮塔5と同様なスプレー式のスクラバーで構成されており、第1吸収塔6の貯留液が循環するスプレー管L23には、循環ポンプP5、及び、熱交換器H5が設けられている。熱交換器H5では、スプレー管L23を流れる貯留液と冷却水とが熱交換され、貯留液が冷却される。冷却された貯留液は、管L24を介して濃縮塔5から取り込まれた高濃度(例えば20wt%以上)のアンモニア含有蒸気へ噴霧することで、アンモニア含有蒸気を凝縮・回収し、回収アンモニア水を生成する。なお、スプレー管L23は途中で分岐しており、この分岐した分岐管L25を介して回収アンモニア水は系外に排出されるようになっている。 The first absorption tower 6 is composed of a spray type scrubber similar to the concentration tower 5, and the spray tube L23 through which the stored liquid of the first absorption tower 6 circulates has a circulation pump P5 and a heat exchanger H5. Is provided. In the heat exchanger H5, the stored liquid flowing through the spray pipe L23 and the cooling water exchange heat, and the stored liquid is cooled. The cooled storage liquid is sprayed onto the high-concentration (for example, 20 wt% or more) ammonia-containing vapor taken in from the concentration tower 5 via the pipe L24 to condense and recover the ammonia-containing vapor, and collect the recovered ammonia water. Generate. The spray pipe L23 is branched in the middle, and the recovered ammonia water is discharged to the outside of the system via the branched branch pipe L25.

第2吸収塔7は、第1吸収塔6と同様なスプレー式のスクラバーで構成されており、第2吸収塔7の塔底部に管L30を介して水が供給され、塔底部に貯留される水は、循環ポンプP6の駆動によりスプレー管L31を通って塔頂部から噴霧されるようになっている。第1吸収塔6と第2吸収塔7との間には、第1吸収塔6内の未凝縮アンモニア含有蒸気を第2吸収塔7の塔頂部に導く管L32と、第2吸収塔7内の凝縮水を第1吸収塔6に戻す管L33とが設けられている。また、第2吸収塔7の塔頂部には、アンモニウムが除去された蒸気を排気する排気管L34が設けられている。
なお、図1〜図3において、L40は冷却水供給管、L41は冷却水供給管L40から分岐した管、L21は冷却水供給管L40から分岐した管であり、冷却水供給管L40上には熱交換器H5が設けられ、管L41上には熱交換器H2が設けられ、管L21上には熱交換器H4が設けられている。
The second absorption tower 7 is composed of a spray-type scrubber similar to the first absorption tower 6, and water is supplied to the bottom of the second absorption tower 7 via a pipe L30 and stored in the bottom of the tower. Water is sprayed from the top of the tower through the spray pipe L31 by driving the circulation pump P6. Between the first absorption tower 6 and the second absorption tower 7, there is a pipe L32 that guides the uncondensed ammonia-containing vapor in the first absorption tower 6 to the top of the second absorption tower 7, and inside the second absorption tower 7. A pipe L33 for returning the condensed water of the above to the first absorption tower 6 is provided. Further, an exhaust pipe L34 for exhausting the vapor from which ammonium has been removed is provided at the top of the second absorption tower 7.
In FIGS. 1 to 3, L40 is a cooling water supply pipe, L41 is a pipe branched from the cooling water supply pipe L40, L21 is a pipe branched from the cooling water supply pipe L40, and above the cooling water supply pipe L40. A heat exchanger H5 is provided, a heat exchanger H2 is provided on the tube L41, and a heat exchanger H4 is provided on the tube L21.

次いで、上記構成のアンモニア回収装置1の処理動作について説明する。蒸留塔2は、加熱用水蒸気が吹き込まれスチームストリッピングを行う。即ち、蒸留塔2において、原液を加熱用水蒸気に接触させ、原液からアンモニアを分離しガス化させアンモニアを含む蒸気として塔頂部から排出すると共に、原液からアンモニアが除去された低濃度アンモニア水(例えば30ppm以下)を処理水として塔底部に貯留する。 Next, the processing operation of the ammonia recovery device 1 having the above configuration will be described. Steam stripping is performed in the distillation column 2 by blowing steam for heating. That is, in the distillation column 2, the undiluted solution is brought into contact with steam for heating, ammonia is separated from the undiluted solution, gasified, and discharged from the top of the column as steam containing ammonia, and low-concentration ammonia water from which ammonia is removed from the undiluted solution (for example). 30 ppm or less) is stored at the bottom of the column as treated water.

蒸留塔2の塔頂部から排出されるアンモニア含有蒸気は、蒸気供給管L10を通ってヘッダー16Bに導かれ、更に、伝熱管群15内を流通し、これにより散布器13にて散布された循環液(水)は、伝熱管群15の表面で薄膜蒸発し、水蒸気が発生する。この水蒸気は蒸気圧縮機18,19に供給される。一方、伝熱管群15内を流通して凝縮した凝縮水(低濃度アンモニア水)はヘッダー16Aに貯留され、管L11を介して還流液として蒸留塔2の塔頂部に戻され、残りの余剰蒸気(濃縮されたアンモニア含有蒸気)は管L12を介して濃縮塔5に供給される。 The ammonia-containing steam discharged from the top of the distillation column 2 is guided to the header 16B through the steam supply pipe L10, further circulates in the heat transfer tube group 15, and is circulated by the spreader 13. The liquid (water) evaporates into a thin film on the surface of the heat transfer tube group 15, and water vapor is generated. This steam is supplied to the steam compressors 18 and 19. On the other hand, the condensed water (low-concentration ammonia water) that has flowed and condensed in the heat transfer tube group 15 is stored in the header 16A, returned to the top of the distillation column 2 as a reflux liquid via the tube L11, and the remaining excess steam. (Concentrated ammonia-containing vapor) is supplied to the concentration column 5 via the tube L12.

蒸気圧縮機18,19では、供給された水蒸気を圧縮昇温して加熱用水蒸気として蒸留塔2の塔底部に投入する。これにより、加熱用蒸気供給管L3から供給される加熱用水蒸気を削減でき、省エネルギー化を図ることができる。 In the steam compressors 18 and 19, the supplied steam is compressed and raised in temperature and charged into the bottom of the distillation column 2 as steam for heating. As a result, the steam for heating supplied from the steam supply pipe L3 for heating can be reduced, and energy saving can be achieved.

一方、濃縮塔5では、温度センサTの検出結果に応じて制御弁V1開度が制御され、熱交換器H4を通過する冷却水の流量が調整される。これにより、濃縮塔5の塔頂部から所定温度に冷却された貯留液(凝縮液)が噴霧されアンモニア含有蒸気が分縮することにより、所定の高濃度(例えば20wt%以上)のアンモニア含有蒸気が生成される。なお、凝縮液は全量が還流液として蒸留塔2の塔頂部に戻される。このように、濃縮塔5では、蒸発器3で分縮した後のアンモニア含有蒸気を取り込み、水分を除去してアンモニアを含む蒸気をさらに濃縮する構成により、蒸発器3だけで所定の高濃度(例えば20wt%以上)をまで濃縮する構成に比べて、蒸気圧縮機18,19の負荷が大きくなりすぎることを防止できる。この結果、省エネルギー化が図れ、且つ、高濃度(例えば20wt%以上)のアンモニア含有蒸気を生成することが可能となる。 On the other hand, in the concentration tower 5, the opening degree of the control valve V1 is controlled according to the detection result of the temperature sensor T, and the flow rate of the cooling water passing through the heat exchanger H4 is adjusted. As a result, the stored liquid (condensate) cooled to a predetermined temperature is sprayed from the top of the concentrating tower 5, and the ammonia-containing vapor is fractionated, so that a predetermined high concentration (for example, 20 wt% or more) of ammonia-containing vapor is produced. Will be generated. The entire amount of the condensed liquid is returned to the top of the distillation column 2 as a reflux liquid. In this way, the concentration tower 5 takes in the ammonia-containing vapor after the evaporation by the evaporator 3, removes water, and further concentrates the vapor containing ammonia, so that the evaporator 3 alone has a predetermined high concentration ( For example, it is possible to prevent the load of the steam compressors 18 and 19 from becoming too large as compared with the configuration of concentrating up to 20 wt% or more. As a result, energy saving can be achieved and a high concentration (for example, 20 wt% or more) of ammonia-containing vapor can be generated.

次いで、第1吸収塔6においては、塔底部の貯留液を、スプレー管L23を通って塔頂部から噴霧する構成により、濃縮塔5から管L24を介して導かれたアンモニア含有蒸気が凝縮され、高濃度のアンモニアを含むアンモニア回収水(回収アンモニア水)を生成する。第2吸収塔7においては、第1吸収塔6においてわずかに残った未凝縮のアンモニアガスが管L32を介して導かれ、系外から供給された水がスプレー管L31を通って塔頂部から噴霧される構成により、未凝縮のアンモニアガスが吸収される。アンモニアを吸収した水は第1吸収塔6の凝縮液へ戻される。この結果、未凝縮アンモニアガスが外部に排出されることが防止される。なお、アンモニアが除去されたガスは排気管L34から排気される。 Next, in the first absorption column 6, the ammonia-containing vapor guided from the concentration column 5 via the tube L24 is condensed by the configuration in which the stored liquid at the bottom of the column is sprayed from the top of the column through the spray tube L23. Ammonia recovered water containing a high concentration of ammonia (recovered ammonia water) is produced. In the second absorption tower 7, a small amount of uncondensed ammonia gas remaining in the first absorption tower 6 is guided through the pipe L32, and water supplied from outside the system is sprayed from the top of the tower through the spray pipe L31. Uncondensed ammonia gas is absorbed by the configuration. The water that has absorbed ammonia is returned to the condensate of the first absorption tower 6. As a result, uncondensed ammonia gas is prevented from being discharged to the outside. The gas from which ammonia has been removed is exhausted from the exhaust pipe L34.

(その他の事項)
(1)上記実施の形態では、蒸発器3や第2吸収塔7には「水」を供給する構成として説明したが、この「水」は具体的には、純水、軟水、イオン交換水等を適用することができる。
(Other matters)
(1) In the above embodiment, the configuration has been described as supplying "water" to the evaporator 3 and the second absorption tower 7, but the "water" is specifically pure water, soft water, or ion-exchanged water. Etc. can be applied.

(2)また、参考までに述べると、蒸留塔の蒸気を直接圧縮して蒸留塔の熱源として使用する構成の場合(例えば特許文献1等)には、蒸留塔の蒸気を直接圧縮することにより、含有物質による腐食の懸念や、シール部での腐食や漏れの可能性がある。これに対して、本発明のように蒸発器をもって水を蒸発させて蒸留塔に直接利用する構成の場合には、蒸留塔に直接利用される蒸気(水蒸気)は含有物質を含まないため、含有物質による腐食や漏れの発生を防止できる。 (2) Further, for reference, in the case of a configuration in which the steam of the distillation column is directly compressed and used as a heat source of the distillation column (for example, Patent Document 1 etc.), the steam of the distillation column is directly compressed. , There is a possibility of corrosion due to contained substances, and there is a possibility of corrosion or leakage at the seal part. On the other hand, in the case of the configuration in which water is evaporated by an evaporator and directly used in the distillation column as in the present invention, the steam (steam) directly used in the distillation column does not contain the contained substance, so that it is contained. It is possible to prevent the occurrence of corrosion and leakage due to substances.

本発明は、アンモニア等の低沸点物質を含有する排水から低沸点物質を分離回収する回収装置及び回収方法に適用することが可能である。 The present invention can be applied to a recovery device and a recovery method for separating and recovering a low boiling point substance from wastewater containing a low boiling point substance such as ammonia.

1:アンモニア回収装置 2:蒸留塔
3:蒸発器 4:圧縮装置
5:濃縮塔 6:第1吸収塔
7:第2吸収塔 18,19:蒸気圧縮機
1: Ammonia recovery device 2: Distillation column 3: Evaporator 4: Compressor 5: Concentration tower 6: 1st absorption tower 7: 2nd absorption tower 18, 19: Steam compressor

Claims (4)

低沸点物質を含む原液を加熱用水蒸気に接触させ、前記原液から低沸点物質を分離しガス化させ低沸点物質を含む蒸気として塔頂部から排出すると共に、原液から低沸点物質が除去された処理水を塔底部に貯留する蒸留塔と、
前記蒸留塔の塔頂部から排出される低沸点物質を含む蒸気と、水とを熱交換させることにより、前記低沸点物質を含む蒸気を分縮させ前記低沸点物質を含む蒸気を濃縮させ、且つ、前記水を蒸発させ水蒸気として排出する蒸発器と、
前記蒸発器から排出される水蒸気を圧縮昇温し、この圧縮昇温された水蒸気を前記蒸留塔に導き、蒸留塔で使用される加熱用水蒸気として利用する圧縮装置と、
前記蒸発器で分縮した後の低沸点物質を含む蒸気を取り込み、当該蒸気を冷却して水分を除去して低沸点物質を含む蒸気をさらに濃縮する濃縮塔と、
前記濃縮塔の塔底部に貯留される貯留液を塔頂部に導く循環ラインの途中に設けられ、循環ラインを流れる前記貯留液を冷却水と熱交換し、貯留液を冷却する熱交換器と、
前記濃縮塔の塔底部に貯留される貯留液の温度を検出する温度センサと、
前記温度センサの検出結果に応じて、前記熱交換器を通過する冷却水の流量を調整する制御弁と、
を備えたことを特徴とする低沸点物質の回収装置。
A process in which the undiluted solution containing a low boiling point substance is brought into contact with steam for heating, the low boiling point substance is separated from the undiluted solution, gasified, discharged from the top of the column as steam containing the low boiling point substance, and the low boiling point substance is removed from the undiluted solution. A distillation tower that stores water at the bottom of the tower,
By exchanging heat between water and steam containing a low boiling point substance discharged from the top of the distillation tower, the steam containing the low boiling point substance is fractionated, and the steam containing the low boiling point substance is concentrated. , An evaporator that evaporates the water and discharges it as steam,
A compression device that compresses and raises the temperature of steam discharged from the evaporator, guides the compressed and heated steam to the distillation column, and uses it as steam for heating used in the distillation column.
A concentration tower that takes in steam containing a low boiling point substance after being fractionated by the evaporator, cools the steam to remove water, and further concentrates the steam containing the low boiling point substance.
A heat exchanger provided in the middle of a circulation line for guiding the stored liquid stored in the bottom of the concentrating tower to the top of the column, exchanging heat with the cooling water for the stored liquid flowing through the circulation line, and cooling the stored liquid.
A temperature sensor that detects the temperature of the stored liquid stored at the bottom of the concentration tower, and
A control valve that adjusts the flow rate of cooling water passing through the heat exchanger according to the detection result of the temperature sensor.
A low boiling point substance recovery device characterized by being equipped with.
前記圧縮装置は複数の蒸気圧縮機が並列に接続されて構成されている請求項1記載の低沸点物質の回収装置。 The low boiling point substance recovery device according to claim 1, wherein the compressor is configured by connecting a plurality of steam compressors in parallel. 前記低沸点物質はアンモニアである請求項1または2に記載の低沸点物質の回収装置。 The device for recovering a low boiling point substance according to claim 1 or 2 , wherein the low boiling point substance is ammonia. 蒸留塔に加熱用水蒸気を吹き込み、低沸点物質を含む原液に加熱用水蒸気を接触させ、前記原液から低沸点物質を分離しガス化させ低沸点物質を含む蒸気として蒸留塔の塔頂部から排出すると共に、原液から低沸点物質が除去された処理水を蒸留塔の塔底部に貯留する第1工程と、
前記蒸留塔の塔頂部から排出される低沸点物質を含む蒸気と、水とを蒸発器において熱交換させることにより、前記低沸点物質を含む蒸気を分縮させ前記低沸点物質を含む蒸気を濃縮させ、且つ、前記水を蒸発させ水蒸気として排出する第2工程と、
前記蒸発器から排出される水蒸気を圧縮装置において圧縮昇温し、この圧縮昇温された水蒸気を前記蒸留塔に導き、蒸留塔で使用される加熱用水蒸気として利用する第3工程と、
前記蒸発器で分縮した後の低沸点物質を含む蒸気を取り込み、当該蒸気を冷却して水分を除去して低沸点物質を含む蒸気を濃縮塔においてさらに濃縮する第4工程と、
を備え
前記濃縮塔の塔底部に貯留される貯留液を塔頂部に導く循環ラインの途中に設けられた熱交換器によって、循環ラインを流れる前記貯留液を冷却水と熱交換し、貯留液を冷却し、
前記濃縮塔の塔底部に貯留される貯留液の温度を温度センサで検出し、
前記温度センサの検出結果に応じて、前記熱交換器を通過する冷却水の流量を制御弁にて調整する
ことを特徴とする低沸点物質の回収方法。
The steam for heating is blown into the distillation tower, the steam for heating is brought into contact with the stock solution containing the low boiling point substance, the low boiling point substance is separated from the stock solution, gasified, and discharged from the top of the distillation tower as steam containing the low boiling point substance. At the same time, the first step of storing the treated water from which the low boiling point substance was removed from the undiluted solution at the bottom of the distillation tower, and
By exchanging heat between water and steam containing a low boiling point substance discharged from the top of the distillation tower in an evaporator, the steam containing the low boiling point substance is fractionated and the steam containing the low boiling point substance is concentrated. The second step of evaporating the water and discharging it as steam.
The third step of compressing and raising the temperature of the steam discharged from the evaporator in a compressor, guiding the compressed and heated steam to the distillation column, and using it as the heating steam used in the distillation column.
The fourth step of taking in the steam containing the low boiling point substance after the evaporation by the evaporator, cooling the steam to remove water , and further concentrating the steam containing the low boiling point substance in the concentrating tower .
Equipped with a,
The heat exchanger provided in the middle of the circulation line that guides the stored liquid stored in the bottom of the concentrating tower to the top of the column exchanges heat with the cooling water for the stored liquid flowing through the circulation line to cool the stored liquid. ,
The temperature of the stored liquid stored in the bottom of the concentrating tower is detected by a temperature sensor, and the temperature is detected.
A method for recovering a low boiling point substance, which comprises adjusting the flow rate of cooling water passing through the heat exchanger with a control valve according to the detection result of the temperature sensor .
JP2016197083A 2016-10-05 2016-10-05 Low boiling point substance recovery device and recovery method Active JP6780188B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016197083A JP6780188B2 (en) 2016-10-05 2016-10-05 Low boiling point substance recovery device and recovery method
TW106116704A TWI732870B (en) 2016-10-05 2017-05-19 Recovery device and recovery method for low boiling point substances
TW109142454A TWI758987B (en) 2016-10-05 2017-05-19 Recovery device and recovery method of low boiling point substances
CN201710416334.0A CN107913525B (en) 2016-10-05 2017-06-05 Recovery device and recovery method for low boiling point substance
JP2020074790A JP6948677B2 (en) 2016-10-05 2020-04-20 Low boiling point substance recovery device and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197083A JP6780188B2 (en) 2016-10-05 2016-10-05 Low boiling point substance recovery device and recovery method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020074790A Division JP6948677B2 (en) 2016-10-05 2020-04-20 Low boiling point substance recovery device and recovery method

Publications (2)

Publication Number Publication Date
JP2018058025A JP2018058025A (en) 2018-04-12
JP6780188B2 true JP6780188B2 (en) 2020-11-04

Family

ID=61898628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197083A Active JP6780188B2 (en) 2016-10-05 2016-10-05 Low boiling point substance recovery device and recovery method

Country Status (3)

Country Link
JP (1) JP6780188B2 (en)
CN (1) CN107913525B (en)
TW (2) TWI732870B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086815B2 (en) * 2018-10-22 2022-06-20 木村化工機株式会社 Energy saving system for distillation equipment
JP7378129B2 (en) * 2019-11-29 2023-11-13 株式会社ササクラ Separation device and method for low boiling point substances
CN112499710B (en) * 2020-10-20 2023-01-24 阮氏化工(常熟)有限公司 Device and method for purifying ammonia water by using ammonia-containing wastewater
CN113144656B (en) * 2021-05-13 2022-04-22 湖南文理学院 Device and method for extracting crocin from gardenia based on evaporation concentration
CN113750556A (en) * 2021-09-24 2021-12-07 李媛 Efficient distillation system and distillation method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816040A (en) * 1987-10-15 1989-03-28 International Fuel Cells Corporation Removal of ammonia and carbon dioxide from fuel cell stack water system by steam stripping
DE4037060A1 (en) * 1990-11-22 1992-05-27 Krupp Koppers Gmbh METHOD FOR THE PROCESSING OF THE SWAMP PRODUCT OF EXTRACTIVE DISTILLATION PROCESSES FOR THE PURIFICATION OF PURE AROMATS
JP4333859B2 (en) * 2000-07-18 2009-09-16 大阪市 Method for treating ammonia-containing water
US20020159942A1 (en) * 2001-02-08 2002-10-31 Jessup Walter A. Method for quantitative production of gaseous ammonia
JP2003080272A (en) * 2001-09-13 2003-03-18 Nippon Shokubai Co Ltd Method for cleaning waste water containing hydrogen peroxide and ammonia
JP2004114029A (en) * 2002-09-26 2004-04-15 ▲鶴▼田 英正 Method of separating and recovering water-soluble volatile component in waste water
JP4019272B2 (en) * 2003-03-05 2007-12-12 株式会社ササクラ Method and apparatus for treating waste water containing low boiling point organic substances
JP4902471B2 (en) * 2007-09-18 2012-03-21 三菱化工機株式会社 Ammonia removing apparatus and organic waste processing apparatus and processing method using the same
RU2371238C2 (en) * 2007-12-19 2009-10-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Complex method and device for smoke gas cleaning with recovery of heat, harmful impurities and carbon dioxide
CN101941720B (en) * 2010-08-23 2012-03-28 天津市创举科技有限公司 Tube furnace ammonia evaporation process and equipment
CN102336415B (en) * 2011-06-23 2013-06-12 上海同特化工科技有限公司 Tubular furnace negative pressure ammonia distillation process
JP5828719B2 (en) * 2011-09-06 2015-12-09 三菱化学エンジニアリング株式会社 Ammonia separation device and ammonia separation method
CN102502703B (en) * 2011-11-22 2013-10-16 山西帅科化工设计有限公司 Ammonia distillation method for waste heat of coke-oven flue gas
CN102786107A (en) * 2012-08-23 2012-11-21 李虹 Triphase separation depth processing device of leachate
CN103285614B (en) * 2013-05-13 2015-01-21 南京格洛特环境工程有限公司 Gas-phase rectifying method for steam containing ammonia in APT (ammonium paratungstate) production process and equipment
CN203625075U (en) * 2013-11-15 2014-06-04 张卫东 Ammonia still process equipment for coking remained ammonium hydroxide
CN105923672A (en) * 2014-10-24 2016-09-07 吴昊 Distillation and heat recovery system for industrial wastewater treatment
CN104645650B (en) * 2015-03-03 2016-06-08 苏州天荣能源环境科技有限公司 A kind of heat pump distillation device and starting method thereof
CN105481036B (en) * 2015-11-06 2018-02-23 王文领 A kind of residual coking ammonia water energy-saving type negative pressure deamination method
CN205340173U (en) * 2015-12-02 2016-06-29 中国科学院理化技术研究所 Mechanical steam re -compressing system
CN105858764B (en) * 2016-05-26 2020-02-14 北京科清环保科技有限公司 Evaporation treatment system and method for high-salinity wastewater

Also Published As

Publication number Publication date
CN107913525A (en) 2018-04-17
TWI758987B (en) 2022-03-21
TW202112424A (en) 2021-04-01
CN107913525B (en) 2021-10-22
JP2018058025A (en) 2018-04-12
TW201813702A (en) 2018-04-16
TWI732870B (en) 2021-07-11

Similar Documents

Publication Publication Date Title
JP6780188B2 (en) Low boiling point substance recovery device and recovery method
US4454720A (en) Heat pump
CN211536587U (en) Rectification equipment
CN109095535B (en) Sewage evaporation concentration device and operation method thereof
CN104399266A (en) MVR evaporation device and partial pressure evaporation method
JP7115680B2 (en) Desalination and temperature difference power generation system
RU2580319C2 (en) Regeneration of kinetic hydrate-formation inhibitor
JP2008188514A (en) Compressor for steam in reduced pressure type evaporator
JP6375559B2 (en) Evaporation concentration apparatus and evaporation concentration method
JP6948677B2 (en) Low boiling point substance recovery device and recovery method
JP3425082B2 (en) Aqueous concentrator for aqueous solution
JP2021084098A (en) Separation apparatus and method for dissimilar substances
US7306653B2 (en) Condensing deaerating vent line for steam generating systems
JP2019162591A (en) Evaporation concentrator
JP2019209249A (en) Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility
JPH0510964B2 (en)
RU2355895C1 (en) Condensation method
JP4261438B2 (en) Power generation and seawater desalination system
JP3263404B2 (en) Evaporation concentration method of aqueous solution containing water-soluble organic matter
US5209763A (en) Method of boosting the efficiency of removing noncondensable gases from vapors
JP6595855B2 (en) Distillation equipment with distillation tower
JPH0775642B2 (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant
JP2002521700A (en) Method and equipment for separating neutron absorber from coolant
KR960010363B1 (en) Evaporating and concentrating method of aqueous organic materials

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R150 Certificate of patent or registration of utility model

Ref document number: 6780188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250