JP6779706B2 - Water treatment method using reverse osmosis membrane - Google Patents

Water treatment method using reverse osmosis membrane Download PDF

Info

Publication number
JP6779706B2
JP6779706B2 JP2016162399A JP2016162399A JP6779706B2 JP 6779706 B2 JP6779706 B2 JP 6779706B2 JP 2016162399 A JP2016162399 A JP 2016162399A JP 2016162399 A JP2016162399 A JP 2016162399A JP 6779706 B2 JP6779706 B2 JP 6779706B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
treated
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162399A
Other languages
Japanese (ja)
Other versions
JP2018030061A (en
Inventor
雄大 鈴木
雄大 鈴木
吉川 浩
浩 吉川
賢吾 河原
賢吾 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61246460&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6779706(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016162399A priority Critical patent/JP6779706B2/en
Priority to PCT/JP2016/088943 priority patent/WO2018037582A1/en
Priority to CN201680088095.4A priority patent/CN109562330B/en
Priority to KR1020197003798A priority patent/KR102164160B1/en
Priority to SG11201810464WA priority patent/SG11201810464WA/en
Priority to TW106104187A priority patent/TWI703094B/en
Publication of JP2018030061A publication Critical patent/JP2018030061A/en
Publication of JP6779706B2 publication Critical patent/JP6779706B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/022Membrane sterilisation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、逆浸透膜(RO膜)を用いる水処理方法に関する。 The present invention relates to a water treatment method using a reverse osmosis membrane (RO membrane).

逆浸透膜(RO膜)を用いる水処理方法において、バイオファウリング対策として各種の殺菌剤(スライム抑制剤)が使用されることが一般的である。次亜塩素酸等の塩素系酸化剤は代表的な殺菌剤であり、系内の殺菌目的で通常は逆浸透膜の前段に添加される。塩素系酸化剤は逆浸透膜を劣化させる可能性が高いため、一般的には逆浸透膜の直前で塩素系酸化剤を還元分解するか、間欠的に塩素系酸化剤を逆浸透膜に流入させることで運用されている。 In a water treatment method using a reverse osmosis membrane (RO membrane), various fungicides (slime inhibitors) are generally used as measures against biofouling. Chlorine-based oxidizing agents such as hypochlorous acid are typical bactericidal agents, and are usually added to the pre-stage of the reverse osmosis membrane for the purpose of sterilizing the system. Since chlorine-based oxidants have a high possibility of deteriorating the reverse osmosis membrane, generally, the chlorine-based oxidizer is reduced and decomposed immediately before the reverse osmosis membrane, or the chlorine-based oxidant intermittently flows into the reverse osmosis membrane. It is operated by letting it.

また、殺菌剤(スライム抑制剤)として塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤を逆浸透膜の被処理水中に存在させる方法(特許文献1参照)や、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との混合物もしくは反応生成物を被処理水に添加する方法(特許文献2参照)が知られている。 Further, as a bactericidal agent (slime inhibitor), a method of allowing a bound chlorine agent composed of a chlorine-based oxidizing agent and a sulfamic acid compound to exist in the water to be treated of the back-penetrating film (see Patent Document 1), a bromine-based oxidizing agent, or A method of adding a mixture or reaction product of a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound to water to be treated is known (see Patent Document 2).

塩素系酸化剤または臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤は、殺菌能力が高いうえにポリアミド系の逆浸透膜を酸化劣化させにくく、逆浸透膜での阻止率も高く、後段の処理水(透過水)質に影響が少ないため有効である。 A bactericidal agent containing a chlorine-based oxidant or a bromine-based oxidant and a sulfamic acid compound has high bactericidal ability, is less likely to oxidize and deteriorate the polyamide-based reverse osmosis membrane, and has a high blocking rate in the reverse osmosis membrane. It is effective because it has little effect on the quality of treated water (permeated water).

特開2006−263510号公報Japanese Unexamined Patent Publication No. 2006-263510 特開2015−062889号公報JP 2015-062889

しかし、逆浸透膜で殺菌剤の大部分が阻止されてしまうため、逆浸透膜の1次側では殺菌剤が有効な場合でも2次側の透過水ラインがスライム汚染を受けることがある。特に被処理水が低分子(例えば、分子量200以下)の有機物を含む場合、低分子の有機物は逆浸透膜による阻止率が低いため、逆浸透膜の1次側では殺菌剤が有効な場合でも2次側で低分子の有機物に起因するスライム汚染が発生することがある。 However, since most of the fungicide is blocked by the reverse osmosis membrane, the permeated water line on the secondary side of the reverse osmosis membrane may be contaminated with slime even if the fungicide is effective. In particular, when the water to be treated contains a low-molecular-weight organic substance (for example, a molecular weight of 200 or less), the low-molecular-weight organic substance has a low blocking rate by the reverse osmosis membrane, so even if a bactericide is effective on the primary side of the reverse osmosis membrane. Slime contamination due to low molecular weight organic matter may occur on the secondary side.

本発明の目的は、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制する、逆浸透膜を用いる水処理方法を提供することにある。 An object of the present invention is to provide a water treatment method using a reverse osmosis membrane, which suppresses slime contamination even on the secondary side of the reverse osmosis membrane and suppresses oxidative deterioration of the reverse osmosis membrane.

本発明は、被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、アンモニアを含有する前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させ、前記逆浸透膜が、pH7.0におけるゼータ電位が−5(mV)未満であるアニオン荷電膜である、逆浸透膜を用いる水処理方法である。 The present invention is a water treatment method using a reverse osmosis membrane in which water to be treated is treated with a reverse osmosis membrane, and a bromine-based oxidizing agent or a chlorine-based oxidizing agent and a sulfamic acid compound are added to the water to be treated containing ammonia. the presence of a fungicide containing bets, the reverse osmosis membrane, the zeta potential at pH7.0 is Ru anionic charged membrane der less than -5 (mV), a water treatment method using a reverse osmosis membrane.

また、本発明は、被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、アンモニアを含有する前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させ、前記逆浸透膜が、pH7.0におけるゼータ電位が−5(mV)未満であるアニオン荷電膜である、逆浸透膜を用いる水処理方法である。 Further, the present invention is a water treatment method using a reverse osmosis membrane in which water to be treated is treated with a reverse osmosis membrane, and a bactericidal agent containing bromine and a sulfamic acid compound is added to the water to be treated containing ammonia. is present, the reverse osmosis membrane, the zeta potential at pH7.0 is Ru anionic charged membrane der less than -5 (mV), a water treatment method using a reverse osmosis membrane.

前記逆浸透膜を用いる水処理方法において、前記被処理水中の全塩素濃度に対する前記アンモニアの濃度の比が、0.01〜1の範囲となるように前記殺菌剤または前記アンモニアの濃度を調整することが好ましい。 In the water treatment method using the reverse osmosis membrane, the concentration of the disinfectant or the ammonia is adjusted so that the ratio of the concentration of the ammonia to the total chlorine concentration in the water to be treated is in the range of 0.01 to 1. Is preferable.

前記逆浸透膜を用いる水処理方法において、前記被処理水が、前記逆浸透膜を透過する有機物を0.5mg/L以上含むことが好ましい。 In the water treatment method using the reverse osmosis membrane, it is preferable that the water to be treated contains 0.5 mg / L or more of an organic substance that permeates the reverse osmosis membrane.

前記逆浸透膜を用いる水処理方法において、透過水をユースポイントで使用しないときのみに前記殺菌剤を添加して前記被処理水中に存在させることが好ましい。 In the water treatment method using the reverse osmosis membrane, it is preferable to add the disinfectant and allow it to exist in the water to be treated only when the permeated water is not used at the point of use.

本発明では、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができる。 In the present invention, slime contamination can be suppressed even on the secondary side of the reverse osmosis membrane, and oxidative deterioration of the reverse osmosis membrane can be suppressed.

実施例において逆浸透膜での阻止率の評価に用いた平膜試験装置の概略構成図である。It is a schematic block diagram of the flat membrane test apparatus used for evaluation of the inhibition rate in a reverse osmosis membrane in an Example. 実施例および比較例におけるアンモニア/殺菌剤(全塩素)濃度比に対する殺菌剤透過率(%)を示す図である。It is a figure which shows the fungicide permeability (%) with respect to the ammonia / fungicide (total chlorine) concentration ratio in an Example and a comparative example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

<逆浸透膜を用いる水処理方法>
本発明の実施形態に係る逆浸透膜を用いる水処理方法は、アンモニアを含有する被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させる方法である。「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物を含有する殺菌剤であってもよい。「塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有する殺菌剤であってもよい。
<Water treatment method using reverse osmosis membrane>
The water treatment method using a reverse osmosis membrane according to the embodiment of the present invention is a method in which a bromine-based oxidant or a bactericide containing a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated containing ammonia. .. The "bactericidal agent containing a bromine-based oxidizing agent and a sulfamic acid compound" is a bactericidal agent containing a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound". Alternatively, it may be a bactericidal agent containing a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound". The "bactericidal agent containing a chlorine-based oxidizing agent and a sulfamic acid compound" is a disinfectant containing a stabilized hypochlorous acid composition containing a mixture of a "chlorine-based oxidizing agent" and a "sulfamic acid compound". Alternatively, it may be a bactericidal agent containing a stabilized hypochlorous acid composition containing "a reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound".

すなわち、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる方法である。これにより、被処理水中で、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物が生成すると考えられる。 That is, the water treatment method using the reverse osmosis membrane according to the embodiment of the present invention is a method of treating the water to be treated with the reverse osmosis membrane, and the "bromine-based oxidant" is added to the water to be treated containing ammonia. It is a method in which a mixture with a "sulfamic acid compound" or a mixture with a "chlorine-based oxidizing agent" and a "sulfamic acid compound" is present. It is considered that this produces a stabilized hypobromous acid composition or a stabilized hypochlorous acid composition in the water to be treated.

また、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。 Further, the water treatment method using the back-penetrating membrane according to the embodiment of the present invention is a method of treating the water to be treated with the back-penetrating membrane, and in the water to be treated containing ammonia, "brominated oxidant and sulfamine". By a method in which a stabilized hypobromous acid composition which is a "reaction product with an acid compound" or a stabilized hypochlorous acid composition which is a "reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound" is present. is there.

具体的には本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる方法である。または、アンモニアを含有する被処理水中に、「次亜塩素酸」と、「スルファミン酸化合物」との混合物を存在させる方法である。 Specifically, the water treatment method using a reverse osmosis membrane according to the embodiment of the present invention is a method of treating water to be treated with a reverse osmosis membrane, in which "bromide" and "bromine" are added to the water to be treated containing ammonia. It is a method in which a mixture of "bromine chloride", "hypobromous acid" or "reactant of sodium bromide and hypochlorous acid" and "sulfamic acid compound" is present. Alternatively, it is a method of allowing a mixture of "hypochlorous acid" and a "sulfamic acid compound" to be present in the water to be treated containing ammonia.

また、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、被処理水を逆浸透膜で処理する方法であって、アンモニアを含有する被処理水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる方法である。または、アンモニアを含有する被処理水中に、「次亜塩素酸とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させる方法である。 The water treatment method using the back-penetrating membrane according to the embodiment of the present invention is a method of treating the water to be treated with the back-penetrating membrane, and in the water to be treated containing ammonia, for example, "bromium and sulfamic acid "Reaction product with compound", "Reaction product with bromine chloride and sulfamic acid compound", "Reaction product with hypobromous acid and sulfamic acid compound", or "Sodium bromide and hypobromous acid" It is a method of allowing a stabilized hypobromous acid composition which is a "reaction product of a reaction product and a sulfamic acid compound" to be present. Alternatively, it is a method of allowing a stabilized hypochlorous acid composition, which is a "reaction product of hypochlorous acid and a sulfamic acid compound," to exist in the water to be treated containing ammonia.

本発明者らは検討を重ねたところ、被処理水にアンモニアが含まれるとき、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む殺菌剤が逆浸透膜を透過しやすくなることを見出した。この現象を利用して、アンモニアを含有する被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させることにより、被処理水を逆浸透膜で処理する水処理方法において、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができる。 As a result of repeated studies, the present inventors have found that when the water to be treated contains ammonia, the stabilized hypobromous acid composition or the bactericide containing the stabilized hypochlorous acid composition easily permeates the reverse osmosis membrane. I found that it would be. Utilizing this phenomenon, the water to be treated is treated with a reverse osmosis membrane by allowing a bromine-based oxidant or a bactericidal agent containing a chlorine-based oxidant and a sulfamic acid compound to be present in the water to be treated containing ammonia. In the water treatment method, slime contamination can be suppressed also on the secondary side of the reverse osmosis membrane, and oxidative deterioration of the reverse osmosis membrane can be suppressed.

このように、本実施形態に係る逆浸透膜を用いる水処理方法において、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は次亜塩素酸等の塩素系酸化剤と同等以上のスライム抑制効果を発揮するにも関わらず、塩素系酸化剤と比較すると、逆浸透膜への劣化影響が低いため、逆浸透膜でのファウリングを抑制しながら、逆浸透膜の酸化劣化を抑制できる。このため、本実施形態に係る逆浸透膜を用いる水処理方法で用いられる安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、被処理水を逆浸透膜で処理する水処理方法で用いるスライム抑制剤としては好適である。 As described above, in the water treatment method using the reverse osmosis membrane according to the present embodiment, the stabilized hypochlorous acid composition or the stabilized hypochlorous acid composition is equal to or higher than that of a chlorine-based oxidizing agent such as hypochlorous acid. Despite exhibiting the slime-suppressing effect of, the effect of deterioration on the reverse osmosis membrane is lower than that of chlorine-based oxidants. Therefore, while suppressing fouling on the reverse osmosis membrane, oxidative deterioration of the reverse osmosis membrane is suppressed. Can be suppressed. Therefore, the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition used in the water treatment method using the reverse osmosis membrane according to the present embodiment is a water treatment in which the water to be treated is treated with the reverse osmosis membrane. It is suitable as a slime inhibitor used in the method.

本実施形態に係る逆浸透膜を用いる水処理方法のうち、「臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤」の場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響がより低い。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。 Among the water treatment methods using a reverse osmosis membrane according to the present embodiment, in the case of "a bactericide containing a bromine-based oxidant and a sulfamic acid compound", since there is no chlorine-based oxidant, the effect of deterioration on the reverse osmosis membrane Is lower. When a chlorine-based oxidizing agent is contained, there is concern about the formation of chloric acid.

本実施形態に係る逆浸透膜を用いる水処理方法のうち、「臭素系酸化剤」が、臭素である場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響が著しく低い。 Among the water treatment methods using the reverse osmosis membrane according to the present embodiment, when the "bromine-based oxidant" is bromine, the effect of deterioration on the reverse osmosis membrane is extremely low because the chlorine-based oxidant does not exist.

本実施形態に係る逆浸透膜を用いる水処理方法では、例えば、アンモニアを含有する被処理水中に、「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。 In the water treatment method using the reverse osmosis membrane according to the present embodiment, for example, a “bromine-based oxidant” or “chlorine-based oxidant” and a “sulfamic acid compound” are injected into the water to be treated containing ammonia. It may be injected by such means. The "bromine-based oxidant" or "chlorine-based oxidant" and the "sulfamic acid compound" may be added to the water to be treated separately, or they may be mixed with each other and then added to the water to be treated. Good.

また、例えば、アンモニアを含有する被処理水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。 Further, for example, "a reaction product of a bromine-based oxidant and a sulfamic acid compound" or "a reaction product of a chlorine-based oxidant and a sulfamic acid compound" is added to a water to be treated containing ammonia by a chemical injection pump or the like. It may be injected.

本実施形態に係る逆浸透膜を用いる水処理方法において、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the water treatment method using the reverse osmosis membrane according to the present embodiment, the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" or the "chlorine-based oxidant" is preferably 1 or more. It is more preferably in the range of 1 or more and 2 or less. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" or "chlorine-based oxidant" is less than 1, the film may be deteriorated, and if it exceeds 2, the manufacturing cost increases. May be done.

逆浸透膜に接触する全塩素濃度は有効塩素濃度換算で、0.01〜100mg/Lであることが好ましい。0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。 The total chlorine concentration in contact with the reverse osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient slime suppressing effect may not be obtained, and if it is more than 100 mg / L, deterioration of the reverse osmosis membrane and corrosion of pipes and the like may be caused.

被処理水中の全塩素濃度に対するアンモニアの濃度の比(アンモニア濃度(mg/L)/殺菌剤濃度(全塩素濃度:mg/L))が、0.01〜1の範囲となるように殺菌剤を存在させることが好ましく、0.01〜0.5の範囲となるように殺菌剤を存在させることがより好ましい。被処理水中の全塩素濃度に対するアンモニアの濃度の比が0.01以上となるように殺菌剤を存在させると、殺菌剤の透過率向上の効果が十分に表れるため好ましい。被処理水中の全塩素濃度に対するアンモニアの濃度の比が0.01未満であると、殺菌剤の透過率向上の効果が十分に表れない場合があり、1を超えて存在させても、アンモニア添加による殺菌剤の透過率の向上効果が表れにくくなる。 Disinfectant so that the ratio of the concentration of ammonia to the total chlorine concentration in the water to be treated (ammonia concentration (mg / L) / disinfectant concentration (total chlorine concentration: mg / L)) is in the range of 0.01 to 1. Is preferably present, and more preferably the bactericide is present so as to be in the range of 0.01 to 0.5. It is preferable that the disinfectant is present so that the ratio of the concentration of ammonia to the total chlorine concentration in the water to be treated is 0.01 or more because the effect of improving the transmittance of the disinfectant is sufficiently exhibited. If the ratio of the concentration of ammonia to the total chlorine concentration in the water to be treated is less than 0.01, the effect of improving the transmittance of the fungicide may not be sufficiently exhibited, and even if it is present in excess of 1, ammonia is added. The effect of improving the transmittance of the bactericide is less likely to appear.

被処理水にアンモニアが含まれていない場合は、アンモニア塩を添加してもよいし、他のアンモニア含有水を混合してもよい。 When the water to be treated does not contain ammonia, an ammonia salt may be added, or other ammonia-containing water may be mixed.

被処理水が、逆浸透膜を透過する有機物を0.5mg/L以上含む場合、特に1.0mg/L以上500mg/L以下含む場合に、本実施形態に係る逆浸透膜を用いる水処理方法がより好適に適用することができる。被処理水中の、逆浸透膜を透過する有機物の含有量が0.5mg/L未満であると、逆浸透膜の2次側においてスライム汚染が発生しにくい。 The water treatment method using the reverse osmosis membrane according to the present embodiment when the water to be treated contains 0.5 mg / L or more of an organic substance that permeates the reverse osmosis membrane, particularly when it contains 1.0 mg / L or more and 500 mg / L or less. Can be more preferably applied. When the content of the organic substance permeating the reverse osmosis membrane in the water to be treated is less than 0.5 mg / L, slime contamination is unlikely to occur on the secondary side of the reverse osmosis membrane.

本明細書において低分子の有機物とは、分子量が200以下の有機物を指し、例えば、分子量が200以下の、メタノール、エタノール、イソプロピルアルコール等のアルコール化合物、モノエタノールアミン、尿素等のアミン化合物、水酸化テトラメチルアンモニム等のテトラアルキルアンモニウム塩等が挙げられる。 In the present specification, the low molecular weight organic substance refers to an organic substance having a molecular weight of 200 or less, for example, an alcohol compound having a molecular weight of 200 or less such as methanol, ethanol and isopropyl alcohol, an amine compound such as monoethanolamine and urea, and water. Examples thereof include tetraalkylammonium salts such as tetramethylammonim oxide.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromic acid, bromate, hypobromous acid and the like. Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.

これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、逆浸透膜をより劣化させないため、逆浸透膜用スライム抑制剤としてはより好ましい。 Of these, the preparations of "bromic acid and sulfamic acid compound (mixture of bromic acid and sulfamic acid compound)" or "reaction product of bromic acid and sulfamic acid compound" using bromine are "hypochlorous acid and bromic acid compound". Compared with the preparations of "sulfamic acid" and "bromine chloride and sulfamic acid", the by-product of bromic acid is less and the back-penetrating membrane is not further deteriorated, so that it is more preferable as a slime inhibitor for back-penetrating membrane.

すなわち、本発明の実施形態に係る逆浸透膜を用いる水処理方法は、アンモニアを含有する被処理水中に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、被処理水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。 That is, in the water treatment method using the reverse osmosis membrane according to the embodiment of the present invention, bromine and a sulfamic acid compound are present in the water to be treated containing ammonia (a mixture of bromine and a sulfamic acid compound is present). Is preferable. Further, it is preferable that the reaction product of bromine and the sulfamic acid compound is present in the water to be treated.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, hydrobromic acid and the like. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chloric acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, and chlorinated isocyanuric acid or a salt thereof. And so on. Among these, as the salt, for example, an alkali metal hypochlorous acid salt such as sodium hypochlorite and potassium hypochlorite, an alkaline soil hypochlorous acid such as calcium hypochlorous acid and barium hypochlorite. Alkaline chlorite metal salts such as metal salts, sodium chlorate, potassium chlorate, alkaline earth metal chlorite such as barium chlorate, and other metal chlorite salts such as nickel chlorate. , Alkali chlorate metal salts such as ammonium chlorate, sodium chlorate, potassium chlorate, alkaline earth metal chlorate salts such as calcium chlorate, barium chlorate and the like. These chlorine-based oxidizing agents may be used alone or in combination of two or more. As the chlorine-based oxidizing agent, sodium hypochlorite is preferably used from the viewpoint of handleability and the like.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, and N-, in addition to sulfamic acid (amide sulfate) in which both of the two R groups are hydrogen atoms. Sulfamic acid compounds, N, N-dimethylsulfamic acid, N, where one of the two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms. Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. Sulfamic acid is a sulfamic acid compound in which both are alkyl groups having 1 to 8 carbon atoms, one of two R groups such as N-phenylsulfamic acid is a hydrogen atom, and the other is an aryl group having 6 to 10 carbon atoms. Compounds, salts thereof and the like can be mentioned. Examples of sulfamates include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt and cobalt salt. Examples thereof include other metal salts such as nickel salts, ammonium salts and guanidine salts. The sulfamic acid compound and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amide sulfate) from the viewpoint of environmental load and the like.

本実施形態に係る逆浸透膜を用いる水処理方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the water treatment method using the reverse osmosis membrane according to the present embodiment, alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of product stability at low temperature. Further, the alkali may be used as an aqueous solution instead of being solid.

本実施形態に係る逆浸透膜を用いる水処理方法は、逆浸透膜として昨今主流であるポリアミド系高分子膜に好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る逆浸透膜を用いる水処理方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。 The water treatment method using a reverse osmosis membrane according to the present embodiment can be suitably applied to a polyamide-based polymer membrane which is the mainstream in recent years as a reverse osmosis membrane. The polyamide-based polymer film has a relatively low resistance to an oxidizing agent, and continuous contact of free chlorine or the like with the polyamide-based polymer film causes a significant decrease in film performance. However, in the water treatment method using the reverse osmosis membrane according to the present embodiment, such a significant decrease in membrane performance hardly occurs even in the polyamide polymer membrane.

逆浸透膜には、中性膜、アニオン荷電膜、およびカチオン荷電膜がある。本明細書では、中性膜は、後述する実施例に記載したゼータ電位の測定方法により求めた、pH7.0におけるゼータ電位が−5〜5(mV)の範囲のものを指し、アニオン荷電膜は、pH7.0におけるゼータ電位が−5(mV)未満のものを指す。 Reverse osmosis membranes include neutral membranes, anionic charged membranes, and cationic charged membranes. In the present specification, the neutral film refers to a film having a zeta potential in the range of −5 to 5 (mV) at pH 7.0, which is determined by the method for measuring the zeta potential described in Examples described later. Refers to those having a zeta potential of less than -5 (mV) at pH 7.0.

市販の中性膜としては、例えば、BW30XFR(ダウ・ケミカル社製)、LFC3(日東電工株式会社製)、TML20(東レ株式会社製)等が挙げられる。 Examples of commercially available neutral films include BW30XFR (manufactured by Dow Chemical Co., Ltd.), LFC3 (manufactured by Nitto Denko KK), and TML20 (manufactured by Toray Industries, Inc.).

市販のアニオン荷電膜としては、例えば、OFR−625(以上、オルガノ株式会社製)、ES15、ES20、CPA3、CPA5(以上、日東電工株式会社製)、RE−8040BLN(ウンジン社製)等が挙げられる。 Examples of commercially available anion-charged membranes include OFR-625 (above, manufactured by Organo Corporation), ES15, ES20, CPA3, CPA5 (above, manufactured by Nitto Denko Corporation), RE-8040BLN (manufactured by Unjin Corporation), and the like. Be done.

本実施形態に係る逆浸透膜を用いる水処理方法では、アニオン荷電膜を用いた場合、中性膜を用いた場合に比べて、殺菌剤の透過率が高く、逆浸透膜の2次側においてもスライム汚染をより抑制することができる。 In the water treatment method using a reverse osmosis membrane according to the present embodiment, when an anionic charged membrane is used, the transmittance of the bactericide is higher than when a neutral membrane is used, and on the secondary side of the reverse osmosis membrane. Can also suppress slime contamination.

本実施形態に係る逆浸透膜を用いる水処理方法では、透過水をユースポイントで使用しないときには、得たRO透過水をRO濃縮水とともに逆浸透膜の1次側に循環させてもよく、透過水をユースポイントで使用しないときのみに殺菌剤を添加して被処理水中に存在させることが好ましい。これにより、RO透過水ラインの殺菌を行いつつ、透過水を使用する際には透過水に殺菌剤が含まれなくなるという効果がある。 In the water treatment method using a reverse osmosis membrane according to the present embodiment, when the permeated water is not used at the point of use, the obtained RO permeated water may be circulated together with the RO concentrated water to the primary side of the reverse osmosis membrane, and permeated. It is preferable to add a bactericide and allow it to exist in the water to be treated only when water is not used at the point of use. As a result, there is an effect that the permeated water does not contain a sterilizing agent when the permeated water is used while sterilizing the RO permeated water line.

本実施形態に係る逆浸透膜を用いる水処理方法において、逆浸透膜を備える逆浸透膜装置へ給水される被処理水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。被処理水のpHが5.5未満であると、透過水量が低下する場合がある。また、被処理水のpHの上限値については、通常の逆浸透膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係る逆浸透膜を用いる水処理方法を用いる場合、被処理水のpHが5.5以上で運転することにより、逆浸透膜の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。 In the water treatment method using a reverse osmosis membrane according to the present embodiment, the pH of the water to be treated supplied to the reverse osmosis membrane apparatus provided with the reverse osmosis membrane is preferably 5.5 or more, and is 6.0 or more. More preferably, it is more preferably 6.5 or more. If the pH of the water to be treated is less than 5.5, the amount of permeated water may decrease. The upper limit of the pH of the water to be treated is not particularly limited as long as it is equal to or lower than the applicable upper limit pH of a normal reverse osmosis membrane (for example, pH 10), but considering the scale precipitation of hardness components such as calcium, the pH Is preferably operated at, for example, 9.0 or less. When the water treatment method using the reverse osmosis membrane according to the present embodiment is used, the deterioration of the reverse osmosis membrane and the deterioration of the water quality of the treated water (permeated water) are suppressed by operating the water to be treated at a pH of 5.5 or higher. However, it is possible to secure a sufficient amount of permeated water while exerting a sufficient slime suppressing effect.

逆浸透膜装置において、被処理水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を上記殺菌剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の被処理水への添加量は、例えば、RO濃縮水中の濃度として0.1〜1,000mg/Lの範囲である。 In the reverse osmosis membrane device, when scale is generated at a pH of 5.5 or higher in the water to be treated, a dispersant may be used in combination with the above-mentioned disinfectant to suppress scale. Examples of the dispersant include polyacrylic acid, polymaleic acid, phosphonic acid and the like. The amount of the dispersant added to the water to be treated is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in RO concentrated water.

また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜装置の回収率等の運転条件を調整することが挙げられる。 Further, in order to suppress the generation of scale without using a dispersant, for example, reverse osmosis is performed so that the silica concentration in RO concentrated water is below the solubility and the Langeria index, which is an index of the calcium scale, is below 0. It is possible to adjust operating conditions such as the recovery rate of the membrane device.

逆浸透膜装置の用途としては、例えば、純水製造、海水淡水化、排水回収等が挙げられる。 Applications of the reverse osmosis membrane device include, for example, pure water production, seawater desalination, wastewater recovery and the like.

<殺菌剤>
本実施形態に係る殺菌剤は、「臭素系酸化剤または塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
<Fungicide>
The bactericidal agent according to the present embodiment contains a stabilized hypobromous acid composition or a stabilized hypochlorous acid composition containing a mixture of "bromine-based oxidizing agent or chlorine-based oxidizing agent" and "sulfamic acid compound". And may further contain an alkali.

また、本実施形態に係る殺菌剤は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。 The bactericidal agent according to the present embodiment is a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidant and a sulfamic acid compound", or "a reaction of a chlorine-based oxidant and a sulfamic acid compound". It contains a stabilized hypochlorous acid composition containing a "product", and may further contain an alkali.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。 The bromine-based oxidizing agent, the bromine compound, the chlorine-based oxidizing agent and the sulfamic acid compound are as described above.

本実施形態に係る殺菌剤としては、逆浸透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。 The bactericidal agent according to the present embodiment contains bromine and a sulfamic acid compound (containing a mixture of bromine and a sulfamic acid compound), for example, bromine and sulfamic acid, in order not to further deteriorate the back-penetrating film. A mixture of a compound, an alkali and water, or a mixture containing a reaction product of bromine and a sulfamic acid compound, for example, a reaction product of bromine and a sulfamic acid compound, an alkali and water is preferable.

本実施形態に係る殺菌剤のうち、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤、特に臭素とスルファミン酸化合物とを含む殺菌剤は、塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤(クロロスルファミン酸等)と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、殺菌剤としては最適である。 Among the bactericidal agents according to the present embodiment, the bactericidal agent containing a bromine-based oxidizing agent and a sulfamic acid compound, particularly the bactericidal agent containing bromine and a sulfamic acid compound is a bactericidal agent containing a chlorine-based oxidizing agent and a sulfamic acid compound. Compared to (chlorosulfamic acid, etc.), it has high oxidative power, slime suppressing power, and slime peeling power, but it can cause significant film deterioration like hypochlorite, which also has high oxidative power. Absent. At normal working concentrations, the effect on film deterioration is virtually negligible. Therefore, it is most suitable as a disinfectant.

本実施形態に係る殺菌剤は、次亜塩素酸とは異なり、逆浸透膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。 Unlike hypochlorous acid, the disinfectant according to the present embodiment hardly permeates the reverse osmosis membrane, and therefore has almost no effect on the quality of treated water. In addition, since the concentration can be measured on-site in the same manner as hypochlorous acid and the like, more accurate concentration control is possible.

殺菌剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。殺菌剤のpHが13.0以下であると殺菌剤中の有効ハロゲンが不安定になる場合がある。 The pH of the disinfectant is, for example, greater than 13.0 and more preferably greater than 13.2. If the pH of the disinfectant is 13.0 or less, the effective halogen in the disinfectant may become unstable.

殺菌剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。殺菌剤中の臭素酸濃度が5mg/kg以上であると、RO透過水の臭素酸イオンの濃度が高くなる場合がある。 The bromic acid concentration in the fungicide is preferably less than 5 mg / kg. If the bromate concentration in the fungicide is 5 mg / kg or more, the concentration of bromate ions in RO permeated water may increase.

<殺菌剤の製造方法>
本実施形態に係る殺菌剤は、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Manufacturing method of fungicide>
The bactericide according to the present embodiment can be obtained by mixing a bromine-based oxidizing agent or a chlorine-based oxidizing agent with a sulfamic acid compound, and may be further mixed with an alkali.

臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する殺菌剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、殺菌剤中の臭素酸イオン濃度が低くなり、RO透過水中の臭素酸イオン濃度が低くなる。 As a method for producing a bactericide containing a stabilized hypobromous acid composition containing bromine and a sulfamic acid compound, bromine is added to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. It is preferable to include a step of reacting with water, or a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound in an inert gas atmosphere. By adding and reacting in an inert gas atmosphere, or by adding in an inert gas atmosphere, the bromate ion concentration in the bactericide becomes low, and the bromate ion concentration in RO permeated water becomes low.

用いる不活性ガスとしては限定されないが、製造等の面から素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 Used but are not limited to inert gas, at least one and preferably one in terms of nitrogen and argon, such as production, nitrogen is particularly preferred from the viewpoint of production cost and the like.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。 The oxygen concentration in the reactor at the time of adding bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

臭素の添加率は、殺菌剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が殺菌剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。 The addition rate of bromine is preferably 25% by weight or less, and more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the disinfectant . If the addition rate of bromine exceeds 25% by weight based on the total amount of the disinfectant , the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the bactericidal activity may be inferior.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。 The reaction temperature at the time of adding bromine is preferably controlled in the range of 0 ° C. or higher and 25 ° C. or lower, but more preferably controlled in the range of 0 ° C. or higher and 15 ° C. or lower from the viewpoint of manufacturing cost and the like. If the reaction temperature at the time of adding bromine exceeds 25 ° C., the amount of bromic acid produced in the reaction system may increase, and if it is less than 0 ° C., it may freeze.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[安定化次亜臭素酸組成物(組成物1)の調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物(組成物1)を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromous Acid Composition (Composition 1)]
Liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: residue under a nitrogen atmosphere. The minutes were mixed to prepare a stabilized hypobromous acid composition (composition 1). The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5% by weight. The detailed preparation method of the stabilized hypobromous acid composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物(組成物1)を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 1436 g of water and 361 g of sodium hydroxide were added to a 2 L 4-port flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%. After mixing, 300 g of sulfamic acid was added and mixed, and then 473 g of liquid bromine was added while maintaining cooling so that the temperature of the reaction solution became 0 to 15 ° C., and 230 g of 48% potassium hydroxide solution was further added. , The desired stabilized hypobromous acid composition (sulfamic acid 10.7%, bromine 16.9%, sulfamic acid equivalent to bromine equivalent 1.04 by weight to total composition). The composition 1) was obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a method of converting bromine to iodine with potassium iodide and then redox titrating with sodium thiosulfate, and the theoretical content (16.9%). ) Was 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Jiko Co., Ltd. The bromic acid concentration was less than 5 mg / kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL−30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: Toa DKK, IOL-30 Type Electrode calibration: Kanto Chemical Co., Inc. Neutral phosphate pH (6.86) standard solution (Type 2), Borate manufactured by Kanto Chemical Co., Inc. Measurement temperature performed by two-point calibration of salt pH (9.18) standard solution (type 2): 25 ° C.
Measured value: The electrode is immersed in the measuring solution, and the value after stabilization is used as the measured value, which is the average value of three measurements.

[安定化次亜塩素酸組成物(組成物2)の調製]
12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:12重量%、水酸化ナトリウム:8重量%、水:残分を混合して、安定化次亜塩素酸組成物(組成物2)を調製した。組成物2のpHは13.7、全塩素濃度は、6.2重量%であった。
[Preparation of stabilized hypochlorous acid composition (composition 2)]
Stabilized hypochlorous acid composition (composition 2) by mixing 12% sodium hypochlorite aqueous solution: 50% by weight, sulfamic acid: 12% by weight, sodium hydroxide: 8% by weight, water: residue. Was prepared. The pH of composition 2 was 13.7, and the total chlorine concentration was 6.2% by weight.

[逆浸透膜のゼータ電位の測定]
逆浸透膜のゼータ電位は、大塚電子株式会社製、ゼータ電位・粒径測定システムELSZseriesを用いて、求めた。逆浸透膜のゼータ電位は、測定した電気浸透プロットより、下記森・岡本の式およびSmoluchowskiの式から計算した。
[Measurement of zeta potential of reverse osmosis membrane]
The zeta potential of the reverse osmosis membrane was determined using the zeta potential / particle size measurement system ELSZ series manufactured by Otsuka Electronics Co., Ltd. The zeta potential of the reverse osmosis membrane was calculated from the measured electroosmosis plots from the following Mori-Okamoto's formula and Smoluchowski's formula.

(森・岡本の式)
obs(z)=AU(z/b)+ΔU(z/b)+(1−A)U+U
ここで、
z:セル中心位置からの距離
obs(z):セル中のz位置における見かけの移動度
A:1/[(2/3)−(0.420166/K)]
K=a/b: 2aと2bはセル断面の横と縦の長さ、a>b
:粒子の真の移動度
:セルの上面、下面における平均移動度
ΔU:セルの上面、下面における移動度の差
(Smoluchowskiの式)
ζ=4πηU/ε
ここで、
U:電気移動度
ε:溶媒の誘電率
η:溶媒の粘度
(Mori / Okamoto's ceremony)
U obs (z) = AU 0 (z / b) 2 + ΔU 0 (z / b) + (1-A) U 0 + Up
here,
z: Distance from the center position of the cell U obs (z): Apparent mobility at the z position in the cell A: 1 / [(2/3)-(0.420166 / K)]
K = a / b: 2a and 2b are the horizontal and vertical lengths of the cell cross section, a> b
Up : True mobility of particles U 0 : Average mobility on the upper and lower surfaces of the cell ΔU 0 : Difference in mobility on the upper and lower surfaces of the cell (Smoluchowski's formula)
ζ = 4πηU / ε
here,
U: Electric mobility ε: Dielectric constant of solvent η: Viscosity of solvent

測定液として10mM NaCl水溶液(pH約5.4)を使用した。この水溶液と試料のペアを各試料について2組用意し、一方はpHを酸性(pH2,3,4,5,6,7)に、他方はpHをアルカリ性(pH8,9)に調整して、各pHにおけるゼータ電位を測定した。溶媒の物性値は25℃における純水の値(屈折率:1.3328、粘度:0.8878、誘電率:78.3)を使用した。 A 10 mM NaCl aqueous solution (pH about 5.4) was used as the measurement solution. Prepare two pairs of this aqueous solution and sample for each sample, one adjusting the pH to acidic (pH 2,3,4,5,6,7) and the other adjusting the pH to alkaline (pH 8,9). The zeta potential at each pH was measured. As the physical property value of the solvent, the value of pure water at 25 ° C. (refractive index: 1.3328, viscosity: 0.8878, dielectric constant: 78.3) was used.

<実施例1および比較例1>
[試験条件および試験方法]
平膜試験にて殺菌剤の透過水濃度を測定した。平膜セルは、日東電工社製のメンブレンマスターC70−Fフロー式平膜テストセルを用いた。平膜には、日東電工社製の逆浸透膜(アニオン荷電膜「ES20」(ポリアミド系アニオン荷電膜))を用いた。平膜は円形で、直径が75mmのものを用いた。フローを図1に示す。
<Example 1 and Comparative Example 1>
[Test conditions and test method]
The permeated water concentration of the fungicide was measured in a flat membrane test. As the flat membrane cell, a membrane master C70-F flow type flat membrane test cell manufactured by Nitto Denko Corporation was used. A reverse osmosis membrane (anion charged membrane "ES20" (polyamide-based anion charged membrane)) manufactured by Nitto Denko Corporation was used as the flat membrane. A flat membrane having a circular shape and a diameter of 75 mm was used. The flow is shown in FIG.

試験水(被処理水)は、超純水に殺菌剤を添加し、pHが7.0になるように塩酸または水酸化ナトリウムを用いて調製したものを使用した。殺菌剤の濃度は全塩素濃度で約6mg/Lとした。水温は25±1℃となるようにチラーを用いて調節した。逆浸透膜の操作圧は0.75MPaとした。逆浸透膜への供給水は5L/minで通水した。3時間程度の通水後、被処理水および透過水の殺菌剤濃度(全塩素濃度)を測定した。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L asCl)である。 The test water (water to be treated) was prepared by adding a bactericide to ultrapure water and using hydrochloric acid or sodium hydroxide so that the pH became 7.0. The concentration of the disinfectant was about 6 mg / L in total chlorine concentration. The water temperature was adjusted using a chiller so as to be 25 ± 1 ° C. The operating pressure of the reverse osmosis membrane was 0.75 MPa. The water supplied to the reverse osmosis membrane was passed at 5 L / min. After passing water for about 3 hours, the fungicide concentration (total chlorine concentration) of the water to be treated and the permeated water was measured. The total chlorine concentration is a value (mg / LasCl 2 ) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH.

(実施例1)
実施例1として、被処理水にアンモニア濃度が1mg/Lとなるように塩化アンモニウムを添加し、そのときの各殺菌剤の被処理水濃度および透過水濃度を測定し、透過率を求めた。結果を表1に示す。
(Example 1)
As Example 1, ammonium chloride was added to the water to be treated so that the ammonia concentration was 1 mg / L, and the concentration of the water to be treated and the concentration of the permeated water of each bactericidal agent at that time were measured to determine the transmittance. The results are shown in Table 1.

(比較例1)
また、比較例1として、被処理水に塩化アンモニウムを添加しなかった場合の各殺菌剤の被処理水濃度および透過水濃度を測定し、透過率を求めた。結果を表2に示す。
(Comparative Example 1)
Further, as Comparative Example 1, the concentration of water to be treated and the concentration of permeated water of each disinfectant when ammonium chloride was not added to the water to be treated were measured, and the transmittance was determined. The results are shown in Table 2.

このように、実施例1のように被処理水にアンモニアが存在することで、殺菌剤透過率が向上することがわかる。 As described above, it can be seen that the presence of ammonia in the water to be treated as in Example 1 improves the bactericidal agent transmittance.

<実施例2>
実施例2では、平膜として、中性膜である、LFC3(日東電工株式会社製)、TML20(東レ株式会社製)、アニオン荷電膜である、OFR−625(オルガノ株式会社製)、ES15、ES20、CPA5(以上、日東電工株式会社製)を用い、殺菌剤として、安定化次亜臭素酸組成物(組成物1)を用い、実施例1と同様に図1のフローで下記条件および方法で透過水濃度を測定した。
<Example 2>
In Example 2, as the flat membrane, LFC3 (manufactured by Nitto Denko KK), TML20 (manufactured by Toray Industries, Inc.), an anion charged membrane, OFR-625 (manufactured by Organo Corporation), ES15, ES20 and CPA5 (all manufactured by Nitto Denko KK) were used, and a stabilized hypobromous acid composition (composition 1) was used as a bactericide, and the following conditions and methods were followed in the flow of FIG. 1 in the same manner as in Example 1. The permeated water concentration was measured with.

試験水(被処理水)は、超純水に殺菌剤を添加し、pHが7.0になるように塩酸または水酸化ナトリウムを用いて調製したものを使用した。殺菌剤の濃度は全塩素濃度で10mg/Lとした。水温は25±1℃となるようにチラーを用いて調節した。逆浸透膜の操作圧は0.75MPaとした。逆浸透膜への供給水は5L/minで通水した。被処理水にアンモニア濃度が0,0.1,0.5,1,5,10mg/Lとなるように塩化アンモニウムを添加し、3時間程度の通水後、各殺菌剤の被処理水濃度(全塩素濃度)および透過水濃度(全塩素濃度)を測定し、透過率を求めた。結果を表3および図2に示す。 The test water (water to be treated) was prepared by adding a bactericide to ultrapure water and using hydrochloric acid or sodium hydroxide so that the pH became 7.0. The concentration of the disinfectant was 10 mg / L in total chlorine concentration. The water temperature was adjusted using a chiller so as to be 25 ± 1 ° C. The operating pressure of the reverse osmosis membrane was 0.75 MPa. The water supplied to the reverse osmosis membrane was passed at 5 L / min. Ammonium chloride is added to the water to be treated so that the ammonia concentration becomes 0,0.1,0.5,1,5,10 mg / L, and after passing water for about 3 hours, the concentration of the water to be treated of each bactericidal agent. (Total chlorine concentration) and permeated water concentration (total chlorine concentration) were measured to determine the transmittance. The results are shown in Table 3 and FIG.

このように、アニオン荷電膜を用いた場合、中性膜を用いた場合に比べて、殺菌剤の透過率が高く、逆浸透膜の2次側においてもスライム汚染をより抑制することができることがわかった。 As described above, when the anion-charged membrane is used, the transmittance of the fungicide is higher than that when the neutral membrane is used, and slime contamination can be further suppressed even on the secondary side of the reverse osmosis membrane. all right.

以上の通り、実施例1の方法により、逆浸透膜の2次側においてもスライム汚染を抑制し、かつ逆浸透膜の酸化劣化を抑制することができた。 As described above, by the method of Example 1, slime contamination could be suppressed also on the secondary side of the reverse osmosis membrane, and oxidative deterioration of the reverse osmosis membrane could be suppressed.

Claims (5)

被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、
アンモニアを含有する前記被処理水中に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤を存在させ
前記逆浸透膜が、pH7.0におけるゼータ電位が−5(mV)未満であるアニオン荷電膜であることを特徴とする、逆浸透膜を用いる水処理方法。
A water treatment method using a reverse osmosis membrane that treats water to be treated with a reverse osmosis membrane.
A bactericide containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound is present in the water to be treated containing ammonia .
The reverse osmosis membrane, the zeta potential is characterized anionically charged membrane der Rukoto less than -5 (mV) at pH 7.0, water treatment method using a reverse osmosis membrane.
被処理水を逆浸透膜で処理する、逆浸透膜を用いる水処理方法であって、
アンモニアを含有する前記被処理水中に、臭素とスルファミン酸化合物とを含む殺菌剤を存在させ
前記逆浸透膜が、pH7.0におけるゼータ電位が−5(mV)未満であるアニオン荷電膜であることを特徴とする、逆浸透膜を用いる水処理方法。
A water treatment method using a reverse osmosis membrane that treats water to be treated with a reverse osmosis membrane.
A bactericidal agent containing bromine and a sulfamic acid compound is allowed to exist in the water to be treated containing ammonia .
The reverse osmosis membrane, the zeta potential is characterized anionically charged membrane der Rukoto less than -5 (mV) at pH 7.0, water treatment method using a reverse osmosis membrane.
請求項1または2に記載の逆浸透膜を用いる水処理方法であって、
前記被処理水中の全塩素濃度に対する前記アンモニアの濃度の比が、0.01〜1の範囲となるように前記殺菌剤または前記アンモニアの濃度を調整することを特徴とする、逆浸透膜を用いる水処理方法。
A water treatment method using the reverse osmosis membrane according to claim 1 or 2.
A reverse osmosis membrane is used, which comprises adjusting the concentration of the bactericide or the ammonia so that the ratio of the concentration of the ammonia to the total chlorine concentration in the water to be treated is in the range of 0.01 to 1. Water treatment method.
請求項1〜のいずれか1項に記載の逆浸透膜を用いる水処理方法であって、
前記被処理水が、前記逆浸透膜を透過する有機物を0.5mg/L以上含むことを特徴とする、逆浸透膜を用いる水処理方法。
A water treatment method using the reverse osmosis membrane according to any one of claims 1 to 3 .
A water treatment method using a reverse osmosis membrane, wherein the water to be treated contains 0.5 mg / L or more of an organic substance that permeates the reverse osmosis membrane.
請求項1〜のいずれか1項に記載の逆浸透膜を用いる水処理方法であって、
透過水をユースポイントで使用しないときのみに前記殺菌剤を添加して前記被処理水中に存在させることを特徴とする、逆浸透膜を用いる水処理方法。
A water treatment method using the reverse osmosis membrane according to any one of claims 1 to 4 .
A water treatment method using a reverse osmosis membrane, which comprises adding the disinfectant and allowing it to exist in the water to be treated only when the permeated water is not used at the point of use.
JP2016162399A 2016-08-23 2016-08-23 Water treatment method using reverse osmosis membrane Active JP6779706B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016162399A JP6779706B2 (en) 2016-08-23 2016-08-23 Water treatment method using reverse osmosis membrane
SG11201810464WA SG11201810464WA (en) 2016-08-23 2016-12-27 Water treatment method using reverse-osmosis membrane
CN201680088095.4A CN109562330B (en) 2016-08-23 2016-12-27 Water treatment method using reverse osmosis membrane
KR1020197003798A KR102164160B1 (en) 2016-08-23 2016-12-27 Water treatment method using reverse osmosis membrane
PCT/JP2016/088943 WO2018037582A1 (en) 2016-08-23 2016-12-27 Water processing method using reverse-osmosis membrane
TW106104187A TWI703094B (en) 2016-08-23 2017-02-09 Water treatment method using osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162399A JP6779706B2 (en) 2016-08-23 2016-08-23 Water treatment method using reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JP2018030061A JP2018030061A (en) 2018-03-01
JP6779706B2 true JP6779706B2 (en) 2020-11-04

Family

ID=61246460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162399A Active JP6779706B2 (en) 2016-08-23 2016-08-23 Water treatment method using reverse osmosis membrane

Country Status (6)

Country Link
JP (1) JP6779706B2 (en)
KR (1) KR102164160B1 (en)
CN (1) CN109562330B (en)
SG (1) SG11201810464WA (en)
TW (1) TWI703094B (en)
WO (1) WO2018037582A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492873B2 (en) 2020-07-13 2024-05-30 オルガノ株式会社 Water recovery method and water recovery device
JP7492876B2 (en) 2020-07-21 2024-05-30 オルガノ株式会社 Water treatment method and water treatment device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158683A (en) * 1991-09-03 1992-10-27 Ethyl Corporation Bromide separation and concentration using semipermeable membranes
JP2005185985A (en) * 2003-12-26 2005-07-14 Toray Ind Inc Method and apparatus for producing water
JP2006263510A (en) 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
WO2012132892A1 (en) * 2011-03-30 2012-10-04 栗田工業株式会社 Scale preventing agent for reverse osmosis membrane and scale preventing method
JP5835967B2 (en) * 2011-06-29 2015-12-24 伯東株式会社 Slime stripping agent and slime stripping method
JP6401491B2 (en) * 2013-08-28 2018-10-10 オルガノ株式会社 Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
JP6364751B2 (en) * 2013-11-19 2018-08-01 栗田工業株式会社 Cleaning agent and cleaning method for aromatic polyamide-based reverse osmosis membrane
JP5910696B1 (en) * 2014-10-06 2016-04-27 栗田工業株式会社 Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP6422765B2 (en) * 2014-12-22 2018-11-14 オルガノ株式会社 Membrane separation treatment system and membrane separation treatment method
JP6630562B2 (en) * 2014-12-25 2020-01-15 オルガノ株式会社 Slime suppression method for separation membrane
CN104801195A (en) * 2015-04-30 2015-07-29 浙江农林大学 Novel method for cleaning organic pollutants of reverse osmosis membrane and nanofiltration membrane

Also Published As

Publication number Publication date
WO2018037582A1 (en) 2018-03-01
TWI703094B (en) 2020-09-01
KR20190028476A (en) 2019-03-18
CN109562330B (en) 2021-10-08
TW201808818A (en) 2018-03-16
KR102164160B1 (en) 2020-10-12
CN109562330A (en) 2019-04-02
SG11201810464WA (en) 2018-12-28
JP2018030061A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6401491B2 (en) Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
KR101966569B1 (en) Method for controlling slime on separation membrane
JP6807219B2 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6688381B2 (en) Water treatment system and water treatment method using reverse osmosis membrane
KR102291224B1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP6779706B2 (en) Water treatment method using reverse osmosis membrane
JP2016155071A (en) Sterilization method for separation membrane
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP2016155067A (en) Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
JP2016120486A (en) Method for inhibiting slime in separation membrane
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6933902B2 (en) Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water
WO2020179789A1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP2021181074A (en) Water treatment method and wastewater treatment apparatus
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6779706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250