JP6779105B2 - Particle detection system and particle detection method - Google Patents

Particle detection system and particle detection method Download PDF

Info

Publication number
JP6779105B2
JP6779105B2 JP2016220120A JP2016220120A JP6779105B2 JP 6779105 B2 JP6779105 B2 JP 6779105B2 JP 2016220120 A JP2016220120 A JP 2016220120A JP 2016220120 A JP2016220120 A JP 2016220120A JP 6779105 B2 JP6779105 B2 JP 6779105B2
Authority
JP
Japan
Prior art keywords
fluid
suction
suction machine
inspection
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220120A
Other languages
Japanese (ja)
Other versions
JP2018077176A (en
Inventor
静一郎 衣笠
静一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2016220120A priority Critical patent/JP6779105B2/en
Publication of JP2018077176A publication Critical patent/JP2018077176A/en
Application granted granted Critical
Publication of JP6779105B2 publication Critical patent/JP6779105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は環境評価技術に関し、特に粒子検出システム及び粒子検出方法に関する。 The present invention relates to an environmental evaluation technique, particularly to a particle detection system and a particle detection method.

バイオクリーンルーム等のクリーンルームにおいては、粒子検出装置を用いて、飛散している微生物粒子や非微生物粒子が検出され、記録される。粒子の検出結果から、クリーンルームの空調機器の劣化具合を把握可能である。また、クリーンルームで製造された製品に、参考資料として、クリーンルーム内の粒子の検出記録が添付されることもある。光学式の粒子検出装置は、例えば、クリーンルーム中の気体を吸引し、吸引した気体に励起光を照射する。気体に微生物粒子や非微生物蛍光粒子が含まれていると、励起光を照射された粒子が蛍光を発するため、気体に含まれる微生物粒子や非微生物蛍光粒子の数や大きさ等を検出することが可能となる(例えば、非特許文献1、2参照。)。また、クリーンルームを飛散する粒子は、通常、低濃度であるため、粒子を濃縮してから、粒子を検出することが提案されている(例えば、特許文献1参照。)。 In a clean room such as a bio-clean room, scattered microbial particles and non-microbial particles are detected and recorded by using a particle detection device. From the particle detection results, it is possible to grasp the degree of deterioration of the air conditioning equipment in the clean room. In addition, the detection record of particles in the clean room may be attached to the product manufactured in the clean room as reference material. The optical particle detector, for example, sucks a gas in a clean room and irradiates the sucked gas with excitation light. When the gas contains microbial particles or non-microbial fluorescent particles, the particles irradiated with the excitation light fluoresce, so the number and size of the microbial particles and non-microbial fluorescent particles contained in the gas must be detected. (See, for example, Non-Patent Documents 1 and 2). Further, since the particles scattered in the clean room usually have a low concentration, it has been proposed to concentrate the particles before detecting the particles (see, for example, Patent Document 1).

米国特許出願公開第2014/0354976号明細書U.S. Patent Application Publication No. 2014/0354976

Sohn, Miryeong; Himmelsbach, David S.; Barton, Franklin E.; Fedorka-Cray, Paula J., "Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens", 2009, Applied Spectroscopy, 63(11), 1251-1255Sohn, Miryeong; Himmelsbach, David S .; Barton, Franklin E .; Fedorka-Cray, Paula J., "Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens", 2009, Applied Spectroscopy, 63 (11), 1251-1255 長谷川 倫男、山崎 信介、堀口 康子、「気中微生物リアルタイム検出技術とその応用」、株式会社 山武、azbil technical review、2009年12月Tomoo Hasegawa, Shinsuke Yamazaki, Yasuko Horiguchi, "Real-time detection technology for aerial microorganisms and its applications", Yamatake Co., Ltd., azbil technical review, December 2009

本発明は、粒子を正確に検出可能な粒子検出システム及び粒子検出方法を提供することを目的の一つとする。 One object of the present invention is to provide a particle detection system and a particle detection method capable of accurately detecting particles.

本発明の態様によれば、(a)粒子を含む流体から、粒子が濃縮された検査流体と、排流体と、を生成する濃縮器と、(b)濃縮器に接続され、検査流体中の粒子を検出する粒子検出装置と、(c)粒子検出装置に接続され、濃縮器及び粒子検出装置から検査流体を吸引する検査流体吸引機と、(d)濃縮器に接続され、濃縮器から排流体を吸引する排流体吸引機と、(e)濃縮器を介した流体の吸引を開始する際、検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比が、定常状態における検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比より小さくなるよう、検査流体吸引機及び排流体吸引機を制御する制御部と、を備える、粒子検出システムが提供される。 According to the aspect of the present invention, a concentrator that produces (a) a test fluid in which particles are concentrated and a drain fluid from a fluid containing particles, and (b) a concentrator connected to the concentrator and contained in the test fluid. A particle detection device that detects particles, (c) an inspection fluid aspirator that is connected to the particle detection device and sucks the test fluid from the concentrator and the particle detection device, and (d) is connected to the concentrator and is discharged from the concentrator. The ratio of the suction pressure of the drain fluid suction machine to the suction pressure of the test fluid suction machine when starting the suction of the fluid through the drain fluid suction machine that sucks the fluid and (e) the concentrator is the test fluid in the steady state. A particle detection system is provided that includes a control unit that controls the inspection fluid suction machine and the drain fluid suction machine so that it is smaller than the ratio of the suction pressure of the drain fluid suction machine to the suction pressure of the suction machine.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を開始して所定の時間経過するまで、検査流体吸引機の吸引圧力が、排流体吸引機の吸引圧力より高くなるよう、かつ濃縮器を介した流体の吸引を開始して所定の時間経過後、排流体吸引機の吸引圧力が、検査流体吸引機の吸引圧力より高くなるよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, the suction pressure of the inspection fluid suction machine is higher than the suction pressure of the exhaust fluid suction machine until a predetermined time elapses after starting the suction of the fluid through the concentrator, and the concentrator. After a predetermined time has elapsed from the start of suction of the fluid through the inspection fluid suction machine, the control unit sets the inspection fluid suction machine and the drain fluid suction machine so that the suction pressure of the drain fluid suction machine becomes higher than the suction pressure of the inspection fluid suction machine. May be controlled.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を開始する際、検査流体吸引機が検査流体の吸引を開始した後、排流体吸引機が排流体の吸引を開始するよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, when starting the suction of the fluid through the concentrator, the control unit so that the inspection fluid suction machine starts the suction of the inspection fluid and then the drain fluid suction machine starts the suction of the drain fluid. However, the inspection fluid suction machine and the exhaust fluid suction machine may be controlled.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を開始する際、検査流体吸引機の吸引圧力の上昇率が、排流体吸引機の吸引圧力の上昇率を上回るよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, when starting the suction of the fluid through the concentrator, the control unit sets the suction pressure of the inspection fluid suction machine to exceed the suction pressure of the drainage fluid suction machine. The inspection fluid suction machine and the exhaust fluid suction machine may be controlled.

上記の粒子検出システムにおいて、制御部が、濃縮器を介した流体の吸引を停止する際、検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比が、定常状態における検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比より小さくなるよう、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, when the control unit stops the suction of fluid through the concentrator, the ratio of the suction pressure of the exhaust fluid suction machine to the suction pressure of the inspection fluid suction machine is the test fluid suction machine in a steady state. The inspection fluid suction machine and the drain fluid suction machine may be controlled so as to be smaller than the ratio of the suction pressure of the exhaust fluid suction machine to the suction pressure of.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を停止するまでの所定の時間、検査流体吸引機の吸引圧力が、排流体吸引機の吸引圧力より高くなるよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, the control unit inspects the suction pressure of the inspection fluid suction machine to be higher than the suction pressure of the exhaust fluid suction machine for a predetermined time until the suction of the fluid through the concentrator is stopped. The fluid suction machine and the exhaust fluid suction machine may be controlled.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を停止する際、排流体吸引機が排流体の吸引を停止した後、検査流体吸引機が検査流体の吸引を停止するよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, when stopping the suction of the fluid through the concentrator, the control unit so that the inspection fluid suction machine stops the suction of the inspection fluid after the drain fluid suction machine stops the suction of the drain fluid. However, the inspection fluid suction machine and the exhaust fluid suction machine may be controlled.

上記の粒子検出システムにおいて、濃縮器を介した流体の吸引を停止する際、検査流体吸引機の吸引圧力の低下率が、排流体吸引機の吸引圧力の低下率を下回るよう、制御部が、検査流体吸引機及び排流体吸引機を制御してもよい。 In the above particle detection system, when stopping the suction of the fluid through the concentrator, the control unit sets the suction pressure of the inspection fluid suction machine to be lower than the suction pressure of the drainage fluid suction machine. The inspection fluid suction machine and the exhaust fluid suction machine may be controlled.

上記の粒子検出システムが、検査流体吸引機が吸引する、粒子検出装置を通過した検査流体の流量を計測する検査流体流量計と、排流体吸引機が吸引する排流体の流量を計測する排流体流量計と、検査流体流量計が計測した流量と、排流体流量計が計測した流量と、を比較する比較部と、をさらに備えていてもよい。 The above particle detection system measures the flow rate of the inspection fluid that has passed through the particle detection device, which is sucked by the inspection fluid suction machine, and the drainage fluid that measures the flow rate of the drainage fluid sucked by the drainage fluid suction machine. It may further include a flow meter, a comparison unit for comparing the flow rate measured by the inspection fluid flow meter, and the flow rate measured by the drain fluid flow meter.

また、本発明の態様によれば、(a)濃縮器を介して粒子を含む流体を吸引し、粒子が濃縮された検査流体と、排流体と、を生成することと、(b)濃縮器に接続された粒子検出装置で、検査流体中の粒子を検出することと、(c)粒子検出装置に接続された検査流体吸引機で、濃縮器及び粒子検出装置から検査流体を吸引することと、(d)濃縮器に接続された排流体吸引機で、濃縮器から排流体を吸引することと、を含む、粒子の検出方法であって、(e)濃縮器を介した流体の吸引を開始する際、検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比が、定常状態における検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比より小さくなるよう、検査流体吸引機及び排流体吸引機を制御する、粒子検出方法が提供される。 Further, according to the aspect of the present invention, (a) a fluid containing particles is sucked through a concentrator to generate a test fluid in which the particles are concentrated and a drainage fluid, and (b) a concentrator. The particle detection device connected to the test fluid detects particles in the test fluid, and (c) the test fluid suction device connected to the particle detection device sucks the test fluid from the concentrator and the particle detection device. , (D) A method for detecting particles, including suction of drainage fluid from the concentrator with a drainage fluid suction machine connected to the concentrator, (e) suction of fluid through the concentrator. At the start, the inspection fluid is such that the ratio of the suction pressure of the drain fluid suction machine to the suction pressure of the inspection fluid suction machine is smaller than the ratio of the suction pressure of the drain fluid suction machine to the suction pressure of the inspection fluid suction machine in the steady state. A particle detection method for controlling an aspirator and a effluent aspirator is provided.

本発明によれば、粒子を正確に検出可能な粒子検出システム及び粒子検出方法を提供可能である。 According to the present invention, it is possible to provide a particle detection system and a particle detection method capable of accurately detecting particles.

実施の形態に係る粒子検出システムの模式図である。It is a schematic diagram of the particle detection system which concerns on embodiment. 実施の形態に係る吸引圧力又は流量の時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the suction pressure or the flow rate which concerns on embodiment. 実施の形態に係る吸引圧力又は流量の時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the suction pressure or the flow rate which concerns on embodiment. 実施の形態に係る吸引圧力又は流量の時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the suction pressure or the flow rate which concerns on embodiment. 実施の形態に係る吸引圧力又は流量の時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the suction pressure or the flow rate which concerns on embodiment. 実施の形態に係る吸引圧力又は流量のセットポイントの時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the set point of the suction pressure or the flow rate which concerns on embodiment. 実施の形態に係る吸引圧力又は流量のセットポイントの時間変化を示す模式的なグラフである。It is a schematic graph which shows the time change of the set point of the suction pressure or the flow rate which concerns on embodiment.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Embodiments of the present invention will be described below. In the description of the drawings below, the same or similar parts are represented by the same or similar reference numerals. However, the drawings are schematic. Therefore, the specific dimensions and the like should be determined in light of the following explanations. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

実施の形態に係る粒子検出システムは、図1に示すように、粒子を含む流体から、粒子が濃縮された検査流体と、排流体と、を生成する濃縮器13と、濃縮器13に接続され、検査流体が流れるマイナー流路14と、濃縮器13に接続され、排流体が流れるメジャー流路17と、を備える。定常状態においては、マイナー流路14より多くの流体がメジャー流路17を流れ、メジャー流路17より少ない流体がマイナー流路14を流れる。マイナー流路14の長さと、メジャー流路17の長さと、は、必ずしも同じではない。また、マイナー流路14における圧力損失と、メジャー流路17における圧力損失と、は、必ずしも同じではない。 As shown in FIG. 1, the particle detection system according to the embodiment is connected to a concentrator 13 and a concentrator 13 for producing a test fluid in which particles are concentrated and a drainage fluid from a fluid containing particles. , A minor flow path 14 through which the inspection fluid flows, and a major flow path 17 connected to the concentrator 13 through which the exhaust fluid flows. In the steady state, more fluid than the minor flow path 14 flows through the major flow path 17, and less fluid than the major flow path 17 flows through the minor flow path 14. The length of the minor flow path 14 and the length of the major flow path 17 are not necessarily the same. Further, the pressure loss in the minor flow path 14 and the pressure loss in the major flow path 17 are not necessarily the same.

マイナー流路14は、濃縮器13に接続され、検査流体中の粒子を検出する粒子検出装置22と、粒子検出装置22に接続され、濃縮器13及び粒子検出装置22から検査流体を吸引する検査流体吸引機30と、を備える。メジャー流路17は、濃縮器13に接続され、濃縮器13から排流体を吸引する排流体吸引機76を備える。 The minor flow path 14 is connected to the concentrator 13 and is connected to a particle detection device 22 for detecting particles in the inspection fluid and an inspection which is connected to the particle detection device 22 and sucks the inspection fluid from the concentrator 13 and the particle detection device 22. A fluid suction machine 30 is provided. The major flow path 17 is connected to the concentrator 13 and includes a drain fluid suction machine 76 that sucks the drain fluid from the concentrator 13.

実施の形態に係る粒子検出システムは、さらに、濃縮器13を介した流体の吸引を開始する際、及び濃縮器13を介した流体の吸引を停止する際、検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比が、定常状態における検査流体吸引機の吸引圧力に対する排流体吸引機の吸引圧力の比より小さくなるよう、検査流体吸引機30及び排流体吸引機76を制御する制御部101A、101Bと、を備える。 The particle detection system according to the embodiment further applies to the suction pressure of the inspection fluid suction machine 30 when starting the suction of the fluid through the concentrator 13 and when stopping the suction of the fluid through the concentrator 13. The inspection fluid suction machine 30 and the drain fluid suction machine 76 are controlled so that the ratio of the suction pressure of the drain fluid suction machine 76 is smaller than the ratio of the suction pressure of the drain fluid suction machine to the suction pressure of the inspection fluid suction machine in the steady state. Control units 101A and 101B are provided.

ここで、定常状態とは、検査流体吸引機30の吸引圧力と、排流体吸引機76の吸引圧力と、が、それぞれほぼ一定である状態をいう。通常、濃縮器13を介した流体の吸引を開始してから所定の時間経過後、検査流体吸引機30の吸引圧力と、排流体吸引機76の吸引圧力と、が、それぞれほぼ一定となる。ただし、マイナー流路14及びメジャー流路17のそれぞれの上流と下流との間の圧力差に変動が生じた場合、検査流体吸引機30の吸引圧力と、排流体吸引機76の吸引圧力と、が、それぞれ変動する場合がある。 Here, the steady state means a state in which the suction pressure of the inspection fluid suction machine 30 and the suction pressure of the exhaust fluid suction machine 76 are substantially constant. Normally, after a predetermined time has elapsed from the start of suction of the fluid through the concentrator 13, the suction pressure of the inspection fluid suction machine 30 and the suction pressure of the exhaust fluid suction machine 76 become substantially constant. However, when the pressure difference between the upstream and downstream of the minor flow path 14 and the major flow path 17 fluctuates, the suction pressure of the inspection fluid suction machine 30 and the suction pressure of the exhaust fluid suction machine 76 are determined. However, each may fluctuate.

粒子を含む流体は、例えばクリーンルーム200等の清浄空間内の空気であるが、これに限定されない。クリーンルーム200内には、流体を吸引するためのノズル11が配置されている。ノズル11と濃縮器13の間には、チューブ等の流路12が配置されている。検査流体吸引機30及び排流体吸引機76の少なくとも一方の吸引圧力によってノズル11から吸引された流体は、流路12を経て濃縮器13に到達する。 The fluid containing particles is, for example, air in a clean space such as a clean room 200, but is not limited thereto. A nozzle 11 for sucking a fluid is arranged in the clean room 200. A flow path 12 such as a tube is arranged between the nozzle 11 and the concentrator 13. The fluid sucked from the nozzle 11 by the suction pressure of at least one of the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 reaches the concentrator 13 via the flow path 12.

濃縮器13は、流体から、濃縮された検査対象の粒子を含む検査流体と、検査対象の粒子を実質的に含まない排流体と、を生成する。ただし、排流体は、検査対象の粒子を低濃度で含み得る。また、排流体は、検査対象以外の粒子を含み得る。検査流体の流れはマイナーフローとも呼ばれ、廃流体の流れはメジャーフローとも呼ばれる。濃縮器13としては、カスケードインパクタ法を用いる分粒器、サイクロン法を用いる分粒器、及びバーチャルインパクタ法を用いる分粒器等が使用可能である。 The concentrator 13 produces from the fluid an inspection fluid containing the concentrated particles to be inspected and a drainage fluid substantially free of the particles to be inspected. However, the effluent may contain low concentrations of particles to be inspected. In addition, the drainage fluid may contain particles other than those to be inspected. The flow of inspection fluid is also called minor flow, and the flow of waste fluid is also called major flow. As the concentrator 13, a sizing device using the cascade impactor method, a sizing device using the cyclone method, a sizing device using the virtual impactor method, and the like can be used.

濃縮器13で生成された検査流体は、検査流体吸引機30によって吸引され、マイナー流路14が備える流路21を経て粒子検出装置22に到達する。粒子検出装置22は、例えば検査流体の気流に光を照射し、光を照射された粒子で生じる散乱光や蛍光を検出して、粒子の数を計測する。 The test fluid generated by the concentrator 13 is sucked by the test fluid suction machine 30 and reaches the particle detection device 22 via the flow path 21 provided in the minor flow path 14. The particle detection device 22 irradiates the airflow of the inspection fluid with light, for example, detects scattered light and fluorescence generated by the irradiated particles, and measures the number of particles.

濃縮器13で生成された検査流体の一部は、マイナー流路14が備えるバイパス流路に送られる。バイパス流路は、流路21から分岐する流路41、及び流路41に接続された吸引フィルター42を備える。吸引フィルター42は、検査流体から粒子を除去し、圧力調整用流体を生成する。検査流体に含まれる粒子が、後述するバイパス流量計46の感度及び性能に影響しない場合、吸引フィルター42は省略してもよい。 A part of the inspection fluid generated by the concentrator 13 is sent to the bypass flow path provided in the minor flow path 14. The bypass flow path includes a flow path 41 branching from the flow path 21 and a suction filter 42 connected to the flow path 41. The suction filter 42 removes particles from the test fluid to produce a pressure regulating fluid. The suction filter 42 may be omitted if the particles contained in the test fluid do not affect the sensitivity and performance of the bypass flow meter 46 described later.

バイパス流路は、さらに、吸引フィルター42に接続された流路43、流路43に接続されたスピードコントローラー44、スピードコントローラー44に接続された流路45、及び流路45に接続されたバイパス流量計46を備える。スピードコントローラー44は、バイパス流路を流れる圧力調整用流体の流速を調整する。バイパス流量計46は、バイパス流路を流れる圧力調整用流体の流速及び流量を計測する。 The bypass flow path further includes a flow path 43 connected to the suction filter 42, a speed controller 44 connected to the flow path 43, a flow path 45 connected to the speed controller 44, and a bypass flow rate connected to the flow path 45. A total of 46 are provided. The speed controller 44 adjusts the flow velocity of the pressure adjusting fluid flowing through the bypass flow path. The bypass flow meter 46 measures the flow velocity and flow rate of the pressure adjusting fluid flowing through the bypass flow path.

バイパス流路は、さらに、バイパス流量計46に接続された流路47、流路47に接続されたHEPAフィルター等の清浄フィルター48、及び清浄フィルター48と粒子検出装置22の間に接続された流路49を備える。清浄フィルター48は、吸引フィルター42を通過した粒子や、スピードコントローラー44及びバイパス流量計46等で生じうる塵等を圧力調整用流体から除去する。 The bypass flow path further includes a flow path 47 connected to the bypass flow meter 46, a cleaning filter 48 such as a HEPA filter connected to the flow path 47, and a flow connected between the cleaning filter 48 and the particle detection device 22. The road 49 is provided. The cleaning filter 48 removes particles that have passed through the suction filter 42, dust that may be generated by the speed controller 44, the bypass flow meter 46, and the like from the pressure adjusting fluid.

バイパス流路を経て粒子検出装置22に到達した圧力調整用流体は、粒子検出装置22内の圧力を調整し、粒子検出装置22内の検査流体の気流の拡散を抑制する。圧力調整用流体が粒子等を含むと、粒子検出装置22が検出する粒子の数や濃度に誤差が生じうる。そのため、圧力調整用流体は、清浄フィルター48でろ過される。 The pressure adjusting fluid that has reached the particle detection device 22 via the bypass flow path adjusts the pressure in the particle detection device 22 and suppresses the diffusion of the air flow of the inspection fluid in the particle detection device 22. If the pressure adjusting fluid contains particles or the like, an error may occur in the number and concentration of particles detected by the particle detection device 22. Therefore, the pressure adjusting fluid is filtered by the cleaning filter 48.

流路21を備える検査流路を流れる流体の流量と、バイパス流路を流れる流体の流量と、の分岐比は、所定の値に設定される。スピードコントローラー44は、例えば、吸引フィルター42、バイパス流量計46、及び清浄フィルター48の圧力損失が低く、所定の分岐比を設定できない場合に用いられる。分岐比の所定の値は、粒子検出装置22内の光の照射領域、及び散乱光又は蛍光の受光領域の大きさに応じて、適宜設定される。 The branching ratio of the flow rate of the fluid flowing through the inspection flow path provided with the flow path 21 and the flow rate of the fluid flowing through the bypass flow path is set to a predetermined value. The speed controller 44 is used, for example, when the pressure loss of the suction filter 42, the bypass flow meter 46, and the cleaning filter 48 is low and a predetermined branching ratio cannot be set. A predetermined value of the branching ratio is appropriately set according to the size of the light irradiation region in the particle detection device 22 and the light receiving region of scattered light or fluorescence.

マイナー流路14は、粒子検出装置22に接続された流路23、流路23に接続された吸引フィルター24、吸引フィルター24に接続された流路25、流路25に接続された検査流体流量計26、検査流体流量計26に接続された流路27、流路27に接続されたスピードコントローラー28、及びスピードコントローラー28に接続された流路29をさらに備える。 The minor flow path 14 includes a flow path 23 connected to the particle detection device 22, a suction filter 24 connected to the flow path 23, a flow path 25 connected to the suction filter 24, and an inspection fluid flow rate connected to the flow path 25. A total of 26, a flow path 27 connected to the inspection fluid flow meter 26, a speed controller 28 connected to the flow path 27, and a flow path 29 connected to the speed controller 28 are further provided.

粒子検出装置22内を通過した流体は、流路23、吸引フィルター24、流路25、検査流体流量計26、流路27、スピードコントローラー28、及び流路29を介して、検査流体吸引機30によって吸引される。 The fluid that has passed through the particle detection device 22 passes through the flow path 23, the suction filter 24, the flow path 25, the inspection fluid flow meter 26, the flow path 27, the speed controller 28, and the flow path 29, and the inspection fluid suction machine 30 Is sucked in.

吸引フィルター24は、流体から粒子を除去する。粒子検出装置22内を通過した流体に含まれる粒子が、検査流体流量計26の感度及び性能に影響しない場合、吸引フィルター24は省略してもよい。検査流体流量計26は、粒子検出装置22を通過した、検査流体吸引機30が吸引する流体の流速及び流量を計測する。検査流体流量計26が計測した流量は、マイナー流路14を流れる流体の流量とみなすことができる。スピードコントローラー28は、粒子検出装置22を通過する流体の流速を調整する。 The suction filter 24 removes particles from the fluid. The suction filter 24 may be omitted if the particles contained in the fluid passing through the particle detector 22 do not affect the sensitivity and performance of the inspection fluid flow meter 26. The inspection fluid flow meter 26 measures the flow velocity and the flow rate of the fluid sucked by the inspection fluid suction machine 30 that has passed through the particle detection device 22. The flow rate measured by the inspection fluid flow meter 26 can be regarded as the flow rate of the fluid flowing through the minor flow path 14. The speed controller 28 adjusts the flow velocity of the fluid passing through the particle detector 22.

検査流体吸引機30としては、ポンプ及びターボファン等が使用可能である。マイナー流路14は、検査流体吸引機30に接続された流路31、流路31に接続された清浄フィルター32、及び清浄フィルター32に接続された流路33をさらに備える。検査流体吸引機30から排出される流体は、検査流体吸引機30に接続された流路31、流路31に接続された清浄フィルター32、及び清浄フィルター32に接続された流路33を介して、外部に排出される。なお、流体が有害物質等を含まない場合は、清浄フィルター32を省略してもよい。 As the inspection fluid suction machine 30, a pump, a turbo fan, or the like can be used. The minor flow path 14 further includes a flow path 31 connected to the inspection fluid suction machine 30, a cleaning filter 32 connected to the flow path 31, and a flow path 33 connected to the cleaning filter 32. The fluid discharged from the inspection fluid suction machine 30 passes through the flow path 31 connected to the inspection fluid suction machine 30, the cleaning filter 32 connected to the flow path 31, and the flow path 33 connected to the cleaning filter 32. , Is discharged to the outside. If the fluid does not contain harmful substances or the like, the cleaning filter 32 may be omitted.

制御部101Aは、検査流体流量計26から流量を示す電流又は電圧信号を受け取り、検査流体吸引機30の回転数又は吸引圧力を制御する制御信号を検査流体吸引機30に送る。制御部101Aは、例えば、PID制御により、検査流体吸引機30を制御する。 The control unit 101A receives a current or voltage signal indicating the flow rate from the inspection fluid flow meter 26, and sends a control signal for controlling the rotation speed or suction pressure of the inspection fluid suction machine 30 to the inspection fluid suction machine 30. The control unit 101A controls the inspection fluid suction machine 30 by, for example, PID control.

メジャー流路17は、濃縮器13に接続された流路71、流路71に接続された吸引フィルター72、吸引フィルター72に接続された流路73、流路73に接続された排流体流量計74、及び排流体流量計74に接続された流路75を備える。濃縮器13で生成された排流体は、流路71、吸引フィルター72、流路73、排流体流量計74、及び流路75を介して、排流体吸引機76によって吸引される。 The major flow path 17 includes a flow path 71 connected to the concentrator 13, a suction filter 72 connected to the flow path 71, a flow path 73 connected to the suction filter 72, and a drainage fluid flow meter connected to the flow path 73. A flow path 75 connected to the 74 and the drain fluid flow meter 74 is provided. The drainage fluid generated by the concentrator 13 is sucked by the drainage fluid suction machine 76 via the flow path 71, the suction filter 72, the flow path 73, the drainage fluid flow meter 74, and the flow path 75.

吸引フィルター72は、流体から粒子を除去する。廃流体に含まれる粒子が、排流体流量計74の感度及び性能に影響しない場合、吸引フィルター72は省略してもよい。排流体流量計74は、排流体吸引機76が吸引する流体の流速及び流量を計測する。排流体流量計74が計測した流量は、メジャー流路17を流れた流体の流量とみなすことができる。 The suction filter 72 removes particles from the fluid. If the particles contained in the waste fluid do not affect the sensitivity and performance of the drain fluid flow meter 74, the suction filter 72 may be omitted. The drainage fluid flow meter 74 measures the flow velocity and flow rate of the fluid sucked by the drainage fluid suction machine 76. The flow rate measured by the exhaust fluid flow meter 74 can be regarded as the flow rate of the fluid flowing through the major flow path 17.

排流体吸引機76としては、ポンプ及びターボファン等が使用可能である。メジャー流路17は、排流体吸引機76に接続された流路77、流路77に接続された清浄フィルター78、及び清浄フィルター78に接続された流路79をさらに備える。排流体吸引機76から排出される流体は、排流体吸引機76に接続された流路77、流路77に接続された清浄フィルター78、及び清浄フィルター78に接続された流路79を介して、外部に排出される。なお、流体が有害物質等を含まない場合は、清浄フィルター78を省略してもよい。 As the exhaust fluid suction machine 76, a pump, a turbo fan, or the like can be used. The major flow path 17 further includes a flow path 77 connected to the drainage fluid suction machine 76, a cleaning filter 78 connected to the flow path 77, and a flow path 79 connected to the cleaning filter 78. The fluid discharged from the drain fluid suction machine 76 passes through the flow path 77 connected to the drain fluid suction machine 76, the cleaning filter 78 connected to the flow path 77, and the flow path 79 connected to the cleaning filter 78. , Is discharged to the outside. If the fluid does not contain harmful substances or the like, the cleaning filter 78 may be omitted.

制御部101Bは、排流体流量計74から流量を示す電流又は電圧信号を受け取り、排流体吸引機76の回転数又は吸引圧力を制御する制御信号を排流体吸引機76に送る。制御部101Bは、例えば、PID制御により、排流体吸引機76を制御する。 The control unit 101B receives a current or voltage signal indicating the flow rate from the drain fluid flow meter 74, and sends a control signal for controlling the rotation speed or suction pressure of the drain fluid suction machine 76 to the drain fluid suction machine 76. The control unit 101B controls the drainage fluid suction machine 76 by, for example, PID control.

実施の形態に係る粒子検出システムは、検査流体流量計26が計測した流量と、排流体流量計74が計測した流量と、を比較する比較部102をさらに備える。比較部102は、検査流体流量計26が計測する流量に対する、排流体流量計74が計測する流量の比を算出する。比較部102は、検査流体流量計26から直接流量の情報を受け取ってもよいし、制御部101Aを介して、流量の情報を受け取ってもよい。また、比較部102は、排流体流量計74から直接流量の情報を受け取ってもよいし、制御部101Bを介して、流量の情報を受け取ってもよい。 The particle detection system according to the embodiment further includes a comparison unit 102 that compares the flow rate measured by the inspection fluid flow meter 26 with the flow rate measured by the exhaust fluid flow meter 74. The comparison unit 102 calculates the ratio of the flow rate measured by the drain fluid flow meter 74 to the flow rate measured by the inspection fluid flow meter 26. The comparison unit 102 may receive the flow rate information directly from the inspection fluid flow meter 26, or may receive the flow rate information via the control unit 101A. Further, the comparison unit 102 may receive the flow rate information directly from the drainage fluid flow meter 74, or may receive the flow rate information via the control unit 101B.

検査流体流量計26で計測される、マイナー流路14を流れる流体の流量は、検査流体吸引機30の吸引圧力に比例する。また、排流体流量計74で計測される、メジャー流路17を流れる流体の流量は、排流体吸引機76の吸引圧力に比例する。したがって、検査流体流量計26が計測する流量に対する、排流体流量計74が計測する流量の比は、検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比を表している。 The flow rate of the fluid flowing through the minor flow path 14 measured by the inspection fluid flow meter 26 is proportional to the suction pressure of the inspection fluid suction machine 30. Further, the flow rate of the fluid flowing through the major flow path 17 measured by the drain fluid flow meter 74 is proportional to the suction pressure of the drain fluid suction machine 76. Therefore, the ratio of the flow rate measured by the exhaust fluid flow meter 74 to the flow rate measured by the inspection fluid flow meter 26 represents the ratio of the suction pressure of the drain fluid suction machine 76 to the suction pressure of the inspection fluid suction machine 30.

検査流体吸引機30及び排流体吸引機76の少なくとも一方が、濃縮器13を介した流体の吸引を開始して所定の時間経過後、かつ、検査流体吸引機30及び排流体吸引機76の少なくとも一方が、濃縮器13を介した流体の吸引を停止する所定の時間前においては、上述したように、検査流体吸引機30及び排流体吸引機76のそれぞれの吸引圧力が、ほぼ一定である。この場合、検査流体流量計26が計測する流量に対する、排流体流量計74が計測する流量の比が一定である平衡状態になる。平衡状態における流量の比は、濃縮器13における検査流体と排流体の分岐比、各流路で生じる圧力損失、並びに検査流体吸引機30及び排流体吸引機76のそれぞれの吸引圧力に依存する。 At least one of the inspection fluid suction machine 30 and the drain fluid suction machine 76 starts sucking the fluid through the concentrator 13 after a predetermined time has elapsed, and at least one of the inspection fluid suction machine 30 and the drain fluid suction machine 76. On the other hand, before a predetermined time for stopping the suction of the fluid through the concentrator 13, the suction pressures of the inspection fluid suction machine 30 and the drain fluid suction machine 76 are substantially constant, as described above. In this case, the equilibrium state is reached in which the ratio of the flow rate measured by the exhaust fluid flow meter 74 to the flow rate measured by the inspection fluid flow meter 26 is constant. The ratio of the flow rate in the equilibrium state depends on the branching ratio of the test fluid and the drain fluid in the concentrator 13, the pressure loss generated in each flow path, and the suction pressures of the test fluid suction machine 30 and the drain fluid suction machine 76, respectively.

平衡状態における、検査流体流量計26が計測する流量Vnに対する、排流体流量計74が計測する流量Vjの比Cは、下記(1)式で与えられる。
C=Vj/Vn (1)
The ratio C of the flow rate V j measured by the drainage fluid flow meter 74 to the flow rate V n measured by the inspection fluid flow meter 26 in the equilibrium state is given by the following equation (1).
C = V j / V n (1)

平衡状態においては、粒子検出装置22を通過した流体が、排流体吸引機76の吸引圧力によって逆流し、粒子検出装置22を再び通過することはない。しかし、仮に、検査流体流量計26が計測する流量に対する、排流体流量計74が計測する流量の比が、平衡状態における流量の比より大きくなると、マイナー流路14の内圧が、メジャー流路17の内圧より高圧になる場合が生じ得る。この場合、粒子検出装置22を通過した流体が、メジャー流路17に向かって逆流し、粒子検出装置22を再び通過し得る。 In the equilibrium state, the fluid that has passed through the particle detection device 22 flows back due to the suction pressure of the drainage fluid suction machine 76, and does not pass through the particle detection device 22 again. However, if the ratio of the flow rate measured by the drain fluid flow meter 74 to the flow rate measured by the inspection fluid flow meter 26 becomes larger than the ratio of the flow rate in the equilibrium state, the internal pressure of the minor flow path 14 becomes the major flow path 17 The pressure may be higher than the internal pressure of. In this case, the fluid that has passed through the particle detection device 22 may flow back toward the major flow path 17 and pass through the particle detection device 22 again.

例えば、濃縮器13を介した流体の吸引を開始する際、排流体吸引機76の吸引圧力が、検査流体吸引機30の吸引圧力よりも早く平衡状態における吸引圧力に達すると、マイナー流路14の内圧が、メジャー流路17の内圧よりも高圧になる。この場合、マイナー流路14において、粒子検出装置22の下流に存在する粒子がマイナー流路14を逆流し、粒子検出装置22を通過することによって、粒子検出装置22が粒子を二重に計数し得る。 For example, when starting suction of fluid through the concentrator 13, if the suction pressure of the drain fluid suction machine 76 reaches the suction pressure in the equilibrium state earlier than the suction pressure of the inspection fluid suction machine 30, the minor flow path 14 The internal pressure of is higher than the internal pressure of the major flow path 17. In this case, in the minor flow path 14, the particles existing downstream of the particle detection device 22 flow back through the minor flow path 14 and pass through the particle detection device 22, so that the particle detection device 22 double-counts the particles. obtain.

また、例えば、濃縮器13を介した流体の吸引を停止する際、排流体吸引機76より早く検査流体吸引機30が吸引を停止すると、マイナー流路14の内圧が、メジャー流路17の内圧よりも高圧になる。この場合も、マイナー流路14において、粒子検出装置22の下流に存在する粒子がマイナー流路14を逆流し、粒子検出装置22を通過することによって、粒子検出装置22が粒子を二重に計数し得る。 Further, for example, when the suction of the fluid through the concentrator 13 is stopped, if the inspection fluid suction machine 30 stops the suction earlier than the drain fluid suction machine 76, the internal pressure of the minor flow path 14 becomes the internal pressure of the major flow path 17. Higher pressure than. Also in this case, in the minor flow path 14, the particles existing downstream of the particle detection device 22 flow back through the minor flow path 14 and pass through the particle detection device 22, so that the particle detection device 22 double-counts the particles. Can be done.

これに対し、実施の形態に係る粒子検出システムの制御部101A、101B、及び比較部102は、濃縮器13を介した流体の吸引を開始する際、及び濃縮器13を介した流体の吸引を停止する際、検査流体流量計26が計測する流量Vn’に対する、排流体流量計74が計測する流量Vj’の比C’が、下記(2)式に示すように、定常状態における流量の比Cよりも小さくなるよう、検査流体吸引機30及び排流体吸引機76を制御する。
C’=Vj’/Vn’<C=Vj/Vn (2)
On the other hand, the control units 101A, 101B, and the comparison unit 102 of the particle detection system according to the embodiment start sucking the fluid through the concentrator 13 and suck the fluid through the concentrator 13. when stopping, 'for, discharge fluid flow meter 74 flow rate V j for measuring' rate V n of test fluid flowmeter 26 for measuring the ratio C 'of, as shown in the following equation (2), the flow rate in the steady state The inspection fluid suction machine 30 and the exhaust fluid suction machine 76 are controlled so as to be smaller than the ratio C of.
C'= V j '/ V n '<C = V j / V n (2)

濃縮器13を介した流体の吸引を開始する際、流量の比C’は、時間経過と共に定常状態における流量の比Cに近づく。また、濃縮器13を介した流体の吸引を停止する際、流量の比は、CからC’に遷移する。濃縮器13を介した流体の吸引を開始した直後から定常状態に至るまでの、流量の比C’が上記(2)式を満たす時間の長さは、流路の配置や圧力に応じて適宜設定される。また、定常状態から濃縮器13を介した流体の吸引を停止する時点に至るまでの、流量の比C’が上記(2)式を満たす時間の長さも、流路の配置や圧力に応じて適宜設定される。 When starting the suction of the fluid through the concentrator 13, the flow rate ratio C'approaches the flow rate ratio C in the steady state over time. Further, when the suction of the fluid through the concentrator 13 is stopped, the flow rate ratio changes from C to C'. The length of time for the flow rate ratio C'satisfying the above equation (2) from immediately after the start of suction of the fluid through the concentrator 13 to the steady state is appropriate depending on the arrangement of the flow path and the pressure. Set. Further, the length of time for the flow rate ratio C'to satisfy the above equation (2) from the steady state to the time when the suction of the fluid through the concentrator 13 is stopped also depends on the arrangement of the flow path and the pressure. It is set as appropriate.

流量の比C’が上記(2)式を満たす場合、検査流体吸引機30及び排流体吸引機76は、同時に吸引を開始してもよいし、時間差をおいて吸引を開始してもよい。また、流量の比C’が上記(2)式を満たす場合、検査流体吸引機30及び排流体吸引機76は、同時に吸引を停止してもよいし、時間差をおいて吸引を停止してもよい。 When the flow rate ratio C'satisfies the above equation (2), the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may start suction at the same time, or may start suction with a time lag. Further, when the flow rate ratio C'satisfies the above equation (2), the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may stop the suction at the same time, or may stop the suction at a time lag. Good.

濃縮器13を介した流体の吸引を開始する際、及び濃縮器13を介した流体の吸引を停止する際、流量の比C’を定常状態における流量の比Cよりも小さくすることにより、マイナー流路14の内圧に対するメジャー流路17の内圧の比が、定常状態における内圧の比より大きくなる。そのため、マイナー流路14において、粒子検出装置22の下流に存在する粒子が、メジャー流路17に向かってマイナー流路14を逆流することがなく、粒子検出装置22が粒子を二重に計数することが抑制される。 When starting the suction of the fluid through the concentrator 13 and when stopping the suction of the fluid through the concentrator 13, the flow rate ratio C'is made smaller than the flow rate ratio C in the steady state. The ratio of the internal pressure of the major flow path 17 to the internal pressure of the flow path 14 becomes larger than the ratio of the internal pressure in the steady state. Therefore, in the minor flow path 14, the particles existing downstream of the particle detection device 22 do not flow back in the minor flow path 14 toward the major flow path 17, and the particle detection device 22 double counts the particles. Is suppressed.

上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。 Although the present invention has been described by embodiment as described above, the descriptions and drawings that form part of this disclosure should not be understood to limit the invention. This disclosure should reveal to those skilled in the art various alternative embodiments, examples and operational techniques.

例えば、粒子検出システムにおいて、濃縮器13を介した流体の吸引を開始して所定の時間経過するまで、検査流体吸引機30の吸引圧力が、排流体吸引機76の吸引圧力より高くなるよう、かつ濃縮器13を介した流体の吸引を開始して所定の時間経過後、排流体吸引機76の吸引圧力が、検査流体吸引機30の吸引圧力より高くなるよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。また、濃縮器13を介した流体の吸引を停止するまでの所定の時間、検査流体吸引機30の吸引圧力が、排流体吸引機76の吸引圧力より高くなるよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。 For example, in the particle detection system, the suction pressure of the inspection fluid suction machine 30 is higher than the suction pressure of the exhaust fluid suction machine 76 until a predetermined time elapses after starting suction of the fluid through the concentrator 13. In addition, after a predetermined time has elapsed after starting the suction of the fluid through the concentrator 13, the control units 101A and 101B set the suction pressure of the drain fluid suction machine 76 to be higher than the suction pressure of the inspection fluid suction machine 30. The inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may be controlled. Further, the control units 101A and 101B are set so that the suction pressure of the inspection fluid suction machine 30 becomes higher than the suction pressure of the exhaust fluid suction machine 76 for a predetermined time until the suction of the fluid through the concentrator 13 is stopped. The inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may be controlled.

より具体的には、粒子検出システムにおいて、図2に示すように、濃縮器13を介した流体の吸引を開始する際、検査流体吸引機30が検査流体の吸引を開始した後、排流体吸引機76が排流体の吸引を開始するよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。また、図3に示すように、濃縮器13を介した流体の吸引を停止する際、排流体吸引機76が排流体の吸引を停止し、排流体の流量が低下した後、検査流体吸引機30が検査流体の吸引を停止するよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。 More specifically, in the particle detection system, as shown in FIG. 2, when the suction of the fluid through the concentrator 13 is started, the test fluid suction machine 30 starts the suction of the test fluid, and then the exhaust fluid is sucked. The control units 101A and 101B may control the inspection fluid suction machine 30 and the drain fluid suction machine 76 so that the machine 76 starts sucking the drain fluid. Further, as shown in FIG. 3, when the suction of the fluid through the concentrator 13 is stopped, the drain fluid suction machine 76 stops the suction of the drain fluid, and after the flow rate of the drain fluid decreases, the inspection fluid suction machine The control units 101A and 101B may control the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 so that the inspection fluid suction is stopped by 30.

例えば、制御部101A、101Bへのデジタルインプットに時間差を設けたり、検査流体吸引機30及び排流体吸引機76への電力供給に時間差を設けたり、制御部101A、101Bに相互に連絡を取らせたりすることによって、検査流体吸引機30及び排流体吸引機76による吸引の開始及び停止に時間差を設けることが可能である。 For example, a time difference is provided in the digital input to the control units 101A and 101B, a time difference is provided in the power supply to the inspection fluid suction machine 30 and the exhaust fluid suction machine 76, and the control units 101A and 101B are allowed to contact each other. By doing so, it is possible to provide a time lag between the start and stop of suction by the inspection fluid suction machine 30 and the exhaust fluid suction machine 76.

あるいは、図1に示す粒子検出システムにおいて、図4に示すように、濃縮器13を介した流体の吸引を開始する際、検査流体吸引機30の吸引圧力の上昇率が、排流体吸引機76の吸引圧力の上昇率を上回るよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。また、図5に示すように、濃縮器13を介した流体の吸引を停止する際、検査流体吸引機30の吸引圧力の低下率が、排流体吸引機76の吸引圧力の低下率を下回るよう、制御部101A、101Bが、検査流体吸引機30及び排流体吸引機76を制御してもよい。 Alternatively, in the particle detection system shown in FIG. 1, as shown in FIG. 4, when the suction of the fluid through the concentrator 13 is started, the rate of increase in the suction pressure of the inspection fluid suction machine 30 is increased by the drain fluid suction machine 76. The control units 101A and 101B may control the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 so as to exceed the rate of increase in the suction pressure of the above. Further, as shown in FIG. 5, when the suction of the fluid through the concentrator 13 is stopped, the reduction rate of the suction pressure of the inspection fluid suction machine 30 is lower than the reduction rate of the suction pressure of the exhaust fluid suction machine 76. , Control units 101A and 101B may control the inspection fluid suction machine 30 and the exhaust fluid suction machine 76.

例えば、PID制御において、微分係数及び積分係数をゼロにすると、検査流体吸引機30及び排流体吸引機76の動作は比例係数に依存する。比例係数が大きいほど、検査流体吸引機30及び排流体吸引機76の吸引圧力が定常状態になるまでに時間がかかるようになる。したがって、PID制御の制御パラメーターを設定することにより、吸引圧力の上昇率や低下率を制御することが可能である。 For example, in PID control, when the differential coefficient and the integral coefficient are set to zero, the operation of the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 depends on the proportional coefficient. The larger the proportionality coefficient, the longer it takes for the suction pressures of the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 to reach a steady state. Therefore, it is possible to control the rate of increase or decrease of the suction pressure by setting the control parameter of PID control.

またあるいは、図1に示す粒子検出システムにおいて、図6に示すように、濃縮器13を介した流体の吸引を開始する際、検査流体吸引機30の吸引圧力のセットポイントと、排流体吸引機76の吸引圧力のセットポイントと、を適宜設定し、検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比が、定常状態における検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比より小さくなるよう、検査流体吸引機30及び排流体吸引機76を制御してもよい。また、図7に示すように、濃縮器13を介した流体の吸引を停止する際、検査流体吸引機30の吸引圧力のセットポイントと、排流体吸引機76の吸引圧力のセットポイントと、を適宜設定し、検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比が、定常状態における検査流体吸引機30の吸引圧力に対する排流体吸引機76の吸引圧力の比より小さくなるよう、検査流体吸引機30及び排流体吸引機76を制御してもよい。 Alternatively, in the particle detection system shown in FIG. 1, as shown in FIG. 6, when starting the suction of the fluid through the concentrator 13, the set point of the suction pressure of the inspection fluid suction machine 30 and the drain fluid suction machine The set point of the suction pressure of 76 is appropriately set, and the ratio of the suction pressure of the exhaust fluid suction machine 76 to the suction pressure of the inspection fluid suction machine 30 is the exhaust fluid suction to the suction pressure of the inspection fluid suction machine 30 in a steady state. The inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may be controlled so as to be smaller than the suction pressure ratio of the machine 76. Further, as shown in FIG. 7, when stopping the suction of the fluid through the concentrator 13, the set point of the suction pressure of the inspection fluid suction machine 30 and the set point of the suction pressure of the drainage fluid suction machine 76 are set. Set appropriately, the ratio of the suction pressure of the drain fluid suction machine 76 to the suction pressure of the inspection fluid suction machine 30 becomes smaller than the ratio of the suction pressure of the drain fluid suction machine 76 to the suction pressure of the inspection fluid suction machine 30 in the steady state. As described above, the inspection fluid suction machine 30 and the exhaust fluid suction machine 76 may be controlled.

このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。 As described above, it should be understood that the present invention includes various embodiments not described here.

11・・・ノズル、12、21、23、24、27、29、31、33、41、43、45、47、49、71、73、75、77、79・・・流路、13・・・濃縮器、14・・・マイナー流路、17・・・メジャー流路、22・・・粒子検出装置、24、42、72・・・吸引フィルター、26・・・検査流体流量計、28、44・・・スピードコントローラー、30・・・検査流体吸引機、32、48、78・・・清浄フィルター、46・・・バイパス流量計、74・・・排流体流量計、76・・・排流体吸引機、101A、101B・・・制御部、102・・・比較部、200・・・クリーンルーム 11 ... Nozzle, 12, 21, 23, 24, 27, 29, 31, 33, 41, 43, 45, 47, 49, 71, 73, 75, 77, 79 ... Flow path, 13 ...・ Concentrator, 14 ... minor flow path, 17 ... major flow path, 22 ... particle detector, 24, 42, 72 ... suction filter, 26 ... inspection fluid flow meter, 28, 44 ... Speed controller, 30 ... Inspection fluid suction machine, 32, 48, 78 ... Cleaning filter, 46 ... Bypass flow meter, 74 ... Drainage fluid flowmeter, 76 ... Drainage fluid Suction machine, 101A, 101B ... Control unit, 102 ... Comparison unit, 200 ... Clean room

Claims (10)

粒子を含む流体から、前記粒子が濃縮された検査流体と、排流体と、を生成する濃縮器と、
前記濃縮器に接続され、前記検査流体中の前記粒子を検出する粒子検出装置と、
前記粒子検出装置に接続され、前記濃縮器及び前記粒子検出装置から前記検査流体を吸引する検査流体吸引機と、
前記濃縮器に接続され、前記濃縮器から前記排流体を吸引する排流体吸引機と、
前記濃縮器を介した前記流体の吸引を開始する際、前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比が、定常状態における前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比より小さくなるよう、前記検査流体吸引機及び前記排流体吸引機を制御する制御部と、
を備える、粒子検出システム。
A concentrator that produces an inspection fluid in which the particles are concentrated and a drainage fluid from the fluid containing the particles.
A particle detector connected to the concentrator to detect the particles in the test fluid, and
An inspection fluid aspirator connected to the particle detector and sucking the inspection fluid from the concentrator and the particle detector.
A drainage fluid suction machine connected to the concentrator and sucking the drainage fluid from the concentrator,
When the suction of the fluid through the concentrator is started, the ratio of the suction pressure of the exhaust fluid suction machine to the suction pressure of the inspection fluid suction machine is the discharge to the suction pressure of the inspection fluid suction machine in a steady state. A control unit that controls the inspection fluid suction machine and the exhaust fluid suction machine so as to be smaller than the suction pressure ratio of the fluid suction machine.
A particle detection system.
前記濃縮器を介した前記流体の吸引を開始して所定の時間経過するまで、前記検査流体吸引機の吸引圧力が、前記排流体吸引機の吸引圧力より高くなるよう、かつ前記濃縮器を介した前記流体の吸引を開始して所定の時間経過後、前記排流体吸引機の吸引圧力が、前記検査流体吸引機の吸引圧力より高くなるよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項1に記載の粒子検出システム。 The suction pressure of the inspection fluid suction machine becomes higher than the suction pressure of the exhaust fluid suction machine until a predetermined time elapses after starting the suction of the fluid through the concentrator, and through the concentrator. After a predetermined time has elapsed from the start of suction of the fluid, the control unit controls the inspection fluid suction machine and the inspection fluid suction machine so that the suction pressure of the drain fluid suction machine becomes higher than the suction pressure of the inspection fluid suction machine. The particle detection system according to claim 1, which controls a drainage fluid suction machine. 前記濃縮器を介した前記流体の吸引を開始する際、前記検査流体吸引機が前記検査流体の吸引を開始した後、前記排流体吸引機が前記排流体の吸引を開始するよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項1に記載の粒子検出システム。 When starting the suction of the fluid through the concentrator, the control unit so that the inspection fluid suction machine starts sucking the inspection fluid and then the drain fluid suction machine starts sucking the drain fluid. The particle detection system according to claim 1, wherein the inspection fluid suction machine and the drainage fluid suction machine are controlled. 前記濃縮器を介した前記流体の吸引を開始する際、前記検査流体吸引機の吸引圧力の上昇率が、前記排流体吸引機の吸引圧力の上昇率を上回るよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項1に記載の粒子検出システム。 When the suction of the fluid through the concentrator is started, the control unit performs the inspection so that the rate of increase in the suction pressure of the inspection fluid suction machine exceeds the rate of increase in the suction pressure of the exhaust fluid suction machine. The particle detection system according to claim 1, which controls the fluid suction machine and the drainage fluid suction machine. 前記制御部が、前記濃縮器を介した前記流体の吸引を停止する際、前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比が、定常状態における前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比より小さくなるよう、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項1から4のいずれか1項に記載の粒子検出システム。 When the control unit stops the suction of the fluid through the concentrator, the ratio of the suction pressure of the exhaust fluid suction machine to the suction pressure of the inspection fluid suction machine is the ratio of the suction pressure of the inspection fluid suction machine in a steady state. The particle detection system according to any one of claims 1 to 4, wherein the inspection fluid suction machine and the drain fluid suction machine are controlled so as to be smaller than the ratio of the suction pressure of the drain fluid suction machine to the suction pressure. 前記濃縮器を介した前記流体の吸引を停止するまでの所定の時間、前記検査流体吸引機の吸引圧力が、前記排流体吸引機の吸引圧力より高くなるよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項5に記載の粒子検出システム。 The control unit controls the inspection fluid so that the suction pressure of the inspection fluid suction machine becomes higher than the suction pressure of the exhaust fluid suction machine for a predetermined time until the suction of the fluid through the concentrator is stopped. The particle detection system according to claim 5, which controls the suction machine and the drainage fluid suction machine. 前記濃縮器を介した前記流体の吸引を停止する際、前記排流体吸引機が前記排流体の吸引を停止した後、前記検査流体吸引機が前記検査流体の吸引を停止するよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項5に記載の粒子検出システム。 When stopping the suction of the fluid through the concentrator, the control unit so that the inspection fluid suction machine stops the suction of the inspection fluid after the drain fluid suction machine stops the suction of the drain fluid. The particle detection system according to claim 5, wherein the inspection fluid suction machine and the drainage fluid suction machine are controlled. 前記濃縮器を介した前記流体の吸引を停止する際、前記検査流体吸引機の吸引圧力の低下率が、前記排流体吸引機の吸引圧力の低下率を下回るよう、前記制御部が、前記検査流体吸引機及び前記排流体吸引機を制御する、請求項5に記載の粒子検出システム。 When the suction of the fluid through the concentrator is stopped, the control unit performs the inspection so that the reduction rate of the suction pressure of the inspection fluid suction machine is lower than the reduction rate of the suction pressure of the exhaust fluid suction machine. The particle detection system according to claim 5, which controls the fluid suction machine and the drainage fluid suction machine. 前記検査流体吸引機が吸引する、前記粒子検出装置を通過した前記検査流体の流量を計測する検査流体流量計と、
前記排流体吸引機が吸引する前記排流体の流量を計測する排流体流量計と、
前記検査流体流量計が計測した流量と、前記排流体流量計が計測した流量と、を比較する比較部と、
をさらに備える、請求項1から8のいずれか1項に記載の粒子検出システム。
An inspection fluid flow meter that measures the flow rate of the inspection fluid that has passed through the particle detection device and is sucked by the inspection fluid suction machine.
A drainage fluid flow meter that measures the flow rate of the drainage fluid sucked by the drainage fluid suction machine,
A comparison unit that compares the flow rate measured by the inspection fluid flow meter with the flow rate measured by the exhaust fluid flow meter.
The particle detection system according to any one of claims 1 to 8, further comprising.
濃縮器を介して粒子を含む流体を吸引し、前記粒子が濃縮された検査流体と、排流体と、を生成することと、
前記濃縮器に接続された粒子検出装置で、前記検査流体中の前記粒子を検出することと、
前記粒子検出装置に接続された検査流体吸引機で、前記濃縮器及び前記粒子検出装置から前記検査流体を吸引することと、
前記濃縮器に接続された排流体吸引機で、前記濃縮器から前記排流体を吸引することと、
を含む、粒子の検出方法であって、
前記濃縮器を介した前記流体の吸引を開始する際、前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比が、定常状態における前記検査流体吸引機の吸引圧力に対する前記排流体吸引機の吸引圧力の比より小さくなるよう、前記検査流体吸引機及び前記排流体吸引機を制御する、
粒子検出方法。
A fluid containing particles is sucked through a concentrator to generate a test fluid in which the particles are concentrated and a drainage fluid.
To detect the particles in the test fluid with a particle detector connected to the concentrator,
A test fluid suction machine connected to the particle detection device sucks the test fluid from the concentrator and the particle detection device.
Suction of the drainage fluid from the concentrator with a drainage fluid suction machine connected to the concentrator.
A method for detecting particles, including
When the suction of the fluid through the concentrator is started, the ratio of the suction pressure of the exhaust fluid suction machine to the suction pressure of the inspection fluid suction machine is the discharge to the suction pressure of the inspection fluid suction machine in a steady state. The inspection fluid suction machine and the exhaust fluid suction machine are controlled so as to be smaller than the suction pressure ratio of the fluid suction machine.
Particle detection method.
JP2016220120A 2016-11-11 2016-11-11 Particle detection system and particle detection method Active JP6779105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220120A JP6779105B2 (en) 2016-11-11 2016-11-11 Particle detection system and particle detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220120A JP6779105B2 (en) 2016-11-11 2016-11-11 Particle detection system and particle detection method

Publications (2)

Publication Number Publication Date
JP2018077176A JP2018077176A (en) 2018-05-17
JP6779105B2 true JP6779105B2 (en) 2020-11-04

Family

ID=62149152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220120A Active JP6779105B2 (en) 2016-11-11 2016-11-11 Particle detection system and particle detection method

Country Status (1)

Country Link
JP (1) JP6779105B2 (en)

Also Published As

Publication number Publication date
JP2018077176A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
CN109313114B (en) Automatic power control liquid particle counter with flow and bubble detection system
JP6880439B2 (en) Systems and methods for separating condensates in condensate particle counters
US7363828B2 (en) Aerosol measurement by dilution and particle counting
US9810558B2 (en) Pressure-based airflow sensing in particle impactor systems
US10428715B2 (en) Exhaust gas analyzing system and pumping device
US20090237659A1 (en) High Throughput Particle Counter
JP2004045419A (en) Particle sensing system and its method
KR20170097391A (en) Sensor device for sensing fine dust
US20160245784A1 (en) Air quality sensing module and algorithm
JP2020523601A (en) Particle sensor and particle sensing method
WO2018076405A1 (en) Dust measurement device
JP2016105043A (en) Suspended particle detector
JP6779105B2 (en) Particle detection system and particle detection method
JP2010281788A (en) Aerosol fine particle measuring system
JP6779106B2 (en) Particle detection system and particle detection method
JP2012154657A (en) Aerosol fine particle measurement device
JP6731371B2 (en) Particle detection system and maintenance method for particle detection system
JP5280216B2 (en) Fully exhausted safety cabinet
EP2542874B1 (en) Improved dust discrimination for sensing systems
JP2005207956A (en) Suspended particulate matter measuring device
JP6558686B2 (en) Separation device
WO2016202706A1 (en) Gas sensing apparatus
GB2622023A (en) An air treatment apparatus
JP2016024130A (en) Sampling device and sampling method
JP2007155456A (en) Dpf evaluation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6779105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150