JP6778592B2 - Mass damper - Google Patents

Mass damper Download PDF

Info

Publication number
JP6778592B2
JP6778592B2 JP2016229808A JP2016229808A JP6778592B2 JP 6778592 B2 JP6778592 B2 JP 6778592B2 JP 2016229808 A JP2016229808 A JP 2016229808A JP 2016229808 A JP2016229808 A JP 2016229808A JP 6778592 B2 JP6778592 B2 JP 6778592B2
Authority
JP
Japan
Prior art keywords
pressing force
control device
actuator
flywheel
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016229808A
Other languages
Japanese (ja)
Other versions
JP2018087580A (en
Inventor
滋樹 中南
滋樹 中南
英範 木田
英範 木田
田中 久也
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2016229808A priority Critical patent/JP6778592B2/en
Publication of JP2018087580A publication Critical patent/JP2018087580A/en
Application granted granted Critical
Publication of JP6778592B2 publication Critical patent/JP6778592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、直動変位に対応して反力を発生するマスダンパーに係る。特に、地震の態様の変化に対応できるマスダンパーに関する。 The present invention relates to a mass damper that generates a reaction force in response to a linear displacement. In particular, it relates to a mass damper that can respond to changes in the mode of an earthquake.

地震が発生すると、建物、構造物等の対象構造物が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、対象構造物が損傷をうけたり、対象構造物の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から対象構造物へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または対象構造物が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
When an earthquake occurs, target structures such as buildings and structures are shaken horizontally and vertically.
If the acceleration level due to an earthquake or the like is large, the target structure may be damaged, the contents of the target structure may be accelerated more than expected, or the target structure may be displaced more than expected.
Therefore, a seismic isolation device that reduces the vibration energy transmitted from the foundation to the target structure to eliminate vibration, or absorbs vibration energy when the target structure vibrates and reduces the vibration level to suppress vibration. Devices with various structures are being tested as vibration damping devices.
By properly setting the structure and the specifications of the elements that make up the structure, the desired seismic isolation performance and vibration damping performance can be exhibited.

例えば、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と雄ねじに嵌めあう雌ねじを設けられた回転部材と回転部材を回転自在に支持するフレームで構成されるマスダンパーを用いる。
マスダンパーは、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrとを持つ。
For example, it is composed of a linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear displacement, a rotating member provided with a female screw that fits the male screw, and a frame that rotatably supports the rotating member. Use a mass damper.
The mass damper has an apparent inertial mass mr which is a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced by a predetermined relative acceleration by the relative acceleration of the linear motion displacement.

例えば、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と雄ねじに嵌めあう雌ねじを設けられた回転部材と回転部材を回転自在に支持するフレームとフレームの内面と回転部材との隙間に封入された粘性流体とで構成される粘性マスダンパーを用いる。
粘性マスダンパーは、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrと直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
For example, a linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear displacement, a rotating member provided with a female screw that fits the male screw, and a frame and a frame that rotatably support the rotating member. A viscous mass damper composed of a viscous fluid sealed in the gap between the inner surface and the rotating member is used.
The viscous mass damper has a constant apparent inertial mass mr and the linear motion axis, which is the value obtained by dividing the reaction force acting when the linear motion axis is linearly displaced at a predetermined relative acceleration by the relative acceleration of the linear motion displacement. It has a damping coefficient c corresponding to the value obtained by dividing the reaction force acting when the linear displacement is performed at the relative velocity by the relative velocity.

また、その粘性マスダンパーに弾性体を直列接続されたバネ付き粘性マスダンパーを用いる。
バネ付き粘性マスダンパーは、バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応するダンパー固有振動数ωrと粘性マスダンパーの直動軸を一定の相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
Further, a spring-loaded viscous mass damper in which an elastic body is connected in series to the viscous mass damper is used.
The viscous mass damper with a spring has an elastic coefficient kb, which is the value obtained by dividing the reaction force generated when the spring element is displaced in the linear motion direction by a relative distance, and the linear motion axis of the viscous mass damper in the linear motion direction. The damper natural frequency ωr and the linear motion of the viscous mass damper corresponding to the apparent inertial mass mr, which is the value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear motion is performed at a predetermined relative acceleration. It has a damping coefficient c corresponding to the value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the axis is linearly moved at a constant relative velocity.

直動軸が直動変位すると回転部材が回転する。
回転部材の回転慣性能率に対応した回転反力が発生する。回転反力は雄ねじと雌ねじの作用で直動変位する方向の反力に変換される。
回転部材が回転すると回転部材とフレームとの隙間に封入した粘性流体に剪断力が生じ、その剪断力に対応した回転反力が発生する。回転反力は、雄ねじと雌ねじの作用で直動変位する方向の反力に変換される。
この慣性力と剪断力による反力は回転部材の質量と粘性流体の量に比較してみかけ上の大きな質量と大きなダンパーにより組み合わされた質量系としての動特性をもつ。
粘性マスダンパーと弾性体が直列接続されるので、見掛け上の大きな質量と大きなダンパーにより組み合わされたバネマス系としての振動特性をもつ。
When the linear motion shaft is linearly displaced, the rotating member rotates.
A rotational reaction force corresponding to the rotational moment of inertia of the rotating member is generated. The rotational reaction force is converted into a reaction force in the direction of linear displacement by the action of the male and female threads.
When the rotating member rotates, a shearing force is generated in the viscous fluid sealed in the gap between the rotating member and the frame, and a rotational reaction force corresponding to the shearing force is generated. The rotational reaction force is converted into a reaction force in the direction of linear displacement by the action of the male and female threads.
The reaction force due to this inertial force and shearing force has dynamic characteristics as a mass system combined with an apparently large mass and a large damper compared to the mass of the rotating member and the amount of viscous fluid.
Since the viscous mass damper and the elastic body are connected in series, it has vibration characteristics as a spring mass system combined with an apparently large mass and a large damper.

建造物の振動周期に同調して振動を抑制する伝達制限手段付き粘性マスダンパーが知られている。
粘性マスダンパーは質量要素と粘性要素を備える。
質量要素は加速度に依存して反力を発生する。大地震が発生した時、過大な反力により、ダンパー自身や接合部に損傷を与える可能性がある。伝達制限手段はこれらの損傷を抑制させるために慣性力を発揮する回転部材にトルクを伝達させないように備えられたもので、回転する部材と固定される部材との間の円周方向に複数個設置される。
伝達制限手段は、押圧パッドと皿ばねと調整ボルトとで構成される。例えば、押圧パッドはPTFEなどの摩擦材である。押圧パッドは皿ばねを介して調整ボルトで摩擦材に軸力を与えることで回転部材がすべりはじめるトルクまたはネジ軸方向の軸力を設定することができる。摩擦材が回転すべり変位に応じた摩擦抵抗を発揮するため、摩擦ダンパーの役割も期待できる。摩擦抵抗は軸力制限荷重に対応する。
この摩擦抵抗の設定は、建造物の振動抑制効果に大きな影響を与える。地震動の振動特性や入力レベルによって、軸力制限荷重を任意に変えることができることが望ましい。従来の構造では、一つの軸力制限荷重しか設定できず、様々な地震動特性に対して粘性マスダンパーの効果を十分に発揮できない。
一方で摩擦ダンパーとしても機能を発揮させた場合、大地震では摩擦材の発熱により軸力制限が安定的に発揮できない。
本願発明は、上記の点に着目し、構造物の振動抑制効果を保持させるために、様々な地震動の振動特性や入力レベルに応じて、摩擦材に与える軸力を任意に可変にすることができるマスダンパーを提供しようとする。
A viscous mass damper with a transmission limiting means that suppresses vibration in synchronization with the vibration cycle of a building is known.
The viscous mass damper has a mass element and a viscous element.
The mass element generates a reaction force depending on the acceleration. When a large earthquake occurs, excessive reaction force may damage the damper itself and joints. Transmission limiting means are provided so as not to transmit torque to a rotating member that exerts an inertial force in order to suppress these damages, and a plurality of transmission limiting means are provided in the circumferential direction between the rotating member and the fixed member. Will be installed.
The transmission limiting means includes a pressing pad, a disc spring, and an adjusting bolt. For example, the pressing pad is a friction material such as PTFE. The pressing pad can set the torque at which the rotating member starts to slide or the axial force in the screw axial direction by applying an axial force to the friction material with an adjusting bolt via a disc spring. Since the friction material exhibits frictional resistance according to the rotational slip displacement, it can be expected to play the role of a friction damper. The frictional resistance corresponds to the axial force limiting load.
The setting of this frictional resistance has a great influence on the vibration suppressing effect of the building. It is desirable that the axial force limiting load can be changed arbitrarily depending on the vibration characteristics of the seismic motion and the input level. In the conventional structure, only one axial force limiting load can be set, and the effect of the viscous mass damper cannot be sufficiently exerted on various seismic motion characteristics.
On the other hand, when the function is also exerted as a friction damper, the axial force limitation cannot be stably exerted due to the heat generation of the friction material in a large earthquake.
Focusing on the above points, the present invention can arbitrarily change the axial force applied to the friction material according to the vibration characteristics and input level of various seismic motions in order to maintain the vibration suppressing effect of the structure. We try to provide a mass damper that can be used.

特許文献11には、伝達制限手段付き粘性マスダンパーの一例が公開される。
非特許文献1、非特許文献2には、地震動の振動特性や入力レベルによって最適な軸力制限荷重が存在することが開示される。
Patent Document 11 discloses an example of a viscous mass damper with a transmission limiting means.
Non-Patent Document 1 and Non-Patent Document 2 disclose that an optimum axial force limiting load exists depending on the vibration characteristics of seismic motion and the input level.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により動特性または振動特性を調整できるマスダンパーを提供しようとする。 The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a mass damper capable of adjusting dynamic characteristics or vibration characteristics with a simple structure.

上記目的を達成するため、本発明に係る基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーを、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と前記回転部材と前記フライホイール部材とを回転自在に各々に支持するフレームと、を備え、前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有する、ものとした。 In order to achieve the above object, a mass damper provided on the target structure supported by the foundation according to the present invention and generating a reaction force in response to the linear motion displacement is screwed in the screw feed direction along the displacement direction of the linear motion displacement. A linear motion shaft provided with a male screw facing the male screw, a rotating member provided with a female screw that fits the male screw, a flywheel member that can rotate in conjunction with the rotation of the rotating member, and the rotating member. The transmission limiting member includes a transmission limiting member which is a member capable of limiting the torque that can be transmitted between the flywheel members, and a frame that rotatably supports the rotating member and the flywheel member. , A friction member that contacts the first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and a second member, which is the other member of the rotating member or the flywheel member. It has an actuator that is supported by the member and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.

上記本発明の構成により、直動軸は、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられる。回転部材は、前記雄ねじに嵌めあう雌ねじを設けられた部材である。フライホイール部材は、前記回転部材の回転に連動して回転できる部材である。
伝達制限部材は、前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である。フレームは、前記回転部材と前記フライホイール部材とを回転自在に各々に支持する。前記伝達制限部材の摩擦部材は、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する。前記伝達制限部材のアクチエータは、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付ける。制御装置は、前記アクチエータを制御する。
その結果、直動軸が直動変位の方向に相対移動するときに、回転部材の回転が第二部材に支持されるアクチエータに所定の押付け力で押付けられる前記摩擦部材と第一部材との間に発生する摩擦力に対応するトルクで前記フライホイール部材に伝達されて、アクチエータの発生する押付け力に対応して直動軸の直動方向の相対変位に対応して前記フライホイール部材が回転する。
According to the above-described configuration of the present invention, the linear motion shaft is provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement. The rotating member is a member provided with a female screw that fits the male screw. The flywheel member is a member that can rotate in conjunction with the rotation of the rotating member.
The transmission limiting member is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member. The frame rotatably supports the rotating member and the flywheel member. The friction member of the transmission limiting member comes into contact with the first member, which is one of the rotating member or the flywheel member, and generates a frictional force. The actuator of the transmission limiting member is supported by the second member, which is the other member of the rotating member or the flywheel member, and presses the friction member against the first member with a predetermined pressing force. The control device controls the actuator.
As a result, when the linear motion shaft moves relative to the direction of the linear motion displacement, the rotation of the rotating member is pressed against the actuator supported by the second member with a predetermined pressing force between the friction member and the first member. The flywheel member is transmitted to the flywheel member with a torque corresponding to the frictional force generated in the above, and the flywheel member rotates in response to the relative displacement of the linear motion shaft in the linear motion direction in response to the pressing force generated by the actuator. ..

以下に、本発明の実施形態に係るマスダンパーを説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The mass damper according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係るマスダンパーは、前記アクチエータが一対の端子に印可される電圧に対応して伸長または短縮する圧電素子を有し、前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持ち、前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または圧縮させて前記摩擦部材を前記第一部材に押付けできる。
上記本発明に係る実施形態の構成により、前記アクチエータの圧電素子は、一対の端子に印可される電圧に対応して伸長または短縮する。前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持つ。前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または圧縮させて前記摩擦部材を前記第一部材に押付けできる。
その結果、前記圧電素子の一対の端子に印加される電圧に対応して前記圧電素子を伸長または圧縮させて前記摩擦部材を前記第一部材に押付けできる。
Further, the mass damper according to the embodiment of the present invention has a piezoelectric element that expands or contracts according to the voltage applied to the pair of terminals by the actuator, and the control device has the pair of terminals of the piezoelectric terminals. The electric circuit can apply a voltage to a pair of terminals of the piezoelectric element to expand or compress the piezoelectric element to press the friction member against the first member.
According to the configuration of the embodiment according to the present invention, the piezoelectric element of the actuator expands or contracts according to the voltage applied to the pair of terminals. The control device has an electric circuit that applies a voltage to the pair of terminals of the piezoelectric terminal. The electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to expand or compress the piezoelectric element and press the friction member against the first member.
As a result, the piezoelectric element can be expanded or compressed in response to the voltage applied to the pair of terminals of the piezoelectric element, and the friction member can be pressed against the first member.

また、本発明の実施形態に係るマスダンパーは、前記アクチエータが一対の端子に印可される電圧に対応して伸長または圧縮する圧電素子と該圧電素子と前記摩擦部材との間に位置し所定のバネ定数をもち与圧縮されたバネ部材とを持ち、前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持ち、前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて与圧縮された前記バネ部材を介して前記摩擦部材を前記第一部材に押付けできる、

上記本発明に係る実施形態の構成により、前記アクチエータの圧電素子は、一対の端子に印可される電圧に対応して伸長または圧縮する。前記アクチエータのバネ部材は、該圧電素子と前記摩擦部材との間に位置し所定のバネ定数をもち与圧縮される。前記制御装置の電気回路は、前記圧電端子の一対の端子に電圧を印加する。前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて与圧縮された前記バネ部材を介して前記摩擦部材を前記第一部材に押付けできる。
その結果、前記圧電素子の一対の端子に印加される電圧に対応して前記圧電素子を伸長または圧縮させてバネ部材を押し、前記バネ部材が前記摩擦部材を前記第一部材に押付けできる。
Further, the mass damper according to the embodiment of the present invention is located between a piezoelectric element that expands or compresses in response to a voltage applied to a pair of terminals by the actuator, and the piezoelectric element and the friction member, and is predetermined. It has a spring member that has a spring constant and is compressed, the control device has an electric circuit that applies a voltage to the pair of terminals of the piezoelectric terminal, and the electric circuit applies a voltage to the pair of terminals of the piezoelectric element. The friction member can be pressed against the first member via the spring member which is applied to extend or shorten the piezoelectric element and is applied and compressed.
..
According to the configuration of the embodiment according to the present invention, the piezoelectric element of the actuator expands or compresses according to the voltage applied to the pair of terminals. The spring member of the actuator is located between the piezoelectric element and the friction member, has a predetermined spring constant, and is compressed. The electric circuit of the control device applies a voltage to the pair of terminals of the piezoelectric terminal. The electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to extend or shorten the piezoelectric element to press the friction member against the first member via the compressed spring member.
As a result, the piezoelectric element can be expanded or compressed in response to the voltage applied to the pair of terminals of the piezoelectric element to push the spring member, and the spring member can press the friction member against the first member.

さらに、本発明の実施形態に係るマスダンパーは、前記制御装置が前記押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる。
上記本発明に係る実施形態の構成により、前記制御装置が前記押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる。
その結果、基礎に生ずる加速度の最大振幅値の変化に対応して直動軸の直動方向の相対変位に対応して前記フライホイール部材が回転する。
Further, the mass damper according to the embodiment of the present invention is changed in response to a change in the maximum amplitude value of the acceleration generated by the control device based on the pressing force.
According to the configuration of the embodiment according to the present invention, the control device changes the pressing force in response to a change in the maximum amplitude value of the acceleration generated based on the pressing force.
As a result, the flywheel member rotates in response to the relative displacement of the linear motion shaft in the linear motion direction in response to the change in the maximum amplitude value of the acceleration that occurs in the foundation.

さらに、本発明の実施形態に係るマスダンパーは、 前記制御装置がアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、アクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
上記本発明に係る実施形態の構成により、前記制御装置がアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させる。前記制御装置がアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
その結果、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材の回転による見かけの質量が大きく、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材の回転による見かけの質量が小さくなる。
Further, the mass damper according to the embodiment of the present invention is changed so that the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator increases in the control device so as to increase. The pressing force generated is changed so as to decrease corresponding to the decrease in the maximum amplitude value of the acceleration generated on the basis.
According to the configuration of the embodiment according to the present invention, the control device is changed so as to increase as the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator increases. The control device changes the pressing force generated by the actuator so that it becomes smaller as the maximum amplitude value of the acceleration generated based on the actuator becomes smaller.
As a result, when the acceleration generated on the foundation is large, the pressing force is large and the apparent mass due to the rotation of the flywheel member is large, and when the acceleration generated on the foundation is small, the pressing force is small and the apparent mass due to the rotation of the flywheel member is small. Become.

さらに、本発明の実施形態に係るマスダンパーは、前記制御装置が前記圧電素子の伸長または短縮を制御してアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、前記圧電素子の伸長または短縮を制御してアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
上記本発明に係る実施形態の構成により、前記制御装置が前記圧電素子の伸長または短縮を制御してアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させる。前記制御装置が前記圧電素子の伸長または短縮を制御してアクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
その結果、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材の回転による見かけの質量が大きく、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材の回転による見かけの質量が小さくなる。
Further, the mass damper according to the embodiment of the present invention corresponds to the case where the control device controls the extension or shortening of the piezoelectric element to increase the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator. Then, the expansion or contraction of the piezoelectric element is controlled so that the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator decreases. ..
According to the configuration of the embodiment according to the present invention, the control device controls the extension or shortening of the piezoelectric element, and the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator becomes large. Change to be larger. The control device controls the extension or shortening of the piezoelectric element to change the pressing force generated by the actuator so that the maximum amplitude value of the acceleration generated on the basis of the actuator becomes smaller.
As a result, when the acceleration generated on the foundation is large, the pressing force is large and the apparent mass due to the rotation of the flywheel member is large, and when the acceleration generated on the foundation is small, the pressing force is small and the apparent mass due to the rotation of the flywheel member is small. Become.

また、本発明の実施形態に係るマスダンパーは、前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、前記制御装置が前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする。
上記本発明に係る実施形態の構成により、前記制御装置の押付け力センサは、押付け力を検知する。前記制御装置が押付け力に関する指令値である押付け力指令値を受付ける。
前記制御装置が前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする。
その結果、前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする様にしたので、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
Further, in the mass damper according to the embodiment of the present invention, the control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force. The control device adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
According to the configuration of the embodiment according to the present invention, the pressing force sensor of the control device detects the pressing force. The control device receives a pressing force command value, which is a command value related to the pressing force.
The control device adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
As a result, the actuator is adjusted so that the pressing force detected by the pressing force sensor matches the pressing force command value. Therefore, even if the member expands due to frictional heat due to the pressing force, the pressing force is applied. Can be maintained at the pressing force command value.

また、本発明の実施形態に係るマスダンパーは、前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、前記制御装置が前記圧電素子の伸長または短縮を制御して前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする。
上記本発明に係る実施形態の構成により、前記制御装置の押付け力センサは、押付け力を検知する。前記制御装置が押付け力に関する指令値である押付け力指令値を受付ける。
前記制御装置が前記圧電素子の伸長または短縮を制御して前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする。
その結果、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
Further, in the mass damper according to the embodiment of the present invention, the control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force. The control device controls the extension or shortening of the piezoelectric element to adjust the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
According to the configuration of the embodiment according to the present invention, the pressing force sensor of the control device detects the pressing force. The control device receives a pressing force command value, which is a command value related to the pressing force.
The control device controls the extension or shortening of the piezoelectric element and adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
As a result, even if the member expands due to the frictional heat generated by the pressing force, the pressing force can be maintained at the pressing force command value.

また、本発明の実施形態に係るマスダンパーは、前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、前記制御装置が温度に関する指令値である温度指令値を受付け、前記制御装置が前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする。
上記本発明に係る実施形態の構成により、前記制御装置の温度センサは、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する。前記制御装置が温度に関する指令値である温度指令値を受付ける。前記制御装置が前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下になる様にする。
その結果、前記アクチエータの発生する前記押付け力を調整し前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を温度指令値以下になる様にする様にしたので、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位のオーバーヒートを抑制できる。
Further, in the mass damper according to the embodiment of the present invention, the control device has a temperature sensor that detects the temperature of the contact portion where the friction member or the friction member of the first member comes into contact, and the control device relates to the temperature. The temperature command value, which is a command value, is received, and the control device adjusts the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to the temperature command value or less.
According to the configuration of the embodiment according to the present invention, the temperature sensor of the control device detects the temperature of the contact portion where the friction member or the friction member of the first member comes into contact. The control device receives a temperature command value, which is a command value related to temperature. The control device adjusts the pressing force generated by the actuator so that the temperature detected by the temperature sensor becomes equal to or lower than the temperature command value.
As a result, the pressing force generated by the actuator was adjusted so that the temperature of the contact portion of the friction member or the first member in contact with the friction member was set to be equal to or lower than the temperature command value. It is possible to suppress overheating of the contact portion where the member or the friction member of the first member comes into contact.

-
また、本発明の実施形態に係るマスダンパーは、前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、前記制御装置が温度に関する指令値である温度指令値を受付け、前記制御装置が前記圧電素子の伸長または短縮を制御して前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする。
上記本発明に係る実施形態の構成により、前記制御装置の温度センサは、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する。前記制御装置が温度に関する指令値である温度指令値を受付ける。前記制御装置が前記圧電素子の伸長または短縮を制御して前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下になる様にする。
その結果、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位のオーバーヒートを抑制できる。
---
Further, in the mass damper according to the embodiment of the present invention, the control device has a temperature sensor that detects the temperature of the contact portion where the friction member or the friction member of the first member comes into contact, and the control device relates to the temperature. The temperature command value, which is a command value, is received, and the control device controls the extension or shortening of the piezoelectric element to adjust the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to the temperature command value or less. ..
According to the configuration of the embodiment according to the present invention, the temperature sensor of the control device detects the temperature of the contact portion where the friction member or the friction member of the first member comes into contact. The control device receives a temperature command value, which is a command value related to temperature. The control device controls the extension or shortening of the piezoelectric element to adjust the pressing force generated by the actuator so that the temperature detected by the temperature sensor becomes equal to or lower than the temperature command value.
As a result, overheating of the contact portion where the friction member or the friction member of the first member comes into contact can be suppressed.

以上説明したように、本発明に係るマスダンパーは、その構成により、以下の効果を有する。
直動軸に設けられた雄ねしに嵌めあう雌ねじを設けられた回転部材と前記フライホイール部材とが伝達制限部材とを介して結合されてフレームに回転自在に支持され、制御装置に制御されるアクチエータが前記摩擦部材を前記第一部材に所定の押付け力で押付ける様にしたので、直動軸が直動変位の方向に相対移動するときに、回転部材の回転が第二部材に支持されるアクチエータに所定の押付け力で押付けられる前記摩擦部材と第一部材との間に発生する摩擦力に対応するトルクで前記フライホイール部材に伝達されて、アクチエータの発生する押付け力に対応して直動軸の直動方向の相対変位に対応して前記フライホイール部材が回転する。
また、電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または圧縮させて前記摩擦部材を前記第一部材に押付けできる様にしたので、前記圧電素子の一対の端子に印加される電圧に対応して前記圧電素子を伸長または圧縮させて前記摩擦部材を前記第一部材に押付けできる。
また、前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて与圧縮された前記バネ部材を介して前記摩擦部材を前記第一部材に押付けできる様にしたので、前記圧電素子の一対の端子に印加される電圧に対応して前記圧電素子を伸長または圧縮させてバネ部材を押し、前記バネ部材が前記摩擦部材を前記第一部材に押付けできる。
また、前記制御装置が前記押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる様にしたので、基礎に生ずる加速度の最大振幅値の変化に対応して直動軸の直動方向の相対変位に対応して前記フライホイール部材が回転する。
また、アクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる様にしたので、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材の回転による見かけの質量が大きく、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材の回転による見かけの質量が小さくなる。
また、アクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる様にしたので、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材の回転による見かけの質量が大きく、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材の回転による見かけの質量が小さくなる。
また、前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする様にしたので、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
また、圧電素子の伸長または短縮を制御して前記アクチエータを調整して前記押付け力を前記押付け力指令値に一致する様にする様にしたので、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
また、前記アクチエータの発生する前記押付け力を調整し前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を温度指令値以下になる様にする様にしたので、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位のオーバーヒートを抑制できる。
また、記圧電素子の伸長または短縮を制御して前記アクチエータの発生する前記押付け力を調整し前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を温度指令値以下になる様にする様にしたので、前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位のオーバーヒートを抑制できる。
従って、簡易な構造により動特性または振動特性を調整できるマスダンパーを提供できる。
As described above, the mass damper according to the present invention has the following effects depending on its configuration.
A rotating member provided with a female screw fitted to a male screw provided on a linear motion shaft and the flywheel member are coupled via a transmission limiting member, rotatably supported by a frame, and controlled by a control device. Since the actuator presses the friction member against the first member with a predetermined pressing force, the rotation of the rotating member is supported by the second member when the linear motion shaft moves relative to the direction of the linear motion displacement. It is transmitted to the flywheel member with a torque corresponding to the frictional force generated between the friction member and the first member that is pressed against the actuator by a predetermined pressing force, and corresponds to the pressing force generated by the actuator. The flywheel member rotates in response to the relative displacement of the linear motion shaft in the linear motion direction.
Further, since the electric circuit applies a voltage to the pair of terminals of the piezoelectric element to expand or compress the piezoelectric element so that the friction member can be pressed against the first member, the pair of terminals of the piezoelectric element can be pressed. The piezoelectric element can be expanded or compressed in response to the voltage applied to the friction member to press the friction member against the first member.
Further, the electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to extend or shorten the piezoelectric element to press the friction member against the first member via the compressed spring member. Therefore, the piezoelectric element can be expanded or compressed in response to the voltage applied to the pair of terminals of the piezoelectric element to push the spring member, and the spring member can press the friction member against the first member.
Further, since the control device changes the pressing force in response to a change in the maximum amplitude value of the acceleration generated on the foundation, the linear motion axis is linear in response to the change in the maximum amplitude value of the acceleration generated in the foundation. The flywheel member rotates in response to the relative displacement in the moving direction.
Further, the pressing force generated by the actuator is changed so as to increase as the maximum amplitude value of the acceleration generated on the foundation increases, and decreases as the maximum amplitude value of the acceleration generated on the foundation decreases. When the acceleration generated on the foundation is large, the pressing force is large and the apparent mass due to the rotation of the flywheel member is large, and when the acceleration generated on the foundation is small, the pressing force is small and the flywheel member The apparent mass due to rotation becomes smaller.
Further, the pressing force generated by the actuator is changed so as to increase as the maximum amplitude value of the acceleration generated on the foundation increases, and decreases as the maximum amplitude value of the acceleration generated on the foundation decreases. When the acceleration generated on the foundation is large, the pressing force is large and the apparent mass due to the rotation of the flywheel member is large, and when the acceleration generated on the foundation is small, the pressing force is small and the flywheel member The apparent mass due to rotation becomes smaller.
Further, since the actuator is adjusted so that the pressing force detected by the pressing force sensor matches the pressing force command value, the pressing force is applied even if the member expands due to the frictional heat generated by the pressing force. The pressing force command value can be maintained.
Further, since the extension or shortening of the piezoelectric element is controlled and the actuator is adjusted so that the pressing force matches the pressing force command value, even if the member expands due to frictional heat due to the pressing force. The pressing force can be maintained at the pressing force command value.
Further, since the pressing force generated by the actuator is adjusted so that the temperature of the contact portion of the friction member or the first member in contact with the friction member becomes equal to or lower than the temperature command value, the friction member Alternatively, overheating of the contact portion where the friction member of the first member comes into contact can be suppressed.
Further, the extension or shortening of the piezoelectric element is controlled to adjust the pressing force generated by the actuator, and the temperature of the contact portion of the friction member or the first member in contact with the friction member becomes equal to or lower than the temperature command value. Therefore, overheating of the contact portion where the friction member or the friction member of the first member comes into contact can be suppressed.
Therefore, it is possible to provide a mass damper whose dynamic characteristics or vibration characteristics can be adjusted by a simple structure.

本発明の第一の実施形態に係る粘性マスダンパーの概念図である。It is a conceptual diagram of the viscous mass damper which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る粘性マスダンパーの部分拡大図である。It is a partially enlarged view of the viscous mass damper which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る伝達制限部材の概念図である。It is a conceptual diagram of the transmission restriction member which concerns on 1st Embodiment of this invention. 本発明の第二の実施形態に係る粘性マスダンパーの概念図である。It is a conceptual diagram of the viscous mass damper which concerns on the 2nd Embodiment of this invention. 本発明の第三の実施形態に係るばね付き粘性マスダンパーの概念図である。It is a conceptual diagram of the viscous mass damper with a spring which concerns on 3rd Embodiment of this invention. 本発明の実施形態に係るマスダンパーの部分図である。It is a partial view of the mass damper which concerns on embodiment of this invention. 本発明の実施形態に係る対称構造物の概念図である。It is a conceptual diagram of the symmetric structure which concerns on embodiment of this invention. ばね付き粘性マスダンパーの質点モデル図である。It is a mass model figure of a viscous mass damper with a spring. 地震波の概念図である。It is a conceptual diagram of a seismic wave.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。
本発明は、基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーにかかるものである。
マスダンパーには、単純マスダンパー、粘性マスダンパー、バネ付き粘性マスダンパー、等がある。
単純マスダンパーは、直動変位に対してみかけのマスを作り出す機能を有する。
粘性マスダンパー、単純マスダンパーに加えて直動変位に対して粘性を作り出す機能を有する。
ばね付き粘性マスダンパーは、粘性マスダンパーに加えてばね要素を作り出し機能を有する。
説明の便宜のため、ばねつき粘性マスダンパーを対象構造体に取り付ける場合を例に説明する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
The present invention relates to a mass damper provided on a target structure supported by a foundation and generating a reaction force in response to a linear displacement.
The mass damper includes a simple mass damper, a viscous mass damper, a viscous mass damper with a spring, and the like.
The simple mass damper has a function of creating an apparent mass against a linear displacement.
In addition to the viscous mass damper and simple mass damper, it has the function of creating viscosity against linear displacement.
The viscous mass damper with a spring has a function of creating a spring element in addition to the viscous mass damper.
For convenience of explanation, a case where a viscous mass damper with a spring is attached to the target structure will be described as an example.

最初に、本発明の実施形態に係るマスダンパーを、図を基に、説明する
図1は、本発明の第一の実施形態に係る粘性マスダンパーの概念図である。図2は、本発明の第一の実施形態に係る粘性マスダンパーの部分拡大図である。図3は、本発明の第一の実施形態に係る伝達制限部材の概念図である。
First, the mass damper according to the first embodiment of the present invention will be described with reference to the figure. FIG. 1 is a conceptual diagram of the viscous mass damper according to the first embodiment of the present invention. FIG. 2 is a partially enlarged view of the viscous mass damper according to the first embodiment of the present invention. FIG. 3 is a conceptual diagram of a transmission limiting member according to the first embodiment of the present invention.

マスダンパー100は、直動変位に対応して反力を発生する機械要素である。
マスダンパー100は、直動変位に対応して反力を発生する機械要素であって、直動軸110と回転部材120とフライホイール部材130とフレーム140と伝達制限部材160とで構成される。
粘性マスダンパー100は、直動変位に対応して反力を発生する機械要素であって、直動軸110と回転部材120とフライホイール部材130とフレーム140と粘性流体150と伝達制限部材160とで構成される。
The mass damper 100 is a mechanical element that generates a reaction force in response to a linear displacement.
The mass damper 100 is a mechanical element that generates a reaction force in response to a linear motion displacement, and is composed of a linear motion shaft 110, a rotating member 120, a flywheel member 130, a frame 140, and a transmission limiting member 160.
The viscous mass damper 100 is a mechanical element that generates a reaction force in response to a linear motion displacement, and includes a linear motion shaft 110, a rotating member 120, a flywheel member 130, a frame 140, a viscous fluid 150, and a transmission limiting member 160. Consists of.

ばね付き粘性マスダンパーは、直動変位に対応して反力を発生する機械要素であって、 粘性マスダンパー100と弾性部材200とを直列接続されたものである。
粘性マスダンパー100は、直動変位に対応して反力を発生する機械要素であって、直動軸110と回転部材120とフレーム140と粘性流体150とで構成される。
例えば、バネ付き粘性マスダンパーは、連結部材150を用いて対象構造物30に連結される。
対象構造物30は、バネ付き粘性マスダンパーにより免震または制振をされる構造物である。
免震のためには、対象構造物30はバネ付き粘性マスダンパーを基礎部分に設置される。
制振のためには、対象構造物30はバネ付き粘性マスダンパーを構造体の主要構造部材の間に設置される。
The spring-loaded viscous mass damper is a mechanical element that generates a reaction force in response to a linear displacement, and is a viscous mass damper 100 and an elastic member 200 connected in series.
The viscous mass damper 100 is a mechanical element that generates a reaction force in response to a linear motion displacement, and is composed of a linear motion shaft 110, a rotating member 120, a frame 140, and a viscous fluid 150.
For example, the spring-loaded viscous mass damper is connected to the target structure 30 by using the connecting member 150.
The target structure 30 is a structure that is seismically isolated or vibration-damped by a viscous mass damper with a spring.
For seismic isolation, the target structure 30 is provided with a spring-loaded viscous mass damper at the foundation.
For vibration damping, the target structure 30 has a spring-loaded viscous mass damper installed between the main structural members of the structure.

直動軸110は、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた部材である。
例えば、直動軸110は、雄ねじ部材111と長手部材112とで構成される。
図1には、雄ねじを外周に形成された雄ねじ部材111と雄ねじ部材に一体につながった長手部材とが示される。
The linear motion shaft 110 is a member provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement.
For example, the linear motion shaft 110 is composed of a male screw member 111 and a longitudinal member 112.
FIG. 1 shows a male screw member 111 formed on the outer circumference of a male screw and a longitudinal member integrally connected to the male screw member.

回転部材120は、雄ねじに嵌めあう雌ねじを設けられた部材である。
回転部材120は、雌ねじ部材121と回転部材軸受122とで構成される。
雌ねじ部材121は、雌ねじが設けられた部材である。
回転部材軸受122は、雌ねじ部材121を回転自在に支持する軸受である。
雄ねじ部材111と雌ねじ部材121とが同軸上に配置される。
雄ねじ部材111の雄ねじと雌ねじ部材121の雌ねじとは、複数のボールを介してねじ状に組み合わされてもよい。
直動軸110が回転を拘束されて直動運動すると、ボールを介して雌ねじ部材121が回転され、雌ねじ部材121が回転する。
The rotating member 120 is a member provided with a female screw that fits into the male screw.
The rotating member 120 is composed of a female screw member 121 and a rotating member bearing 122.
The female screw member 121 is a member provided with a female screw.
The rotary member bearing 122 is a bearing that rotatably supports the female screw member 121.
The male screw member 111 and the female screw member 121 are arranged coaxially.
The male screw of the male screw member 111 and the female screw of the female screw member 121 may be combined in a screw shape via a plurality of balls.
When the linear motion shaft 110 is restrained from rotating and moves linearly, the female screw member 121 is rotated via the ball, and the female screw member 121 is rotated.

フライホイール部材130は、回転部材120の回転に連動して回転できる部材である。
フライホイール部材130は、回転部材120の回転トルクを伝達制限部材160を介して伝達されて回転部材120の回転に連動して回転できる部材である。
フライホイール部材130は、フライホイール部材本体131とフライホイール部材軸受132とで構成される。
フライホール部材本体131は、回転部材120に支持されるフライホイール部材軸受132に回転自在に支持される。
フライホイール部材本体131と雄ねじ部材111と雌ねじ部材121とが同軸上に配置されてもよい。
The flywheel member 130 is a member that can rotate in conjunction with the rotation of the rotating member 120.
The flywheel member 130 is a member capable of transmitting the rotational torque of the rotating member 120 via the transmission limiting member 160 and rotating in conjunction with the rotation of the rotating member 120.
The flywheel member 130 is composed of a flywheel member main body 131 and a flywheel member bearing 132.
The flywheel member main body 131 is rotatably supported by the flywheel member bearing 132 supported by the rotating member 120.
The flywheel member main body 131, the male screw member 111, and the female screw member 121 may be arranged coaxially.

フレーム140は、回転部材120とフライホイール部材130とを回転自在に支持する構造体である。
回転部材軸受122は、回転部材120を回転自在に支持する機械要素である。
回転部材軸受122、フレーム140に固定され、回転部材120を回転自在に支持する。
フライホイール部材軸受132は、回転部材120に固定され、フライホイール部材本体131を回転自在に支持する。
図1は、フライホイール部材本体131が、フレーム140の外側に位置する構造を示している。
The frame 140 is a structure that rotatably supports the rotating member 120 and the flywheel member 130.
The rotating member bearing 122 is a mechanical element that rotatably supports the rotating member 120.
It is fixed to the rotating member bearing 122 and the frame 140, and rotatably supports the rotating member 120.
The flywheel member bearing 132 is fixed to the rotating member 120 and rotatably supports the flywheel member main body 131.
FIG. 1 shows a structure in which the flywheel member main body 131 is located outside the frame 140.

粘性流体150は、フレーム140とフライホイール部材130との隙間に封入された液体である。
粘性流体150は、フレーム140の外周面とフライホイール部材130との隙間に封入された液体である。
フライホイール部材130がフレーム140に対して相対的に回転すると、粘性流体150は回転部材に回転方向と逆方向の粘性力を作用させる。
粘性力は、フライホイール部材130に回転トルク反力を与える。
回転トルク反力は雄ねじと雌ねじとの作用により直動変位の方向に作用する反力に変換される。
この反力は、直動軸の直動変位の速度に略比例する。
The viscous fluid 150 is a liquid sealed in the gap between the frame 140 and the flywheel member 130.
The viscous fluid 150 is a liquid sealed in a gap between the outer peripheral surface of the frame 140 and the flywheel member 130.
When the flywheel member 130 rotates relative to the frame 140, the viscous fluid 150 exerts a viscous force on the rotating member in the direction opposite to the direction of rotation.
The viscous force gives the flywheel member 130 a rotational torque reaction force.
The rotational torque reaction force is converted into a reaction force acting in the direction of linear displacement by the action of the male screw and the female screw.
This reaction force is substantially proportional to the velocity of the linear displacement of the linear axis.

伝達制限部材160は、回転部材120とフライホイール部材130の間での伝達可能なトルクを制限できる部材である。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163とで構成される。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163と押圧部材164とで構成されてもよい。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163と押圧部材164と固定部材165とで構成されてもよい。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163と押圧部材164と固定部材165と押付け力センサ166aとで構成されてもよい。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163と押圧部材164と固定部材165と温度センサ166bとで構成されてもよい。
伝達制限部材160は、摩擦部材161とアクチエータ162と制御装置163と押圧部材164と固定部材165と押付け力センサ166aと温度センサ166bとで構成されてもよい。
The transmission limiting member 160 is a member capable of limiting the torque that can be transmitted between the rotating member 120 and the flywheel member 130.
The transmission limiting member 160 includes a friction member 161, an actuator 162, and a control device 163.
The transmission limiting member 160 may be composed of a friction member 161, an actuator 162, a control device 163, and a pressing member 164.
The transmission limiting member 160 may be composed of a friction member 161, an actuator 162, a control device 163, a pressing member 164, and a fixing member 165.
The transmission limiting member 160 may be composed of a friction member 161, an actuator 162, a control device 163, a pressing member 164, a fixing member 165, and a pressing force sensor 166a.
The transmission limiting member 160 may be composed of a friction member 161, an actuator 162, a control device 163, a pressing member 164, a fixing member 165, and a temperature sensor 166b.
The transmission limiting member 160 may be composed of a friction member 161, an actuator 162, a control device 163, a pressing member 164, a fixing member 165, a pressing force sensor 166a, and a temperature sensor 166b.

摩擦部材161は、第一部材に接触し摩擦力を発生する部材である。
ここで、第一部材は回転部材120またはフライホイール部材130のうちの一方の部材である。
図1、図2には、第一部材が回転部材120である様子を示す。
摩擦部材161は第一部材に接触し摩擦力を発生するリング状の部材であってもよい。
The friction member 161 is a member that comes into contact with the first member and generates a frictional force.
Here, the first member is one of the rotating member 120 and the flywheel member 130.
1 and 2 show how the first member is the rotating member 120.
The friction member 161 may be a ring-shaped member that comes into contact with the first member and generates a frictional force.

アクチエータ162は、第二部材に支持されて摩擦部材161を第一部材に所定の押付け力で押付ける部材である。
ここで、第一部材は回転部材120またはフライホイール部材130のうちの一方の部材である。
ここで、第二部材は回転部材またはフライホイール部材130のうちの他方の部材である
図1、図2には、第二部材がフライホイール部材130である様子を示す。
The actuator 162 is a member that is supported by the second member and presses the friction member 161 against the first member with a predetermined pressing force.
Here, the first member is one of the rotating member 120 and the flywheel member 130.
Here, the second member is the other member of the rotating member or the flywheel member 130. FIGS. 1 and 2 show how the second member is the flywheel member 130.

アクチエータ162は、圧電素子162aで構成されてもよい。
圧電素子は、一対の端子に印可される電圧に対応して伸長または短縮する機械要素である。
例えば、圧電素子はピエゾ素子である。
図3(A)は、アクチエータ162が、積層された複数の圧電素子162aで構成される様子を示す。
The actuator 162 may be composed of the piezoelectric element 162a.
A piezoelectric element is a mechanical element that expands or contracts in response to a voltage applied to a pair of terminals.
For example, the piezoelectric element is a piezo element.
FIG. 3A shows how the actuator 162 is composed of a plurality of laminated piezoelectric elements 162a.

アクチエータ162は、圧電素子162aとバネ部材162bとで構成されてもよい。
ばね部材162bは、該圧電素子と摩擦部材との間に位置し所定のバネ定数をもち与圧縮された部材である。
図3(B)は、アクチエータ162が、積層された複数の圧電素子162aと積層された複数の皿バネ162bとで構成される様子を示す。
The actuator 162 may be composed of the piezoelectric element 162a and the spring member 162b.
The spring member 162b is a member that is located between the piezoelectric element and the friction member, has a predetermined spring constant, and is compressed.
FIG. 3B shows how the actuator 162 is composed of a plurality of laminated piezoelectric elements 162a and a plurality of laminated disc springs 162b.

制御装置163は、アクチエータ162を制御する装置である。
制御装置163は、電気回路163aで構成される。
制御装置163は、電気回路163aとスリップリング163bとで構成されてもよい。
電気回路163aは、圧電端子162aの一対の端子に電圧を印加する回路である。
電気回路163aが圧電素子162aの一対の端子に電圧を印加して圧電素子162aを伸長または圧縮させて摩擦部材161を第一部材に押付けできる。
電気回路163aが、スリップリング163bを介して、圧電素子162aの一対の端子に電圧を印加して圧電素子162aを伸長または圧縮させて摩擦部材161を第一部材に押付けできる。
電気回路163aが圧電素子162aの一対の端子に電圧を印加して圧電素子162aを伸長または短縮させて与圧縮されたバネ部材162bを介して摩擦部材161を第一部材に押付けできてもよい。
The control device 163 is a device that controls the actuator 162.
The control device 163 is composed of an electric circuit 163a.
The control device 163 may be composed of an electric circuit 163a and a slip ring 163b.
The electric circuit 163a is a circuit that applies a voltage to a pair of terminals of the piezoelectric terminals 162a.
The electric circuit 163a can apply a voltage to the pair of terminals of the piezoelectric element 162a to expand or compress the piezoelectric element 162a and press the friction member 161 against the first member.
The electric circuit 163a can apply a voltage to the pair of terminals of the piezoelectric element 162a via the slip ring 163b to expand or compress the piezoelectric element 162a and press the friction member 161 against the first member.
The electric circuit 163a may apply a voltage to a pair of terminals of the piezoelectric element 162a to extend or shorten the piezoelectric element 162a to press the friction member 161 against the first member via a compressed spring member 162b.

押圧部材164は、摩擦部材161とアクチエータ162との間に設けられる部材である。
押圧部材164は、アクチエータ162の発生した押付け力を摩擦部材161に均一に伝達する。
押圧部材164は、センサ166を固定されてもよい。
The pressing member 164 is a member provided between the friction member 161 and the actuator 162.
The pressing member 164 uniformly transmits the pressing force generated by the actuator 162 to the friction member 161.
The pressing member 164 may fix the sensor 166.

固定部材165は、アクチエータ162を第二部材に固定する部材である。
固定部材165は、第二部材にねじ込まれてもよい。
固定部材165は、外周に雄ねじが形成されてもよい。
固定部材165が、調整ねじとして機能しても良い。
The fixing member 165 is a member that fixes the actuator 162 to the second member.
The fixing member 165 may be screwed into the second member.
Male threads may be formed on the outer circumference of the fixing member 165.
The fixing member 165 may function as an adjusting screw.

押付け力センサ166aは、押付け力を検知するセンサである。
押付け力センサ166aは、押圧部材164に固定されてもよい。
The pressing force sensor 166a is a sensor that detects a pressing force.
The pressing force sensor 166a may be fixed to the pressing member 164.

温度センサ166bは、摩擦部材または第一部材の摩擦部材が接触する接触部位の温度を検知するセンサである。
温度センサ166bは、押圧部材164に固定されてもよい。
The temperature sensor 166b is a sensor that detects the temperature of the contact portion where the friction member or the friction member of the first member comes into contact.
The temperature sensor 166b may be fixed to the pressing member 164.

次に、本発明の第二の実施形態にかかるマスダンパーを、図を基に、説明する。
図4は、本発明の第二の実施形態に係る粘性マスダンパーの概念図である。
Next, the mass damper according to the second embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a conceptual diagram of a viscous mass damper according to a second embodiment of the present invention.

マスダンパー100は、直動変位に対応して反力を発生する機械要素である。
マスダンパー100は、直動変位に対応して反力を発生する機械要素であって、直動軸110と回転部材120とフライホイール部材130とフレーム140と伝達制限部材160とで構成される。
粘性マスダンパー100は、直動変位に対応して反力を発生する機械要素であって、直動軸110と回転部材120とフライホイール部材130とフレーム140と粘性流体150と伝達制限部材160と連結部材170とで構成される。
The mass damper 100 is a mechanical element that generates a reaction force in response to a linear displacement.
The mass damper 100 is a mechanical element that generates a reaction force in response to a linear motion displacement, and is composed of a linear motion shaft 110, a rotating member 120, a flywheel member 130, a frame 140, and a transmission limiting member 160.
The viscous mass damper 100 is a mechanical element that generates a reaction force in response to a linear motion displacement, and includes a linear motion shaft 110, a rotating member 120, a flywheel member 130, a frame 140, a viscous fluid 150, and a transmission limiting member 160. It is composed of a connecting member 170.

直動軸110と回転部材120とフライホイール部材130とフレーム140と粘性流体150と伝達制限部材160の説明は、第一の実施形態に係るマスダンパーの説明と同じ箇所は省略し、異なる点のみを説明する。 The description of the linear motion shaft 110, the rotating member 120, the flywheel member 130, the frame 140, the viscous fluid 150, and the transmission limiting member 160 omits the same parts as the description of the mass damper according to the first embodiment, and only differs. Will be explained.

フライホイール部材130は、回転部材120の回転に連動して回転できる部材である。
フライホイール部材130は、回転部材120の回転トルクを伝達制限部材160を介して伝達されて回転部材120の回転に連動して回転できる部材である。
フライホイール部材130は、フライホイール部材本体131とフライホイール部材軸受132とで構成される。
フライホール部材本体131は、フレーム140に支持されるフライホイール部材軸受132に回転自在に支持される。
フライホイール部材本体131と雄ねじ部材111と雌ねじ部材121とが同軸上に配置されてもよい。
The flywheel member 130 is a member that can rotate in conjunction with the rotation of the rotating member 120.
The flywheel member 130 is a member capable of transmitting the rotational torque of the rotating member 120 via the transmission limiting member 160 and rotating in conjunction with the rotation of the rotating member 120.
The flywheel member 130 is composed of a flywheel member main body 131 and a flywheel member bearing 132.
The flywheel member main body 131 is rotatably supported by the flywheel member bearing 132 supported by the frame 140.
The flywheel member main body 131, the male screw member 111, and the female screw member 121 may be arranged coaxially.

フレーム140は、回転部材120とフライホイール部材130とを回転自在に支持する構造体である。
回転部材軸受122は、回転部材120を回転自在に支持する機械要素である。
回転部材軸受122、フレーム140に固定され、回転部材120を回転自在に支持する。
フライホイール部材軸受132は、回転部材120に固定され、フライホイール部材本体131を回転自在に支持する。
図2は、フライホイール部材本体131が、フレーム140の内側に位置する構造を示している。
The frame 140 is a structure that rotatably supports the rotating member 120 and the flywheel member 130.
The rotating member bearing 122 is a mechanical element that rotatably supports the rotating member 120.
It is fixed to the rotating member bearing 122 and the frame 140, and rotatably supports the rotating member 120.
The flywheel member bearing 132 is fixed to the rotating member 120 and rotatably supports the flywheel member main body 131.
FIG. 2 shows a structure in which the flywheel member main body 131 is located inside the frame 140.

連結部材170は、バネ付き粘性マスダンパーを対象構造体に連結するための部材である。
連結部材170は、第一連結部材171と第二連結部材172とで構成される。
第一連結部材171は、直動変位の方向に交差するひとつの可動軸を中心に揺動可能になった連結部材である。
第一連結部材171は、対象構造体30とフレーム140とを連結する。
第二連結部材172は、直動変位の方向に交差するひとつの可動軸を中心に揺動可能になった連結部材である。
The connecting member 170 is a member for connecting the spring-loaded viscous mass damper to the target structure.
The connecting member 170 is composed of a first connecting member 171 and a second connecting member 172.
The first connecting member 171 is a connecting member that can swing around one movable shaft that intersects in the direction of linear displacement.
The first connecting member 171 connects the target structure 30 and the frame 140.
The second connecting member 172 is a connecting member that can swing around one movable shaft that intersects in the direction of linear displacement.

次に、第三の実施形態にかかるマスダンパーを、図を基に、説明する。
図5は、本発明の第三の実施形態に係るばね付き粘性マスダンパーの概念図である。
第三の実施形態にかかるマスダンパーは、ばね付き粘性マスダンパーである。
ばね付き粘性マスダンパーは、粘性マスダンパー100と弾性部材200とが直接接続される。
Next, the mass damper according to the third embodiment will be described with reference to the figure.
FIG. 5 is a conceptual diagram of a viscous mass damper with a spring according to a third embodiment of the present invention.
The mass damper according to the third embodiment is a viscous mass damper with a spring.
In the spring-loaded viscous mass damper, the viscous mass damper 100 and the elastic member 200 are directly connected.

粘性マスダンパーの構造は、第二の実施形態にかかるマスダンパーと同じなので、説明を省略する。 Since the structure of the viscous mass damper is the same as that of the mass damper according to the second embodiment, the description thereof will be omitted.

第二連結部材172は、直動軸110と弾性部材200とを連結する。 The second connecting member 172 connects the linear motion shaft 110 and the elastic member 200.

弾性部材200は、直動変位に対応して弾性反力を発生する部材である。
弾性部材200は、弾性板210で構成される。
弾性部材200は、単数または複数の弾性板210で構成されてもよい。
弾性部材200は、少なくとも一対の支持板230と単数または複数の弾性板210とで構成されてもよい。
弾性部材200は、少なくとも一対の支持板230と弾性板210と一対のフランジ240とで構成されてもよい。
弾性部材200は、少なくとも一対の支持板230と単数または複数の弾性板210一対のフランジ240とで構成されてもよい。
弾性部材200は、第1支持板231と第二支持板232と単数または複数の弾性板210と第1フランジ241と第二フランジ242とで構成されてもよい。
The elastic member 200 is a member that generates an elastic reaction force in response to a linear displacement.
The elastic member 200 is composed of an elastic plate 210.
The elastic member 200 may be composed of one or more elastic plates 210.
The elastic member 200 may be composed of at least a pair of support plates 230 and one or more elastic plates 210.
The elastic member 200 may be composed of at least a pair of support plates 230, an elastic plate 210, and a pair of flanges 240.
The elastic member 200 may be composed of at least a pair of support plates 230 and a pair of flanges 240 of a single or a plurality of elastic plates 210.
The elastic member 200 may be composed of a first support plate 231 and a second support plate 232, a single or a plurality of elastic plates 210, a first flange 241 and a second flange 242.

少なくとも一対の支持板230と単数または複数の弾性板210とが特定方向に積層される。
一つの第一支持板231と2つの第二支持板232と2つの弾性板210が特定方向に積層されてもよい。
ここで、特定方向は直動変位の変位方向に交差する方向である。
At least a pair of support plates 230 and one or more elastic plates 210 are laminated in a specific direction.
One first support plate 231 and two second support plates 232 and two elastic plates 210 may be laminated in a specific direction.
Here, the specific direction is a direction that intersects the displacement direction of the linear displacement.

弾性板210は、直動変位に対応して剪断変形する部材である。
弾性板210は、板状であって、直動変位に対応して一対の面が面に平行な向きに沿って剪断変形する。
弾性板210は、直特定方向に向く面をもち直動変位に対応して剪断変形する部材であってもよい。
例えば、弾性板210は、弾性素材製の板材である。
例えば、弾性板210は、ゴム製の板材である。
The elastic plate 210 is a member that is sheared and deformed in response to linear displacement.
The elastic plate 210 has a plate shape, and the pair of surfaces are sheared and deformed along the direction parallel to the surfaces in response to the linear displacement.
The elastic plate 210 may be a member having a surface facing in a direct specific direction and being sheared and deformed in response to a linear displacement.
For example, the elastic plate 210 is a plate material made of an elastic material.
For example, the elastic plate 210 is a rubber plate material.

弾性板210が、第一支持板 231と第二支持板232とに挟まれる。
弾性板210は板面を特定方向に向く面をもち第一フランジ241と第二フランジ242とに挟まれてもよい。
第一フランジ241と第二フランジ242とが直動変位の方向に接近離間すると弾性板210に剪断力が生じる。
The elastic plate 210 is sandwiched between the first support plate 231 and the second support plate 232.
The elastic plate 210 has a surface whose plate surface faces in a specific direction, and may be sandwiched between the first flange 241 and the second flange 242.
When the first flange 241 and the second flange 242 approach and separate in the direction of linear displacement, a shearing force is generated on the elastic plate 210.

第一フランジ241は、略四辺形の板部材であって、対象物に固定するためのフランジ構造である。
1つの第一支持板231が、略四辺形の板部材であって、板部材の縁部を第一フランジ241のフランジ面に固定される。
The first flange 241 is a plate member having a substantially quadrilateral shape, and has a flange structure for fixing to an object.
One first support plate 231 is a substantially quadrilateral plate member, and the edge portion of the plate member is fixed to the flange surface of the first flange 241.

第二フランジ242は、略四辺形の板部材であって、対象物に固定するためのフランジ構造である。
1つの第二支持板232が、略四辺形の板部材であって、板部材の端部を第二フランジ242のフランジ面に固定される。
図5には、1つの第二支持板232が、板部材の縁部を第二フランジ242のフランジ面に固定される様子が示される。
The second flange 242 is a plate member having a substantially quadrilateral shape, and has a flange structure for fixing to an object.
One second support plate 232 is a substantially quadrilateral plate member, and the end portion of the plate member is fixed to the flange surface of the second flange 242.
FIG. 5 shows how one second support plate 232 fixes the edge portion of the plate member to the flange surface of the second flange 242.

以下に、制御装置163によるアクチエータ162の制御方法を説明する。 The control method of the actuator 162 by the control device 163 will be described below.

制御装置163が押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる。
制御装置163が、圧電素子162aの伸長または短縮を制御して、押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる。
制御装置163が、後述する押付け力指令値を基礎に生ずる加速度の最大振幅値の変化に対応して変化させてもよい。
制御装置163が、予め用意した基礎に生ずる加速度の最大振幅値と圧電素子162aの伸長量または短縮量の関係図を基に、圧電素子162aの伸長または短縮を制御して、押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させてもよい。
The control device 163 changes the pressing force in response to a change in the maximum amplitude value of the acceleration generated on the basis.
The control device 163 controls the extension or shortening of the piezoelectric element 162a to change the pressing force in response to a change in the maximum amplitude value of the acceleration generated on the basis of the pressing force.
The control device 163 may change the pressing force command value, which will be described later, in response to a change in the maximum amplitude value of acceleration that occurs on the basis.
The control device 163 controls the extension or shortening of the piezoelectric element 162a based on the relationship diagram between the maximum amplitude value of the acceleration generated in the foundation prepared in advance and the extension amount or shortening amount of the piezoelectric element 162a, based on the pressing force. It may be changed in response to a change in the maximum amplitude value of the generated acceleration.

制御装置163が、アクチエータ162の発生する押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、アクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
制御装置163が、アクチエータ162の発生する押付け力を、予め設定した力を下回ることなく、且つ基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、アクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる。
制御装置163が、圧電素子162aの伸長または短縮を制御してアクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、圧電素子162aの伸長または短縮を制御してアクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させてもよい。
制御装置163が、予め設定した力を下回ることなく、且つ圧電素子162aの伸長または短縮を制御してアクチエータの発生する押付け力を、基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、圧電素子162aの伸長または短縮を制御してアクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させてもよい。
The control device 163 changes the pressing force generated by the actuator 162 so as to increase as the maximum amplitude value of the acceleration generated on the basis increases, and the maximum amplitude of the acceleration generated based on the pressing force generated by the actuator increases. The value is changed so that it becomes smaller as the value becomes smaller.
The control device 163 changes the pressing force generated by the actuator 162 so as not to fall below the preset force and to increase in accordance with the increase in the maximum amplitude value of the acceleration generated in the foundation, thereby generating the actuator. The pressing force is changed so that it becomes smaller as the maximum amplitude value of the acceleration generated on the basis becomes smaller.
The control device 163 controls the extension or shortening of the piezoelectric element 162a to change the maximum amplitude value of the acceleration generated based on the pressing force generated by the actuator so as to increase as the maximum amplitude value increases. The extension or shortening may be controlled so that the pressing force generated by the actuator is changed so as to decrease as the maximum amplitude value of the acceleration generated on the basis decreases.
The control device 163 controls the extension or shortening of the piezoelectric element 162a without falling below a preset force, and the pressing force generated by the actuator is increased in response to the increase in the maximum amplitude value of the acceleration generated on the basis. It may be changed so as to be large, and the extension or shortening of the piezoelectric element 162a may be controlled so that the pressing force generated by the actuator is changed so as to be small corresponding to the maximum amplitude value of the acceleration generated on the basis of the force. ..

制御装置163が押付け力に関する指令値である押付け力指令値を受付ける。
制御装置163がアクチエータ162を調整して押付け力センサ166aの検知する押付け力を押付け力指令値に一致する様にする、
制御装置163が、圧電素子162aの伸長または短縮を制御して、アクチエータを調整して押付け力センサ166aの検知する押付け力を押付け力指令値に一致する様にしてもよい。
The control device 163 receives the pressing force command value, which is the command value related to the pressing force.
The control device 163 adjusts the actuator 162 so that the pressing force detected by the pressing force sensor 166a matches the pressing force command value.
The control device 163 may control the extension or shortening of the piezoelectric element 162a and adjust the actuator so that the pressing force detected by the pressing force sensor 166a matches the pressing force command value.

制御装置163が温度に関する指令値である温度指令値を受付ける。
制御装置163がアクチエータ162の発生する押付け力を調整し温度センサの検知する温度を温度指令値以下にする。
制御装置163が、圧電素子162aの伸長または短縮を制御して、アクチエータの発生する押付け力を調整し温度センサ166bの検知する温度を温度指令値以下にしてもよい。
例えば、温度センサ166bの検知する温度が温度指令値を越ると、その差分に応じて押付け力が小さくなる様に圧電素子の伸長または短縮を制御する。
例えば、温度センサ166bの検知する温度が温度指令値を越ないとき押付け力センサ166aの検知する押付け力を押付け力指令値に一致する様に圧電素子の伸長または短縮を制御する。温度センサ166b」の検知する温度が温度指令値を越るとその差分に応じて押付け力が小さくなる様に圧電素子162aの伸長または短縮を制御する。
The control device 163 receives a temperature command value, which is a command value related to temperature.
The control device 163 adjusts the pressing force generated by the actuator 162 to bring the temperature detected by the temperature sensor to the temperature command value or less.
The control device 163 may control the extension or shortening of the piezoelectric element 162a to adjust the pressing force generated by the actuator so that the temperature detected by the temperature sensor 166b is set to the temperature command value or less.
For example, when the temperature detected by the temperature sensor 166b exceeds the temperature command value, the extension or shortening of the piezoelectric element is controlled so that the pressing force becomes smaller according to the difference.
For example, when the temperature detected by the temperature sensor 166b does not exceed the temperature command value, the extension or shortening of the piezoelectric element is controlled so that the pressing force detected by the pressing force sensor 166a matches the pressing force command value. When the temperature detected by the temperature sensor 166b exceeds the temperature command value, the extension or shortening of the piezoelectric element 162a is controlled so that the pressing force becomes smaller according to the difference.

以下に、バネ付き粘性マスダンパーの運動特性、振動特性を、図を基に、説明する。
図8は、ばね付き粘性マスダンパーの質点モデル図である。
図8は、慣性接続要素11とダンパー要素12とが並列接続した系(「粘性マスダンパー」に相当する。)とバネ要素13とを直接接続した系(「バネ付き粘性マスダンパー」に相当する。)が対象構造体に接続されたモデルを示している。
図9は、地震波の概念を示す。
対象構造体30は、主質量31と主弾性要素32とでモデル化される。
バネ要素13は、弾性部材200に相当する。
The motion characteristics and vibration characteristics of the spring-loaded viscous mass damper will be described below with reference to the figures.
FIG. 8 is a mass model diagram of a viscous mass damper with a spring.
FIG. 8 shows a system in which the inertial connection element 11 and the damper element 12 are connected in parallel (corresponding to a “viscous mass damper”) and a system in which the spring element 13 is directly connected (corresponding to a “spring-loaded viscous mass damper”). .) Indicates a model connected to the target structure.
FIG. 9 shows the concept of seismic waves.
The target structure 30 is modeled by a main mass 31 and a main elastic element 32.
The spring element 13 corresponds to the elastic member 200.

粘性マスダンパー系10は、慣性接続要素11により、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrを持つ。
また、粘性マスダンパーは、ダンパー要素12により、直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
The viscous mass damper system 10 is an apparent inertial mass which is a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced by a predetermined relative acceleration by the relative acceleration of the linear motion displacement by the inertial connection element 11. Has mr.
Further, the viscous mass damper has a damping coefficient c corresponding to a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a constant relative velocity by the relative velocity by the damper element 12.

バネ付き粘性マスダンパーはバネ要素16を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応するダンパー固有振動数ωrを持つ。
また、バネ付き粘性マスダンパーは粘性マスダンパーの直動軸を一定の相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値に対応する減衰係数cを持つ。
The spring-loaded viscous mass damper has an elastic coefficient kb, which is the value obtained by dividing the reaction force generated when the spring element 16 is displaced in the linear motion direction by a relative distance, and the linear motion axis of the viscous mass damper in the linear motion direction. It has a damper natural frequency ωr corresponding to the apparent inertial mass mr, which is the value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the spring is linearly moved at a predetermined relative acceleration.
Further, the viscous mass damper with a spring has a damping coefficient c corresponding to the value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion axis of the viscous mass damper is linearly moved at a constant relative velocity. ..

フレームの内面と回転体との隙間に対応して、粘性力が変化する。 The viscous force changes according to the gap between the inner surface of the frame and the rotating body.

電圧信号に応じて自身の長さを変化させることのできる、例えば、圧電素子を皿ばねと調整ネジとの間に設定し、皿ばねに与える変形を任意に調整し摩擦材に押圧力を与えることで押付け力を変化させることを可能にした。
摩擦材の押付け力を可変にすることはダンパーの反力を可変にすることになり、様々な地震動に対して振動を制御することが可能になる。この可変機構は、電圧信号を制御するための電子制御ユニット(ECU)と地震動の加速度を感知する加速度センサを備える。また、摩擦材の温度を関知する温度センサを備えていても良い。
制御方法は、加速度センサによって得られた地震動の加速度を逐次分析し、周期特性や速度レベルに応じて、逐次軸力を変化させても良い。軸力を安定させるため、温度センサによって得られた摩擦材の温度上昇による材料の膨張や皿ばねの軸力変動を抑制するため摩擦材の温度を監視してもよい。
電子制御ユニット(ECU)の電源には、圧電素子の回生電源を使用してもよいし、ダンパー自身を特開2011−106519に開示されている発電ダンパーとし、このダンパーで蓄電した回生電源を利用してもよい。なお、皿ばねや調整ばねは同様の効果が得られる範囲で、圧電材を複数重ねた圧電アクチエータのような構造としてもよい。
圧電信号に応じて摩擦材に与える軸力を可変にできる材料を組み合わせた点、この材料は円周方向に備えられているため、ボールねじの変換効率(増幅機構)により、皿ばねに与える変形は小さくても大きな軸方向の力を得られる。
例えば、アクチアータとして、圧電素子や圧電ゴムといった材料を使用し、これらの材料の特性を変化させるための電子制御ユニット(ECU)、および地震動の振動成分や摩擦材の温度を感知するセンサを用いた。
A piezoelectric element that can change its own length according to the voltage signal is set between the disc spring and the adjusting screw, and the deformation given to the disc spring is arbitrarily adjusted to apply a pressing force to the friction material. This made it possible to change the pressing force.
By making the pressing force of the friction material variable, the reaction force of the damper becomes variable, and it becomes possible to control the vibration against various seismic motions. This variable mechanism includes an electronic control unit (ECU) for controlling a voltage signal and an acceleration sensor for detecting the acceleration of seismic motion. Further, a temperature sensor for detecting the temperature of the friction material may be provided.
As a control method, the acceleration of the seismic motion obtained by the acceleration sensor may be sequentially analyzed, and the axial force may be sequentially changed according to the periodic characteristics and the velocity level. In order to stabilize the axial force, the temperature of the friction material may be monitored in order to suppress the expansion of the material and the fluctuation of the axial force of the disc spring due to the temperature rise of the friction material obtained by the temperature sensor.
A regenerative power source of a piezoelectric element may be used as a power source of the electronic control unit (ECU), or the damper itself is a power generation damper disclosed in Japanese Patent Application Laid-Open No. 2011-106519, and the regenerative power source stored by this damper is used. You may. The disc spring and the adjusting spring may have a structure such as a piezoelectric actuator in which a plurality of piezoelectric materials are stacked, as long as the same effect can be obtained.
A combination of materials that can change the axial force applied to the friction material according to the piezoelectric signal. Since this material is provided in the circumferential direction, the deformation given to the disc spring due to the conversion efficiency (amplification mechanism) of the ball screw. Can obtain a large axial force even if it is small.
For example, a material such as a piezoelectric element or a piezoelectric rubber was used as an actiator, and an electronic control unit (ECU) for changing the characteristics of these materials, and a sensor for detecting the vibration component of seismic motion and the temperature of the friction material were used. ..

圧電素子や圧電ゴムといった材料は、摩擦材や皿ばねに与える軸力を可変にさせる機能を有する。
電子制御ユニット(ECU)は、圧電材料に送る電圧信号を制御する機能を有する。
加速度センサは、地震動の加速度成分を感知して、電圧信号を制御するための判断機能を有する。
温度センサは、摩擦材の温度を感知して、電圧信号を制御するための判断機能を有する。
圧電材料を同様の効果が得られる材料に代替えしたり、発電、蓄電、回生抵抗を組み合わせた構成とすることが考えられる。また、摩擦材の発熱を制御するような電子制御ユニットを備えることが考えられる。
より大きな軸力を与えられるような材料構成や機構、より摩擦材の発熱を抑制できるような配置や機構を採用してもよい。
上述の構成により、様々な地震動に対して、軸力制限荷重を任意に可変させることができる様になる。
また、摩擦材の温度膨張などによる皿ばねの軸力変動に伴う軸力を安定させることができるようになる。
Materials such as piezoelectric elements and piezoelectric rubber have the function of making the axial force applied to the friction material and disc spring variable.
The electronic control unit (ECU) has a function of controlling a voltage signal sent to the piezoelectric material.
The acceleration sensor has a judgment function for controlling a voltage signal by detecting an acceleration component of seismic motion.
The temperature sensor has a judgment function for detecting the temperature of the friction material and controlling the voltage signal.
It is conceivable to replace the piezoelectric material with a material that can obtain the same effect, or to combine power generation, storage, and regenerative resistance. Further, it is conceivable to include an electronic control unit that controls heat generation of the friction material.
A material structure or mechanism that can give a larger axial force, or an arrangement or mechanism that can suppress heat generation of the friction material may be adopted.
With the above configuration, the axial force limiting load can be arbitrarily changed for various seismic motions.
In addition, the axial force due to the fluctuation of the axial force of the disc spring due to the temperature expansion of the friction material can be stabilized.

また、以上説明したように、本発明に係るマスダンパーは、その構成により、以下の効果を有する。
直動軸110に設けられた雄ねしに嵌めあう雌ねじを設けられた回転部材120とフライホイール部材130とが伝達制限部材160を介して結合されてフレーム140に回転自在に支持され、制御装置163に制御されるアクチエータ162が摩擦部材161を回転部材120に所定の押付け力で押付ける様にしたので、直動軸110が直動変位の方向に相対移動するときに、回転部材120の回転がフライホイール部材130に支持されるアクチエータ162に所定の押付け力で押付けられる摩擦部材161と回転部材120との間に発生する摩擦力に対応するトルクでフライホイール部材130に伝達されて、アクチエータ162の発生する押付け力に対応して直動軸110の直動方向の相対変位に対応してフライホイール部材130が回転する。
また、電気回路163aが圧電素子162aの一対の端子に電圧を印加して圧電素子162aを伸長または圧縮させて摩擦部材161を回転部材120に押付けできる様にしたので、圧電素子162aの一対の端子に印加される電圧に対応して圧電素子162aを伸長または圧縮させて摩擦部材161を回転部材120に押付けできる。
また、電気回路163aが圧電素子162aの一対の端子に電圧を印加して圧電素子162aを伸長または短縮させて与圧縮されたバネ部材162bを介して摩擦部材161を回転部材120に押付けできる様にしたので、圧電素子162aの一対の端子に印加される電圧に対応して圧電素子162aを伸長または圧縮させてバネ部材162bを押し、バネ部材162bが摩擦部材161を回転部材120に押付けできる。
また、制御装置163が押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる様にしたので、基礎に生ずる加速度の最大振幅値の変化に対応して直動軸110の直動方向の相対変位に対応してフライホイール部材130が回転する。
また、アクチエータ162の発生する押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる様にしたので、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材130の回転による見かけの質量が大きくなり抵抗力が大きくなり、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材130の回転による見かけの質量が小さくなり抵抗力が小さくなる。
また、アクチエータ162の発生する押付け力を基礎に生ずる加速度の最大振幅値が大きくなるのに対応して大きくなる様に変化させ、基礎に生ずる加速度の最大振幅値が小さくなるのに対応して小さくなる様に変化させる様にしたので、基礎に生ずる加速度が大きいときに押し付け力が大きくフライホイール部材の回転による見かけの質量が大きく抵抗力が大きくなり、基礎に生ずる加速度が小さいときに押し付け力が小さくフライホイール部材の回転による見かけの質量が小さくなり抵抗力が小さくなる。
また、アクチエータ162を調整して押付け力センサ166aの検知する押付け力を押付け力指令値に一致する様にする様にしたので、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
また、圧電素子162aの伸長または短縮を制御してアクチエータ162を調整して押付け力を押付け力指令値に一致する様にする様にしたので、押し付け力による摩擦熱により部材が膨張しても押し付け力を押付け力指令値に維持できる。
また、アクチエータ162の発生する押付け力を調整し摩擦部材161または回転部材120の摩擦部材161が接触する接触部位の温度を温度指令値以下になる様にする様にしたので、摩擦部材161または回転部材120の摩擦部材161が接触する接触部位のオーバーヒートを抑制できる。
また、圧電素子162aの伸長または短縮を制御してアクチエータ162の発生する押付け力を調整し摩擦部材161または回転部材120の摩擦部材161が接触する接触部位の温度を温度指令値以下になる様にする様にしたので、摩擦部材161または回転部材120の摩擦部材161が接触する接触部位のオーバーヒートを抑制できる。
Further, as described above, the mass damper according to the present invention has the following effects depending on its configuration.
A rotating member 120 provided with a female screw fitted to a male screw provided on the linear motion shaft 110 and a flywheel member 130 are coupled via a transmission limiting member 160 and rotatably supported by a frame 140 to be supported by a control device. Since the actuator 162 controlled by 163 presses the friction member 161 against the rotating member 120 with a predetermined pressing force, the rotating member 120 rotates when the linear motion shaft 110 moves relative to the direction of the linear motion displacement. Is transmitted to the flywheel member 130 with a torque corresponding to the frictional force generated between the friction member 161 and the rotating member 120, which is pressed against the activator 162 supported by the flywheel member 130 with a predetermined pressing force, and is transmitted to the activator 162. The flywheel member 130 rotates in response to the relative displacement of the linear motion shaft 110 in the linear motion direction in response to the pressing force generated.
Further, since the electric circuit 163a applies a voltage to the pair of terminals of the piezoelectric element 162a to expand or compress the piezoelectric element 162a so that the friction member 161 can be pressed against the rotating member 120, the pair of terminals of the piezoelectric element 162a can be pressed. The piezoelectric element 162a can be expanded or compressed in response to the voltage applied to the friction member 161 to be pressed against the rotating member 120.
Further, the electric circuit 163a applies a voltage to the pair of terminals of the piezoelectric element 162a to extend or shorten the piezoelectric element 162a so that the friction member 161 can be pressed against the rotating member 120 via the compressed spring member 162b. Therefore, the piezoelectric element 162a can be expanded or compressed in response to the voltage applied to the pair of terminals of the piezoelectric element 162a to push the spring member 162b, and the spring member 162b can press the friction member 161 against the rotating member 120.
Further, since the control device 163 changes the pressing force in response to the change in the maximum amplitude value of the acceleration generated on the foundation, the direct motion shaft 110 is changed in response to the change in the maximum amplitude value of the acceleration generated in the foundation. The flywheel member 130 rotates in response to the relative displacement in the moving direction.
Further, the pressing force generated by the actuator 162 is changed so as to increase as the maximum amplitude value of the acceleration generated on the foundation increases, and decreases as the maximum amplitude value of the acceleration generated on the foundation decreases. Therefore, when the acceleration generated on the foundation is large, the pressing force is large, the apparent mass due to the rotation of the flywheel member 130 is large, the resistance force is large, and when the acceleration generated on the foundation is small, the pressing force is large. The force is small, the apparent mass due to the rotation of the flywheel member 130 is small, and the resistance is small.
Further, the pressing force generated by the actuator 162 is changed so as to increase as the maximum amplitude value of the acceleration generated on the foundation increases, and decreases as the maximum amplitude value of the acceleration generated on the foundation decreases. Therefore, when the acceleration generated on the foundation is large, the pressing force is large, the apparent mass due to the rotation of the flywheel member is large, and the resistance force is large, and when the acceleration generated on the foundation is small, the pressing force is large. It is small and the apparent mass due to the rotation of the flywheel member becomes small, and the resistance force becomes small.
Further, since the actuator 162 is adjusted so that the pressing force detected by the pressing force sensor 166a matches the pressing force command value, the pressing force is applied even if the member expands due to the frictional heat generated by the pressing force. It can be maintained at the command value.
Further, since the extension or shortening of the piezoelectric element 162a is controlled and the actuator 162 is adjusted so that the pressing force matches the pressing force command value, the pressing force is pressed even if the member expands due to the frictional heat generated by the pressing force. The force can be maintained at the pressing force command value.
Further, since the pressing force generated by the actuator 162 is adjusted so that the temperature of the contact portion where the friction member 161 of the friction member 161 or the friction member 120 of the rotary member 120 comes into contact is equal to or lower than the temperature command value, the friction member 161 or the rotation It is possible to suppress overheating of the contact portion where the friction member 161 of the member 120 comes into contact.
Further, the extension or shortening of the piezoelectric element 162a is controlled to adjust the pressing force generated by the actuator 162 so that the temperature of the contact portion with which the friction member 161 of the friction member 161 or the friction member 120 of the rotating member 120 comes into contact becomes equal to or lower than the temperature command value. Therefore, overheating of the contact portion where the friction member 161 or the friction member 161 of the rotating member 120 comes into contact can be suppressed.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない歯非で各種の変更が可能である。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.

10 粘性マスダンパー系
11 慣性接続要素
12 ダンパー要素
13 バネ要素
30 対象構造物
31 主質量
32 主弾性要素
33 取付部
40 支持構造
100 マスダンパー
110 直動軸
111 雄ねじ部材
112 長手部材
120 回転部材
121 雌ねじ部材
122 回転部材軸受
130 フライホイール部材
131 フライホイール部材本体
132 フライホイール部材軸受
140 フレーム
150 粘性流体
160 伝達制限部材
161 摩擦部材
162 アクチエータ
162a 圧電素子
162b バネ部材
163 制御装置
163a 電気回路
163b スリップリング
164 押圧部材
165 固定部材
166 センサ
166a 押付け力センサ
166b 温度センサ
170 連結部材
171 第一連結部材
172 第二連結部材
200 弾性部材
210 弾性板
230 支持板
231 第一支持板
232 第二支持板
240 フランジ
241 第一フランジ
242 第二フランジ
10 Viscous mass damper system 11 Inertial connection element 12 Damper element 13 Spring element 30 Target structure 31 Main mass 32 Main elastic element 33 Mounting part 40 Support structure 100 Mass damper 110 Linear axis 111 Male thread member 112 Longitudinal member 120 Rotating member 121 Female thread Member 122 Rotating member Bearing 130 Flywheel member 131 Flywheel member body 132 Flywheel member Bearing 140 Frame 150 Viscous fluid 160 Transmission limiting member 161 Friction member 162 Activator 162a Piezoelectric element 162b Spring member 163 Control device 163a Electric circuit 163b Slip ring Member 165 Fixing member 166 Sensor 166a Pressing force sensor 166b Temperature sensor 170 Connecting member 171 First connecting member 172 Second connecting member 200 Elastic member 210 Elastic plate 230 Support plate 231 First support plate 232 Second support plate 240 Flange 241 First Bearing 242 Second flange

特開2012−237413号JP 2012-237413 特開2016−039686号Japanese Unexamined Patent Publication No. 2016-039686 特開2010−101129号JP-A-2010-101129 特開2008−259354号Japanese Patent Application Laid-Open No. 2008-259354 特開2008−190617号JP-A-2008-190617 特開2006−207749号JP 2006-207949 特開2000−120765号JP 2000-127065 特開平10−30680号JP-A-10-30680 特開2001−049894号JP 2001-0499894 特開平9−329168号Japanese Patent Application Laid-Open No. 9-329168 特開2012−37005号JP2012-37005 中南滋樹、木田英範、五十子幸樹、井上範夫;軸力制限機構付き粘性マスダンパーの免震構造物への適用とその有効性、日本機械学会構造系論文集、第76巻、第670号、頁2077〜2086、2011.12Shigeki Nakaminami, Hidenori Kida, Yuki Igarashi, Norio Inoue; Application of Viscous Mass Damper with Axial Force Limiting Mechanism to Seismic Isolation Structures and Its Effectiveness, JSME Structural Papers, Vol. 76, No. 670, p. 2077-2086, 2011.12 中南滋樹、木田英範、五十子幸樹、井上範夫;免震建物における粘性マスダンパーの軸力制限と緩衝ばねの効果、日本機械学会構造系論文集、第79巻、第701号、頁1055〜1064、2014.7Shigeki Nakaminami, Hidenori Kida, Yuki Igarashi, Norio Inoue; Axial force limitation of viscous mass dampers and effects of buffer springs in seismic isolated buildings, JSME Structural Papers, Vol. 79, No. 701, pp. 1055-1064, 2014.7

Claims (10)

基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、
前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、
前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、
前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と
前記回転体と前記フライホイール部材とを回転自在に各々に支持するフレームと、
を備え、
前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有し、
前記アクチエータが一対の端子に印可される電圧に対応して伸長または圧縮する圧電素子と該圧電素子と前記摩擦部材との間に位置し所定のバネ定数をもち与圧縮されたバネ部材とを持ち、
前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持ち、
前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて与圧縮された前記バネ部材を介して前記摩擦部材を前記第一部材に押付けでき、
前記制御装置が前記アクチエータの発生する前記押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる、
ことを特徴とするマスダンパー。
A mass damper that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement,
A rotating member provided with a female screw that fits into the male screw, and
A flywheel member, which is a member that can rotate in conjunction with the rotation of the rotating member,
A transmission limiting member which is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member.
A frame that rotatably supports the rotating body and the flywheel member, and
With
A friction member in which the transmission limiting member contacts a first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and the other of the rotating member or the flywheel member. It has an actuator that is supported by a second member, which is a member, and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.
The actuator has a piezoelectric element that expands or compresses in response to a voltage applied to a pair of terminals, and a spring member that is located between the piezoelectric element and the friction member and has a predetermined spring constant and is compressed. ,
The control device has an electric circuit that applies a voltage to the pair of terminals of the piezoelectric terminal.
The electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to extend or shorten the piezoelectric element to press the friction member against the first member via the compressed spring member.
The control device changes the pressing force generated by the actuator in response to a change in the maximum amplitude value of acceleration generated based on the actuator.
A mass damper characterized by that.
前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち
前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、
前記制御装置が前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする、
ことを特長とする請求項1に記載のマスダンパー。
The control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force.
The control device adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
The mass damper according to claim 1, wherein the mass damper is characterized in that.
前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち
前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、
前記制御装置が、前記圧電素子の伸長または短縮を制御して前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする、
ことを特長とする請求項2に記載のマスダンパー。
The control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force.
The control device controls the extension or shortening of the piezoelectric element and adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
The mass damper according to claim 2, wherein the mass damper is characterized in that.
前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、
前記制御装置が温度に関する指令値である温度指令値を受付け、
前記制御装置が前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする、
ことを特徴とする請求項3に記載のマスダンパー。
The control device has a temperature sensor that detects the temperature of the contact portion with which the friction member or the friction member of the first member comes into contact.
The control device receives a temperature command value, which is a command value related to temperature,
The control device adjusts the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to the temperature command value or less.
The mass damper according to claim 3, wherein the mass damper is characterized in that.
前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、
前記制御装置が温度に関する指令値である温度指令値を受付け、
前記制御装置が、前記圧電素子の伸長または短縮を制御して前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする、
ことを特徴とする請求項4に記載のマスダンパー。
The control device has a temperature sensor that detects the temperature of the contact portion with which the friction member or the friction member of the first member comes into contact.
The control device receives a temperature command value, which is a command value related to temperature,
The control device controls the extension or shortening of the piezoelectric element to adjust the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to a temperature command value or less.
The mass damper according to claim 4, wherein the mass damper is characterized in that.
前記制御装置が前記アクチエータの発生する押付け力を基礎に生ずる加速度の最大振幅値の変化に対応して変化させる、
ことを特徴とする請求項5に記載のマスダンパー。
The control device changes the pressing force generated by the actuator in response to a change in the maximum amplitude value of the acceleration generated based on the actuator.
The mass damper according to claim 5, wherein the mass damper is characterized in that.
基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、
前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、
前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、
前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と
前記回転体と前記フライホイール部材とを回転自在に各々に支持するフレームと、
を備え、
前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有し、
前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち
前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、
前記制御装置が前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする、
ことを特長とするマスダンパー。
A mass damper that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement,
A rotating member provided with a female screw that fits into the male screw, and
A flywheel member, which is a member that can rotate in conjunction with the rotation of the rotating member,
A transmission limiting member which is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member.
A frame that rotatably supports the rotating body and the flywheel member, and
With
A friction member in which the transmission limiting member contacts a first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and the other of the rotating member or the flywheel member. It has an actuator that is supported by a second member, which is a member, and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.
The control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force.
The control device adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
A mass damper that features this.
基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、
前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、
前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、
前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と
前記回転体と前記フライホイール部材とを回転自在に各々に支持するフレームと、
を備え、
前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有し、
前記アクチエータが一対の端子に印可される電圧に対応して伸長または短縮する圧電素子を有し、
前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持ち、
前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて前記摩擦部材を前記第一部材に押付けでき、
前記制御装置が前記押付け力を検知するセンサである押付け力センサを持ち
前記制御装置が押付け力に関する指令値である押付け力指令値を受付け、
前記制御装置が、前記圧電素子の伸長または短縮を制御して前記アクチエータを調整して前記押付け力センサの検知する前記押付け力を前記押付け力指令値に一致する様にする、
ことを特長とするマスダンパー。
A mass damper that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement,
A rotating member provided with a female screw that fits into the male screw, and
A flywheel member, which is a member that can rotate in conjunction with the rotation of the rotating member,
A transmission limiting member which is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member.
A frame that rotatably supports the rotating body and the flywheel member, and
With
A friction member in which the transmission limiting member contacts a first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and the other of the rotating member or the flywheel member. It has an actuator that is supported by a second member, which is a member, and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.
The actuator has a piezoelectric element that expands or contracts in response to the voltage applied to the pair of terminals.
The control device has an electric circuit that applies a voltage to the pair of terminals of the piezoelectric terminal.
The electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to extend or shorten the piezoelectric element to press the friction member against the first member.
The control device has a pressing force sensor which is a sensor for detecting the pressing force, and the control device receives a pressing force command value which is a command value related to the pressing force.
The control device controls the extension or shortening of the piezoelectric element and adjusts the actuator so that the pressing force detected by the pressing force sensor matches the pressing force command value.
A mass damper that features this.
基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、
前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、
前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、
前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と
前記回転体と前記フライホイール部材とを回転自在に各々に支持するフレームと、
を備え、
前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有し、
前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、
前記制御装置が温度に関する指令値である温度指令値を受付け、
前記制御装置が前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする、
ことを特徴とするマスダンパー。
A mass damper that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement,
A rotating member provided with a female screw that fits into the male screw, and
A flywheel member, which is a member that can rotate in conjunction with the rotation of the rotating member,
A transmission limiting member which is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member.
A frame that rotatably supports the rotating body and the flywheel member, and
With
A friction member in which the transmission limiting member contacts a first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and the other of the rotating member or the flywheel member. It has an actuator that is supported by a second member, which is a member, and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.
The control device has a temperature sensor that detects the temperature of the contact portion with which the friction member or the friction member of the first member comes into contact.
The control device receives a temperature command value, which is a command value related to temperature,
The control device adjusts the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to the temperature command value or less.
A mass damper characterized by that.
基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するマスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と、
前記雄ねじに嵌めあう雌ねじを設けられた回転部材と、
前記回転部材の回転に連動して回転できる部材であるフライホイール部材と、
前記回転部材と前記フライホイール部材の間での伝達可能なトルクを制限できる部材である伝達制限部材と
前記回転体と前記フライホイール部材とを回転自在に各々に支持するフレームと、
を備え、
前記伝達制限部材が、前記回転部材または前記フライホイール部材のうちの一方の部材である第一部材に接触し摩擦力を発生する摩擦部材と、前記回転部材または前記フライホイール部材のうちの他方の部材である第二部材に支持されて前記摩擦部材を前記第一部材に所定の押付け力で押付けるアクチエータと、前記アクチエータを制御する制御装置と、を有し、
前記アクチエータが一対の端子に印可される電圧に対応して伸長または短縮する圧電素子を有し、
前記制御装置が、前記圧電端子の一対の端子に電圧を印加する電気回路を持ち、
前記電気回路が前記圧電素子の一対の端子に電圧を印加して前記圧電素子を伸長または短縮させて前記摩擦部材を前記第一部材に押付けでき、
前記制御装置が前記摩擦部材または前記第一部材の前記摩擦部材が接触する接触部位の温度を検知する温度センサを持ち、
前記制御装置が温度に関する指令値である温度指令値を受付け、
前記制御装置が、前記圧電素子の伸長または短縮を制御して前記アクチエータの発生する前記押付け力を調整し前記温度センサの検知する温度を温度指令値以下にする、
ことを特徴とするマスダンパー。
A mass damper that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement,
A rotating member provided with a female screw that fits into the male screw, and
A flywheel member, which is a member that can rotate in conjunction with the rotation of the rotating member,
A transmission limiting member which is a member capable of limiting the torque that can be transmitted between the rotating member and the flywheel member.
A frame that rotatably supports the rotating body and the flywheel member, and
With
A friction member in which the transmission limiting member contacts a first member, which is one of the rotating member or the flywheel member, to generate a frictional force, and the other of the rotating member or the flywheel member. It has an actuator that is supported by a second member, which is a member, and presses the friction member against the first member with a predetermined pressing force, and a control device that controls the actuator.
The actuator has a piezoelectric element that expands or contracts in response to the voltage applied to the pair of terminals.
The control device has an electric circuit that applies a voltage to the pair of terminals of the piezoelectric terminal.
The electric circuit can apply a voltage to the pair of terminals of the piezoelectric element to extend or shorten the piezoelectric element to press the friction member against the first member.
The control device has a temperature sensor that detects the temperature of the contact portion with which the friction member or the friction member of the first member comes into contact.
The control device receives a temperature command value, which is a command value related to temperature,
The control device controls the extension or shortening of the piezoelectric element to adjust the pressing force generated by the actuator to bring the temperature detected by the temperature sensor to a temperature command value or less.
A mass damper characterized by that.
JP2016229808A 2016-11-28 2016-11-28 Mass damper Active JP6778592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229808A JP6778592B2 (en) 2016-11-28 2016-11-28 Mass damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229808A JP6778592B2 (en) 2016-11-28 2016-11-28 Mass damper

Publications (2)

Publication Number Publication Date
JP2018087580A JP2018087580A (en) 2018-06-07
JP6778592B2 true JP6778592B2 (en) 2020-11-04

Family

ID=62492968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229808A Active JP6778592B2 (en) 2016-11-28 2016-11-28 Mass damper

Country Status (1)

Country Link
JP (1) JP6778592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272896B2 (en) * 2019-08-05 2023-05-12 清水建設株式会社 Seismic isolation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550064Y2 (en) * 1990-06-22 1997-10-08 絢一郎 大亦 Vibration isolator
JP2937585B2 (en) * 1991-11-12 1999-08-23 日本電気株式会社 Piezo actuator for vibration control of space structures
JPH1082204A (en) * 1996-09-10 1998-03-31 Mitsubishi Steel Mfg Co Ltd Frictional-force control type vibration damper
JPH10113887A (en) * 1996-10-08 1998-05-06 Denso Corp Micromanipulator and driving thereof
JP2002200760A (en) * 2000-12-28 2002-07-16 Canon Inc Shaking/vibration removing unit and system for manufacturing ink jet equipped therewith
JP5096536B2 (en) * 2010-08-10 2012-12-12 Thk株式会社 Attenuator

Also Published As

Publication number Publication date
JP2018087580A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5096551B2 (en) Screw motion mechanism and damping device using the same
JP5831734B2 (en) Inertia mass damper
TW201738479A (en) Rotary inertia mass damper
JP2021511477A (en) Heat exchange system
JP6778592B2 (en) Mass damper
JPH04236835A (en) Machine element having slide part and uniform universal coupling
JP5051590B2 (en) Inertia mass damper
JP2019052674A (en) Attenuation device, and, aseismic base isolation structure
JP5387123B2 (en) Friction damper
JP6912882B2 (en) Laminated rubber seismic isolation device or viscous mass damper with spring
Mayer et al. Passive, adaptive, active vibration control, and integrated approaches
JP7286361B2 (en) rotary inertia device
WO2022083128A1 (en) Smart spring-based tunable dynamic vibration absorber and control method
JP2011106519A (en) Damper and base isolation/vibration control mechanism
JP2006325280A (en) Preloader with output rigidity regulation mechanism of multi-degree-of-freedom ultrasonic motor
JP6726381B2 (en) Installation structure of rotary mass damper
JPH0942346A (en) Vibration isolation damper for building
JP6854116B2 (en) Damping wall
JP6752683B2 (en) Viscous mass damper with spring
KR102142154B1 (en) Vibration absorbing device
JP5709631B2 (en) Vibration wave motor
JP4286795B2 (en) Vibration control device and safety device
JP5508874B2 (en) Damper
JP6709646B2 (en) Vibration control device, vibration control system
JP7428348B2 (en) Vibration damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250