JP6778408B1 - V alloy target - Google Patents

V alloy target Download PDF

Info

Publication number
JP6778408B1
JP6778408B1 JP2020533299A JP2020533299A JP6778408B1 JP 6778408 B1 JP6778408 B1 JP 6778408B1 JP 2020533299 A JP2020533299 A JP 2020533299A JP 2020533299 A JP2020533299 A JP 2020533299A JP 6778408 B1 JP6778408 B1 JP 6778408B1
Authority
JP
Japan
Prior art keywords
target
vickers hardness
present
suppress
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533299A
Other languages
Japanese (ja)
Other versions
JPWO2020195566A1 (en
Inventor
宏明 十亀
宏明 十亀
福岡 淳
淳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Application granted granted Critical
Publication of JP6778408B1 publication Critical patent/JP6778408B1/en
Publication of JPWO2020195566A1 publication Critical patent/JPWO2020195566A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • C22C27/025Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

ターゲットの機械加工において、ターゲット表面における凹凸の発生が抑制でき、成膜時の異常放電の発生を抑制するとともに、被処理材へのドロップレットの付着抑制も同時に達成できる、新規なV合金ターゲットを提供する。VおよびWで構成され、エロージョン面におけるビッカース硬さの平均値が340〜750HVの範囲であり、5点の測定点で測定を行なったビッカース硬さのばらつきが20%以下であるV合金ターゲットであり、ビッカース硬さは350〜710HVの範囲にあることが好ましく、Wを10〜50原子%含有し、残部がVおよび不可避的不純物からなることがより好ましい。A new V-alloy target that can suppress the occurrence of irregularities on the target surface in the machining of the target, suppress the occurrence of abnormal discharge during film formation, and simultaneously suppress the adhesion of droplets to the material to be treated. provide. A V alloy target composed of V and W, having an average Vickers hardness on the erosion surface in the range of 340 to 750 HV, and having a Vickers hardness variation of 20% or less measured at five measurement points. The Vickers hardness is preferably in the range of 350 to 710 HV, more preferably containing 10 to 50 atomic% of W and the balance consisting of V and unavoidable impurities.

Description

本発明は、例えば、硬質皮膜を形成するために用いるV合金ターゲットに関するものである。 The present invention relates to, for example, a V alloy target used to form a hard film.

切削工具、摺動部品、金型等の表面には、耐摩耗性、耐焼付き性の向上等を目的として、例えば、V合金からなる硬質皮膜が適用されている。そして、例えば、特許文献1においては、Vに、Ti、Cr、W、Zr等を含む摺動層を被処理材の摺動面側に設けた摺動部材が提案されている。特許文献1に開示のあるTi等を含む摺動層を具備する摺動部材は、摺動中に生じる摩擦力の変動が低減され、摺動性が向上するという点で有用な技術である。 A hard film made of, for example, a V alloy is applied to the surfaces of cutting tools, sliding parts, dies, etc. for the purpose of improving wear resistance and seizure resistance. Then, for example, Patent Document 1 proposes a sliding member in which a sliding layer containing Ti, Cr, W, Zr, etc. is provided on the sliding surface side of the material to be treated. The sliding member provided with a sliding layer containing Ti or the like disclosed in Patent Document 1 is a useful technique in that fluctuations in frictional force generated during sliding are reduced and slidability is improved.

一方、摺動特性を具備する硬質皮膜を切削工具等の被処理材にコーティングするには、蒸発源としてV合金ターゲット(以下、単に「ターゲット」ともいう。)を使用したイオンプレーティング法を適用することが一般的である。イオンプレーティング法の一種であるアークイオンプレーティングは、減圧した反応ガス雰囲気中において、硬質皮膜の原料となるターゲットをアーク放電にて瞬時に溶解、イオン化し、負に印加した被処理材に付着させて硬質皮膜を形成する方法である。 On the other hand, in order to coat a material to be treated such as a cutting tool with a hard film having sliding characteristics, an ion plating method using a V alloy target (hereinafter, also simply referred to as “target”) as an evaporation source is applied. It is common to do. Arc ion plating, which is a type of ion plating method, instantly dissolves and ionizes the target, which is the raw material of the hard film, by arc discharge in a reduced pressure reaction gas atmosphere, and adheres to the negatively applied material to be treated. It is a method of forming a hard film.

アークイオンプレーティングは、電子銃等を用いたイオンプレーティング法に比べて、蒸発金属のイオン化率が高く、密着力に優れた硬質皮膜が得られることから、現在ではその適用が拡大している。そして、アークイオンプレーティングに用いられるターゲットは、得ようとする硬質皮膜に近似した所望の組成からなる板材で構成されており、一般的には粉末焼結法によって製造されている。 Compared to the ion plating method using an electron gun, arc ion plating has a higher ionization rate of evaporated metal and can obtain a hard film with excellent adhesion, so its application is currently expanding. .. The target used for arc ion plating is composed of a plate material having a desired composition similar to the hard film to be obtained, and is generally manufactured by a powder sintering method.

このターゲットを使用して成膜した硬質皮膜は、使用中に、切削工具や摺動部品から剥離してしまう場合があり、切削工具における切削スピードの高速化や、摺動部品へのさらなる信頼性が要求される昨今では、この改良が求められている。 The hard film formed using this target may peel off from the cutting tool or sliding parts during use, increasing the cutting speed of the cutting tool and further reliability of the sliding parts. Nowadays, this improvement is required.

特開2006−348343号公報Japanese Unexamined Patent Publication No. 2006-348343

特許文献1に開示されるVを主成分とし、Tiを選択したV−Tiターゲットを熱間静水圧プレス(以下、「HIP」という。)で加圧焼結して作製すると、ターゲットに、局所的な低硬度の部位が存在する場合がある。このため、ターゲットを所定の形状寸法に機械加工をする際に、表面粗さの調整が困難となり、表面に凹凸が生じる場合がある。
また、ターゲットの表面の中でも、特に、エロージョン面となる面に凹凸がある場合は、アークイオンプレーティングで被処理材に硬質皮膜を形成する際に、異常放電の誘発や、ドロップレットが飛散して被処理材に付着してしまう虞がある。
When a V-Ti target containing V as a main component and Ti selected as disclosed in Patent Document 1 is pressure-sintered by a hot hydrostatic press (hereinafter referred to as "HIP"), it is locally produced on the target. There may be areas of low hardness. Therefore, when the target is machined to a predetermined shape and size, it becomes difficult to adjust the surface roughness, and the surface may be uneven.
In addition, among the surface of the target, especially when the surface to be the erosion surface is uneven, abnormal discharge is induced and droplets are scattered when forming a hard film on the material to be treated by arc ion plating. There is a risk that it will adhere to the material to be treated.

また、V合金は、添加元素の選択によっては、機械加工時に、割れや欠け、脱落が発生する可能性の高い、いわゆる難削材となる。その上、ターゲットに局所的な高硬度の部位が存在してしまうと、切削工具のチップの摩耗や破損を招き、得られるターゲットの表面粗さが大きくなったり、場合によっては、ターゲット本体を破損させてしまうことがある。 Further, the V alloy is a so-called difficult-to-cut material having a high possibility of cracking, chipping, and falling off during machining depending on the selection of additive elements. In addition, the presence of local high hardness areas on the target can lead to wear and tear on the cutting tool tip, resulting in a large surface roughness of the target and, in some cases, damage to the target body. It may cause you to.

本発明の目的は、ターゲットの機械加工において、ターゲット表面における凹凸の発生が抑制でき、成膜時の異常放電の発生を抑制するとともに、被処理材へのドロップレットの付着抑制も同時に達成できる、新規なV合金ターゲットを提供することである。 An object of the present invention is that in machining a target, the occurrence of irregularities on the target surface can be suppressed, the occurrence of abnormal discharge during film formation can be suppressed, and the adhesion of droplets to the material to be treated can be suppressed at the same time. To provide a new V-alloy target.

本発明のV合金ターゲットは、VおよびWで構成され、エロージョン面におけるビッカース硬さの平均値が340〜750HVであり、5点の測定点で測定を行なったビッカース硬さのばらつきが20%以下である。 The V alloy target of the present invention is composed of V and W, and the average value of Vickers hardness on the erosion surface is 340 to 750 HV, and the variation of Vickers hardness measured at five measurement points is 20% or less. Is.

そして、本発明のV合金ターゲットは、エロージョン面におけるビッカース硬さの平均値が350〜710HVの範囲にあることが好ましい。
また、本発明のV合金ターゲットは、Wを10〜50原子%含有し、残部がVおよび不可避的不純物からなることが好ましい。
The V alloy target of the present invention preferably has an average Vickers hardness on the erosion surface in the range of 350 to 710 HV.
Further, it is preferable that the V alloy target of the present invention contains 10 to 50 atomic% of W, and the balance is composed of V and unavoidable impurities.

本発明は、エロージョン面におけるビッカース硬さが調整された、新規なV合金ターゲットを提供することができる。このことによって、ターゲットの機械加工において、ターゲット表面における凹凸の発生が抑制でき、成膜時の異常放電の発生を抑制するとともに、被処理材へのドロップレットの付着抑制も同時に達成することが期待できる。このため、上述した、例えば、耐摩耗性に優れるとともに、摩擦力の変動が低減され、摺動性が向上した硬質皮膜の製造に有用な技術となる。 The present invention can provide a novel V alloy target with adjusted Vickers hardness on the erosion surface. As a result, it is expected that the occurrence of unevenness on the target surface can be suppressed in the machining of the target, the occurrence of abnormal discharge during film formation can be suppressed, and the adhesion of droplets to the material to be treated can be suppressed at the same time. it can. Therefore, for example, it is a technique useful for producing a hard film having excellent wear resistance, reduced fluctuation in frictional force, and improved slidability.

本発明のターゲットは、VおよびWで構成されるV合金において、JIS Z 2244で規定される、エロージョン面におけるビッカース硬さの平均値が340〜750HVの範囲であり、5点の測定点で測定を行なったビッカース硬さのばらつきが20%以下である。以下、「エロージョン面におけるビッカース硬さの平均値」のことを単に「ビッカース硬さ」ともいう。
本発明のターゲットは、本発明のターゲット材は、ビッカース硬さを特定範囲とし、そのばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)を小さくすることで、ターゲットの形状寸法にするための切削加工や研磨加工といった機械加工を施す際に、表面が荒れることを抑制でき、表面の凹凸発生が低減され、平滑な表面を有するターゲットを得ることができる。このため、本発明のターゲットは、異常放電の誘発や、ドロップレットが飛散して被処理材に付着することを抑制できる。そして、本発明の実施形態に係るターゲット材は、任意の5点の測定点で測定を行なったビッカース硬さのばらつきが15%以下であることが好ましい。
The target of the present invention is a V alloy composed of V and W, in which the average value of Vickers hardness on the erosion surface defined by JIS Z 2244 is in the range of 340 to 750 HV, and is measured at five measurement points. The variation in Vickers hardness was 20% or less. Hereinafter, the "average value of Vickers hardness on the erosion surface" is also simply referred to as "Vickers hardness".
The target of the present invention is that the target material of the present invention has a specific range of Vickers hardness and the variation [(maximum value-minimum value) / (maximum value + minimum value)] x 100 (%) is reduced. It is possible to suppress roughening of the surface when performing machining such as cutting or polishing to obtain the shape and dimensions of the target, reduce the occurrence of surface irregularities, and obtain a target having a smooth surface. Therefore, the target of the present invention can suppress the induction of abnormal discharge and the scattering of droplets and adhesion to the material to be treated. The target material according to the embodiment of the present invention preferably has a variation in Vickers hardness of 15% or less measured at any five measurement points.

また、本発明のターゲットは、ビッカース硬さを特定範囲に調整することで、例えば、フライス盤や旋盤等のチップに構成刃先が生成されることを抑制できる。すなわち、本発明のターゲットは、切削加工を進めるにつれて、構成刃先の成長に伴うチップの切り込み量が次第に大きくなることが抑制され、切削開始時と切削完了時でターゲットの寸法差を小さくできることに加え、構成刃先の剥離に伴うチップの破損を抑制することもできる。 Further, the target of the present invention can suppress the formation of a constituent cutting edge on a tip such as a milling machine or a lathe by adjusting the Vickers hardness within a specific range. That is, in addition to the fact that the target of the present invention is prevented from gradually increasing the cutting amount of the insert due to the growth of the constituent cutting edge as the cutting process proceeds, and the dimensional difference of the target can be reduced between the start of cutting and the completion of cutting. It is also possible to suppress damage to the tip due to peeling of the built-up cutting edge.

一方、ターゲットのエロージョン面に、例えば、Vマトリックス相の中に、低硬度の部位が存在してしまうと、低硬度の部位のみが残存したり、脱落したりする場合があり、ターゲットのエロージョン面の表面が粗くなり、成膜時に異常放電の起点となりやすくなる。このため、本発明のターゲットは、ビッカース硬さを340HV以上にする。そして、上記と同様の理由から、本発明の実施形態に係るターゲットは、ビッカース硬さを350HV以上にすることが好ましい。 On the other hand, if a low-hardness portion exists on the target erosion surface, for example, in the V-matrix phase, only the low-hardness portion may remain or fall off, and the target erosion surface may be present. The surface of the surface becomes rough, and it becomes easy to become a starting point of abnormal discharge during film formation. Therefore, the target of the present invention has a Vickers hardness of 340 HV or more. Then, for the same reason as described above, the target according to the embodiment of the present invention preferably has a Vickers hardness of 350 HV or more.

本発明のターゲットは、ビッカース硬さを750HV以下にすることで、例えば、フライス盤や旋盤等のチップの摩耗量を抑えることができる。すなわち、本発明のターゲットは、切削加工を進めるにつれて、チップの磨耗に伴うチップの切り込み量が次第に小さくなり、切削開始時と切削完了時でターゲットの寸法差が大きくなることを抑制できることに加え、チップの破損を抑制することもできる。
また、本発明のターゲットは、ビッカース硬さを750HV以下にすることで、切削機械へのチャッキングに加え、アークイオンプレーティング装置への装着する際のハンドリング等でターゲット本体の破損を抑制できる。そして、上記と同様の理由から、本発明の実施形態に係るターゲットは、ビッカース硬さを710HV以下にすることが好ましい。
By setting the Vickers hardness to 750 HV or less, the target of the present invention can suppress the amount of wear of chips such as milling machines and lathes, for example. That is, in addition to being able to suppress that the cutting amount of the tip due to the wear of the tip gradually decreases as the cutting process progresses, and the dimensional difference of the target becomes large at the start of cutting and at the completion of cutting. It is also possible to suppress the breakage of the chip.
Further, in the target of the present invention, by setting the Vickers hardness to 750 HV or less, damage to the target body can be suppressed not only by chucking to a cutting machine but also by handling when mounting on an arc ion plating device. Then, for the same reason as described above, the target according to the embodiment of the present invention preferably has a Vickers hardness of 710 HV or less.

本発明でいうビッカース硬さは、上述したターゲットの変形や、切削工具のチップの摩耗や破損を抑制することに加え、アークイオンプレーティング時の異常放電を抑制する観点から、任意の横一列で5点とし、測定間隔に圧痕どうしで測定の影響を受けない距離を設けて測定する。このとき、荷重は9.8Nとし、加圧時間は10秒とする。
そして、本発明のターゲット材は、上記条件で測定されるビッカース硬さの平均値が340〜750HVの範囲にあり、そのばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%以下である。
また、本発明の実施形態に係るターゲットは、ビッカース硬さを340〜750HVにする観点から、Vマトリックス相に微細なW相が分散している組織で構成されることが好ましい。
The Vickers hardness referred to in the present invention is in an arbitrary horizontal row from the viewpoint of suppressing the deformation of the target and the wear and breakage of the cutting tool tip as described above and also suppressing the abnormal discharge during arc ion plating. The number of points is set to 5, and the measurement interval is set to a distance between the indentations that is not affected by the measurement. At this time, the load is 9.8 N and the pressurization time is 10 seconds.
In the target material of the present invention, the average value of Vickers hardness measured under the above conditions is in the range of 340 to 750 HV, and the variation [(maximum value-minimum value) / (maximum value + minimum value)] ×. 100 (%) is 20% or less.
Further, the target according to the embodiment of the present invention is preferably composed of a structure in which fine W phases are dispersed in the V matrix phase from the viewpoint of setting the Vickers hardness to 340 to 750 HV.

本発明のターゲットは、VおよびWで構成される。Wの含有量は、耐摩耗性、摺動性、耐食性を大きく損なわない範囲で適宜調整することができ、Wを10〜50原子%含有し、残部がVおよび不可避的不純物からなることが好ましい。また、上記と同様の理由から、Wの含有量は15原子%以上にすることがより好ましい。また、上記と同様の理由から、Wの含有量は25原子%以下にすることがより好ましい。 The target of the present invention is composed of V and W. The content of W can be appropriately adjusted within a range that does not significantly impair wear resistance, slidability, and corrosion resistance, and it is preferable that W is contained in an amount of 10 to 50 atomic%, and the balance is composed of V and unavoidable impurities. .. Further, for the same reason as described above, the W content is more preferably 15 atomic% or more. Further, for the same reason as described above, the W content is more preferably 25 atomic% or less.

本発明のターゲットは、例えば、粉末焼結法で得ることができる。具体的には、上記した成分組成となるように、純金属粉末や合金粉末を混合した混合粉末や、最終組成に調整した単一の粉末を加圧焼結することにより得ることができる。そして、加圧焼結としては、例えば、HIP法、ホットプレス法、通電焼結法等を適用することができる。
ここで、本発明では、ターゲットの組織の均質性という観点から、加圧焼結に適用する原料粉末は、体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が0.5〜200μmの範囲の粉末を用いることが好ましい。
The target of the present invention can be obtained by, for example, a powder sintering method. Specifically, it can be obtained by pressure sintering a mixed powder in which a pure metal powder or an alloy powder is mixed or a single powder adjusted to the final composition so as to have the above-mentioned component composition. Then, as the pressure sintering, for example, a HIP method, a hot press method, an energization sintering method and the like can be applied.
Here, in the present invention, from the viewpoint of the homogeneity of the target structure, the raw material powder applied to the pressure sintering has a 50% particle size (hereinafter referred to as “D50”) of the volume-based cumulative particle size distribution of 0. It is preferable to use a powder in the range of 5 to 200 μm.

加圧焼結は、焼結温度900〜1300℃、加圧圧力50〜200MPa、1〜15時間の条件で行なうことが好ましい。
焼結温度は、900℃以上にすることで、粉末の焼結を進行させることができ、空孔の発生を抑制することができる。また、焼結温度は、1300℃以下にすることで、粉末の溶解を抑制できる。
また、加圧圧力は、50MPa以上にすることで、焼結の進行を促進し、空孔の発生を抑制することができる。また、加圧圧力は、200MPa以下にすることで、焼結時にターゲットへの残留応力の導入が抑制され、焼結後の割れの発生を抑制することができる。
また、焼結時間は、1時間以上にすることで、焼結の進行を促進し、空孔の発生を抑制することができる。また、焼結時間は、15時間以下にすることで、製造効率の低下を抑制できる。
The pressure sintering is preferably performed under the conditions of a sintering temperature of 900 to 1300 ° C., a pressure pressure of 50 to 200 MPa, and 1 to 15 hours.
By setting the sintering temperature to 900 ° C. or higher, the sintering of the powder can proceed and the generation of pores can be suppressed. Further, by setting the sintering temperature to 1300 ° C. or lower, dissolution of the powder can be suppressed.
Further, by setting the pressurizing pressure to 50 MPa or more, the progress of sintering can be promoted and the generation of vacancies can be suppressed. Further, by setting the pressurizing pressure to 200 MPa or less, the introduction of residual stress to the target during sintering can be suppressed, and the occurrence of cracks after sintering can be suppressed.
Further, by setting the sintering time to 1 hour or more, the progress of sintering can be promoted and the generation of vacancies can be suppressed. Further, by setting the sintering time to 15 hours or less, a decrease in production efficiency can be suppressed.

先ず、D50が140μmのV粉末、D50が0.6μmのW粉末を準備した。そして、本発明例1となるターゲットを得るために、原子比における組成式がV90−W10となるように、上記で準備した各粉末を秤量した後に、V型混合機で混合し、軟鉄製のカプセルに充填して、450℃、4時間の条件で脱ガス封止をした。そして、1250℃、120MPa、10時間の条件で、HIPによって上記カプセルを加圧焼結して、焼結体を作製した。First, V powder having a D50 of 140 μm and W powder having a D50 of 0.6 μm were prepared. Then, in order to obtain a target according to Example 1 of the present invention, each powder prepared above is weighed so that the composition formula in atomic ratio is V 90 −W 10, and then mixed with a V-type mixer to obtain soft iron. The capsule was filled with the product and degassed at 450 ° C. for 4 hours. Then, the capsule was pressure-sintered by HIP under the conditions of 1250 ° C., 120 MPa, and 10 hours to prepare a sintered body.

本発明例2となるターゲットを得るために、原子比における組成式がV80−W20となるように、上記で準備した各粉末を秤量した後に、V型混合機で混合し、軟鉄製のカプセルに充填して、450℃、4時間の条件で脱ガス封止をした。そして、1250℃、120MPa、10時間の条件で、HIPによって上記カプセルを加圧焼結して、焼結体を作製した。In order to obtain a target according to Example 2 of the present invention, each powder prepared above is weighed so that the composition formula in atomic ratio is V 80- W 20, and then mixed with a V-type mixer to be made of soft iron. The capsule was filled and degassed at 450 ° C. for 4 hours. Then, the capsule was pressure-sintered by HIP under the conditions of 1250 ° C., 120 MPa, and 10 hours to prepare a sintered body.

本発明例3となるターゲットを得るために、原子比における組成式がV65−W35となるように、上記で準備した各粉末を秤量した後に、V型混合機で混合し、軟鉄製のカプセルに充填して、450℃、4時間の条件で脱ガス封止をした。そして、1250℃、120MPa、10時間の条件で、HIPによって上記カプセルを加圧焼結して、焼結体を作製した。In order to obtain a target according to Example 3 of the present invention, each powder prepared above is weighed so that the composition formula in atomic ratio is V 65- W 35, and then mixed with a V-type mixer to be made of soft iron. The capsule was filled and degassed at 450 ° C. for 4 hours. Then, the capsule was pressure-sintered by HIP under the conditions of 1250 ° C., 120 MPa, and 10 hours to prepare a sintered body.

本発明例4となるターゲットを得るために、原子比における組成式がV50−W50となるように、上記で準備した各粉末を秤量した後に、V型混合機で混合し、軟鉄製のカプセルに充填して、450℃、4時間の条件で脱ガス封止をした。そして、1250℃、120MPa、10時間の条件で、HIPによって上記カプセルを加圧焼結して、焼結体を作製した。In order to obtain the target according to Example 4 of the present invention, each powder prepared above is weighed so that the composition formula in atomic ratio is V 50- W 50, and then mixed with a V-type mixer to be made of soft iron. The capsule was filled and degassed at 450 ° C. for 4 hours. Then, the capsule was pressure-sintered by HIP under the conditions of 1250 ° C., 120 MPa, and 10 hours to prepare a sintered body.

比較例となるターゲットを得るために、D50が140μmのV粉末、D50が106μmのTi粉末を準備した。そして、原子比における組成式がV50−Ti50となるように、上記で準備した各粉末を秤量した後に、V型混合機で混合し、軟鉄製のカプセルに充填して、450℃、4時間の条件で脱ガス封止をした。そして、850℃、120MPa、1時間の条件で、HIPによって上記カプセルを加圧焼結して、焼結体を作製した。In order to obtain a target as a comparative example, V powder having a D50 of 140 μm and Ti powder having a D50 of 106 μm were prepared. Then, each powder prepared above is weighed so that the composition formula in atomic ratio is V 50 −Ti 50 , mixed with a V-type mixer, filled in a soft iron capsule, and placed at 450 ° C., 4 Degassing was sealed under the condition of time. Then, the capsule was pressure-sintered by HIP under the conditions of 850 ° C., 120 MPa, and 1 hour to prepare a sintered body.

上記で得た各焼結体に機械加工を施してターゲットを作製した。このとき、本発明例1〜本発明例4となるターゲットは、いずれも、機械加工の際に、凹凸が発生せず、表面が平滑な状態であることが確認できた。
一方、比較例となるターゲットは、機械加工の際に、凹凸が発生し、ターゲットの表面に凹凸が確認された。
Each of the sintered bodies obtained above was machined to prepare a target. At this time, it was confirmed that all of the targets according to the first to fourth aspects of the present invention had no unevenness and had a smooth surface during machining.
On the other hand, the target as a comparative example had irregularities during machining, and irregularities were confirmed on the surface of the target.

上記で得た各ターゲットのエロージョン面となる面の任意の位置から機械加工により試験片を採取した。そして、ビッカース硬さは、JIS Z 2244に準じ、株式会社明石製作所製のMVK−Eを用いて、任意の横一列で5点とし、測定間隔に圧痕どうしで測定の影響を受けない距離を設けて測定した。その結果を表1に示す。 A test piece was sampled by machining from an arbitrary position on the surface to be the erosion surface of each target obtained above. Then, the Vickers hardness is set to 5 points in an arbitrary horizontal row using MVK-E manufactured by Akashi Seisakusho Co., Ltd. according to JIS Z 2244, and the measurement interval is set to a distance that is not affected by the measurement between indentations. Was measured. The results are shown in Table 1.

比較例となるターゲットは、ビッカース硬度が340HVを下回る部位が存在することが確認され、ばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%を超えていることも確認された。
一方、本発明例1〜本発明例4のターゲットは、いずれも、ビッカース硬度が340〜750HVの範囲にあることが確認できた。そして、ビッカース硬度の平均値を求めるにおいては、このときの全測定点でビッカース硬度が340〜750HVの範囲であるのが好ましいところ、本発明例1〜本発明例4のターゲットは、これを満たしていた。そして、本発明例1〜本発明例4のターゲットは、いずれも、ばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%以下に調整されていることが確認できた。これにより、本発明のターゲットは、機械加工時にターゲット表面を平滑にすることができ、硬質皮膜形成用ターゲットとして有用となる。
It was confirmed that the target as a comparative example had a portion where the Vickers hardness was lower than 340 HV, and the variation [(maximum value-minimum value) / (maximum value + minimum value)] x 100 (%) exceeded 20%. It was also confirmed that it was.
On the other hand, it was confirmed that the targets of the first to fourth inventions had a Vickers hardness in the range of 340 to 750 HV. Then, in obtaining the average value of the Vickers hardness, it is preferable that the Vickers hardness is in the range of 340 to 750 HV at all the measurement points at this time, but the targets of the present invention example 1 to the present invention example 4 satisfy this. Was there. In each of the targets of the first to fourth aspects of the present invention, the variation [(maximum value-minimum value) / (maximum value + minimum value)] x 100 (%) is adjusted to 20% or less. I was able to confirm that. As a result, the target of the present invention can smooth the surface of the target during machining, and is useful as a target for forming a hard film.

Figure 0006778408
Figure 0006778408

Claims (3)

VおよびWで構成され、エロージョン面におけるビッカース硬さの平均値が340〜750HVであり、5点の測定点で測定を行なったビッカース硬さのばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%以下であるV合金ターゲット。 It is composed of V and W, and the average value of Vickers hardness on the alloy surface is 340 to 750 HV, and the variation of Vickers hardness measured at 5 measurement points [(maximum value-minimum value) / (maximum value). + Minimum value)] × 100 (%) is 20% or less V alloy target. 前記ビッカース硬さの平均値が350〜710HVである請求項1に記載のV合金ターゲット。 The V alloy target according to claim 1, wherein the average value of the Vickers hardness is 350 to 710 HV. Wを10〜50原子%含有し、残部がVおよび不可避的不純物からなる請求項1または請求項2に記載のV合金ターゲット。 The V alloy target according to claim 1 or 2, which contains 10 to 50 atomic% of W and the balance is V and unavoidable impurities.
JP2020533299A 2019-03-26 2020-03-02 V alloy target Active JP6778408B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019057532 2019-03-26
JP2019057532 2019-03-26
PCT/JP2020/008603 WO2020195566A1 (en) 2019-03-26 2020-03-02 V alloy target

Publications (2)

Publication Number Publication Date
JP6778408B1 true JP6778408B1 (en) 2020-11-04
JPWO2020195566A1 JPWO2020195566A1 (en) 2021-04-08

Family

ID=72609943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533299A Active JP6778408B1 (en) 2019-03-26 2020-03-02 V alloy target

Country Status (4)

Country Link
EP (1) EP3951003B1 (en)
JP (1) JP6778408B1 (en)
CN (1) CN113614280A (en)
WO (1) WO2020195566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068047A (en) * 2007-09-11 2009-04-02 Kobe Steel Ltd Hard coating film, material coated with hard coating film and die for cold plastic working
JP2009208156A (en) * 2008-02-29 2009-09-17 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2015142944A (en) * 2010-02-10 2015-08-06 日立金属株式会社 Coated mold for plastic working excellent in sliding characteristic and method of manufacturing the same
CN104946950A (en) * 2015-06-10 2015-09-30 深圳市威勒达科技开发有限公司 Vanadium-tungsten alloy target and preparation method thereof
JP2017088465A (en) * 2015-11-16 2017-05-25 住友金属鉱山株式会社 Sintered body and method for producing the same, sputtering target and method for producing the same, and oxide thin film and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127474B2 (en) * 2002-02-04 2008-07-30 株式会社東芝 Sputtering target
JP4934998B2 (en) 2005-06-15 2012-05-23 株式会社豊田自動織機 Sliding member, sliding member for compressor, and method for manufacturing sliding member
KR102373916B1 (en) * 2015-03-23 2022-03-11 미쓰비시 마테리알 가부시키가이샤 Polycrystalline tungsten sintered compact, polycrystalline tungsten alloy sintered compact, and method for manufacturing same
JP6677875B2 (en) * 2015-03-23 2020-04-08 三菱マテリアル株式会社 Polycrystalline tungsten and tungsten alloy sintered body and method for producing the same
CN105463387A (en) * 2016-01-22 2016-04-06 基迈克材料科技(苏州)有限公司 Method for preparing metal tungsten and vanadium and tungsten alloy targets through vacuum sintering technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068047A (en) * 2007-09-11 2009-04-02 Kobe Steel Ltd Hard coating film, material coated with hard coating film and die for cold plastic working
JP2009208156A (en) * 2008-02-29 2009-09-17 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2015142944A (en) * 2010-02-10 2015-08-06 日立金属株式会社 Coated mold for plastic working excellent in sliding characteristic and method of manufacturing the same
CN104946950A (en) * 2015-06-10 2015-09-30 深圳市威勒达科技开发有限公司 Vanadium-tungsten alloy target and preparation method thereof
JP2017088465A (en) * 2015-11-16 2017-05-25 住友金属鉱山株式会社 Sintered body and method for producing the same, sputtering target and method for producing the same, and oxide thin film and method for producing the same

Also Published As

Publication number Publication date
WO2020195566A1 (en) 2020-10-01
JPWO2020195566A1 (en) 2021-04-08
EP3951003A1 (en) 2022-02-09
EP3951003A4 (en) 2022-12-28
EP3951003B1 (en) 2024-04-03
CN113614280A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP4827033B2 (en) Sputtering target with less surface defects and surface processing method thereof
JP5744958B2 (en) Ytterbium sputtering target
JP5063831B2 (en) Cutting tools
JP5301531B2 (en) Sputtering target with less generation of particles
JP5686253B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
CN108103495B (en) High-temperature-resistant high-entropy alloy tool steel coating material and preparation method of coating
JP6778408B1 (en) V alloy target
JP6778409B1 (en) V alloy target
JP7205213B2 (en) TiW alloy target and manufacturing method thereof
JP6459058B2 (en) Mo alloy target
JP2015139868A (en) Surface-coated cutting tool exhibiting chipping resistance over a long period in cutting work of high-hardness steel
JP7293787B2 (en) TaWSi target and manufacturing method thereof
KR20150133813A (en) Surface-coated boron nitride sintered tool
JP2008179853A (en) Target material containing boride
WO2021039710A1 (en) Fe-si-b-nb-based target
JP4846563B2 (en) Nitride-containing target material
JP2020132978A (en) Cr alloy target
JP2010229001A (en) cBN SINTERED COMPACT FOR CUTTING TOOLS CONTAINING COARSE GRAIN cBN PARTICLES
WO2021039712A1 (en) Fe-si-b-nb-based target
WO2021039711A1 (en) Fe-co-si-b-nb-based target
JP4846556B2 (en) Nitride-containing target material
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP2009095889A (en) Surface-coated tool
JP2015085444A (en) Surface-coated cutting tool exerting excellent chipping resistance over long period in high-speed cutting of high-hardness steel
JP2011088240A (en) Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200701

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6778408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350