JP6778388B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP6778388B2
JP6778388B2 JP2020518242A JP2020518242A JP6778388B2 JP 6778388 B2 JP6778388 B2 JP 6778388B2 JP 2020518242 A JP2020518242 A JP 2020518242A JP 2020518242 A JP2020518242 A JP 2020518242A JP 6778388 B2 JP6778388 B2 JP 6778388B2
Authority
JP
Japan
Prior art keywords
lead
electrode plate
pole
column
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518242A
Other languages
Japanese (ja)
Other versions
JPWO2019216211A1 (en
Inventor
格 瀬和
格 瀬和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2019216211A1 publication Critical patent/JPWO2019216211A1/en
Application granted granted Critical
Publication of JP6778388B2 publication Critical patent/JP6778388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池は車両のエンジン始動用及びバックアップ電源用といった様々な用途に用いられている。特に車両のエンジン始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給と共に、車両に搭載された各種電気及び電子機器へ電力を供給する。近年、環境保護及び燃費改善の取り組みとして、例えば、エンジンの動作時間を少なくするアイドリングストップ車(以下、「ISS車」という)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車への鉛蓄電池の応用が検討されている。 Lead-acid batteries are used in various applications such as vehicle engine starting and backup power supply. In particular, the lead-acid battery for starting an engine of a vehicle supplies electric power to a cell motor for starting an engine and also supplies electric power to various electric and electronic devices mounted on the vehicle. In recent years, as efforts to protect the environment and improve fuel efficiency, for example, micro-hybrid vehicles such as idling stop vehicles (hereinafter referred to as "ISS vehicles") that reduce engine operating time and power generation control vehicles that reduce alternator power generation by engine power. The application of lead-acid batteries to automobiles is being studied.

ところで、鉛蓄電池を車両に搭載して用いる場合、車両の振動に伴い、鉛蓄電池に強い振動が加わることがある。この場合、鉛蓄電池の構成物品の一つである極柱に直接応力が加わり、極柱が破損するおそれがある。これに対し、特許文献1は、鉛合金よりなる極柱の内部に、極柱母材よりも電気抵抗の低い筒状体を存在させることで、上記振動に伴う極柱の破損の発生を抑制することを提案している。 By the way, when a lead-acid battery is mounted on a vehicle and used, strong vibration may be applied to the lead-acid battery due to the vibration of the vehicle. In this case, stress is directly applied to the pole pillar, which is one of the constituent articles of the lead storage battery, and the pole pillar may be damaged. On the other hand, in Patent Document 1, the occurrence of damage to the pole column due to the vibration is suppressed by allowing a tubular body having a lower electrical resistance than the pole pillar base material to exist inside the pole column made of lead alloy. I am proposing to do it.

特開2009−252625号公報JP-A-2009-252625

しかしながら、特許文献1の技術は、極柱の材料の変更を必要とするものであり、製造コストの上昇につながるため、極柱の材料を変更することなく、極柱の破損の発生を抑制し得る新たな技術の開発が求められる。また、本発明者らの検討の結果明らかになったことであるが、鉛蓄電池に対して電極板の積層方向に振動が加わった場合、極柱の破損が発生しやすくなり、特許文献1の技術では極柱の破損の発生を充分に抑制し得ない。 However, the technique of Patent Document 1 requires a change in the material of the pole pillar, which leads to an increase in manufacturing cost. Therefore, the occurrence of damage to the pole pillar is suppressed without changing the material of the pole pillar. Development of new technology to obtain is required. Further, as a result of the study by the present inventors, it has been clarified that when vibration is applied to the lead-acid battery in the stacking direction of the electrode plates, the pole columns are likely to be damaged, and Patent Document 1 The technology cannot sufficiently suppress the occurrence of damage to the pole columns.

そこで、本発明は、鉛蓄電池に対して振動が加わることによる極柱の破損の発生を抑制することを目的とする。 Therefore, an object of the present invention is to suppress the occurrence of damage to the pole column due to vibration applied to the lead storage battery.

本発明の一側面の鉛蓄電池は、セル室を有し、上面が開口している電槽と、開口を閉じる蓋と、複数の電極板を有し、セル室に収容された極板群と、極柱と、を備える。この鉛蓄電池において、極柱の最小径に対する極板群の質量の比は220g/mm以下である。 The lead-acid battery on one side of the present invention has a cell chamber, an electric tank having an open upper surface, a lid for closing the opening, and a group of electrode plates housed in the cell chamber. , With pole pillars. In this lead-acid battery, the ratio of the mass of the electrode plate group to the minimum diameter of the electrode column is 220 g / mm or less.

上記鉛蓄電池によれば、鉛蓄電池に対して振動が加わることによる極柱の破損の発生を抑制することができる。 According to the lead-acid battery, it is possible to suppress the occurrence of damage to the pole column due to vibration applied to the lead-acid battery.

極柱の最小径に対する極板群の質量の比は、200g/mm以上であってよい。この場合、極柱の破損の発生が抑制されると共に放電容量(放電持続時間)が増加する傾向がある。 The ratio of the mass of the electrode plate group to the minimum diameter of the pole column may be 200 g / mm or more. In this case, the occurrence of damage to the pole column tends to be suppressed and the discharge capacity (discharge duration) tends to increase.

極柱の根本径は、10.0mm以上であってよい。鉛蓄電池では、大電流放電時等に極柱でジュール熱が発生する場合がある。極柱の根本径が10.0mm以上である場合、ジュール熱が発生したとしても、極柱の溶断が起こりがたい。 The root diameter of the pole column may be 10.0 mm or more. In a lead-acid battery, Joule heat may be generated in the pole column when a large current is discharged. When the root diameter of the pole column is 10.0 mm or more, even if Joule heat is generated, the pole pillar is unlikely to melt.

極柱の体積は、5723mm以上であってよい。この場合、極柱の抵抗を充分に小さくすることができ、極柱におけるジュール熱の発生を抑制することができる。その結果として、ジュール熱による極柱の溶断を防止しやすくなる。The volume of the pole column may be 5723 mm 3 or more. In this case, the resistance of the pole column can be sufficiently reduced, and the generation of Joule heat in the pole column can be suppressed. As a result, it becomes easy to prevent the pole column from being blown by Joule heat.

極柱の高さは、85mm以下であってよい。この場合、ジュール熱による極柱の溶断を防止しやすくなる。 The height of the pole column may be 85 mm or less. In this case, it becomes easy to prevent the pole column from being blown by Joule heat.

極柱の電槽側の先端面の面積は、100mm以上であってよい。この場合、ジュール熱による極柱の溶断を防止しやすくなる。The area of the tip surface of the pole column on the electric tank side may be 100 mm 2 or more. In this case, it becomes easy to prevent the pole column from being blown by Joule heat.

本発明によれば、鉛蓄電池に対して振動が加わることによる極柱の破損の発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of damage to the pole column due to vibration applied to the lead storage battery.

図1は、一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead storage battery according to the embodiment. 図2は、図1の鉛蓄電池に用いられる電槽を示す斜視図である。FIG. 2 is a perspective view showing an electric tank used for the lead storage battery of FIG. 図3は、図2のIII−III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 図4は、図1の鉛蓄電池が備える極板群を説明するための分解斜視図である。FIG. 4 is an exploded perspective view for explaining a group of plates included in the lead storage battery of FIG. 図5(a)及び図5(b)は、集電体(正極集電体又は負極集電体)の一例を示す正面図である。5 (a) and 5 (b) are front views showing an example of a current collector (positive electrode current collector or negative electrode current collector). 図6は、図1のV−V線に沿った部分断面図である。FIG. 6 is a partial cross-sectional view taken along the line VV of FIG.

<鉛蓄電池>
図1は、一実施形態の鉛蓄電池の全体構成及び内部構造を示す斜視図である。図1に示すように、一実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3と、電槽2に収容された極板群4及び希硫酸等の電解液(図示せず)と、正極柱(図示せず)及び負極柱5(以下、これらをまとめて「極柱6」ともいう)と、を備える液式鉛蓄電池である。一実施形態の鉛蓄電池は、電解液が注液される前の状態であってもよい。すなわち、鉛蓄電池は、電解液を備えていなくてもよい。
<Lead-acid battery>
FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead-acid battery of one embodiment. As shown in FIG. 1, the lead-acid battery 1 according to the embodiment has an electric tank 2 having an open upper surface, a lid 3 for closing the opening of the electric tank 2, and a group of plates 4 housed in the electric tank 2. A liquid lead-acid battery including an electrolytic solution such as dilute sulfuric acid (not shown), a positive electrode column (not shown), and a negative electrode column 5 (hereinafter, these are collectively referred to as "pole column 6"). .. The lead-acid battery of one embodiment may be in a state before the electrolytic solution is injected. That is, the lead-acid battery does not have to include an electrolytic solution.

蓋3は、正極端子7及び負極端子8(以下、これらをまとめて「電極端子9」ともいう)と、蓋3に設けられた複数の注液口をそれぞれ閉塞する複数の液口栓10とを備えている。蓋3は、例えば、ポリプロピレンで形成されている。正極端子7は、正極柱の一端に接続されている。同様に、負極端子8は、負極柱5の一端に接続されている。 The lid 3 includes a positive electrode terminal 7 and a negative electrode terminal 8 (hereinafter, collectively referred to as “electrode terminal 9”), and a plurality of liquid spout plugs 10 for closing a plurality of liquid injection ports provided in the lid 3. It has. The lid 3 is made of polypropylene, for example. The positive electrode terminal 7 is connected to one end of the positive electrode column. Similarly, the negative electrode terminal 8 is connected to one end of the negative electrode column 5.

図2は、図1の鉛蓄電池1が備える電槽2を示す斜視図である。図2に示すように、電槽2は、中空の略直方体状を呈しており、長方形の平面形状を有する底壁と、底壁の短辺部に立設された一対の側壁(第1の側壁)21と、底壁の長辺部に立設された一対の側壁(第2の側壁)22とから構成されている。電槽2は、例えばポリプロピレンで形成されている。 FIG. 2 is a perspective view showing a battery case 2 included in the lead-acid battery 1 of FIG. As shown in FIG. 2, the electric tank 2 has a hollow substantially rectangular parallelepiped shape, and has a bottom wall having a rectangular planar shape and a pair of side walls (first) erected on the short side of the bottom wall. It is composed of a side wall) 21 and a pair of side walls (second side wall) 22 erected on the long side of the bottom wall. The battery case 2 is made of polypropylene, for example.

電槽2の内部は、第1の側壁21と略平行に設けられた5枚の隔壁23を備えている。5枚の隔壁23が所定の間隔で配置されていることによって、電槽2の内部には、第1〜第6の6個のセル室24a〜24f(以下、これらをまとめて「セル室24」ともいう)がこの順で第2の側壁22に沿って形成されている。セル室24のそれぞれには、極板群4が収容されている。極板群4は、単電池とも呼ばれており、例えば2Vの起電力を有する。 The inside of the battery case 2 is provided with five partition walls 23 provided substantially parallel to the first side wall 21. By arranging the five partition walls 23 at predetermined intervals, the six cell chambers 24a to 24f of the first to sixth cells 24a to 24f (hereinafter, these are collectively referred to as "cell chambers 24") are inside the battery case 2. ") Are formed along the second side wall 22 in this order. The electrode plate group 4 is housed in each of the cell chambers 24. The electrode plate group 4 is also called a cell, and has an electromotive force of, for example, 2 V.

第1の側壁21の内面21a及び隔壁23の両面23aには、底壁(電槽2の開口面)に垂直な方向に延びる複数のリブ25が設けられている。リブ25は、各セル室24に収容された極板群4を適切に加圧(圧縮)する機能を有する。他の一実施形態では、第1の側壁21の内面21a及び隔壁23の両面23aには、リブが設けられていなくてもよい。 A plurality of ribs 25 extending in a direction perpendicular to the bottom wall (opening surface of the battery case 2) are provided on the inner surface 21a of the first side wall 21 and both sides 23a of the partition wall 23. The rib 25 has a function of appropriately pressurizing (compressing) the electrode plate group 4 housed in each cell chamber 24. In another embodiment, the inner surface 21a of the first side wall 21 and the both sides 23a of the partition wall 23 may not be provided with ribs.

図3は、図2のIII−III線に沿った断面図である。セル室24の幅X(電極板の積層方向における長さ)は、特に限定されず、リブ25の高さ等によって調整することができる。各セル室の幅は同一でも異なっていてもよい。なお、本明細書において、セル室24の幅Xは、第1の側壁21及び隔壁23がリブ25を有しない場合、第1の側壁21と隔壁23との間の最短距離、又は、対向する隔壁23間の最短距離(以下、「壁間距離Xa」という。)と定義される。第1の側壁21及び/又は隔壁23がリブを有する場合、セル室の幅Xは、壁間距離Xaから、最も高いリブの高さHaを引いた値と定義される(図3参照。)。例えば、対向する2つの隔壁23のリブの高さHaが同一である場合、セル室の幅Xは、[壁間距離Xa]−(2×[リブの高さHa])となる。 FIG. 3 is a cross-sectional view taken along the line III-III of FIG. The width X (length in the stacking direction of the electrode plates) of the cell chamber 24 is not particularly limited, and can be adjusted by the height of the rib 25 or the like. The width of each cell chamber may be the same or different. In the present specification, the width X of the cell chamber 24 is the shortest distance between the first side wall 21 and the partition wall 23, or faces each other when the first side wall 21 and the partition wall 23 do not have the rib 25. It is defined as the shortest distance between the partition walls 23 (hereinafter, referred to as "inter-wall distance Xa"). When the first side wall 21 and / or the partition wall 23 has ribs, the width X of the cell chamber is defined as the inter-wall distance Xa minus the height Ha of the highest rib (see FIG. 3). .. For example, when the height Ha of the ribs of the two facing partition walls 23 is the same, the width X of the cell chamber is [distance between walls Xa] − (2 × [height Ha of ribs]).

図4は、図1の鉛蓄電池が備える極板群を説明するための分解斜視図である。図4に示すように、極板群4は、複数の正極板11、負極板12及びセパレータ13が、電槽2の第1の側壁21と略垂直な方向に積層されてなる。 FIG. 4 is an exploded perspective view for explaining a group of plates included in the lead storage battery of FIG. As shown in FIG. 4, the electrode plate group 4 is formed by laminating a plurality of positive electrode plates 11, negative electrode plates 12 and separator 13 in a direction substantially perpendicular to the first side wall 21 of the battery case 2.

正極板11は、正極集電体14と、正極集電体14に保持された正極活物質15とを備えている。負極板12は、負極集電体16と、負極集電体16に保持された負極活物質17とを備えている。本明細書では、「正極活物質」は正極板から正極集電体を除いたものを意味し、「負極活物質」は負極板から負極集電体を除いたものを意味する。 The positive electrode plate 11 includes a positive electrode current collector 14 and a positive electrode active material 15 held by the positive electrode current collector 14. The negative electrode plate 12 includes a negative electrode current collector 16 and a negative electrode active material 17 held by the negative electrode current collector 16. In the present specification, the "positive electrode active material" means the positive electrode plate from which the positive electrode current collector is removed, and the "negative electrode active material" means the negative electrode plate from which the negative electrode current collector is removed.

図5(a)及び図5(b)は、集電体(正極集電体14又は負極集電体16)を示す正面図である。図5(a)及び図5(b)において、カッコ書きした符号は負極集電体の構成を示している。図5(a)に示すように、正極集電体14は、正極活物質が充填される正極活物質支持部14aと、正極活物質支持部14aの上側に帯状に形成された上側フレーム部(上部周縁部)14bと、上側フレーム部14bから部分的に上方に突出するように設けられた正極耳部14cと、を有している。正極耳部14cは、正極板11の積層方向から視て正極板11の中央寄りに位置している。正極活物質支持部14aの外形は例えば矩形(長方形又は正方形)であり、格子状に形成されている。正極活物質支持部14aは、図5(b)に示すように、下方の隅部が切り落とされた形状であってもよい。同様に、負極集電体16は、負極活物質が充填される負極活物質支持部16aと、負極活物質支持部16aの上側に帯状に形成された上側フレーム部(上部周縁部)16bと、上側フレーム部16bから部分的に上方に突出するように設けられた負極耳部16cとを有している。負極耳部16cは、負極板12の積層方向から視て負極板12の中央寄りに位置している。負極活物質支持部16aの外形は例えば矩形(長方形又は正方形)であり、格子状に形成されている。負極活物質支持部16aは、図5(b)に示すように、下方の隅部が切り落とされた形状であってもよい。 5 (a) and 5 (b) are front views showing a current collector (positive electrode current collector 14 or negative electrode current collector 16). In FIGS. 5 (a) and 5 (b), the reference numerals in parentheses indicate the configuration of the negative electrode current collector. As shown in FIG. 5A, the positive electrode current collector 14 includes a positive electrode active material support portion 14a filled with a positive electrode active material and an upper frame portion (a band-shaped upper frame portion) formed above the positive electrode active material support portion 14a. It has an upper peripheral edge portion) 14b and a positive electrode ear portion 14c provided so as to partially project upward from the upper frame portion 14b. The positive electrode ear portion 14c is located closer to the center of the positive electrode plate 11 when viewed from the stacking direction of the positive electrode plate 11. The outer shape of the positive electrode active material support portion 14a is, for example, a rectangle (rectangle or square), and is formed in a grid pattern. As shown in FIG. 5B, the positive electrode active material support portion 14a may have a shape in which the lower corner portion is cut off. Similarly, the negative electrode current collector 16 includes a negative electrode active material support portion 16a filled with a negative electrode active material, an upper frame portion (upper peripheral edge portion) 16b formed in a band shape on the upper side of the negative electrode active material support portion 16a, and the like. It has a negative electrode ear portion 16c provided so as to partially project upward from the upper frame portion 16b. The negative electrode ear portion 16c is located closer to the center of the negative electrode plate 12 when viewed from the stacking direction of the negative electrode plate 12. The outer shape of the negative electrode active material support portion 16a is, for example, a rectangle (rectangle or square), and is formed in a grid pattern. As shown in FIG. 5B, the negative electrode active material support portion 16a may have a shape in which the lower corner portion is cut off.

正極集電体14及び負極集電体16は、それぞれ、例えば、鉛−カルシウム−錫合金、鉛−カルシウム合金、鉛−アンチモン合金等で形成されている。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより、正極耳部14cを有する正極集電体14及び負極耳部16cを有する負極集電体16がそれぞれ得られる。 The positive electrode current collector 14 and the negative electrode current collector 16 are formed of, for example, a lead-calcium-tin alloy, a lead-calcium alloy, a lead-antimony alloy, or the like, respectively. By forming these lead alloys in a grid pattern by a gravity casting method, an expanding method, a punching method, or the like, a positive electrode current collector 14 having a positive electrode ear portion 14c and a negative electrode current collector 16 having a negative electrode ear portion 16c are obtained, respectively. Be done.

正極活物質15は、Pb成分としてPbOを含み、必要に応じて、PbO以外のPb成分(例えばPbSO)及び添加剤を更に含む。負極活物質17は、Pb成分としてPb単体を含み、必要に応じてPb単体以外のPb成分(例えばPbSO)及び添加剤を更に含む。The positive electrode active material 15 contains PbO 2 as a Pb component, and further contains a Pb component (for example, PbSO 4 ) other than PbO 2 and an additive, if necessary. The negative electrode active material 17 contains Pb alone as a Pb component, and further contains a Pb component (for example, PbSO 4 ) other than Pb alone and an additive, if necessary.

図4では図示を省略しているが、図1に示すように、正極耳部14c同士は正極ストラップ18で集合溶接されている。同様に、負極耳部16c同士は負極ストラップ19で集合溶接されている。第1のセル室24aに収容された極板群4における負極ストラップ19は、接続部材20を介して、負極端子8から電槽2内に延びる負極柱5と接続されている。図示していないが、第1のセル室24aに収容された極板群4における負極ストラップ19と同様に、第6のセル室24fに収容された極板群4における正極ストラップ18は、接続部材を介して、正極端子7から電槽2内に延びる正極柱と接続されている。ストラップ(正極ストラップ18及び負極ストラップ19)並びに接続部材20は、それぞれ鉛、鉛合金(例えばPb、Sb、As等を含む合金)などで形成されている。他の一実施形態では、接続部材20は設けられていなくてよい。すなわち、正極柱が直接正極ストラップ18に接続(例えば溶接)されていてよく、負極柱5が直接負極ストラップ19に接続(例えば溶接)されていてよい。 Although not shown in FIG. 4, as shown in FIG. 1, the positive electrode ears 14c are collectively welded by the positive electrode strap 18. Similarly, the negative electrode ears 16c are collectively welded by the negative electrode strap 19. The negative electrode strap 19 in the electrode plate group 4 housed in the first cell chamber 24a is connected to the negative electrode column 5 extending from the negative electrode terminal 8 into the battery case 2 via the connecting member 20. Although not shown, the positive electrode strap 18 in the electrode plate group 4 housed in the sixth cell chamber 24f is a connecting member, similarly to the negative electrode strap 19 in the electrode plate group 4 housed in the first cell chamber 24a. Is connected to a positive electrode column extending from the positive electrode terminal 7 into the battery case 2. The straps (positive electrode strap 18 and negative electrode strap 19) and the connecting member 20 are each made of lead, a lead alloy (for example, an alloy containing Pb, Sb, As, etc.) or the like. In another embodiment, the connecting member 20 may not be provided. That is, the positive electrode column may be directly connected to the positive electrode strap 18 (for example, welded), and the negative electrode column 5 may be directly connected to the negative electrode strap 19 (for example, welded).

図4に示す極板群4における電極板(正極板11及び負極板12)の枚数は、正極板7枚に対して負極板8枚であるが、これに限定されない。例えば、電極板の枚数は、正極板5枚に対し負極板6枚であってもよく、正極板6枚に対し負極板7枚であってもよい。 The number of electrode plates (positive electrode plate 11 and negative electrode plate 12) in the electrode plate group 4 shown in FIG. 4 is not limited to 7 positive electrode plates and 8 negative electrode plates. For example, the number of electrode plates may be 6 negative electrode plates for 5 positive electrode plates, or 7 negative electrode plates for 6 positive electrode plates.

極板群4の厚さYは、特に限定されず、電極板の厚さ、セパレータ13の厚さ、スペーサの厚さ等によって調整することができる。なお、本明細書において、極板群4の厚さYとは、極板群4に対して電槽2からの圧縮力が加わっていない状態での極板群の厚さを意味し、化成後の極板群の厚さを意味する。 The thickness Y of the electrode plate group 4 is not particularly limited, and can be adjusted by the thickness of the electrode plate, the thickness of the separator 13, the thickness of the spacer, and the like. In the present specification, the thickness Y of the electrode plate group 4 means the thickness of the electrode plate group in a state where the compressive force from the electric tank 2 is not applied to the electrode plate group 4, and is formed. It means the thickness of the later electrode plate group.

極板群4の厚さYは、極板群4の最も外側にある電極板(図4においては負極板12)の集電体における上側フレーム部の下端(電極活物質が充填されている領域と、集電体の上側フレーム部との境界)より短手方向(積層方向に垂直な方向のうち、耳部が延びる方向)に±3mmの範囲において、極板群4の長手方向の中央で1点、中央より右側の任意の位置で1点、中央より左側の任意の位置で1点の計3点で測定した極板群4の厚さの平均値と定義される。ここで、図4のように、極板群4の最も外側にセパレータ13が配置された構成の場合、該セパレータ13のリブ13bの高さは極板群4の厚さには含めない。すなわち、極板群4の最も外側にセパレータ13が配置された構成の場合、該セパレータ13におけるリブ13bを支持する部分(ベース部)13aの位置で極板群4の厚さを測定する。ただし、電槽2の第1の側壁21がリブ25を有しない場合等、極板群の最も外側に配置されたセパレータのリブ13bが電槽2の第1の側壁21又は隔壁23に接触する場合には、当該リブ13bの高さを極板群の厚さに含めるものとする。化成後の鉛蓄電池における極板群4の厚さYは、例えば、化成後の極板群4を取り出し1時間水洗をし、硫酸の取り除かれた極板群4を酸素の存在しない系において充分に乾燥させた後に測定することができる。 The thickness Y of the electrode plate group 4 is the lower end (region filled with the electrode active material) of the upper frame portion in the current collector of the electrode plate (negative electrode plate 12 in FIG. 4) on the outermost side of the electrode plate group 4. And at the center of the longitudinal direction of the electrode group 4 within a range of ± 3 mm in the shorter direction (the direction in which the ear portion extends in the direction perpendicular to the stacking direction) from the boundary with the upper frame portion of the current collector). It is defined as the average value of the thickness of the electrode plate group 4 measured at one point, one point at an arbitrary position on the right side of the center, and one point at an arbitrary position on the left side of the center, for a total of three points. Here, as shown in FIG. 4, in the case where the separator 13 is arranged on the outermost side of the electrode plate group 4, the height of the rib 13b of the separator 13 is not included in the thickness of the electrode plate group 4. That is, in the case where the separator 13 is arranged on the outermost side of the electrode plate group 4, the thickness of the electrode plate group 4 is measured at the position of the portion (base portion) 13a of the separator 13 that supports the rib 13b. However, when the first side wall 21 of the electric tank 2 does not have the rib 25, the rib 13b of the separator arranged on the outermost side of the electrode plate group comes into contact with the first side wall 21 or the partition wall 23 of the electric tank 2. In this case, the height of the rib 13b shall be included in the thickness of the electrode plate group. The thickness Y of the electrode plate group 4 in the lead-acid battery after chemical conversion is, for example, sufficient for the electrode plate group 4 after chemical conversion to be taken out and washed with water for 1 hour to remove sulfuric acid from the electrode plate group 4 in an oxygen-free system. It can be measured after it has been dried to.

電槽2におけるセル室24の幅X(単位:mm)と極板群4の厚さY(単位:mm)の差(クリアランス:X−Y)は、2.0mm以下、1.8mm以下、1.7mm以下又は1.6mm以下であってよく、1.2mm以上、1.4mm以上、1.5mm以上又は1.6mm以上であってよい。上述の上限値及び下限値は、任意に組み合わせることができる。すなわち、クリアランス(X−Y)は、例えば、1.2〜2.0mm、1.4〜1.8mm又は1.5〜1.7mmであってよい。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 The difference (clearance: XY) between the width X (unit: mm) of the cell chamber 24 and the thickness Y (unit: mm) of the electrode plate group 4 in the electric tank 2 is 2.0 mm or less and 1.8 mm or less. It may be 1.7 mm or less or 1.6 mm or less, and may be 1.2 mm or more, 1.4 mm or more, 1.5 mm or more, or 1.6 mm or more. The above upper limit value and lower limit value can be arbitrarily combined. That is, the clearance (XY) may be, for example, 1.2 to 2.0 mm, 1.4 to 1.8 mm, or 1.5 to 1.7 mm. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.

次に、図6を参照して極柱6の詳細を説明する。図6は、図1のV−V線に沿った部分断面図である。なお、図6に示す極柱6は負極柱5であるが、正極柱は負極柱と同様(例えば同一)の構造である。負極柱5(極柱6)は、蓋3から電槽2内に延びている。より詳細には、負極柱5は、蓋3に設けられた負極端子8から延びる円錐台状に形成されている。負極柱5は、上底5a(6a)及び下底5b(6b)を有している。負極柱5の上底5a側の端部は負極端子8と溶接されており、負極柱5と負極端子8との接続部分には溶接部30が形成されている。一方、負極柱5の下底5b側の端部は接続部材20に溶接されている。以上の構成により、負極柱5は極板群4を負極端子8に電気的に接続している。他の一実施形態では、負極柱5は円柱状であってよい。また、他の一実施形態では、負極柱5の延在方向に垂直な断面の形状は円形状でなくてもよく、例えば矩形状であってもよい。また、他の一実施形態では、正極柱と負極柱の構造が互いに異なっていてもよい。 Next, the details of the pole column 6 will be described with reference to FIG. FIG. 6 is a partial cross-sectional view taken along the line VV of FIG. The polar column 6 shown in FIG. 6 is a negative electrode column 5, but the positive electrode column has the same (for example, the same) structure as the negative electrode column. The negative electrode column 5 (pole column 6) extends from the lid 3 into the electric tank 2. More specifically, the negative electrode column 5 is formed in a truncated cone shape extending from the negative electrode terminal 8 provided on the lid 3. The negative electrode column 5 has an upper base 5a (6a) and a lower base 5b (6b). The end portion of the negative electrode column 5 on the upper bottom 5a side is welded to the negative electrode terminal 8, and the welded portion 30 is formed at the connecting portion between the negative electrode column 5 and the negative electrode terminal 8. On the other hand, the end portion of the negative electrode column 5 on the lower bottom 5b side is welded to the connecting member 20. With the above configuration, the negative electrode column 5 electrically connects the electrode plate group 4 to the negative electrode terminal 8. In another embodiment, the negative electrode column 5 may be cylindrical. Further, in another embodiment, the shape of the cross section perpendicular to the extending direction of the negative electrode column 5 does not have to be circular, and may be, for example, rectangular. Further, in another embodiment, the structures of the positive electrode column and the negative electrode column may be different from each other.

極柱6の高さ(極柱6の延在方向の長さ)hは、極柱の破損の発生が更に抑制される観点から、好ましくは85mm以下であり、より好ましくは84mm以下である。極柱6の高さhは、電解液の液面を高くした場合であっても電解液の溢液を抑制しやすく、極板群4と電極端子9とを電気的に接続できる観点から、46mm以上又は63mm以上であってよい。これらの観点から、極柱6の高さhは、46〜85mm、63〜85mm又は63〜84mmであってよい。なお、極柱6の高さhとは、図6に示すように、極柱6の電槽2側の先端から、極柱6の蓋3側の先端までの最短距離である。極柱6の高さhは、例えば、鉛蓄電池の電極端子9部分を図6のように切断して観察される、接続部材20と極柱6との溶接部分の境界(極柱6の電槽2側の先端)から、溶接部30と極柱6との溶接部分の境界(極柱6の蓋3側の先端)までの最短距離を測定することにより得られる。 The height (length in the extending direction of the pole pillar 6) h of the pole pillar 6 is preferably 85 mm or less, more preferably 84 mm or less, from the viewpoint of further suppressing the occurrence of damage to the pole pillar. The height h of the pole column 6 is easy to suppress the overflow of the electrolytic solution even when the liquid level of the electrolytic solution is raised, and from the viewpoint that the electrode plate group 4 and the electrode terminal 9 can be electrically connected. It may be 46 mm or more or 63 mm or more. From these viewpoints, the height h of the pole column 6 may be 46 to 85 mm, 63 to 85 mm, or 63 to 84 mm. As shown in FIG. 6, the height h of the pole pillar 6 is the shortest distance from the tip of the pole pillar 6 on the electric tank 2 side to the tip of the pole pillar 6 on the lid 3 side. The height h of the pole pillar 6 is observed, for example, by cutting the electrode terminal 9 portion of the lead storage battery as shown in FIG. 6, and observing the boundary of the welded portion between the connecting member 20 and the pole pillar 6 (electricity of the pole pillar 6). It is obtained by measuring the shortest distance from (the tip on the tank 2 side) to the boundary (the tip on the lid 3 side of the pole column 6) of the welded portion between the welded portion 30 and the pole column 6.

極柱6の根本径(電槽2側の端部の径)Rは、9.5mm以上、9.6mm以上又は9.8mm以上であってよい。極柱6の根本径Rは、極柱の溶断を抑制しやすい観点から、好ましくは10.0mm以上であり、より好ましくは11.2mm以上であり、更に好ましくは12.5mm以上である。根本径Rは、鉛蓄電池の軽量化に有利となる観点から、13.0mm以下又は12.5mm以下であってよい。これらの観点から、根本径Rは、9.5〜13.0mm、9.6〜13.0mm、9.8〜13.0mm、10.0〜13.0mm、10.0〜12.5mm、11.2〜13.0mm、11.2〜12.5mm又は12.5〜13.0mmであってよい。なお、極柱6の根本径Rとは、図6に示すように、極柱6の電槽2側の先端(例えば接続部材20と極柱6との溶接の境界)における極柱6の高さ方向に垂直な方向の長さを意味する。なお、極柱6の高さ方向に垂直な断面の形状が円形である場合、極柱6の根本径Rとは、その円の直径を意味し、極柱6の高さ方向に垂直な断面の形状が円形以外の形状(例えば多角形)である場合、極柱6の根本径Rとは、その内接円の直径を意味する。 The root diameter (diameter of the end portion on the electric tank 2 side) R of the pole column 6 may be 9.5 mm or more, 9.6 mm or more, or 9.8 mm or more. The root diameter R of the pole pillar 6 is preferably 10.0 mm or more, more preferably 11.2 mm or more, still more preferably 12.5 mm or more, from the viewpoint of easily suppressing the melting of the pole pillar. The root diameter R may be 13.0 mm or less or 12.5 mm or less from the viewpoint of being advantageous in reducing the weight of the lead storage battery. From these viewpoints, the root diameter R is 9.5 to 13.0 mm, 9.6 to 13.0 mm, 9.8 to 13.0 mm, 10.0 to 13.0 mm, 10.0 to 12.5 mm, It may be 11.2 to 13.0 mm, 11.2 to 12.5 mm or 12.5-13.0 mm. As shown in FIG. 6, the root diameter R of the pole pillar 6 is the height of the pole pillar 6 at the tip of the pole pillar 6 on the electric tank 2 side (for example, the boundary of welding between the connecting member 20 and the pole pillar 6). It means the length in the direction perpendicular to the vertical direction. When the shape of the cross section perpendicular to the height direction of the pole pillar 6 is circular, the root diameter R of the pole pillar 6 means the diameter of the circle, and the cross section perpendicular to the height direction of the pole pillar 6 When the shape of is a shape other than a circle (for example, a polygonal shape), the root diameter R of the pole column 6 means the diameter of the inscribed circle thereof.

極柱6の最小径rは、極柱の破損の発生が更に抑制される観点から、好ましくは6.8mm以上であり、より好ましくは7.0mm以上である。最小径rは、鉛蓄電池の軽量化に有利となる観点から、7.2mm以下又は7.1mm以下であってよい。これらの観点から、最小径rは、6.8〜7.2mm、6.8〜7.1mm、7.0〜7.2mm、又は7.0〜7.1mmであってよい。なお、極柱6の最小径rとは、極柱6の高さ方向に垂直な方向の長さの最小値である。本実施形態では、図6に示すように、極柱6の蓋3側の先端(溶接部30と極柱6との溶接の境界)における極柱6の高さ方向に垂直な方向の長さが最小径rとなる。 The minimum diameter r of the pole column 6 is preferably 6.8 mm or more, more preferably 7.0 mm or more, from the viewpoint of further suppressing the occurrence of damage to the pole pillar. The minimum diameter r may be 7.2 mm or less or 7.1 mm or less from the viewpoint of being advantageous in reducing the weight of the lead storage battery. From these viewpoints, the minimum diameter r may be 6.8 to 7.2 mm, 6.8 to 7.1 mm, 7.0 to 7.2 mm, or 7.0 to 7.1 mm. The minimum diameter r of the pole pillar 6 is the minimum value of the length in the direction perpendicular to the height direction of the pole pillar 6. In the present embodiment, as shown in FIG. 6, the length of the pole column 6 at the tip on the lid 3 side (the boundary of welding between the welded portion 30 and the pole column 6) in the direction perpendicular to the height direction of the pole column 6. Is the minimum diameter r.

極柱6の電槽2側の先端面(例えば極柱6と接続部材20とが接する面)の面積Sは、71mm以上、72mm以上又は75mm以上であってよい。面積Sは、極柱の溶断を抑制しやすい観点から、好ましくは100mm以上であり、より好ましくは123mm以上である。面積Sは、鉛蓄電池の軽量化に有利となる観点から、133mm以下又は123mm以下であってよい。これらの観点から、面積Sは、71〜133mm、72〜133mm、75〜133mm、100〜133mm、100〜123mm又は123〜133mmであってよい。The area S of the tip surface (for example, the surface where the pole column 6 and the connecting member 20 are in contact with each other) on the electric tank 2 side of the pole column 6 may be 71 mm 2 or more, 72 mm 2 or more, or 75 mm 2 or more. The area S is preferably 100 mm 2 or more, and more preferably 123 mm 2 or more, from the viewpoint of easily suppressing the fusing of the pole column. Area S, from the viewpoint of an advantage to a reduction in the weight of the lead-acid battery, may be at 133 mm 2 or less or 123 mm 2 or less. From these viewpoints, the area S may be 71 to 133 mm 2 , 72 to 133 mm 2 , 75 to 133 mm 2 , 100 to 133 mm 2 , 100 to 123 mm 2 or 123 to 133 mm 2 .

極柱6の体積Vは、鉛蓄電池の軽量化に有利となる観点から、6855mm以下又は6831mm以下であってよい。極柱6の体積Vは、4400mm以上又は4610mm以上であってよい。極柱6の体積Vは、極柱の抵抗を充分に小さくすることができ、極柱でのジュール熱の発生を抑制して極柱の溶断を抑制しやすい観点から、好ましくは5723mm以上であり、より好ましくは6276mm以上であり、更に好ましくは6831mm以上である。これらの観点から、極柱6の体積Vは、4400〜6855mm、4610〜6855mm、5723〜6855mm、6276〜6855mm、6276〜6831mm又は6831〜6855mmであってよい。極柱6の体積Vは、極柱の寸法を測定し算出することができる。The volume V of the pole 6, from the viewpoint of an advantage to a reduction in the weight of the lead-acid battery, may be at 6855Mm 3 or less or 6831Mm 3 below. The volume V of the pole 6 may be at 4400Mm 3 or more or 4610Mm 3 or more. The volume V of the pole column 6 is preferably 5723 mm 3 or more from the viewpoint that the resistance of the pole column can be sufficiently reduced, the generation of Joule heat in the pole column is suppressed, and the fusing of the pole column is easily suppressed. There, more preferably 6276Mm 3 or more, further preferably 6831Mm 3 or more. From these viewpoints, the volume V of the pole 6, 4400~6855mm 3, 4610~6855mm 3, 5723~6855mm 3, 6276~6855mm 3, may be 6276~6831Mm 3 or 6831~6855mm 3. The volume V of the pole pillar 6 can be calculated by measuring the dimensions of the pole pillar.

極柱6(正極柱及び負極柱5)の組成は、ストラップ(正極ストラップ18及び負極ストラップ19)並びに接続部材20と同じ組成であってよい。例えば、極柱6は、Pb−Sb系合金で構成されていてよい。 The composition of the pole column 6 (positive electrode column and negative electrode column 5) may be the same as that of the strap (positive electrode strap 18 and negative electrode strap 19) and the connecting member 20. For example, the pole column 6 may be made of a Pb—Sb based alloy.

セパレータ13は、平板(シート)状のベース部13a、ベース部13aの外側面上に形成された複数のリブ13b及び複数のミニリブ13cとを備えている。セパレータ13は、袋状に形成されており、負極板12を収容している。具体的には、ベース部13a、複数のリブ13b及び複数のミニリブ13cを備える長尺状のシートが、リブ13b及びミニリブ13cが外側になるように折り返され、長辺に沿って閉じられることにより袋状となっている。他の一実施形態では、セパレータ13が正極板11を収容していてよい。
また、セパレータ13は袋状に形成されていなくてもよい。
The separator 13 includes a flat plate (sheet) -shaped base portion 13a, a plurality of ribs 13b formed on the outer surface of the base portion 13a, and a plurality of mini ribs 13c. The separator 13 is formed in a bag shape and houses the negative electrode plate 12. Specifically, a long sheet having a base portion 13a, a plurality of ribs 13b, and a plurality of mini ribs 13c is folded back so that the ribs 13b and the mini ribs 13c are on the outside, and is closed along the long side. It is in the shape of a bag. In another embodiment, the separator 13 may accommodate the positive electrode plate 11.
Further, the separator 13 does not have to be formed in a bag shape.

セパレータ13は、例えば、ガラス、パルプ、及び合成樹脂からなる群より選択される少なくとも1種の材料を含む。セパレータ13は、可撓性を有するセパレータであってよく、短絡をより抑制できる観点及び可撓性を有することにより極板群4の圧縮が容易である観点から、合成樹脂で形成されたセパレータであってよい。合成樹脂の中でも特に、ポリオレフィン(例えばポリエチレン及びポリプロピレン)が好ましく用いられる。 The separator 13 contains, for example, at least one material selected from the group consisting of glass, pulp, and synthetic resin. The separator 13 may be a flexible separator, and is a separator formed of a synthetic resin from the viewpoint of further suppressing a short circuit and from the viewpoint of facilitating compression of the electrode plate group 4 due to the flexibility. It may be there. Among the synthetic resins, polyolefins (for example, polyethylene and polypropylene) are preferably used.

図4では図示を省略しているが、正極板11と負極板12との間にはスペーサが設けられていてよい。スペーサは、正極板11とセパレータ13との間に設けられていてよく、負極板12とセパレータ13との間に設けられていてもよい。本実施形態では、極板群4がスペーサを備えるため、鉛蓄電池を振動させたときの極柱の最大加速度を低減することができ、極柱の破損の発生を更に抑制することができる。スペーサは、例えば、シート状に形成されている。スペーサは、例えば多孔性の膜(多孔膜)であり、例えば不織布である。 Although not shown in FIG. 4, a spacer may be provided between the positive electrode plate 11 and the negative electrode plate 12. The spacer may be provided between the positive electrode plate 11 and the separator 13, and may be provided between the negative electrode plate 12 and the separator 13. In the present embodiment, since the electrode plate group 4 includes the spacer, the maximum acceleration of the pole column when the lead storage battery is vibrated can be reduced, and the occurrence of damage to the pole column can be further suppressed. The spacer is formed in a sheet shape, for example. The spacer is, for example, a porous membrane (porous membrane), for example, a non-woven fabric.

スペーサの構成材料は、電解液に対して耐性を有する材料であれば、特に制限されるものではない。スペーサの構成材料としては、具体的には、有機繊維、無機繊維、パルプ、無機酸化物粉末等が挙げられる。スペーサの構成材料として、無機繊維及びパルプを含む混合繊維を用いてもよく、有機繊維及び無機繊維を含む有機無機混合繊維を用いてもよい。有機繊維としては、ポリオレフィン繊維(ポリエチレン繊維、ポリプロピレン繊維等)、ポリエチレンテレフタレート繊維などが挙げられる。無機繊維としては、ガラス繊維等が挙げられる。 The constituent material of the spacer is not particularly limited as long as it is a material having resistance to the electrolytic solution. Specific examples of the constituent material of the spacer include organic fibers, inorganic fibers, pulp, and inorganic oxide powder. As a constituent material of the spacer, a mixed fiber containing an inorganic fiber and a pulp may be used, or an organic-inorganic mixed fiber containing an organic fiber and an inorganic fiber may be used. Examples of the organic fiber include polyolefin fiber (polyethylene fiber, polypropylene fiber, etc.), polyethylene terephthalate fiber, and the like. Examples of the inorganic fiber include glass fiber and the like.

極柱の最大加速度を低減し、極柱の破損の発生を更に抑制する観点から、スペーサは、好ましくは、ガラス繊維をフェルト状に加工することにより形成されるガラスマットである。ガラス繊維としては、例えば、チョップドストランド、ミルドファイバー等が挙げられる。なお、ガラスマットはガラス繊維のみからなっていてよく、ガラス繊維以外の他の材料(例えば上述の有機繊維等)を含んでいてもよい。 From the viewpoint of reducing the maximum acceleration of the pole column and further suppressing the occurrence of damage to the pole pillar, the spacer is preferably a glass mat formed by processing glass fibers into a felt shape. Examples of glass fibers include chopped strands and milled fibers. The glass mat may be composed of only glass fibers, and may contain materials other than glass fibers (for example, the above-mentioned organic fibers).

本実施形態では、極柱6の最小径r(単位:mm)に対する極板群4の質量M(単位:g)の比(M/r)が220g/mm以下である。比(M/r)が220g/mm以下であることにより、鉛蓄電池に対して振動が加わることによる極柱の破損の発生が抑制される。比(M/r)は、215g/mm以下又は212g/mm以下であってもよい。比(M/r)は、極柱の破損の発生が抑制されると共に放電容量(放電持続時間)が増加する観点から、200g/mm以上であってよい。これらの観点から、比(M/r)は、200〜220g/mm、200〜215g/mm又は200〜212g/mmであってよい。なお、本実施形態では、正極柱の最小径r1(単位:mm)に対する極板群4の質量M(単位:g)の比(M/r1)及び負極柱5の最小径r2(単位:mm)に対する極板群4の質量M(単位:g)の比(M/r2)の少なくとも一方が上記比(M/r)の範囲を満たせばよく、比(M/r1)及び比(M/r2)の両方が上記比(M/r)の範囲を満たすことが好ましい。 In the present embodiment, the ratio (M / r) of the mass M (unit: g) of the electrode plate group 4 to the minimum diameter r (unit: mm) of the pole column 6 is 220 g / mm or less. When the ratio (M / r) is 220 g / mm or less, the occurrence of damage to the pole column due to vibration applied to the lead storage battery is suppressed. The ratio (M / r) may be 215 g / mm or less or 212 g / mm or less. The ratio (M / r) may be 200 g / mm or more from the viewpoint of suppressing the occurrence of damage to the pole column and increasing the discharge capacity (discharge duration). From these viewpoints, the ratio (M / r) may be 200 to 220 g / mm, 200 to 215 g / mm or 200 to 212 g / mm. In the present embodiment, the ratio (M / r1) of the mass M (unit: g) of the electrode plate group 4 to the minimum diameter r1 (unit: mm) of the positive electrode column and the minimum diameter r2 (unit: mm) of the negative electrode column 5 ) To at least one of the ratio (M / r2) of the mass M (unit: g) of the electrode plate group 4 to satisfy the above range of the ratio (M / r), and the ratio (M / r1) and the ratio (M / r1). It is preferable that both of r2) satisfy the above range of ratio (M / r).

極板群4の質量Mは、化成後の質量である。ストラップ(正極ストラップ18又は負極ストラップ19)及び接続部材20の質量は、極板群4の質量Mには含まれない。化成後の鉛蓄電池における極板群4の質量Mは、例えば以下の方法により測定することができる。まず、化成後の鉛蓄電池1の、極柱が位置するセル室(例えば第1のセル室24a又は第6のセル室24f)に収容された極板群4を電槽2から取り出す。次いで、極板群4とストラップとを、極板群4の電極板の耳部とストラップとの境界部分において切り離す。
得られた極板群4を1時間水洗し、洗浄後の極板群4を酸素の存在しない系において充分に乾燥させる(例えば、50℃で24時間乾燥させる)。次いで、極板群4の質量を測定する(水洗及び乾燥過程で極板群4から脱落した電極活物質がある場合は、それらを回収し、極板群4の質量に含めた上で極板群4の質量を測定する)。これにより極板群4の質量Mが得られる。
The mass M of the electrode plate group 4 is the mass after chemical conversion. The mass of the strap (positive electrode strap 18 or negative electrode strap 19) and the connecting member 20 is not included in the mass M of the electrode group 4. The mass M of the electrode plate group 4 in the lead-acid battery after chemical conversion can be measured by, for example, the following method. First, the electrode plate group 4 housed in the cell chamber (for example, the first cell chamber 24a or the sixth cell chamber 24f) in which the pole pillar is located of the lead-acid battery 1 after chemical conversion is taken out from the electric tank 2. Next, the electrode plate group 4 and the strap are separated at the boundary portion between the selvage portion and the strap of the electrode plate of the electrode plate group 4.
The obtained electrode plate group 4 is washed with water for 1 hour, and the washed electrode plate group 4 is sufficiently dried in an oxygen-free system (for example, dried at 50 ° C. for 24 hours). Next, the mass of the electrode plate group 4 is measured (if there is an electrode active material that has fallen off from the electrode plate group 4 during the washing and drying process, they are collected, included in the mass of the electrode plate group 4, and then the electrode plate is used. Measure the mass of group 4). As a result, the mass M of the electrode plate group 4 is obtained.

極板群4の質量Mは、極柱の破損の発生を更に抑制する観点から、好ましくは1550g以下であり、より好ましくは1530g以下であり、更に好ましくは1510g以下である。極板群4の質量Mは、極柱の破損の発生が抑制されると共に放電容量(放電持続時間)が増加する観点から、1000g以上、1200g以上又は1400g以上であってよい。これらの観点から、極板群4の質量Mは、1000〜1550g、1200〜1530g又は1400〜1510gであってよい。 The mass M of the electrode plate group 4 is preferably 1550 g or less, more preferably 1530 g or less, still more preferably 1510 g or less, from the viewpoint of further suppressing the occurrence of damage to the polar columns. The mass M of the electrode plate group 4 may be 1000 g or more, 1200 g or more, or 1400 g or more from the viewpoint of suppressing the occurrence of damage to the polar columns and increasing the discharge capacity (discharge duration). From these viewpoints, the mass M of the electrode plate group 4 may be 1000 to 1550 g, 1200 to 1530 g, or 1400 to 1510 g.

以上の構成を備える鉛蓄電池1によれば、振動時における極柱の破損の発生を抑制することができる。特に、従来の鉛蓄電池と比較して、電極板の積層方向に振動が加わった場合の極柱の破損の発生が抑制される傾向がある。 According to the lead-acid battery 1 having the above configuration, it is possible to suppress the occurrence of damage to the pole column during vibration. In particular, as compared with the conventional lead-acid battery, the occurrence of damage to the pole column when vibration is applied in the stacking direction of the electrode plates tends to be suppressed.

以上説明した鉛蓄電池の製造方法は、例えば、電槽2のセル室24に極板群4を収容する工程(収容工程)と、極柱6(正極柱及び負極柱5)を介して極板群4のストラップ(正極ストラップ18及び負極ストラップ19)を電極端子9(正極端子7及び負極端子8)に電気的に接続する工程(接続工程)と、電槽2内に電解液を供給する工程(供給工程)と、電解液を供給した後の未化成電池を化成する工程(化成工程)と、を備える。 The lead-acid battery manufacturing method described above includes, for example, a step of accommodating the electrode plate group 4 in the cell chamber 24 of the electric tank 2 (accommodation step) and an electrode plate via the electrode column 6 (positive electrode column and negative electrode column 5). A step of electrically connecting the straps of group 4 (positive electrode strap 18 and negative electrode strap 19) to the electrode terminals 9 (positive electrode terminal 7 and negative electrode terminal 8) (connection step) and a step of supplying an electrolytic solution into the battery case 2. (Supply step) and a step (chemical step) of forming an unchemical battery after supplying the electrolytic solution are provided.

極板群4は、例えば、未化成の電極板(未化成の正極板及び未化成の負極板)を得る電極板製造工程と、電極板製造工程で得られた未化成の負極板を内部に配置した袋状のセパレータ13、スペーサ及び未化成の正極板をこの順に積層させ、同極性の電極板の耳部をストラップ(正極ストラップ18又は負極ストラップ19)で連結(溶接等)させて極板群4を得る工程と、により得てよい。電極板製造工程では、例えば、電極活物質ペースト(正極活物質ペースト及び負極活物質ペースト)を集電体(例えば、鋳造格子体、エキスパンド格子体等の集電体格子)に充填した後に、熟成及び乾燥を行うことにより未化成の電極板を得る。 In the electrode plate group 4, for example, an electrode plate manufacturing process for obtaining an unchemical electrode plate (a non-chemical positive electrode plate and a non-chemical negative electrode plate) and an unchemical negative electrode plate obtained in the electrode plate manufacturing process are inside. The arranged bag-shaped separator 13, spacers, and unchemical positive electrode plates are laminated in this order, and the ears of the electrode plates having the same polarity are connected (welded, etc.) with a strap (positive electrode strap 18 or negative electrode strap 19) to form an electrode plate. It may be obtained by the step of obtaining the group 4. In the electrode plate manufacturing process, for example, the electrode active material paste (positive electrode active material paste and negative electrode active material paste) is filled in a current collector (for example, a current collector lattice such as a cast lattice or an expanded lattice) and then aged. And drying to obtain an unchemical electrode plate.

電極活物質ペーストは、例えば、電極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。電極活物質ペーストは、例えば、電極活物質の原料に添加剤(補強用短繊維等)及び水を加えた後、希硫酸を加え、混練することで得られる。 The electrode active material paste contains, for example, a raw material (lead powder or the like) for the electrode active material, and may further contain other additives. The electrode active material paste can be obtained, for example, by adding an additive (reinforcing short fibers or the like) and water to the raw material of the electrode active material, then adding dilute sulfuric acid and kneading.

接続工程では、極柱6と、該極柱6が接続される電極端子9と同極性の耳部を連結するストラップと、を接続部材20を介して電気的に接続する。 In the connection step, the pole pillar 6 and the strap connecting the electrode terminal 9 to which the pole pillar 6 is connected and the selvage portion having the same polarity are electrically connected via the connecting member 20.

供給工程では、上記収容工程及び接続工程を経て得られた未化成電池の電槽2の開口を蓋3で閉じた後、電槽2内に電解液を供給(注入)する。 In the supply step, after closing the opening of the battery 2 of the unchemical battery obtained through the accommodating step and the connecting step with the lid 3, the electrolytic solution is supplied (injected) into the battery 2.

化成工程は、例えば、電解液を供給した後、直流電流を通電して電槽化成する工程であってよい。化成後は、電解液の比重を適切な比重に調整してよい。これにより、化成された鉛蓄電池(液式鉛蓄電池)1が得られる。 The chemical conversion step may be, for example, a step of supplying an electrolytic solution and then energizing a direct current to form an electric tank. After the chemical conversion, the specific gravity of the electrolytic solution may be adjusted to an appropriate specific gravity. As a result, a chemical lead-acid battery (liquid-type lead-acid battery) 1 is obtained.

化成条件及び硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、未化成電池を得た後に実施されることに限られず、電極板製造工程における熟成及び乾燥後に実施されてもよい(タンク化成)。 The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. Further, the chemical conversion treatment is not limited to being carried out after obtaining a non-chemical battery, and may be carried out after aging and drying in the electrode plate manufacturing process (tank chemical conversion).

以上、本発明の鉛蓄電池及びその製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。 Although the lead storage battery of the present invention and one embodiment of the manufacturing method thereof have been described above, the present invention is not limited to the above embodiment.

上記実施形態では、鉛蓄電池1は液式鉛蓄電池であるが、他の一実施形態では、鉛蓄電池は、例えば、制御弁式鉛蓄電池、密閉式鉛蓄電池等であってもよい。上記実施形態では、鉛蓄電池1は例えば自動車用鉛蓄電池であり、直流電圧12Vを昇圧又は降圧して駆動するため、6個の極板群4を直列に接続している。すなわち、セル室の数が6個であり、2V×6=12Vとしている。鉛蓄電池1を他の用途で用いる場合は、セル室の数は6個でなくてもよい。 In the above embodiment, the lead storage battery 1 is a liquid lead storage battery, but in another embodiment, the lead storage battery may be, for example, a control valve type lead storage battery, a closed type lead storage battery, or the like. In the above embodiment, the lead-acid battery 1 is, for example, a lead-acid battery for automobiles, and six electrode plate groups 4 are connected in series in order to boost or step down the DC voltage of 12 V for driving. That is, the number of cell chambers is 6, and 2V × 6 = 12V. When the lead-acid battery 1 is used for other purposes, the number of cell chambers does not have to be six.

以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

(実施例1)
鉛合金からなる圧延シートにエキスパンド加工を施すことによりエキスパンド格子体(集電体)を作製した。続いて、鉛粉及び鉛丹(Pb)と、添加剤と、水とを混合して混練し、希硫酸を少量ずつ添加しながら更に混練して、正極活物質ペーストを作製した。同様に、鉛粉と、添加剤と、水とを混合して混練し、希硫酸を少量ずつ添加しながら更に混練して、負極活物質ペーストを作製した。次いで、集電体にこの正極活物質ペースト及び負極活物質ペーストをそれぞれ充填し、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の正極板及び未化成の負極板を得た。
(Example 1)
An expanded lattice body (current collector) was produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Subsequently, lead powder and lead tan (Pb 3 O 4 ), an additive, and water were mixed and kneaded, and further kneaded while adding dilute sulfuric acid little by little to prepare a positive electrode active material paste. Similarly, lead powder, an additive, and water were mixed and kneaded, and further kneaded while adding dilute sulfuric acid little by little to prepare a negative electrode active material paste. Next, the current collector was filled with the positive electrode active material paste and the negative electrode active material paste, respectively, and aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it was dried to obtain a non-chemical positive electrode plate and a non-chemical negative electrode plate.

微多孔性のポリエチレンからなり、厚さ0.25mmのベース部と、高さ0.70mmのリブ部を有する袋状のセパレータを用意した。このセパレータに未化成の負極板を収容し、未化成の正極板5枚と袋状のセパレータにそれぞれ収容された未化成の負極板6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で同極性の極板の耳部同士を溶接して極板群を作製した。 A bag-shaped separator made of microporous polyethylene and having a base portion having a thickness of 0.25 mm and a rib portion having a height of 0.70 mm was prepared. An unchemicald negative electrode plate was housed in this separator, and five unchemicald positive electrode plates and six unchemicald negative electrode plates housed in each of the bag-shaped separators were alternately laminated. Subsequently, the ears of the plates having the same polarity were welded to each other by a cast-on-strap (COS) method to prepare a group of plates.

6個のセル室を有する電槽の各セル室に極板群を収容して、12V電池を組み立てた。
この際、両端のセル室(第1及び第6のセル室)においては、極板群をセル室に収容すると共に、ストラップと極柱(正極柱又は負極柱)とを接続部材を介して電気的に接続した。クリアランス(セル室の幅X−極板群の厚さY)は、1.6mmとなるように調整した。極板群をセル室に収容する際に極板群に対して電槽の開口に垂直な方向に加えた圧力Fは3.5Nであった。極柱(正極柱及び負極柱)としては、高さhが84mmであり、最小径rが7.0mmであり、極柱の根本径Rが9.6mmであり、体積Vが4449.8mmであり、下端の面積S(接続部材と接する面の面積)が72mmである、鉛合金製の極柱を用いた。鉛合金は、鉛と、アンチモン(Sb)との合金であり、鉛合金中のアンチモンの含有量は、鉛合金の全質量基準で、2.9質量%であった。
A group of plates was housed in each cell chamber of an electric tank having 6 cell chambers, and a 12V battery was assembled.
At this time, in the cell chambers at both ends (first and sixth cell chambers), the electrode plate group is housed in the cell chamber, and the strap and the electrode column (positive electrode column or negative electrode column) are electrically connected via the connecting member. Connected. The clearance (width X of the cell chamber-thickness Y of the electrode plate group) was adjusted to 1.6 mm. The pressure F applied in the direction perpendicular to the opening of the electric tank with respect to the electrode plate group when accommodating the electrode plate group in the cell chamber was 3.5 N. As the pole pillars (positive electrode pillar and negative electrode pillar), the height h is 84 mm, the minimum diameter r is 7.0 mm, the root diameter R of the pole pillar is 9.6 mm, and the volume V is 4449.8 mm 3. A lead alloy pole column having an lower end area S (the area of the surface in contact with the connecting member) of 72 mm 2 was used. The lead alloy is an alloy of lead and antimony (Sb), and the content of antimony in the lead alloy was 2.9% by mass based on the total mass of the lead alloy.

次いで、電槽に電解液(希硫酸)を注入した。その後、35℃の水槽中、通電電流18.6Aで18時間の条件で化成して液式鉛蓄電池を得た。化成後の極板群の質量Mは1476gであった。 Next, an electrolytic solution (dilute sulfuric acid) was injected into the electric tank. Then, a liquid lead-acid battery was obtained by chemical conversion in a water tank at 35 ° C. under the condition of an energizing current of 18.6 A for 18 hours. The mass M of the electrode plate group after the chemical conversion was 1476 g.

(実施例2)
極柱の構成を表1に示すように変更したこと、及び、極板群の質量Mが表1に示す値となるように極板群の構成を変更したこと以外は、実施例1と同様にして鉛蓄電池を作製した。なお、極板群の質量Mは、電極活物質の充填量を変更すると共に、未化成の正極板6枚と袋状のセパレータにそれぞれ収容された未化成の負極板7枚とを交互に積層して極板群を構成することにより調整した。
(Example 2)
Same as in Example 1 except that the configuration of the electrode column was changed as shown in Table 1 and the configuration of the electrode plate group was changed so that the mass M of the electrode plate group became the value shown in Table 1. To make a lead storage battery. For the mass M of the electrode plate group, the filling amount of the electrode active material is changed, and 6 unchemicald positive electrode plates and 7 unchemicald negative electrode plates housed in the bag-shaped separators are alternately laminated. Then, it was adjusted by forming a group of electrode plates.

(実施例3)
極柱の構成を表1に示すように変更したこと、及び、極板群の質量Mが表1に示す値となるように極板群の構成を変更したこと以外は、実施例1と同様にして鉛蓄電池を作製した。なお、極板群の質量Mは、電極活物質の充填量を変更すると共に、未化成の正極板7枚と袋状のセパレータにそれぞれ収容された未化成の負極板8枚とを交互に積層して極板群を構成することにより調整した。
(Example 3)
Same as in Example 1 except that the configuration of the electrode column was changed as shown in Table 1 and the configuration of the electrode plate group was changed so that the mass M of the electrode plate group became the value shown in Table 1. To make a lead storage battery. For the mass M of the electrode plate group, the filling amount of the electrode active material is changed, and seven unchemical positive electrode plates and eight unchemical negative electrode plates housed in the bag-shaped separators are alternately laminated. Then, it was adjusted by forming a group of electrode plates.

(実施例4)
極板群の質量Mが表1に示す値となるように極板群の構成を変更したこと以外は、実施例3と同様にして鉛蓄電池を作製した。なお、極板群の質量Mは、電極活物質の充填量により調整した。
(Example 4)
A lead-acid battery was produced in the same manner as in Example 3 except that the configuration of the electrode plate group was changed so that the mass M of the electrode plate group became the value shown in Table 1. The mass M of the electrode plate group was adjusted by the filling amount of the electrode active material.

(比較例1)
極板群の質量Mが表1に示す値となるように極板群の構成を変更したこと以外は、実施例3と同様にして鉛蓄電池を作製した。なお、極板群の質量Mは、電極活物質の充填量により調整した。
(Comparative Example 1)
A lead-acid battery was produced in the same manner as in Example 3 except that the configuration of the electrode plate group was changed so that the mass M of the electrode plate group became the value shown in Table 1. The mass M of the electrode plate group was adjusted by the filling amount of the electrode active material.

<振動試験>
実施例及び比較例の鉛蓄電池に対し、振動試験を行った。具体的には、以下の条件で鉛蓄電池を電極板の積層方向に振動させた。なお、振動試験は振動数を変更して複数回行った。
[条件]
試験装置:ランダム振動制御システム(i230/SA2M)(商品名、IMV株式会社製)
振動数:24.0Hz、37.5Hz、39.5Hz、45.5Hz、51.0Hz
各振動数での振動時間:1200分
<Vibration test>
Vibration tests were performed on the lead-acid batteries of Examples and Comparative Examples. Specifically, the lead-acid battery was vibrated in the stacking direction of the electrode plates under the following conditions. The vibration test was performed a plurality of times by changing the frequency.
[conditions]
Test device: Random vibration control system (i230 / SA2M) (trade name, manufactured by IMV Corporation)
Frequency: 24.0Hz, 37.5Hz, 39.5Hz, 45.5Hz, 51.0Hz
Vibration time at each frequency: 1200 minutes

試験後の鉛蓄電池の蓋を取り外し、目視により試験後の鉛蓄電池における極柱の破損の発生の有無を確認した。いずれの振動数でも極柱に破損が発生しなかった場合をAとし、いずれかの振動数で極柱に亀裂が発生した場合をBとし、いずれかの振動数で極柱が破断した場合をCとした。結果を表1に示す。 The lid of the lead-acid battery after the test was removed, and it was visually confirmed whether or not the pole column was damaged in the lead-acid battery after the test. A is the case where the pole column is not damaged at any frequency, B is the case where the pole column is cracked at any frequency, and B is the case where the pole column is broken at any frequency. It was designated as C. The results are shown in Table 1.

<溶断試験>
実施例及び比較例の鉛蓄電池に対し、溶断試験を行った。具体的には、まず、鉛蓄電池を40℃の水槽中に16時間以上放置した後、完全充電状態とし、400Aの定電流で放電を1分間継続して行った。この際、電解液の液面高さはストラップの上部が電解液に浸かる高さ(Lower Level)となるようにした。1分以内に電圧が6Vに達した場合には試験終了とした。
<Fusing test>
Fusing tests were performed on the lead-acid batteries of Examples and Comparative Examples. Specifically, first, the lead-acid battery was left in a water tank at 40 ° C. for 16 hours or more, then put into a fully charged state, and discharged at a constant current of 400 A for 1 minute. At this time, the height of the electrolytic solution was set to the height at which the upper part of the strap was immersed in the electrolytic solution (Lower Level). When the voltage reached 6V within 1 minute, the test was terminated.

試験後の鉛蓄電池の蓋を取り外し、目視により試験後の鉛蓄電池における極柱の溶断の有無を確認した。極柱が溶断しなかった場合をAとし、極柱が溶断した場合をBとした。
結果を表1に示す。
The lid of the lead-acid battery after the test was removed, and it was visually confirmed whether or not the pole column of the lead-acid battery after the test was blown. The case where the pole pillar did not melt was designated as A, and the case where the pole pillar did not melt was designated as B.
The results are shown in Table 1.

Figure 0006778388
Figure 0006778388

1…鉛蓄電池、2…電槽、3…蓋、4…極板群、5…負極柱、6…極柱、7…正極端子、8…負極端子、9…電極端子、10…液口栓、11…正極板、12…負極板、13…セパレータ、14…正極集電体、14c…正極耳部、15…正極活物質、16…負極集電体、16c…負極耳部、17…負極活物質、18…正極ストラップ、19…負極ストラップ、20…接続部材、24…セル室、30…溶接部、r…最小径、R…根本径。 1 ... Lead storage battery, 2 ... Battery tank, 3 ... Lid, 4 ... Electrode plate group, 5 ... Negative electrode column, 6 ... Electrode column, 7 ... Positive electrode terminal, 8 ... Negative electrode terminal, 9 ... Electrode terminal, 10 ... Liquid spout , 11 ... positive electrode plate, 12 ... negative electrode plate, 13 ... separator, 14 ... positive electrode current collector, 14c ... positive electrode ear, 15 ... positive electrode active material, 16 ... negative electrode current collector, 16c ... negative electrode ear, 17 ... negative electrode Active material, 18 ... positive electrode strap, 19 ... negative electrode strap, 20 ... connecting member, 24 ... cell chamber, 30 ... welded part, r ... minimum diameter, R ... root diameter.

Claims (6)

セル室を有し、上面が開口している電槽と、
前記開口を閉じる蓋と、
複数の電極板を有し、前記セル室に収容された極板群と、
極柱と、を備え、
前記極柱の最小径に対する前記極板群の質量の比が220g/mm以下であり、
前記極柱の最小径に対する前記極板群の質量の比が200g/mm以上である、鉛蓄電池。
An electric tank with a cell chamber and an open top surface,
With a lid that closes the opening,
A group of electrode plates having a plurality of electrode plates and housed in the cell chamber,
With pole pillars,
The ratio of the mass of the electrode plate group to the minimum diameter of the pole column is 220 g / mm or less.
A lead-acid battery in which the ratio of the mass of the electrode plate group to the minimum diameter of the electrode column is 200 g / mm or more .
前記極柱の前記電槽側の先端面の面積が100mmThe area of the tip surface of the pole pillar on the battery side is 100 mm. 2 以上である、請求項1に記載の鉛蓄電池。The lead-acid battery according to claim 1, which is the above. セル室を有し、上面が開口している電槽と、An electric tank with a cell chamber and an open top surface,
前記開口を閉じる蓋と、With a lid that closes the opening,
複数の電極板を有し、前記セル室に収容された極板群と、A group of electrode plates having a plurality of electrode plates and housed in the cell chamber,
極柱と、を備え、With pole pillars,
前記極柱の最小径に対する前記極板群の質量の比が220g/mm以下であり、The ratio of the mass of the electrode plate group to the minimum diameter of the pole column is 220 g / mm or less.
前記極柱の前記電槽側の先端面の面積が100mmThe area of the tip surface of the pole pillar on the battery side is 100 mm. 2 以上である、鉛蓄電池。That's all for lead-acid batteries.
前記極柱の根本径が10.0mm以上である、請求項1〜3のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 3 , wherein the root diameter of the pole pillar is 10.0 mm or more. 前記極柱の体積が5723mm以上である、請求項1〜のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4 , wherein the volume of the pole column is 5723 mm 3 or more. 前記極柱の高さが85mm以下である、請求項1〜のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 5 , wherein the height of the pole pillar is 85 mm or less.
JP2020518242A 2018-05-09 2019-04-23 Lead-acid battery Active JP6778388B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018090860 2018-05-09
JP2018090860 2018-05-09
PCT/JP2019/017293 WO2019216211A1 (en) 2018-05-09 2019-04-23 Lead acid storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020168319A Division JP7291678B2 (en) 2018-05-09 2020-10-05 lead acid battery

Publications (2)

Publication Number Publication Date
JPWO2019216211A1 JPWO2019216211A1 (en) 2020-08-27
JP6778388B2 true JP6778388B2 (en) 2020-11-04

Family

ID=68468271

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020518242A Active JP6778388B2 (en) 2018-05-09 2019-04-23 Lead-acid battery
JP2020168319A Active JP7291678B2 (en) 2018-05-09 2020-10-05 lead acid battery
JP2023092284A Pending JP2023106623A (en) 2018-05-09 2023-06-05 Lead-acid battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020168319A Active JP7291678B2 (en) 2018-05-09 2020-10-05 lead acid battery
JP2023092284A Pending JP2023106623A (en) 2018-05-09 2023-06-05 Lead-acid battery

Country Status (2)

Country Link
JP (3) JP6778388B2 (en)
WO (1) WO2019216211A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007281A (en) 2001-06-25 2003-01-10 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2005197103A (en) * 2004-01-08 2005-07-21 Furukawa Battery Co Ltd:The Insertion method of electrode group for battery into battery case
JP2009252625A (en) * 2008-04-09 2009-10-29 Panasonic Corp Lead-acid battery
JPWO2012120768A1 (en) * 2011-03-09 2014-07-07 パナソニック株式会社 Lead acid battery
WO2016110907A1 (en) * 2015-01-08 2016-07-14 パナソニックIpマネジメント株式会社 Positive grid for lead storage battery, process for producing same, and lead storage battery

Also Published As

Publication number Publication date
JPWO2019216211A1 (en) 2020-08-27
WO2019216211A1 (en) 2019-11-14
JP2021007106A (en) 2021-01-21
JP7291678B2 (en) 2023-06-15
JP2023106623A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6638795B2 (en) Lead storage battery and method of manufacturing the same
JP7040056B2 (en) Lead-acid battery
WO2017159299A1 (en) Lead storage battery
JP2019029068A (en) Lead storage battery
JP2008171701A (en) Lead acid storage battery
JP6125515B2 (en) A flooded lead acid battery with an electrode having a pasting substrate
JP6778388B2 (en) Lead-acid battery
JP6919469B2 (en) Lead-acid battery
JP5994545B2 (en) Lead acid battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP6318852B2 (en) Lead acid battery
JP7215475B2 (en) lead acid battery
JP7365014B2 (en) lead acid battery
JP7185977B2 (en) lead acid battery
WO2019064854A1 (en) Lead acid storage battery
JP6572711B2 (en) Lead acid battery
JP7128484B2 (en) liquid lead acid battery
CN211320252U (en) Lead-acid battery
JP6999430B2 (en) Lead-acid battery
JP6497460B2 (en) Lead acid battery
JP2019102364A (en) Lead storage battery
JP7152831B2 (en) lead acid battery
JP2024035653A (en) lead acid battery
JP2024035553A (en) lead acid battery
JP2023154163A (en) lead acid battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200526

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6778388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350