JP6766673B2 - Hot compresses - Google Patents

Hot compresses Download PDF

Info

Publication number
JP6766673B2
JP6766673B2 JP2017022029A JP2017022029A JP6766673B2 JP 6766673 B2 JP6766673 B2 JP 6766673B2 JP 2017022029 A JP2017022029 A JP 2017022029A JP 2017022029 A JP2017022029 A JP 2017022029A JP 6766673 B2 JP6766673 B2 JP 6766673B2
Authority
JP
Japan
Prior art keywords
molten steel
vacuum chamber
oxygen
flow rate
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017022029A
Other languages
Japanese (ja)
Other versions
JP2018127681A (en
Inventor
惇史 久志本
惇史 久志本
秀平 笠原
秀平 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017022029A priority Critical patent/JP6766673B2/en
Publication of JP2018127681A publication Critical patent/JP2018127681A/en
Application granted granted Critical
Publication of JP6766673B2 publication Critical patent/JP6766673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、上吹きランスから溶鋼の表面に酸素を吹き付け、溶鋼中のAlと反応させて溶鋼を昇温する方法に関する。 The present invention relates to a method in which oxygen is blown from a top-blown lance onto the surface of molten steel and reacted with Al in the molten steel to raise the temperature of the molten steel.

転炉出鋼後の二次精錬工程において、溶鋼の成分調整、脱ガス処理等が行われるが、処理中に溶鋼温度が大きく低下するため、次工程の鋳造において適正な溶鋼温度に調整するという目的で昇温処理が行われる。一般的に溶鋼の昇温方法として、RHに代表される真空槽を具備した環流型真空脱ガス装置において、真空槽内の上吹きランスから溶鋼表面に酸素を吹き付け、溶鋼中のAlと反応させてその酸化熱を利用する手法が挙げられる。 In the secondary refining process after the converter is ejected, the composition of molten steel is adjusted, degassing treatment, etc. are performed, but since the molten steel temperature drops significantly during the processing, it is said that the molten steel temperature will be adjusted to an appropriate temperature in the casting of the next process. A temperature rise process is performed for the purpose. Generally, as a method for raising the temperature of molten steel, in a recirculation type vacuum degassing device equipped with a vacuum chamber typified by RH, oxygen is blown onto the surface of the molten steel from a top-blown lance in the vacuum chamber to react with Al in the molten steel. There is a method of utilizing the heat of oxidation.

しかしながら、上記昇温プロセスにおいて、酸素供給条件によってはAl以外にSi、MnおよびFeが燃焼してSiO2、MnOおよびFeOといった低級酸化物が生じ得る。このような低級酸化物は耐火物の溶損を著しく促進させることに加え、これらが取鍋スラグに吸収されることでスラグの酸化度が増加して溶鋼の再酸化や復硫といった弊害をも生じさせ得る。このことから、これまで酸素供給時に低級酸化物の生成を抑制する方法について様々な取り組みがなされてきた。 However, in the above heating process, Si, Mn and Fe may be burned in addition to Al to produce lower oxides such as SiO 2 , MnO and FeO depending on the oxygen supply conditions. In addition to significantly promoting the melting damage of refractories, such lower oxides increase the degree of oxidation of slag by being absorbed by the ladle slag, which also has adverse effects such as reoxidation and desulfurization of molten steel. Can occur. For this reason, various efforts have been made so far on methods for suppressing the formation of lower oxides during oxygen supply.

例えば特許文献1には、溶鋼中Al濃度と環流量との積として算出される真空槽内に流入するAl量と、ノズルからの送酸量との比をMn濃度に応じた範囲内に制御することを特徴とするRH脱ガスでの溶鋼昇熱方法が開示されている。この方法は、酸素が供給されている溶鋼表面の反応領域に必要最低限のAlを定常的に供給し、反応領域でAlが欠乏することを抑制し、MnやFeの燃焼を抑制する技術である。 For example, in Patent Document 1, the ratio of the amount of Al flowing into the vacuum chamber calculated as the product of the Al concentration in molten steel and the ring flow rate and the amount of acid sent from the nozzle is controlled within a range corresponding to the Mn concentration. A method for heating molten steel by RH degassing is disclosed. This method is a technology that constantly supplies the minimum required Al to the reaction region on the surface of molten steel to which oxygen is supplied, suppresses the deficiency of Al in the reaction region, and suppresses the combustion of Mn and Fe. is there.

しかしながら、環流量が同等であっても真空槽内の局所的な攪拌強度は真空槽内の溶鋼量で大きく変化するため、真空槽内の溶鋼量が多い場合は単位溶鋼あたりの攪拌エネルギー投入量が低位となり、酸素供給サイトにAlを効率良く供給出来ない可能性がある。したがって、酸素供給サイトにおいてAl供給量にばらつきが生じ、低級酸化物の生成を抑制できない場合がある。 However, even if the ring flow rate is the same, the local stirring strength in the vacuum chamber changes greatly depending on the amount of molten steel in the vacuum chamber. Therefore, when the amount of molten steel in the vacuum chamber is large, the amount of stirring energy input per unit molten steel Will be low, and there is a possibility that Al cannot be efficiently supplied to the oxygen supply site. Therefore, the amount of Al supplied varies at the oxygen supply site, and the formation of lower oxides may not be suppressed.

また、特許文献2には、真空精錬炉にて精錬されている溶鋼に、酸素又は酸素含有ガスと共に金属Alを吹き付け又は吹き込むことを特徴とする真空精錬炉における溶鋼の加熱方法が開示されている。この方法は、反応領域に直接Alを供給することでAlの欠乏を抑制する技術である。しかしながら、Alを真空槽内にて上吹きで供給した場合、その多くが集塵ロスしてしまうため、歩留りが極めて低く、合金コストが大幅に増加してしまうという課題がある。 Further, Patent Document 2 discloses a method for heating molten steel in a vacuum smelting furnace, which comprises blowing or blowing metal Al together with oxygen or an oxygen-containing gas onto molten steel smelted in the vacuum smelting furnace. .. This method is a technique for suppressing Al deficiency by directly supplying Al to the reaction region. However, when Al is supplied by top blowing in a vacuum chamber, most of the dust is collected and lost, so that there is a problem that the yield is extremely low and the alloy cost is significantly increased.

さらに、特許文献3には、吹き付ける酸素ガスの流量と、溶鋼の環流量との比を適正範囲に調整し、かつ、加熱処理前の真空槽内の雰囲気圧力を段階的に変動させ、真空槽内の攪拌を制御することを特徴とする溶鋼の加熱方法が開示されている。この技術も特許文献1に記載の方法と同様、反応領域へのAlの供給を促進することにより局所的にAlが欠乏することを抑制して低級酸化物の生成を抑制する技術である。また、この技術では、昇温処理初期は耐火物の損耗を抑制するために真空槽内の圧力を高めとし、溶鋼中のAl濃度の低下によりAlの欠乏の抑制が困難となる処理末期にかけて圧力を低下させて攪拌を強化し、低級酸化物の還元を指向している。 Further, in Patent Document 3, the ratio of the flow rate of the oxygen gas to be blown and the ring flow rate of the molten steel is adjusted to an appropriate range, and the atmospheric pressure in the vacuum chamber before the heat treatment is changed stepwise to change the vacuum chamber. A method for heating molten steel, which is characterized by controlling the stirring inside, is disclosed. Similar to the method described in Patent Document 1, this technique is also a technique for suppressing the local deficiency of Al by promoting the supply of Al to the reaction region and suppressing the formation of lower oxides. Further, in this technique, the pressure in the vacuum chamber is increased in order to suppress the wear of the refractory at the initial stage of the temperature rise treatment, and the pressure is increased toward the end of the treatment where it becomes difficult to suppress the deficiency of Al due to the decrease in the Al concentration in the molten steel. To strengthen the agitation and aim at the reduction of lower oxides.

しかしながら、前述したように、酸素ガス流量と環流量との比を規定しても、酸素供給サイトにAlを効率良く供給出来ない可能性がある。さらに、真空度は低圧力側でばらつきが非常に大きく、かつ排気開始から所定の圧力に到達するまで多くの時間がかかるため、精錬時期に応じて真空度を精緻に制御することは極めて困難である。 However, as described above, even if the ratio of the oxygen gas flow rate to the circulation flow rate is specified, there is a possibility that Al cannot be efficiently supplied to the oxygen supply site. Furthermore, the degree of vacuum varies greatly on the low pressure side, and it takes a lot of time from the start of exhaust to reach the predetermined pressure, so it is extremely difficult to precisely control the degree of vacuum according to the refining time. is there.

特開平9−249910号公報JP-A-9-249910 特開2002−30330号公報JP-A-2002-30330 特許第4277819号公報Japanese Patent No. 4277819

以上のように、従来の手法では酸素が供給されている溶鋼表面の反応領域にAlを安定的に供給できないため、反応領域でのAl欠乏を抑制して低級酸化物の生成を抑制できない場合がある。 As described above, since Al cannot be stably supplied to the reaction region on the surface of molten steel to which oxygen is supplied by the conventional method, it may not be possible to suppress Al deficiency in the reaction region and suppress the formation of lower oxides. is there.

そこで本発明は、真空槽内での局所的な溶鋼流動を制御し、酸素上吹き時の低級酸化物の生成を簡単かつ安定的に抑制可能な溶鋼の昇温方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for raising the temperature of molten steel, which can control the local flow of molten steel in a vacuum chamber and easily and stably suppress the formation of lower oxides during oxygen top blowing. To do.

本発明者らは、上吹きされた酸素は溶鋼表面に着地、吸収されるため、真空脱ガス装置全体の環流量ではなく真空槽内溶鋼の表面流速を局所的に増加させることで、酸素が濃化した表面での溶鋼の循環が効率良く達成されることに着目し、反応領域へのAlの供給を促進させるためには、溶鋼の環流量ではなく真空槽内の溶鋼の表面流速を増加させる必要があることを見出した。 Since the top-blown oxygen lands on the surface of the molten steel and is absorbed, the present inventors locally increase the surface flow velocity of the molten steel in the vacuum chamber instead of the ring flow rate of the entire vacuum degassing device to generate oxygen. Focusing on the efficient achievement of molten steel circulation on the concentrated surface, in order to promote the supply of Al to the reaction region, increase the surface flow velocity of the molten steel in the vacuum chamber instead of the ring flow rate of the molten steel. I found that I needed to let you.

本発明は、以下のとおりである。
(1)RH真空脱ガス装置にて、真空槽内部に設置された上吹きランスから溶鋼の表面に酸素を吹き付け、溶鋼中のAlと反応させて溶鋼を昇温する方法において、前記真空槽内の溶鋼の表面流速vl、上吹き酸素流量FO2および酸素吹付け後の溶鋼中Al濃度[Al]OB後の関係が以下の(1)〜(4)式の条件を満たすことを特徴とする溶鋼の昇温方法。
l>vlcalc ・・・(1)
lcalc=0.14・FO2 0.79・[Al]OB後 -0.71 ・・・(2)
l=Q/(ρ・h・DVAC) ・・・(3)
Q=44.6G1/3LEG 4/3・{ln(P1/PVAC)}1/3 ・・・(4)
ここで、vl:真空槽内の溶鋼の表面流速(m/s)、FO2:上吹き酸素流量(kg/s)、[Al]OB後:酸素吹き付け後の溶鋼中Al濃度、h:真空槽内の溶鋼の浴深(m)、DVAC:真空槽内径(m)、Q:溶鋼環流量(ton/s)、ρ:溶鋼密度(ton/m3)、G:環流ガス流量(Nl/s)、DLEG:浸漬管内径(m)、P1:ガス吹込位置圧力(Torr)、PVAC:真空槽内圧力(Torr)である。
(2)前記真空槽内の溶鋼の浴深hを0.10〜0.40mの範囲内とすることを特徴とする上記に記載の溶鋼の昇温方法。
The present invention is as follows.
(1) In a method of blowing oxygen onto the surface of molten steel from a top-blown lance installed inside the vacuum chamber with an RH vacuum degassing device and reacting it with Al in the molten steel to raise the temperature of the molten steel, in the vacuum chamber. The relationship between the surface flow velocity v l of the molten steel, the top-blown oxygen flow rate FO2, and the Al concentration in the molten steel after oxygen blowing [Al] OB satisfies the following equations (1) to (4). Method of raising the temperature of molten steel.
v l > v lcalc ... (1)
v lcalc = 0.14 ・ F O2 0.79・ [Al] After OB -0.71・ ・ ・ (2)
v l = Q / (ρ ・ h ・ D VAC ) ・ ・ ・ (3)
Q = 44.6G 1/3 D LEG 4/3・ {ln (P 1 / P VAC )} 1/3・ ・ ・ (4)
Here, v l : surface flow velocity (m / s) of molten steel in the vacuum chamber, FO2 : top-blown oxygen flow rate (kg / s), [Al] after OB : Al concentration in molten steel after oxygen-spraying, h: Bath depth (m) of molten steel in the vacuum chamber, D VAC : Vacuum chamber inner diameter (m), Q: Molten steel ring flow rate (ton / s), ρ: Molten steel density (ton / m 3 ), G: Circulating gas flow rate (ton / m 3 ) Nl / s), D LEG : Immersion tube inner diameter (m), P 1 : Gas blowing position pressure (Torr), P VAC : Vacuum chamber pressure (Torr).
(2) The method for raising the temperature of molten steel according to the above, wherein the bath depth h of the molten steel in the vacuum chamber is within the range of 0.10 to 0.40 m.

次に、本発明で規定した理由について説明する。
酸素を吹き付けた溶鋼表面の反応領域では、先ず以下の(5)式、(6)式で表される式に基づき、脱酸平衡酸素濃度が低く酸素との親和力が強いAlが優先的に燃焼する。
X+nO=XOn ・・・(5)
(4)=aMOn/(fM[X]・fO n[O]n) ・・・(6)
ここで、X:溶鋼中成分(=Al、Si、Mn、Fe)、K(4):(5)式の平衡定数、a:成分活量、f:活量係数である。
Next, the reason specified in the present invention will be described.
In the reaction region on the surface of molten steel sprayed with oxygen, Al having a low deoxidizing equilibrium oxygen concentration and a strong affinity for oxygen is preferentially burned based on the following equations (5) and (6). To do.
X + nO = XO n ... (5)
K (4) = a MOn / (f M [X] · f O n [O] n) ··· (6)
Here, X: components in molten steel (= Al, Si, Mn, Fe), K (4) : equilibrium constant of equation (5), a: component activity, f: activity coefficient.

しかしながら、上記反応に伴い反応領域で局所的にAlが欠乏すると、SiやMnの方がAlよりも脱酸平衡酸素濃度が低位となり、これらがOと反応して低級酸化物が生成してしまう。そこで、このような反応を回避するためには、反応領域でのAlの欠乏を抑制する必要があるが、上記(4)式で表される溶鋼の環流量ではなく、上記(3)式で表される真空槽内の溶鋼の表面流速を増加させることが有効と考えた。なお、(3)式で表される表面流速vlは、環流量を溶鋼密度および真空槽内の溶鋼の断面積で割ることで算出され、溶鋼深さ方向の速度分布を平均化した値である。 However, when Al is locally depleted in the reaction region due to the above reaction, the deoxidized equilibrium oxygen concentration of Si and Mn is lower than that of Al, and these react with O to form a lower oxide. .. Therefore, in order to avoid such a reaction, it is necessary to suppress the deficiency of Al in the reaction region, but instead of the ring flow rate of the molten steel represented by the above formula (4), the above formula (3) is used. It was considered effective to increase the surface flow velocity of the molten steel in the represented vacuum chamber. The surface flow velocity v l expressed by Eq. (3) is calculated by dividing the ring flow rate by the molten steel density and the cross-sectional area of the molten steel in the vacuum chamber, and is a value obtained by averaging the velocity distribution in the molten steel depth direction. is there.

上吹きされた酸素は溶鋼表面に着地、吸収されるため、真空脱ガス装置全体の環流量ではなく真空槽内の溶鋼の表面流速を局所的に増加させることで、酸素が濃化した表面での溶鋼の循環が効率良く達成される。また、表面流速vlは、(3)式で示すように単位時間当たりの溶鋼流速、すなわち環流量Qを真空槽内浴の断面積(真空槽内径)DVACで割ることで算出でき、真空槽内の溶鋼の浴深hが制御因子として含まれる。浴深hは取鍋の昇降等で浸漬管の溶鋼中への浸漬深さを制御することで変更でき、Al供給量や真空度を操作するよりも比較的簡便かつ正確に反応の制御が可能である。 Since the top-blown oxygen lands on the surface of the molten steel and is absorbed, the surface flow velocity of the molten steel in the vacuum chamber is locally increased instead of the circulation flow rate of the entire vacuum degassing device, so that the surface is enriched with oxygen. Circulation of molten steel is efficiently achieved. Further, the surface flow velocity v l can be calculated by dividing the molten steel flow velocity per unit time, that is, the ring flow rate Q, by the cross-sectional area (vacuum tank inner diameter) D VAC of the bath in the vacuum chamber as shown in equation (3). The bath depth h of the molten steel in the tank is included as a control factor. The bath depth h can be changed by controlling the immersion depth of the immersion pipe in the molten steel by raising and lowering the ladle, and the reaction can be controlled relatively easily and accurately compared to manipulating the Al supply amount and the degree of vacuum. Is.

さらに、上記した反応領域での燃焼反応は、上記(2)式に示したように、上吹き酸素流量FO2および酸素吹き付け後の溶鋼中のAl濃度[Al]OB後にも強く影響を受ける。これは、上吹き酸素流量FO2は反応領域でのAl欠乏速度に影響を及ぼし、酸素吹き付け後の溶鋼中のAl濃度[Al]OB後は反応領域へのAl供給速度に影響を及ぼすためである。本発明では、これら2つのパラメータに応じて低級酸化物の生成を抑制できる表面流速の最適範囲が異なることを見出し、鋭意検討を重ねた結果、その最適条件を明確化した。 Further, as shown in the above equation (2), the combustion reaction in the above-mentioned reaction region is strongly affected even after the top-blown oxygen flow rate FO2 and the Al concentration [Al] OB in the molten steel after oxygen-blasting. .. This is because the top-blown oxygen flow rate FO2 affects the Al deficiency rate in the reaction region, and after the Al concentration [Al] OB in the molten steel after oxygen blowing, it affects the Al supply rate to the reaction region. is there. In the present invention, it has been found that the optimum range of the surface flow velocity capable of suppressing the formation of lower oxides differs depending on these two parameters, and as a result of intensive studies, the optimum conditions have been clarified.

本発明によれば、真空槽内での局所的な溶鋼流動を制御し、酸素上吹き時の低級酸化物の生成を簡単かつ安定的に抑制することができるため、本発明の工業的価値は非常に大きい。 According to the present invention, the local molten steel flow in the vacuum chamber can be controlled, and the formation of lower oxides during oxygen overblow can be easily and stably suppressed. Therefore, the industrial value of the present invention is high. Very big.

実施例における低級酸化物生成の抑制結果を示す図である。It is a figure which shows the suppression result of the lower oxide formation in an Example. 環流型真空脱ガス装置にて溶鋼を昇温する様子を説明するための図である。It is a figure for demonstrating the state of raising the temperature of molten steel by a recirculation type vacuum degassing apparatus.

1.本発明における用語の定義
以下に本発明について詳細に説明する。以下に説明する「環流処理」とは、環流型真空脱ガス装置にて浸漬管から環流ガスを導入して溶鋼を環流させる処理のことを指し、「OB(Oxygen Blowing)処理」とは、真空槽内のランスから酸素を溶鋼表面に吹き付け、溶鋼中Alと反応させてその反応熱により溶鋼の昇温を行う処理を指す。また、「反応領域」とは、溶鋼表面に上吹きした酸素と溶鋼成分が直接反応している領域を指し、「低級酸化物」とは、Oとの親和力がAlよりも弱いSi、MnおよびFeがOと反応して生成した酸化物を指す。
1. 1. Definition of terms in the present invention The present invention will be described in detail below. The "recirculation treatment" described below refers to a treatment in which a recirculation gas is introduced from a dipping tube to recirculate molten steel with a recirculation type vacuum degassing device, and "OB (Oxygen Blooming) treatment" is a vacuum. It refers to a process in which oxygen is blown onto the surface of molten steel from a lance in a tank, reacted with Al in the molten steel, and the temperature of the molten steel is raised by the reaction heat. Further, the "reaction region" refers to a region in which oxygen blown over the surface of the molten steel and the molten steel component directly react with each other, and the "lower oxide" refers to Si, Mn and Si, Mn, which have a weaker affinity for O than Al. Refers to an oxide produced by the reaction of Fe with O.

2.本発明に係る酸素上吹き条件
[真空槽内の溶鋼の浴深h:0.10〜0.40m]
真空槽内の溶鋼の浴深hは、表面流速を制御することが可能なパラメータであり、0.10〜0.40mであることが好ましい。浴深hが大きすぎると表面流速が低位となりやすく、上吹きされた酸素の更新が効率良く行われない場合がある。また、浴深hが大きすぎると、真空槽内の溶鋼量が多くなり攪拌動力密度が低下し、真空槽内の溶鋼の混合不良が生じて低級酸化物の生成抑制がなされない懸念がある。以上のことから、浴深hの上限は0.40mであることが好ましい。一方、浴深hが極端に小さすぎると、環流ガスのエネルギーが溶鋼に効率良く伝達されず、環流不良が生じて系全体の反応に悪影響を及ぼす懸念がある。このため、浴深hの下限は0.10mであることが好ましい。
2. Oxygen top blowing conditions according to the present invention [bath depth h of molten steel in a vacuum chamber: 0.10 to 0.40 m]
The bath depth h of the molten steel in the vacuum chamber is a parameter capable of controlling the surface flow velocity, and is preferably 0.10 to 0.40 m. If the bath depth h is too large, the surface flow velocity tends to be low, and the top-blown oxygen may not be updated efficiently. Further, if the bath depth h is too large, the amount of molten steel in the vacuum chamber increases, the stirring power density decreases, and there is a concern that the molten steel in the vacuum chamber may be poorly mixed and the formation of lower oxides may not be suppressed. From the above, the upper limit of the bath depth h is preferably 0.40 m. On the other hand, if the bath depth h is extremely small, the energy of the recirculation gas is not efficiently transferred to the molten steel, and there is a concern that poor recirculation may occur and adversely affect the reaction of the entire system. Therefore, the lower limit of the bath depth h is preferably 0.10 m.

[(1)式条件:vl>0.14・FO2 0.79・[Al]OB後 -0.71
低級酸化物の生成を抑制するためには、酸素上吹き速度FO2と酸素吹き付け後の溶鋼中のAl濃度[Al]OB後とに応じて表面流速vlを適正範囲に制御する必要がある。ここで、後述する効果の確認方法に則り、250tonの溶鋼をRH真空脱ガス装置にてOB処理を行った。その結果を図1に示すが、表面流速が(1)式の条件を満たした条件について低級酸化物の生成が抑制された。したがって、低級酸化物の生成を安定的に抑制するためには必ず(1)式の条件を満たす必要がある。
[Condition (1): v l > 0.14 ・ F O2 0.79・ [Al] After OB -0.71 ]
In order to suppress the formation of lower oxides, it is necessary to control the surface flow velocity v l within an appropriate range according to the oxygen top blowing speed FO2 and the Al concentration [Al] OB in the molten steel after oxygen blowing. .. Here, 250 ton of molten steel was OB-treated with an RH vacuum degassing device according to a method for confirming the effect described later. The results are shown in FIG. 1. The formation of lower oxides was suppressed under the condition that the surface flow velocity satisfied the condition of Eq. (1). Therefore, in order to stably suppress the formation of lower oxides, it is necessary to satisfy the condition of Eq. (1).

OB処理では、図2に示すように、転炉等の精錬炉から取鍋1に出鋼された溶鋼2は、脱酸、合金添加等の成分調整を終えた後、RH真空脱ガス装置にて環流処理される。上吹きランス3を具備した真空槽4を取鍋1内の溶鋼2に浸漬管5から浸漬、溶鋼2を真空槽4内に吸引後、真空槽4内にて(1)式〜(3)式を満たす条件にて酸素6を反応領域7に上吹きし、OB処理を行う。この時、羽口から環流ガス8を流し、(4)式に従って溶鋼を循環させる。OB処理における上吹きランス3のノズルの形状は問わないが、ノズルにスロート部をもつ、一般的にラバールノズルと呼称されるランスノズルの適用が望ましい。 In the OB treatment, as shown in FIG. 2, the molten steel 2 discharged from the smelting furnace such as a converter into the ladle 1 is put into the RH vacuum degassing device after finishing the component adjustment such as deoxidation and alloy addition. Is recirculated. The vacuum tank 4 provided with the top-blown lance 3 is immersed in the molten steel 2 in the pan 1 from the immersion pipe 5, the molten steel 2 is sucked into the vacuum tank 4, and then the equations (1) to (3) are placed in the vacuum tank 4. Oxygen 6 is blown over the reaction region 7 under the condition satisfying the formula, and OB treatment is performed. At this time, the reflux gas 8 is flowed from the tuyere, and the molten steel is circulated according to the equation (4). The shape of the nozzle of the top blown lance 3 in the OB treatment does not matter, but it is desirable to apply a lance nozzle having a throat portion in the nozzle and generally called a Laval nozzle.

3.効果の確認方法
本発明のAl以外のSi、MnおよびFeの酸化にて生成した低級酸化物の抑制効果は、Al燃焼率にて評価する。耐火物の損耗は数十、数百回のOB処理を継続的に実施しないと評価が困難であることに加え、スラグへの再酸化およびスラグからの復硫挙動はOB条件以外にも溶鋼およびスラグ組成に大きく影響するため、これらの指標では発明の効果を効率良く評価できないためである。
3. 3. Method for confirming the effect The suppressive effect of lower oxides produced by the oxidation of Si, Mn and Fe other than Al of the present invention is evaluated by the Al combustion rate. The wear of refractories is difficult to evaluate without continuous OB treatment of tens or hundreds of times. In addition, the reoxidation to slag and the desulfurization behavior from slag are not only in OB conditions but also in molten steel and This is because the effect of the invention cannot be efficiently evaluated by these indexes because it greatly affects the slag composition.

OB処理前後にて溶鋼サンプルを採取し、化学分析に供することで溶鋼成分濃度を得る。ここで、Al燃焼率は以下の(7)式及び(8)式で表される値を用いたが、Feの燃焼量を溶鋼組成から定量評価することは困難であるため、(8)式からFeの項は除外した。
d[X]=([X]OB前−[X]OB後)・n・MO/MX ・・・(7)
Al燃焼率=100・d[Al]/(d[Al]+d[Si]+d[Mn])
・・・(8)
ここで、MXは成分Xの原子量であり、MOは酸素の原子量である。また、[X]OB前は酸素吹き付け前の溶鋼中の成分Xの濃度であり、nは(5)式中のnと同じである。本発明において、Al燃焼率が70%以上であれば操業に影響しない範囲となることからAl燃焼率が70%以上であったものを発明の効果が得られたと判断し、Al燃焼率が80%以上であったものを、発明の効果が特に顕著に得られたと判断する。
A molten steel sample is taken before and after the OB treatment and subjected to chemical analysis to obtain the molten steel component concentration. Here, the values represented by the following equations (7) and (8) were used for the Al combustion rate, but since it is difficult to quantitatively evaluate the combustion amount of Fe from the molten steel composition, the equation (8) is used. The Fe term was excluded from the above.
d [X] = ([X ] OB before - [X] after OB) · n · M O / M X ··· (7)
Al combustion rate = 100 · d [Al] / (d [Al] + d [Si] + d [Mn])
... (8)
Here, M X is the atomic weight of component X, M O is the atomic weight of oxygen. Further, before [X] OB, it is the concentration of the component X in the molten steel before oxygen blowing, and n is the same as n in the equation (5). In the present invention, if the Al combustion rate is 70% or more, it does not affect the operation. Therefore, it is judged that the effect of the invention is obtained when the Al combustion rate is 70% or more, and the Al combustion rate is 80. It is judged that the effect of the invention was particularly remarkable when the content was% or more.

次に、本発明を実施例に基づいて更に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, the present invention will be further described based on Examples, but the conditions in the Examples are one conditional example adopted for confirming the feasibility and effect of the present invention, and the present invention is the same. It is not limited to the conditional example. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

転炉吹錬を終えた溶鋼を取鍋に出鋼した後に、上吹きランスを具備した真空槽を取鍋内溶鋼に挿入して溶鋼を吸引し、環流処理を開始した。環流処理開始後にサンプルを採取した後、OB処理を開始した。発明例、比較例ともすべて、溶鋼量は250ton規模、OB処理後の溶鋼温度は1600〜1640℃であった。OB処理に際し、上吹き酸素流量FO2、OB処理後の溶鋼中Al濃度[Al]OB後、浴深hおよび表面流速vlを操作因子として表1のように変化させた。他の精錬条件は以下の通りとした。また、環流量の計算に際し、環流ガスを吹き込む羽口の位置と取鍋内の溶鋼との湯面は概ね同じ高さと考え、ガス吹込位置圧力P1=760Torrとした。
・ランスノズル:ラバールノズル(スロート径:0.03m、出口径:0.08m)
・真空槽:DVAC=1.8m、DLEG=0.7m
・溶鋼密度ρ:7ton/m3
・OB処理前溶鋼組成:
[C]:0.05〜0.20質量%
[Si]:0.05〜0.50質量%
[Mn]:0.30〜1.00質量%
[Al]:0.05〜0.20質量%
・OB処理時間:10min
After the molten steel that had been smelted in the converter was put out in a ladle, a vacuum tank equipped with a top-blown lance was inserted into the molten steel in the pan to suck the molten steel, and the reflux treatment was started. After collecting a sample after the start of the recirculation treatment, the OB treatment was started. In both the invention example and the comparative example, the amount of molten steel was 250 ton scale, and the molten steel temperature after the OB treatment was 1600 to 1640 ° C. During the OB treatment, the top-blown oxygen flow rate F O2 , the Al concentration in the molten steel after the OB treatment [Al] OB, and then the bath depth h and the surface flow velocity v l were changed as operating factors as shown in Table 1. Other refining conditions were as follows. Further, when calculating the recirculation flow rate, it was considered that the position of the tuyere for blowing the recirculated gas and the molten metal surface of the molten steel in the ladle were almost the same height, and the gas blowing position pressure P 1 = 760 Torr was set.
・ Lance nozzle: Laval nozzle (throat diameter: 0.03m, outlet diameter: 0.08m)
・ Vacuum tank: D VAC = 1.8m, D LEG = 0.7m
・ Molten steel density ρ: 7 ton / m 3
-Melted steel composition before OB treatment:
[C]: 0.05 to 0.20% by mass
[Si]: 0.05 to 0.50% by mass
[Mn]: 0.30 to 1.00% by mass
[Al]: 0.05 to 0.20% by mass
・ OB processing time: 10 min

OB処理後に溶鋼サンプルを採取して、サンプルの一部を化学分析に供することでOB処理前後の溶鋼中のAl、SiおよびMn濃度を得て、(7)式及び(8)式にてAl燃焼率を算出した。各条件におけるAl燃焼率の値を表1に併せて記載する。 After the OB treatment, a molten steel sample is taken and a part of the sample is subjected to chemical analysis to obtain the Al, Si and Mn concentrations in the molten steel before and after the OB treatment, and Al is obtained by the formulas (7) and (8). The combustion rate was calculated. The values of the Al combustion rate under each condition are also shown in Table 1.

表1中のCh.No.1〜7は、(1)式の条件を全て満たしていたためAl燃焼率が高く、Al以外のSi、MnおよびFeの酸化にて生成した低級酸化物の抑制効果が得られた。 Ch. In Table 1. No. Since all of the conditions 1 to 7 satisfied the conditions of the formula (1), the Al combustion rate was high, and the effect of suppressing the lower oxides produced by the oxidation of Si, Mn and Fe other than Al was obtained.

また、表1中のCh.No.8,9は、浴深hが極端に小さいまたは大きいものであるが、表面流速vlが(1)式の条件を満たしていたため、発明の効果が得られた。具体的には、Ch.No.8は、浴深hが大きいことから真空槽内の溶鋼が多かったため、真空槽内での溶鋼の混合が不十分であり表1中のCh.No.1〜7ほど良好ではなかったものの、低級酸化物の生成をある程度抑制することができた。一方、Ch.No.9は、浴深hが小さく真空槽内の溶鋼が少なく環流ガスのエネルギーが溶鋼に十分に伝達されなかった可能性があり、表1中のCh.No.1〜7ほど良好ではなかったものの、低級酸化物の生成をある程度抑制することができた。以上の結果から、低級酸化物の生成をより効率良く抑制しようとした場合、(1)式の条件を満たすことに加えて、真空槽内の溶鋼の浴深hは0.10〜0.40mの範囲内とすることが好ましいことが確認できた。 In addition, Ch. No. In Nos. 8 and 9, the bath depth h was extremely small or large, but the surface flow velocity v l satisfied the condition of Eq. (1), so that the effect of the invention was obtained. Specifically, Ch. No. In No. 8, since the bath depth h was large, there was a large amount of molten steel in the vacuum chamber, so that the molten steel was not sufficiently mixed in the vacuum chamber, and Ch. No. Although it was not as good as 1 to 7, the formation of lower oxides could be suppressed to some extent. On the other hand, Ch. No. In No. 9, the bath depth h was small, the amount of molten steel in the vacuum chamber was small, and it is possible that the energy of the recirculation gas was not sufficiently transferred to the molten steel. No. Although it was not as good as 1 to 7, the formation of lower oxides could be suppressed to some extent. From the above results, when trying to suppress the formation of lower oxides more efficiently, in addition to satisfying the condition of equation (1), the bath depth h of the molten steel in the vacuum chamber is 0.10 to 0.40 m. It was confirmed that it is preferable to keep it within the range of.

一方で、表1中のCh.No.10〜15は、(2)式および(3)式で計算される表面流速vlの値が(1)式の条件を満たしていなかったため、反応領域へのAlの供給が停滞したため低級酸化物の生成が抑制されず、発明の効果が得られなかった。 On the other hand, Ch. No. 10 to 15 are lower oxides because the value of the surface flow velocity v l calculated by the equations (2) and (3) did not satisfy the condition of the equation (1) and the supply of Al to the reaction region was stagnant. The production of was not suppressed, and the effect of the invention was not obtained.

1 取鍋
2 溶鋼
3 上吹きランス
4 真空槽
5 浸漬管
6 酸素
7 反応領域
8 環流ガス
1 Ladle 2 Molten steel 3 Top-blown lance 4 Vacuum tank 5 Immersion pipe 6 Oxygen 7 Reaction region 8 Circulating gas

Claims (2)

RH真空脱ガス装置にて、真空槽内部に設置された上吹きランスから溶鋼の表面に酸素を吹き付け、溶鋼中のAlと反応させて溶鋼を昇温する方法において、前記真空槽内の溶鋼の表面流速v1、上吹き酸素流量FO2および酸素吹き付け後の溶鋼中Al濃度[Al]OB後の関係が以下の(1)〜(4)式の条件を満たすことを特徴とする溶鋼の昇温方法。
l>vlcalc ・・・(1)
lcalc=0.14・FO2 0.79・[Al]OB後 -0.71 ・・・(2)
l=Q/(ρ・h・DVAC) ・・・(3)
Q=44.6G1/3LEG 4/3・{ln(P1/PVAC)}1/3 ・・・(4)
ここで、vl:真空槽内の溶鋼の表面流速(m/s)、FO2:上吹き酸素流量(kg/s)、[Al]OB後:酸素吹き付け後の溶鋼中Al濃度、h:真空槽内の溶鋼の浴深(m)、DVAC:真空槽内径(m)、Q:溶鋼環流量(ton/s)、ρ:溶鋼密度(ton/m3)、G:環流ガス流量(Nl/s)、DLEG:浸漬管内径(m)、P1:ガス吹込位置圧力(Torr)、PVAC:真空槽内圧力(Torr)である。
In a method of blowing oxygen onto the surface of molten steel from a top-blown lance installed inside the vacuum chamber with an RH vacuum degassing device and reacting it with Al in the molten steel to raise the temperature of the molten steel, the molten steel in the vacuum chamber The relationship between the surface flow velocity v 1 , the top-blown oxygen flow rate FO2, and the Al concentration [Al] OB in the molten steel after the oxygen spraying satisfies the following equations (1) to (4). Warm method.
v l > v lcalc ... (1)
v lcalc = 0.14 ・ F O2 0.79・ [Al] After OB -0.71・ ・ ・ (2)
v l = Q / (ρ ・ h ・ D VAC ) ・ ・ ・ (3)
Q = 44.6G 1/3 D LEG 4/3・ {ln (P 1 / P VAC )} 1/3・ ・ ・ (4)
Here, v l : surface flow velocity (m / s) of molten steel in the vacuum chamber, FO2 : top-blown oxygen flow rate (kg / s), [Al] after OB : Al concentration in molten steel after oxygen-spraying, h: Bath depth (m) of molten steel in the vacuum chamber, D VAC : Vacuum chamber inner diameter (m), Q: Molten steel ring flow rate (ton / s), ρ: Molten steel density (ton / m 3 ), G: Circulating gas flow rate (ton / m 3 ) Nl / s), D LEG : Immersion tube inner diameter (m), P 1 : Gas blowing position pressure (Torr), P VAC : Vacuum chamber pressure (Torr).
前記真空槽内の溶鋼の浴深hを0.10〜0.40mの範囲内とすることを特徴とする請求項1に記載の溶鋼の昇温方法。 The method for raising a temperature of molten steel according to claim 1, wherein the bath depth h of the molten steel in the vacuum chamber is within the range of 0.10 to 0.40 m.
JP2017022029A 2017-02-09 2017-02-09 Hot compresses Active JP6766673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022029A JP6766673B2 (en) 2017-02-09 2017-02-09 Hot compresses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022029A JP6766673B2 (en) 2017-02-09 2017-02-09 Hot compresses

Publications (2)

Publication Number Publication Date
JP2018127681A JP2018127681A (en) 2018-08-16
JP6766673B2 true JP6766673B2 (en) 2020-10-14

Family

ID=63173649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022029A Active JP6766673B2 (en) 2017-02-09 2017-02-09 Hot compresses

Country Status (1)

Country Link
JP (1) JP6766673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025784B (en) * 2021-02-07 2022-08-05 首钢集团有限公司 Smelting method of ultra-low carbon steel for automobile

Also Published As

Publication number Publication date
JP2018127681A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
JP2013527322A (en) Direct smelting method
JP2015042777A (en) Method for smelting high nitrogen steel
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP6766673B2 (en) Hot compresses
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP2018100427A (en) Method for producing low sulfur steel
JP5200380B2 (en) Desulfurization method for molten steel
JP6631400B2 (en) Desulfurization method of molten steel
JP5849667B2 (en) Melting method of low calcium steel
JP4360270B2 (en) Method for refining molten steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP4277819B2 (en) Heating method of molten steel
JP7043915B2 (en) Method of raising the temperature of molten steel
JPH05171250A (en) Operation of rh degassing
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP6337681B2 (en) Vacuum refining method for molten steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JP2018127683A (en) Method for removing nonmetallic inclusions in molten steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP4020125B2 (en) Method of melting high cleanliness steel
JPH0633133A (en) Production of ultralow carbon steel
JP6331851B2 (en) Heating method of molten steel in ladle
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JP2021031744A (en) Smelting process of high nitrogen stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151