JP6763567B2 - 光ファイバセンサ - Google Patents

光ファイバセンサ Download PDF

Info

Publication number
JP6763567B2
JP6763567B2 JP2016139602A JP2016139602A JP6763567B2 JP 6763567 B2 JP6763567 B2 JP 6763567B2 JP 2016139602 A JP2016139602 A JP 2016139602A JP 2016139602 A JP2016139602 A JP 2016139602A JP 6763567 B2 JP6763567 B2 JP 6763567B2
Authority
JP
Japan
Prior art keywords
optical
light
phase
measurement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016139602A
Other languages
English (en)
Other versions
JP2018009896A (ja
Inventor
穆之 高原
穆之 高原
吉田 稔
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakusan Corp
Original Assignee
Hakusan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakusan Corp filed Critical Hakusan Corp
Priority to JP2016139602A priority Critical patent/JP6763567B2/ja
Publication of JP2018009896A publication Critical patent/JP2018009896A/ja
Application granted granted Critical
Publication of JP6763567B2 publication Critical patent/JP6763567B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、外力により光路長を変化させる、或いは機械的に位置が変動する物体に反射ミラーを取り付ける等して、その物体の位置変動を光路長の変化として捉えることにより、そこを通過する光信号の位相が変化する特性を利用した光ファイバセンサに関する。
光ファイバセンサは、光センサ部分を無電源化できる等により、従来の電気センサに比べ、電磁環境の悪い場所、温度環境の悪い場所への適用に優れ、かつ光ファイバの有する低損失特性により、遠距離のセンシングにも優れた特性を発揮できる。
特許第5118246号公報
従来の光ファイバセンサの干渉方式では、参照光と計測光との位相差をθとすると、干渉出力(干渉光)は下記数1で示される。
Figure 0006763567
ここで、iは干渉光から変換された電気信号の値(電気信号値)、rは参照光から変換された電気信号値、sは計測光から変換された電気信号値である。
上記数1からわかるように、真に得たいセンサ信号はθの値であるが、従来の干渉方式ではiとしてのみ求められることから、伝送経路でのr及びsの強度変動による変動誤差分を分離することができないという欠点があった。
また、従来の干渉方式では、参照光と計測光の位相関係において、位相差90度に動作点の中心を置くことが最も直線性の良い設定となるが、参照光と計測光の光路長差を90度に保つには、高い工作精度を要するとともに、熱膨張に対しても一定関係を保つ必要がある等、実用上の難しさがあった。
さらに、従来の干渉方式では、参照光と計測光の位相差90度を動作範囲の中心としたとき、計測可能な位相の最大は±90度(半波長)であり、これを超えることは原理上不可能であった。
これらの問題に対して、特許第5118246号公報(特許文献1)に開示されているような光ファイバセンサが提案されている。
特許文献1の光ファイバセンサは、周期Tでパルス幅3tの光パルスの前中半t1、t2と後半t3との光位相差を90度に位相変調した光パルスを計測用信号とし、計測用信号を分波し、t時間遅延させて更に外力により光路長を変動させた光信号を計測光とし、もう一方の光信号を参照光として、干渉させている。これにより、参照光の前半t1のみの部分(R)、計測光の前半t1と参照光の中間t2との干渉部分(I1)、計測光の中間t2と参照光の後半t3との干渉部分(I2)及び計測光の後半t3のみの部分(S)を有する時分割多重光信号が生成され、I1及びI2での計測光と参照光との位相差θ1及びθ2を、各干渉部分の電気信号値r、i1、i2及びsを用いて、下記数2及び数3を基に求めている。
Figure 0006763567
Figure 0006763567
そして、1周期前に求めた位相差θ1a及びθ2aとの差分Δθ1及びΔθ2を積算した値をセンサ出力としている。
特許文献1では、光信号、つまり参照光(R)、第1の干渉部分(I1)、第2の干渉部分(I2)及び計測光(S)の大きさが正確に計測できることを前提として正確な位相(i)の演算結果が得られる。一般に光信号の大きさは半導体によるフォトダイオードにより光の強度を電気変換し検出する。しかし、フォトダイオードは、0.01mW以下において、入力光信号電力に比例した出力電圧を発生するものであり、検出電圧が非常に小さいので、特殊な例を除き増幅して使用することが必要である。市販されている光/電気変換器には、フォトダイオードと共にフォトダイオード出力電圧を増幅する、高入力インピーダンスを有するトランスインピーダンス増幅器が内蔵されている。このトランスインピーダンス増幅器は、入力にコンデンサを直列に挿入した交流増幅器である。特許文献1における測定法では、R、I1、I2及びSがこの順番に計測されるが、外力等によりセンサのI1が変化すると、その後のI2及びSの検出電圧が、I1の電圧変化の影響を受け、この影響分が測定誤差となる。また、I2の変化は、Sの測定誤差を発生させる。特許文献1では、この誤差を無くす、或いは無視できる程度に減少させるには、光/電気変換器のフォトダイオード出力電圧を直流増幅する、或いはI1がI2及びSに与える誤差並びにI2がSに与える誤差を演算で予測し、取り除く等の面倒なプロセスが必要となる。
本発明は上述のような問題点を解決するためになされたものであり、本発明の目的は、干渉させる光の強度変動及び干渉させた後の光の強度変動がセンサ出力に与える影響を除外し、更にセンサ信号として計測可能な位相範囲が±90度を超えることを許容すると共に、光/電気変換後の電気増幅に交流増幅器を使用しても測定誤差が増大しない、コスト低減がなされた光ファイバセンサを提供することにある。
本発明の上記目的は、所定の時間間隔で区切られ、他の区間の位相に比べて90度位相変調している直交位相区間を少なくとも1つ有する計測用光信号を生成する計測用光信号発生部と、前記計測用光信号の分波である計測光及び参照光の間に前記所定の時間間隔の整数倍の時間だけ遅延を設け、外力により光路長を変動させられた前記計測光と前記参照光を結合して干渉光信号を生成する光干渉部と、前記干渉光信号に基づいて、前記計測光と前記参照光の位相差を算出する位相差演算部とを備え、前記位相差演算部は、90度位相変調していない同位相区間における前記計測光及び前記同位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号1と、前記同位相区間における前記計測光及び前記直交位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号2と、前記直交位相区間における前記計測光及び前記同位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号3を少なくとも用い、前記電気信号1及び前記電気信号2の差分並びに前記電気信号3及び前記電気信号1の差分より前記位相差を算出することにより達成される。
また、本発明の上記目的は、前記位相差演算部は、前記電気信号1として、区間が異なる電気信号11及び電気信号12を用いることにより、或いは、前記計測用光信号発生部は、連続する4つの区間のうち、3番目の区間が前記直交位相区間で、他の3つの区間が前記同位相区間である前記計測用光信号を生成し、前記光干渉部は、前記計測光及び前記参照光の間に前記所定の時間間隔だけ遅延を設けることにより、或いは、前記計測用光信号発生部は、連続する5つの区間のうち、3番目の区間が前記直交位相区間で、他の4つの区間が前記同位相区間である前記計測用光信号を生成し、前記光干渉部は、前記計測光及び前記参照光の間に前記所定の時間間隔だけ遅延を設けることにより、或いは、ホモダイン型又はマッハツェンダ型であることにより、より効果的に達成される。
本発明によれば、光信号をフォトダイオードにより検波して得られた電気信号の計測値が、その電気信号を増幅する目的で挿入する交流アンプ内で直列に挿入されるキャパシタにより影響を受ける場合も、計測値間の差分を取ることにより、その影響を排除して正確で高性能な計測を可能とする。これにより、光源のレベル変動、伝送路の損失変動、光カプラの温度変動等が許容できるため、環境条件の厳しい場所での使用に適し、個々の部品の使用条件をゆるくできることから、製造コストを安くできる。
本発明によれば、直交する2つの参照光と計測光の位相差θを簡単に求めることが出来、また通常の干渉計では、計測範囲が180度(π)に制限されるのに対して、1計測周期内で計測位相が±90度(π/2)以上変化しない条件の下で、計測範囲を拡大可能である。
また、光パルスの代わりに連続光線の使用が可能であるから、コスト低減を図ることができる。
本発明に係る光ファイバセンサの構成例(第1実施形態)を示すブロック図である。 本発明に係る光ファイバセンサの動作例(第1実施形態)を示すタイムチャートである。 第1実施形態の他の動作例を示すタイムチャートである。 本発明に係る光ファイバセンサの構成例(第2実施形態)を示すブロック図である。 本発明に係る光ファイバセンサの動作例(第2実施形態)を示すタイムチャートである。 本発明に係る光ファイバセンサの光干渉部の構成例(第3実施形態)を示すブロック図である。 本発明に係る光ファイバセンサの光干渉部の構成例(第4実施形態)を示すブロック図である。 本発明に係る光ファイバセンサの光干渉部の構成例(第5実施形態)を示すブロック図である。 第4実施形態において反射ミラーを直接距離計測物表面に実装した構成例を示すブロック図である。 第4実施形態において反射ミラーの代わりにファラデーローテータミラーを使用した構成例を示すブロック図である。
本発明に係る光ファイバセンサは、高安定のレーザ発振器を光源として、周期Tで、例えば、その周期中に時間τをもつ計測区間t1、t2、t3及びt4を設け、そのt3区間の相対位相をt1、t2及びt4区間に対して90度(進み或いは遅れのどちらでも良い)変化させたレーザ光を作成する。t3区間が直交位相区間であり、t1、t2及びt4区間が同位相区間となる。光の位相はリチューム・ナイオベートを利用した位相変調器等により高速で変化可能である。
以下、ホモダイン型(マイケルソン型とも言う)干渉計を例として、本発明の原理について説明する。なお、マッハツェンダ型の場合も原理は同一である。
上記の計測用のレーザ光(計測用光信号)を光カプラにより2波に分波し、第1の分波を光遅延ファイバ等でτ/2時間遅延させた後に、センサ信号となる外力等により、その光路長を変化させて、ミラーにより全反射した戻り光を再度光遅延ファイバ等でτ/2時間遅延させて、上記の光カプラに戻した光をt1、t2、t3、t4の順に、計測光(φ1a、φ2a、φ3a、φ4a)とする。第2の分波をミラーにより全反射させた戻り光を参照光(φ1b、φ2b、φ3b、φ4b)とし、上記の光カプラの戻り出力において、周期T内の計測区間t1、t2、t3及びt4に対応して、参照光のt2(φ2b)と計測光のt1(φ1a)との干渉部分(マイケルソン干渉部分)(I1)、参照光のt3(φ3b)と計測光のt2(φ2a)との干渉部分(I2)、及び参照光のt4(φ4b)と計測光のt3(φ3a)との干渉部分(I3)を有する時分割多重光信号(干渉光信号)を出力する。
上記の時分割多重光信号(I1、I2、I3)をフォトダイオード検波により電気信号に変換し、その個々の電気信号値i1、i2及びi3を得て、各電気信号値に対応する干渉時の参照光と計測光との位相差をθ1、θ2及びθ3とすると、電気信号値i1、i2及びi3を、参照光の電気信号値r及び計測光の電気信号値sを用いて表すと、フォトダイオード検波は2乗検波であるので、下記数4、数5及び数6となる。
Figure 0006763567
Figure 0006763567
Figure 0006763567
ここで、干渉結果の電気信号間の差分i1−i2及びi31−i1を演算すると、下記数7及び数8となる。
Figure 0006763567
Figure 0006763567
数7を数8で除算すると、下記数9となる。
Figure 0006763567
よって、計測される電気信号値i1、i2、i3から計算される(i1−i2)及び(i3−i1)の逆正接計算から、参照光と計測光の位相差θ1を求めることが出来る。
なお、逆正接関数では±90度(π/2)しか表現出来ないが、計測周期Tの間に計測値が±90度の範囲を超えて変化しないという条件の下では、前回の計測から今回の計測の間に、計測値が+90度を超えた場合及び計測値が−90度を下回った場合の判断は、簡単に可能である。これにより、本発明に係る光ファイバセンサは、±90度を超える非常に大きな位相変化に対応した広範囲な干渉計測を可能とする。
また、本発明に係る光ファイバセンサでは、レーザ光源を分岐した光信号の電気出力レベルを表すr及びsは、演算結果には無関係で、r及びsが温度変化や経時変化等により変動した場合においても、この変動が計測結果に影響することはないという優位点を有する。
光/電気変換を行なうフォトダイオード検波器の出力電圧は非常に小さいため、出力電圧をトランスインピーダンスアンプ等により増幅して使用することが必要である。このような増幅器は、一般に高周波数においても高い増幅率が求められることから、増幅素子間にキャパシタを挿入した交流専用アンプが使用される。従って、実際にi1、i2及びi3の正確な計測値を求めることが困難な場合が多い。しかし、本発明に係る光ファイバセンサは、上述のように、3つの計測値i1、i2及びi3を計測し、その差分を演算し、逆正接計算により参照光と計測光間の角度を求めており、実際に必要な値は、i1、i2及びi3の計測値ではなく、i1−i2及びi3−i1という計測値間の差分である。よって、途中にキャパシタをシリーズに挿入した交流専用アンプを使用することにより、i1、i2及びi3の計測値が正確にその振幅を表さない場合も、その差分は正確であり、演算結果も正確である。
また、キャパシタ容量が非常に小さく、周期Tにおけるi1、i2及びi3に交流アンプの影響がある場合は、周期T内に、例えば時間τをもつ計測区間t1〜t5を設け、そのt3区間の相対位相をt1、t2、t4及びt5区間に対して90度変化させたレーザ光を作成する。この場合、t3区間が直交位相区間であり、t1、t2、t4及びt5区間が同位相区間となる。そして、第1の分波を計測光(φ1a、φ2a、φ3a、φ4a、φ5a)とし、第2の分波をミラーにより全反射させた戻り光を参照光(φ1b、φ2b、φ3b、φ4b、φ5b)として、光カプラの戻り出力において、周期T内の計測区間t2、t3、t4及びt5に対応して、参照光のt2(φ2b)と計測光のt1(φ1a)との干渉部分(I1)、参照光のt3(φ3b)と計測光のt2(φ2a)との干渉部分(I2)、参照光のt4(φ4b)と計測光のt3(φ3a)との干渉部分(I3)、及び参照光のt5(φ5b)と計測光のt4(φ4a)との干渉部分(I4)を有する時分割多重光信号(I1、I2、I3、I4)を生成する。そのI1〜I4の電気信号に変換された信号i1〜i4から、下記数10を用いて、参照光と計測光の位相差θ1を求める。
Figure 0006763567
これにより、キャパシタ容量が非常に小さく、計測される電気信号の大きさが計測区間の時間内で変動する状態においても、隣り合う電気信号間の差分は、原計測値に正確に比例し、その比例定数はキャパシタの容量により一義的に決定されるので、計測結果がキャパシタ容量の大小による影響を受けない光ファイバセンサを提供することが可能である。
以下に、本発明の実施の形態を、図面を参照して説明する。
図1は、ホモダイン型で、干渉部分がI1〜I3の場合の本発明に係る光ファイバセンサの構成例(第1実施形態)である。
レーザ光源101が発生する狭線幅の光信号Srに対して、光位相変調器102により、周期T中のt3区間のみの位相を、他のt1、t2及びt4区間に比較して90度変化させる。位相を変化させるタイミング及び変化させる時間τはパルス発生器113により管理される。間歇的に位相変化を与えられた光信号(計測用光信号)Sra1は、光カプラ103に供給され2分岐される。光カプラ103は、ファイバカプラやビームスプリッタ等で構成される。
光カプラ103の片方の分岐光信号は、コリメータ106により空間を進行し、反射ミラー108にて反射され、再度コリメータ106を経て光カプラ103に参照光SrR1として帰ってくる。他方、光カプラ103で分岐された他の分岐光信号は光遅延ファイバ等の遅延線104によって、参照光SrR1に対してτ/2の遅延を与えられた後、ファイバセンサ105に導かれる。ファイバセンサ105は、光ファイバに加えられた外圧により、ファイバの屈折率或いは実効長が変化するようなセンサである。ファイバセンサ105を通過した分岐光信号は、コリメータ107により空中を伝搬し、反射ミラー109で反射され、コリメータ107及びファイバセンサ105を経由し、遅延線104で再度τ/2の遅延を受けて計測光SrM1として光カプラ103に供給される。なお、遅延線は、参照光側に挿入することも可能で、その場合も同じ光ファイバセンサを構成出来る。
コリメータ106からの参照光SrR1及び遅延線104からの計測光SrM1は、共に光カプラ103に加えられ、その合成光出力が干渉光信号Li1として光/電気(O/E)変換器114に供給され、干渉光信号Li1に応じた電気信号Ea1を得る。光/電気変換器114は、光信号を2乗検波するダイオード検波器である。光/電気変換器114から出力される電気信号Ea1は、RFアンプ115で所要の大きさまで増幅された後、A/D変換器116でアナログ信号からデジタル信号の電気信号Ed1に変換される。電気信号Ed1は、レジスタ117、118及び119に供給され、パルス発生器113から送られてくるタイミング信号に従って、後述するタイムチャートでの干渉部分I1、I2及びI3の電気信号値i1、i2及びi3を、それぞれのレジスタ上に得る。レジスタ117〜119に格納された電気信号値i1〜i3により、次の差分演算器121により、干渉位相を示す電気信号間の差分、つまりi1−i2及びi3−i1が計算される。差分演算器121で求められたi1−i2及びi3−i1よりATAN演算器122が、(i1−i2)/(i3−i1)の逆正接計算を行ない、数10の関係から参照光SrR1と計測光SrM1の位相差θ1を計算する。ATAN演算器122の出力が求めている最終結果となる。
図1に示される構成例において、レーザ光源101及び光位相変調器102で計測用光信号発生部を構成し、光カプラ103、遅延線104、ファイバセンサ105、コリメータ106及び107、並びに反射ミラー108及び109で光干渉部を構成し、光/電気変換器114、RFアンプ115、A/D変換器116、レジスタ117〜119、差分演算器121及びATAN演算器122で位相差演算部を構成している。
このような構成において、その動作例を、図2のタイムチャートを参照して説明する。
図2は、第1実施形態の動作例を示すタイムチャートである。a1は周期Tにおける参照光SrR1の位相を示し、a2は計測光SrM1の位相を示し、a3は干渉結果として得られる干渉光信号Li1の干渉部分(I1〜I3)の位相を示す。「0」は位相を変化させられていない基準位相を表わし、「90」は90度位相を変化させられた位相(以下、「90度位相」とする)を表わし、「A」は任意の位相を表わす。
a1に示すように、参照光SrR1は周期T内のt1、t2及びt4区間の位相が基準位相、t3区間の位相が90度位相になるように作成される。また、a2に示す計測光SrM1は、参照光SrR1を各区間の時間間隔であるτだけ遅延させたものとなる。a3は、上記a1に示す参照光SrR1及びa2に示す計測光SrM1を干渉させた干渉光信号Li1の様子を示している。干渉光信号Li1のうち、参照光SrR1のt2の位置と計測光SrM1のt1の位置が干渉した結果が干渉部分I1であり、同様に、t3とt2が干渉した結果が干渉部分I2、t4とt3が干渉した結果が干渉部分I3である。これら干渉部分の電気信号値i1、i2及びi3から、参照光SrR1と計測光SrM1の位相差θ1が求められる。
なお、周期T中での90度位相の区間は図2に示されるようなt3区間に限られず、干渉光信号において、参照光と計測光の位相の組み合わせとして「0−0」、「90−0」及び「0−90」の3パターンが形成されるのであれば、90度位相の区間の位置を変えたり、同区間の数を増やしたりしても良い。例えば、図3(A)に示されるように、t2区間の位相を90度位相としても良い。或いは、図3(B)に示されるように、t3区間の位相を90度位相とし、t4区間の隣のt5区間の位相を基準位相とし、計測光の遅延を2τとして、干渉光信号中に「0−0」、「90−0」及び「0−90」の3パターンを形成するようにしても良い。
本発明の他の実施形態について説明する。
図4は、ホモダイン型で、干渉部分がI1〜I4の場合の本発明に係る光ファイバセンサの構成例(第2実施形態)である。
レーザ光源101が発生する狭線幅の光信号Srに対して、光位相変調器202により、周期T中のt3区間のみの位相を、他のt1、t2、t4及びt5区間に比較して90度変化させる。位相を変化させるタイミング及び変化させる時間τはパルス発生器113により管理される。間歇的に位相変化を与えられた光信号(計測用光信号)Sra2は、光カプラ103に供給され2分岐される。
光カプラ103の片方の分岐光信号は、コリメータ106により空間を進行し、反射ミラー108にて反射され、再度コリメータ106を経て光カプラ103に参照光SrR2として帰ってくる。他方、光カプラ103で分岐された他の分岐光信号は遅延線104によって、参照光SrR2に対してτ/2の遅延を与えられた後、ファイバセンサ105に導かれる。ファイバセンサ105を通過した分岐光信号は、コリメータ107により空中を伝搬し、反射ミラー109で反射され、コリメータ107及びファイバセンサ105を経由し、遅延線104で再度τ/2の遅延を受けて計測光SrM2として光カプラ103に供給される。
コリメータ106からの参照光SrR2及び遅延線104からの計測光SrM2は、共に光カプラ103に加えられ、その合成光出力が干渉光信号Li2として光/電気変換器114に供給され、干渉光信号Li2に応じた電気信号Ea2を得る。光/電気変換器114から出力される電気信号Ea2は、RFアンプ115で所要の大きさまで増幅された後、A/D変換器116でアナログ信号からデジタル信号の電気信号Ed2に変換される。電気信号Ed2は、レジスタ117、118、119及び120に供給され、パルス発生器113から送られてくるタイミング信号に従って、後述するタイムチャートでの干渉部分I1、I2、I3及びI4の電気信号値i1、i2、i3及びi4を、それぞれのレジスタ上に得る。レジスタ117〜120に格納された電気信号値i1〜i4により、次の差分演算器221により、干渉位相を示す電気信号間の差分、つまりi1−i2及びi3−i4が計算される。差分演算器221で求められたi1−i2及びi3−i4よりATAN演算器122が(i1−i2)/(i3−i4)の逆正接計算を行ない、数11の関係から参照光SrR2と計測光SrM2の位相差θ1を計算する。ATAN演算器122の出力が求めている最終結果となる。
このような構成において、その動作例を、図5のタイムチャートを参照して説明する。
図5は、第2実施形態の動作例を示すタイムチャートである。b1は周期Tにおける参照光SrR2の位相を示し、b2は計測光SrM2の位相を示し、b3は干渉結果として得られる干渉光信号Li2の干渉部分(I1〜I4)の位相を示す。「0」、「90」及び「A」の意味は、図2の場合と同じである。
b1に示すように、参照光SrR2は周期T内のt1、t2、t4及びt5区間の位相が基準位相、t3区間の位相が90度位相になるように作成される。また、b2に示す計測光SrM2は、参照光SrR2を各区間の時間間隔であるτだけ遅延させたものとなる。b3は、上記b1に示す参照光SrR2及びb2に示す計測光SrM2を干渉させた干渉光信号Li2の様子を示している。干渉光信号Li2のうち、参照光SrR2のt2位置と計測光SrM2のt1位置が干渉した結果が干渉部分I1であり、同様に、t3とt2が干渉した結果が干渉部分I2、t4とt3が干渉した結果が干渉部分I3、t5とt4が干渉した結果が干渉部分I4である。これら干渉部分の電気信号値i1、i2、i3及びi4から、参照光SrR2と計測光SrM2の位相差θ1が求められる。
なお、周期T中での90度位相の区間は図5に示されるようなt3区間に限られず、干渉光信号において、参照光と計測光の位相の組み合わせとして「0−0」、「90−0」、「0−90」及び「0−0」の4パターンが形成されるのであれば、90度位相の区間の位置を変えたり、同区間の数を増やしたりしても良い。
第1実施形態及び第2実施形態はホモダイン型の構成例であるが、干渉計の構成方法には、ホモダイン型の他に、マッハツェンダ型がある。ホモダイン型は、入出力の分離が十分行えない場合があるが、マッハツェンダ型は、入出力で別の光カプラを使用するので、入出力の分離が容易である。
図6は、マッハツェンダ型センサでの光干渉部の概略の構成例(第3実施形態)である。光カプラ103に供給された間歇的に位相変化を与えられた光信号(計測用光信号)Sraは、光カプラ103で2分岐され、一方の分岐光信号は、次の光カプラ110に参照光SrRとして供給される。他方の分岐光信号は、τの遅延を有する遅延線204を経てファイバセンサ105に供給される。ファイバセンサ105は、光ファイバに加えられた外圧により、ファイバの屈折率或いは実効長が変化するようなセンサであり、検出すべき計測項目によりその光路長が変化するものである。ファイバセンサ105の出力光信号も、また計測光SrMとして光カプラ110に供給され、光カプラ110の出力として、ファイバセンサ105で位相変調された干渉光信号Liが得られる。
上述の実施形態(第1〜第3実施形態)は、ファイバが受ける各種の歪みで、計測すべき事象を検出する例である。これらに対して、図7に示す構成例は、本発明に係るホモダイン型光ファイバセンサにより、物体の相対位置変動を検出する光干渉部の構成例(第4実施形態)である。
光カプラ103に加えられた光信号Sraを同光カプラで2分岐し、一方の分岐光信号を、コリメータ106を介して空中伝搬させ、反射ミラー108で反射させ、再度空中を伝搬してコリメータ106を介して光カプラ103へ参照光SrRとして戻す。他方の分岐光信号はτ/2の遅延を有する遅延線104を経て、コリメータ107で空中を伝搬させられる。この空中を伝搬した光信号は、相対距離変動を計測すべき物体に固定した光学プリズム又はコーナーキューブ111により、その光学プリズム等に入射した光信号と同じ方向に反射させられる。この光学プリズム111で反射した光信号を、更に反射ミラー109で反射する。この反射波は、再度、光学プリズム111、コリメータ107及び遅延線104を通って、光カプラ103に計測光SrMとして戻される。光カプラ103は、参照光SrR及び計測光SrMの両者を干渉させて、出力端子から干渉光信号Liを出力する。
図8は、図7に示される距離計測用ホモダイン型光ファイバセンサを、マッハツェンダ型に変更した光干渉部の構成例(第5実施形態)である。光カプラ103で2分岐された光信号の一方は、次の光カプラ110へ参照光SrRとして供給される。光カプラ103で2分岐された、他の一方の光信号は、τの遅延を有する遅延線204を介して、コリメータ107で空中を伝搬させられる。この空中を伝搬した光信号は、相対距離変動を計測すべき物体に固定した光学プリズム又はコーナーキューブ111により、その光学プリズム等に入射した光信号と同じ方向に反射させられる。この光学プリズム111で反射した光信号を別のコリメータ112で受波し、その光信号を計測光SrMとして光カプラ110に供給する。光カプラ110は、参照光SrR及び計測光SrMの両者を干渉させて、出力端子から干渉信号Liを出力する。
図7に示される構成例では、コリメータ107から空間に出た計測光を、相対距離変動を計測すべき物体に固定した光学プリズム又はコーナーキューブ111で反射しているが、図9に示すように、光学プリズム又はコーナーキューブ111を削除して、反射ミラー109を直接距離計測物表面に実装することも可能である。
これまでの説明では光ファイバによる偏波変動が測定結果に及ぼす影響についての説明を行っていないが、光ファイバによる偏波変動は測定値に影響を与え、結果として誤差を生ずる場合がある。偏波変動による測定誤差を無くす、或いは小さくするには、光ファイバに偏波保持型のものを使用すれば良い。或いは、図7に示される構成例において、図10に示すように、反射ミラー108及び109の代わりに、ファラデーローテータミラー208及び209を使用することにより、偏波保持型ファイバを使用しない、つまりシングルモードファイバを使用して、誤差の少ない測定が可能となる。
上述の実施形態(第1〜第5実施形態)では、計測対象の変化(つまり、光路長変化)が計測光のみに与えられる場合を例にして説明したが、参照光側と計測光側がお互いに逆相になるような変化、例えば、位置が変化する物体の表と裏の変化、を参照光と計測光の両方に与えることにより、センサの感度を2倍に向上することが可能である。
また、上述の実施形態では、計測用のレーザ光として連続光線を使用しているが、t1〜t4区間(又はt1〜t5区間)に対応する光パルスを利用してシステムを構築することも可能である。この場合、コスト低減の効果は少なくなるが、周期T中に複数のt1〜t4区間(又はt1〜t5区間)の光パルスを収容すれば、1つのシステムで複数の計測を行う時分割多重測定が可能となる。
更に、上述の実施形態においては、ファイバの光路長変化を検出するセンサ、物体の相対変動を検出するセンサ(距離計や振動センサ)の例を示したが、本発明は、その他温度センサ等、多くのセンサに適用可能である。
本発明は、海底地震観測等、離れた場所、電源供給ができない場所、電磁雑音の影響を受け易い場所、温度環境が厳しい場所、引火の可能性がある場所等に設置するセンサシステムに適する。
101 レーザ光源
102 光位相変調器
103、110 光カプラ
104、204 遅延線
105 ファイバセンサ
106、107、112 コリメータ
108、109 反射ミラー
111 光学プリズム
113 パルス発生器
114 光/電気変換器
115 RFアンプ
116 A/D変換器
117、118、119、120 レジスタ
121、221 差分演算器
122 ATAN演算器
208、209 ファラデーローテータミラー

Claims (5)

  1. 所定の時間間隔で区切られ、他の区間の位相に比べて90度位相変調している直交位相区間を少なくとも1つ有する計測用光信号を生成する計測用光信号発生部と、
    前記計測用光信号の分波である計測光及び参照光の間に前記所定の時間間隔の整数倍の時間だけ遅延を設け、外力により光路長を変動させられた前記計測光と前記参照光を結合して干渉光信号を生成する光干渉部と、
    前記干渉光信号に基づいて、前記計測光と前記参照光の位相差を算出する位相差演算部とを備え、
    前記位相差演算部は、90度位相変調していない同位相区間における前記計測光及び前記同位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号1と、前記同位相区間における前記計測光及び前記直交位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号2と、前記直交位相区間における前記計測光及び前記同位相区間における前記参照光の結合により生成される前記干渉光信号の電気信号3を少なくとも用い、前記電気信号1及び前記電気信号2の差分並びに前記電気信号3及び前記電気信号1の差分より前記位相差を算出する光ファイバセンサ。
  2. 前記位相差演算部は、前記電気信号1として、区間が異なる電気信号11及び電気信号12を用いる請求項1に記載の光ファイバセンサ。
  3. 前記計測用光信号発生部は、連続する4つの区間のうち、3番目の区間が前記直交位相区間で、他の3つの区間が前記同位相区間である前記計測用光信号を生成し、
    前記光干渉部は、前記計測光及び前記参照光の間に前記所定の時間間隔だけ遅延を設ける請求項1に記載の光ファイバセンサ。
  4. 前記計測用光信号発生部は、連続する5つの区間のうち、3番目の区間が前記直交位相区間で、他の4つの区間が前記同位相区間である前記計測用光信号を生成し、
    前記光干渉部は、前記計測光及び前記参照光の間に前記所定の時間間隔だけ遅延を設ける請求項2に記載の光ファイバセンサ。
  5. ホモダイン型又はマッハツェンダ型である請求項1乃至4のいずれかに記載の光ファイバセンサ。
JP2016139602A 2016-07-14 2016-07-14 光ファイバセンサ Active JP6763567B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139602A JP6763567B2 (ja) 2016-07-14 2016-07-14 光ファイバセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139602A JP6763567B2 (ja) 2016-07-14 2016-07-14 光ファイバセンサ

Publications (2)

Publication Number Publication Date
JP2018009896A JP2018009896A (ja) 2018-01-18
JP6763567B2 true JP6763567B2 (ja) 2020-09-30

Family

ID=60995392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139602A Active JP6763567B2 (ja) 2016-07-14 2016-07-14 光ファイバセンサ

Country Status (1)

Country Link
JP (1) JP6763567B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335598B2 (ja) * 2019-09-20 2023-08-30 国立大学法人東京農工大学 レーザー干渉型変位計及び変位測定方法
JP7371830B1 (ja) 2023-01-31 2023-10-31 白山工業株式会社 光ファイバセンサ及びそれを用いた計測システム
CN116182916B (zh) * 2023-04-27 2023-07-07 四川省医学科学院·四川省人民医院 一种宽带相位调制处理的光子传感***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229713A (ja) * 1994-02-22 1995-08-29 Sumitomo Metal Mining Co Ltd 変位測定方法及びそれを用いた変位測定装置
US7292347B2 (en) * 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
JP2008286518A (ja) * 2007-05-15 2008-11-27 Hitachi Ltd 変位計測方法とその装置
US7948637B2 (en) * 2009-03-20 2011-05-24 Zygo Corporation Error compensation in phase shifting interferometry
JP2011214921A (ja) * 2010-03-31 2011-10-27 Oki Electric Industry Co Ltd 干渉型光ファイバーセンサーシステムおよび演算器
JP5702623B2 (ja) * 2010-04-21 2015-04-15 白山工業株式会社 光ファイバセンサ
JP5118246B1 (ja) * 2011-11-25 2013-01-16 白山工業株式会社 光ファイバセンサ

Also Published As

Publication number Publication date
JP2018009896A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
US10162245B2 (en) Distributed acoustic sensing system based on delayed optical hybrid phase demodulator
CN101799318B (zh) 一种激光零差测振光学***
CN108873007B (zh) 一种抑制振动效应的调频连续波激光测距装置
WO2017035850A1 (zh) 一种光纤传感网络一体化同步共线解调***及传感***
CN103842782A (zh) 分布型光纤声波检测装置
CN106802160B (zh) 一种基于叉形干涉图样的光纤光栅传感解调***及解调方法
JP6763567B2 (ja) 光ファイバセンサ
WO2009142612A1 (en) Dynamic polarization based fiber optic sensor
CN105547197A (zh) 基于激光自混合干涉的同时测量角度与振动的方法及装置
CN112082499A (zh) 形变测量***、测量形变的方法及测量头
US11469848B2 (en) Multi-channel optical phase detector, multi-channel sensing system and multi-laser synchronization system
US20140300900A1 (en) Optical fiber sensor
CN103075966A (zh) 位移测量***
CN105021844A (zh) 基于不对称m-z干涉仪的全光纤测风激光雷达装置及方法
CN113654580A (zh) 一种同时测量温度与应变的光频域反射***
CN102221356B (zh) 多普勒振镜正弦调制多光束激光外差二次谐波测量激光入射角度的装置及方法
CN102410809A (zh) 一种完全共路式微片激光器回馈干涉仪
CN101592526A (zh) 一种光平均波长的测量方法及装置
CN112129229B (zh) 基于光电振荡器的准分布式位移测量装置和方法
CN112129243B (zh) 基于光电振荡器的准分布式光纤扭转角度测量装置和方法
US11486982B2 (en) Optical phase detector using electrical pulse that corresponds to a phase error between electrical pulses and optical pulses, and sensing system including the same
KR102141705B1 (ko) 광 펄스 파워 변화에 무관한 광 위상 검출기 기반 센싱 시스템
CN100363714C (zh) 基于激光回馈的光纤传感器
JP5088915B2 (ja) 変位測定装置
CN101871789A (zh) 一种实现光纤干涉仪传感器复用的***及其方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200904

R150 Certificate of patent or registration of utility model

Ref document number: 6763567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250