JP6762923B2 - Activated carbon molded body, filtration cartridge, and water purifier - Google Patents

Activated carbon molded body, filtration cartridge, and water purifier Download PDF

Info

Publication number
JP6762923B2
JP6762923B2 JP2017230467A JP2017230467A JP6762923B2 JP 6762923 B2 JP6762923 B2 JP 6762923B2 JP 2017230467 A JP2017230467 A JP 2017230467A JP 2017230467 A JP2017230467 A JP 2017230467A JP 6762923 B2 JP6762923 B2 JP 6762923B2
Authority
JP
Japan
Prior art keywords
recess
activated carbon
outflow
inflow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017230467A
Other languages
Japanese (ja)
Other versions
JP2019099408A (en
Inventor
秀哉 上川
秀哉 上川
綾乃 河津
綾乃 河津
Original Assignee
トクラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクラス株式会社 filed Critical トクラス株式会社
Priority to JP2017230467A priority Critical patent/JP6762923B2/en
Publication of JP2019099408A publication Critical patent/JP2019099408A/en
Application granted granted Critical
Publication of JP6762923B2 publication Critical patent/JP6762923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、活性炭成型体、濾過カートリッジ、及び、浄水器に関する。 The present invention relates to an activated carbon molded body, a filtration cartridge, and a water purifier.

水道水に含まれる遊離残留塩素や有機物等の微量成分を除去する活性炭をカートリッジ化した浄水カートリッジにより水を浄化する浄水器が知られている。特許文献1には、風呂場や洗面所で使用するために浄水カートリッジを収容したシャワーヘッドが開示されている。この浄水カートリッジには、活性炭を主成分とした水質浄化材を円筒状に固めた活性炭成型体を用いている。この活性炭成型体は、浄水が流出する断面円形の貫通孔が中心軸に沿って設けられ、原水が外側面から前記貫通孔まで通過することにより浄化する。活性炭成型体に形成された流路用の孔は、前記断面円形の貫通孔しかない。 There is known a water purifier that purifies water with a water purification cartridge in which activated carbon that removes trace components such as free residual chlorine and organic substances contained in tap water is made into a cartridge. Patent Document 1 discloses a shower head containing a water purification cartridge for use in a bathroom or a washroom. For this water purification cartridge, an activated carbon molded body obtained by solidifying a water purification material containing activated carbon as a main component into a cylindrical shape is used. In this activated carbon molded body, a through hole having a circular cross section through which purified water flows out is provided along the central axis, and the raw water is purified by passing from the outer surface to the through hole. The only hole for the flow path formed in the activated carbon molded body is the through hole having a circular cross section.

特開2003−175386号公報Japanese Unexamined Patent Publication No. 2003-175386

浄水器のユーザビリティーを向上させるため、浄水カートリッジの小型化が求められている。単位体積における活性炭の吸着性能を向上させることができれば、浄水カートリッジの小型化に繋がる。単位体積における活性炭の吸着性能を向上させるために粒状活性炭の粒径を小さくすると、活性炭の粒子間の空隙が小さくなり、不織布で除去することができない水中の微粒子が前記空隙で捕捉される。この結果、浄水カートリッジが目詰まりしたり、微量成分を除去する機能を発揮する活性炭自体の孔が有効に活用されなかったりする。 In order to improve the usability of water purifiers, miniaturization of water purification cartridges is required. If the adsorption performance of activated carbon in a unit volume can be improved, it will lead to the miniaturization of the water purification cartridge. When the particle size of the granular activated carbon is reduced in order to improve the adsorption performance of the activated carbon in a unit volume, the voids between the particles of the activated carbon become smaller, and the fine particles in water that cannot be removed by the non-woven fabric are captured by the voids. As a result, the water purification cartridge may be clogged, or the holes of the activated carbon itself, which exerts the function of removing trace components, may not be effectively utilized.

尚、上述のような問題は、空気清浄機用の濾過カートリッジ等、浄水カートリッジ以外の濾過カートリッジ等にも存在する。
本発明は、濾過カートリッジ等といった活性炭成型体を使用した製品を小型化することが可能な技術を開示するものである。
The above-mentioned problems also exist in filtration cartridges other than water purification cartridges, such as filtration cartridges for air purifiers.
The present invention discloses a technique capable of miniaturizing a product using an activated carbon molded body such as a filtration cartridge.

本発明の活性炭成型体は、
活性炭を含む活性炭成型体であって、
流体が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記流体が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記一以上の流入凹部及び前記一以上の流出凹部の個々の凹部のうち前記第一閉塞端と前記第二閉塞端との間の部分における内側面の面積Sinが最も大きい凹部における前記面積Sinは、前記側面部の面積の0.5倍以上である、態様を有する。
また、本発明の活性炭成型体は、
活性炭を含む活性炭成型体であって、
流体が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記流体が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記流入凹部と前記流出凹部のうち一方の凹部には、他方の凹部及び前記一方の凹部と交差する横断面において前記他方の凹部を囲む溝が含まれる、態様を有する。
The activated carbon molded body of the present invention
It is an activated carbon molded body containing activated carbon.
An inflow end where the open ends of one or more inflow recesses into which the fluid flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses into which the fluid flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
Wherein Ri said outflow end portion side near than the first closed end said second closed end,
Of the individual recesses of the one or more inflow recesses and the one or more outflow recesses, the area Sin in the recess having the largest area Sin of the inner surface in the portion between the first closed end and the second closed end is , 0.5 times or more the area of the side surface portion .
Further, the activated carbon molded body of the present invention is
It is an activated carbon molded body containing activated carbon.
An inflow end where the open ends of one or more inflow recesses into which the fluid flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses into which the fluid flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
The first closed end is closer to the outflow end than the second closed end,
One of the inflow recess and the outflow recess has an embodiment including a groove surrounding the other recess in a cross section intersecting the other recess and the one recess.

さらに、本発明の濾過カートリッジは、
前記活性炭成型体と、
前記流体の流通口を有し、前記活性炭成型体を保持する流通口部材と、を備える態様を有する。
Furthermore , the filtration cartridge of the present invention
With the activated carbon molded body
It has an aspect of having a flow port for the fluid and a flow port member for holding the activated carbon molded body.

さらに、本発明の浄水器は、
活性炭を含む活性炭成型体を有する浄水カートリッジと、
水入口及び水出口を有し、前記浄水カートリッジを収容する浄水器本体と、を備え、
前記活性炭成型体は、
水が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記水が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記一以上の流入凹部及び前記一以上の流出凹部の個々の凹部のうち前記第一閉塞端と前記第二閉塞端との間の部分における内側面の面積Sinが最も大きい凹部における前記面積Sinは、前記側面部の面積の0.5倍以上であり、
前記水入口から流入した前記水が前記流入凹部に入り、前記流出凹部から出た前記水が前記水出口から流出する、態様を有する。
さらに、本発明の浄水器は、
活性炭を含む活性炭成型体を有する浄水カートリッジと、
水入口及び水出口を有し、前記浄水カートリッジを収容する浄水器本体と、を備え、
前記活性炭成型体は、
水が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記水が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記流入凹部と前記流出凹部のうち一方の凹部には、他方の凹部及び前記一方の凹部と交差する横断面において前記他方の凹部を囲む溝が含まれ、
前記水入口から流入した前記水が前記流入凹部に入り、前記流出凹部から出た前記水が前記水出口から流出する、態様を有する。
Furthermore, the water purifier of the present invention
A water purification cartridge having an activated carbon molded body containing activated carbon,
A water purifier main body having a water inlet and a water outlet and accommodating the water purification cartridge is provided.
The activated carbon molded body is
An inflow end where the open ends of one or more inflow recesses into which water flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses from which water flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
The first closed end is closer to the outflow end than the second closed end,
Of the individual recesses of the one or more inflow recesses and the one or more outflow recesses, the area Sin in the recess having the largest area Sin of the inner surface in the portion between the first closed end and the second closed end is , 0.5 times or more the area of the side surface
It has an embodiment in which the water flowing in from the water inlet enters the inflow recess, and the water discharged from the outflow recess flows out from the water outlet.
Furthermore, the water purifier of the present invention
A water purification cartridge having an activated carbon molded body containing activated carbon,
A water purifier main body having a water inlet and a water outlet and accommodating the water purification cartridge is provided.
The activated carbon molded body is
An inflow end where the open ends of one or more inflow recesses into which water flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses from which water flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
The first closed end is closer to the outflow end than the second closed end,
One of the inflow recess and the outflow recess includes a groove surrounding the other recess in a cross section intersecting the other recess and the one recess.
It has an embodiment in which the water flowing in from the water inlet enters the inflow recess, and the water discharged from the outflow recess flows out from the water outlet.

本発明によれば、活性炭成型体を使用した製品を小型化することが可能な技術を提供することができる。 According to the present invention, it is possible to provide a technique capable of miniaturizing a product using an activated carbon molded body.

浄水機能付き水栓を組み込んだシステムキッチンの例を模式的に示す図。The figure which shows typically the example of the system kitchen which incorporated the faucet with a water purification function. (a)は浄水カートリッジを取り付けた吐水ヘッドの例を一部断面視して示す図、(b)は浄水カートリッジを取り付けた吐水部の例を示す斜視図。(A) is a cross-sectional view showing an example of a water discharge head to which a water purification cartridge is attached, and (b) is a perspective view showing an example of a water discharge portion to which a water purification cartridge is attached. 浄水カートリッジの例を示す縦断面図。The vertical sectional view which shows the example of the water purification cartridge. 浄水カートリッジの例を示す分解斜視図。An exploded perspective view showing an example of a water purification cartridge. 活性炭成型体の縦断面、流入端部、及び、流出端部の例を示す図。The figure which shows the example of the vertical cross section, the inflow end part, and the outflow end part of an activated carbon molded body. 活性炭成型体の要部を模式的に例示する図。The figure which schematically exemplifies the main part of the activated carbon molded body. 別の活性炭成型体の縦断面、流入端部、横断面、及び、流出端部の例を示す図。The figure which shows the example of the longitudinal section, the inflow end portion, the cross section, and the outflow end portion of another activated carbon molded body. 別の活性炭成型体の外観、流入端部、横断面、及び、流出端部の例を示す図。The figure which shows the appearance, the inflow end part, the cross section, and the example of the outflow end part of another activated carbon molded body. 図8に示す活性炭成型体の縦断面を示す図。The figure which shows the vertical cross section of the activated carbon molded body shown in FIG. 活性炭成型体の製造方法の例を示す流れ図。The flow chart which shows the example of the manufacturing method of the activated carbon molded body. 成型装置の例を模式的に示す図。The figure which shows typically the example of the molding apparatus.

以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。 Hereinafter, embodiments of the present invention will be described. Of course, the following embodiments merely exemplify the present invention, and not all of the features shown in the embodiments are essential for the means for solving the invention.

(1)本発明に含まれる技術の概要:
まず、図1〜11に示される例を参照して本発明に含まれる技術の概要を説明する。尚、本願の図は模式的に例を示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。むろん、本技術の各要素は、符号で示される具体例に限定されない。
また、本願において、数値範囲「Min〜Max」は、最小値Min以上、且つ、最大値Max以下を意味する。化学式で表される組成比は化学量論比を示し、化学式で表される物質には化学量論比から外れたものも含まれる。
(1) Outline of the technique included in the present invention:
First, an outline of the technique included in the present invention will be described with reference to the examples shown in FIGS. 1 to 11. It should be noted that the figures of the present application are diagrams schematically showing examples, and the enlargement ratios in each direction shown in these figures may be different, and the figures may not be consistent. Of course, each element of the present technology is not limited to the specific example indicated by the reference numeral.
Further, in the present application, the numerical range "Min to Max" means a minimum value of Min or more and a maximum value of Max or less. The composition ratio represented by the chemical formula indicates the stoichiometric ratio, and the substances represented by the chemical formula include substances that deviate from the stoichiometric ratio.

[態様1]
本技術の一態様に係る活性炭成型体100は、活性炭AC1を含む活性炭成型体100であって、流体(例えば水W)が流入する一以上の流入凹部111の開口端112が配置された流入端部110と、前記流体(W)が流出する一以上の流出凹部121の開口端122が配置された流出端部120と、前記流入端部110から前記流出端部120に繋がる側面部(例えば外側面130)と、を有する。前記流入凹部111は、前記流出端部120側の端部に閉塞した第一閉塞端113を有している。前記流出凹部121は、前記流入端部110側の端部に閉塞した第二閉塞端123を有している。前記第一閉塞端113は、前記第二閉塞端123よりも前記流出端部120側にある。
[Aspect 1]
The activated carbon molded body 100 according to one aspect of the present technology is an activated carbon molded body 100 containing activated carbon AC1, and is an inflow end in which an opening end 112 of one or more inflow recesses 111 into which a fluid (for example, water W) flows is arranged. A portion 110, an outflow end 120 in which the opening ends 122 of one or more outflow recesses 121 from which the fluid (W) flows out are arranged, and a side surface portion (for example, outside) connected from the inflow end 110 to the outflow end 120. The side surface 130) and. The inflow recess 111 has a first closed end 113 that is closed at the end on the outflow end 120 side. The outflow recess 121 has a second closed end 123 that is closed at the end on the inflow end 110 side. The first closed end 113 is closer to the outflow end portion 120 than the second closed end 123.

上記態様1において、流入凹部111が流入端部110から第一閉塞端113まで凹み、流出凹部121が流出端部120から第二閉塞端まで凹み、且つ、第一閉塞端113が第二閉塞端123よりも流出端部120側にあるので、第一閉塞端113と第二閉塞端123との間の横断面CS1において流入凹部111と流出凹部121の両方が存在する。流入凹部111の開口端112から流入凹部111に流入した流体(W)は、流入凹部111の内側面114から活性炭成型体100内に入り、少なくとも一部が横断面CS1に沿った方向(例えば図5,6に示す方向D3,D4)にある流出凹部121へ移動して流出凹部121の開口端122から外部へ流出する。活性炭成型体100内において、流体(W)が濾過されて浄化される。横断面CS1において流入凹部111と流出凹部121の両方が存在することにより、流体(W)の圧力損失が低くなり、濾過流量を多くすることができる。このため、例えば、活性炭の粒子を小さくすることができ、単位体積における活性炭量を増やして活性炭の吸着性能を向上させることができる。従って、本態様は、活性炭成型体を使用した製品を小型化することが可能な技術を提供することができる。 In the first aspect, the inflow recess 111 is recessed from the inflow end 110 to the first closed end 113, the outflow recess 121 is recessed from the outflow end 120 to the second closed end, and the first closed end 113 is the second closed end. Since it is closer to the outflow end 120 than 123, both the inflow recess 111 and the outflow recess 121 are present in the cross section CS1 between the first closed end 113 and the second closed end 123. The fluid (W) that has flowed into the inflow recess 111 from the opening end 112 of the inflow recess 111 enters the activated carbon molded body 100 from the inner side surface 114 of the inflow recess 111, and at least a part of the fluid (W) flows along the cross section CS1 (for example, FIG. It moves to the outflow recess 121 in the directions D3 and D4) shown in 5 and 6, and flows out from the open end 122 of the outflow recess 121. In the activated carbon molded body 100, the fluid (W) is filtered and purified. Since both the inflow recess 111 and the outflow recess 121 are present in the cross section CS1, the pressure loss of the fluid (W) can be reduced and the filtration flow rate can be increased. Therefore, for example, the particles of activated carbon can be made smaller, and the amount of activated carbon in a unit volume can be increased to improve the adsorption performance of activated carbon. Therefore, this aspect can provide a technique capable of miniaturizing a product using an activated carbon molded body.

ここで、活性炭成型体は、活性炭のみからなる成型体でもよいが、活性炭以外の成分が含まれてもよく、活性炭を主成分としてバインダー等といった副成分を含む成型体でもよい。
流体には、水といった液体、及び、空気といった気体が含まれる。本願の「液体」は、溶質が含まれている溶液や、分散質(固体粒子や液体粒子)が含まれている分散系を含む。本願の「気体」は、分散質(固体粒子や液体粒子)が含まれている分散系を含む。
流体は、流入端部から直接、活性炭成型体内に入ってもよいし、側面部から活性炭成型体内に入ってもよい。流体が側面部から活性炭成型体内に入る場合、流入凹部は側面部に開口部を有してもよい。活性炭成型体内の流体は、流出端部から直接、外部へ流出してもよいし、側面部から外部へ流出してもよい。流体が側面部から外部へ出る場合、流出凹部は側面部に開口部を有してもよい。
凹部(流入凹部及び流出凹部)には、後述する態様3の溝、及び、態様3の溝に含まれない凹部(例えば図5に示す流入凹部1111)が含まれる。態様3の溝に含まれない凹部には、図5に例示する流入凹部1111のような横断面円形の有底穴(閉塞端を有する穴)、横断面楕円形の有底穴、横断面四角形といった横断面多角形の有底穴、等が含まれる。
Here, the activated carbon molded body may be a molded carbon composed of only activated carbon, but may contain components other than activated carbon, or may be a molded carbon containing activated carbon as a main component and containing auxiliary components such as a binder.
Fluids include liquids such as water and gases such as air. The "liquid" of the present application includes a solution containing a solute and a dispersion system containing a dispersoid (solid particles or liquid particles). The "gas" of the present application includes a dispersion system containing dispersoids (solid particles and liquid particles).
The fluid may enter the activated carbon molding body directly from the inflow end portion, or may enter the activated carbon molding body from the side surface portion. If the fluid enters the activated carbon molding from the side surface, the inflow recess may have an opening on the side surface. The fluid in the activated carbon molding body may flow out directly from the outflow end portion to the outside, or may flow out from the side surface portion to the outside. If the fluid exits from the side surface, the outflow recess may have an opening in the side surface.
The recesses (inflow recess and outflow recess) include the groove of the third aspect described later and the recess not included in the groove of the third aspect (for example, the inflow recess 1111 shown in FIG. 5). The recesses not included in the groove of the third aspect include a bottomed hole having a circular cross section (a hole having a closed end) like the inflow recess 1111 illustrated in FIG. 5, a bottomed hole having an elliptical cross section, and a quadrangular cross section. Includes bottomed holes with a polygonal cross section, etc.

[態様2]
図5等に例示するように、前記一以上の流入凹部111及び前記一以上の流出凹部121の個々の凹部(例えば流入凹部1111,1112及び流出凹部1211,1212)のうち前記第一閉塞端113と前記第二閉塞端123との間の部分P1における内側面114,124の面積Sinが最も大きい凹部(以下、「最大凹部」ともいう。)における前記面積Sinは、前記側面部(例えば外側面130)の面積の0.5倍以上でもよい。最大凹部(例えば流出凹部1212)の面積Sinが活性炭成型体100の側面部(130)の面積の0.5倍以上と大きいことにより、流体(例えば水W)の圧力損失がさらに低くなり、濾過流量をさらに多くすることができる。従って、本態様は、活性炭成型体を使用した製品をさらに小型化することが可能な技術を提供することができる。
[Aspect 2]
As illustrated in FIG. 5 and the like, of the individual recesses (for example, inflow recesses 1111, 1112 and outflow recesses 1211, 1212) of the one or more inflow recesses 111 and the one or more outflow recesses 121, the first closed end 113 The area Sin in the recess having the largest area Sin of the inner side surfaces 114 and 124 in the portion P1 between the second closed end 123 and the second closed end 123 (hereinafter, also referred to as “maximum recess”) is the side surface portion (for example, the outer surface). It may be 0.5 times or more the area of 130). Since the area Sin of the maximum recess (for example, the outflow recess 1212) is as large as 0.5 times or more the area of the side surface portion (130) of the activated carbon molded body 100, the pressure loss of the fluid (for example, water W) is further reduced, and filtration is performed. The flow rate can be further increased. Therefore, this aspect can provide a technique capable of further miniaturizing a product using an activated carbon molded body.

ここで、活性炭成型体に流入凹部が複数ある場合、個々の流入凹部が最大凹部の候補となる。活性炭成型体に流出凹部が複数ある場合、個々の流出凹部が最大凹部の候補となる。
面積Sinが側面部の面積の0.5倍以上である凹部は、流入凹部と流出凹部の両方にあってもよい。
Here, when the activated carbon molded body has a plurality of inflow recesses, each inflow recess is a candidate for the maximum recess. When the activated carbon molded body has a plurality of outflow recesses, each outflow recess is a candidate for the maximum recess.
The recesses having an area Sin of 0.5 times or more the area of the side surface portion may be located in both the inflow recess and the outflow recess.

[態様3]
図5等に例示するように、前記流入凹部111と前記流出凹部121のうち一方の凹部には、他方の凹部及び前記一方の凹部と交差する横断面CS1において前記他方の凹部を囲む溝が含まれてもよい。例えば、図5に示す流入凹部1112を「他方の凹部」に当てはめると、流入凹部1112を囲む流出凹部1212が「一方の凹部」に当てはまる。また、流出凹部1211を「他方の凹部」に当てはめると、流出凹部1211を囲む流入凹部1112が「一方の凹部」に当てはまる。「一方の凹部」が「他方の凹部」を囲む溝であることにより、「一方の凹部」の内側面の面積が大きい。
一方の凹部の内側面(114又は124)の面積が大きいことにより、流体(W)の圧力損失がさらに低くなり、濾過流量をさらに多くすることができる。従って、本態様は、活性炭成型体を使用した製品をさらに小型化することが可能な技術を提供することができる。
尚、他方の凹部の周りに一方の凹部として溝ではなく図5に示す流入凹部1111のような横断面円形又は横断面多角形の流入凹部を複数配置することも可能である。この概念は、態様3には含まれないが、本技術に含まれる。ただ、周りの横断面円形又は横断面多角形の凹部同士を活性炭成型体の強度が確保される間隔にする必要があるため、周りの横断面円形又は横断面多角形の凹部の数に限界があり、当該凹部の内側面の面積を合わせても態様3の溝である場合の「一方の凹部」の内側面の面積に及ばない。このように、態様3では、溝である場合の「一方の凹部」の内側面(114又は124)の面積が大きくなり、流体(W)の圧力損失がさらに低くなり、濾過流量がさらに多くなる。
[Aspect 3]
As illustrated in FIG. 5 and the like, one of the inflow recess 111 and the outflow recess 121 includes a groove surrounding the other recess in the cross section CS1 intersecting the other recess and the one recess. It may be. For example, when the inflow recess 1112 shown in FIG. 5 is fitted to the “other recess”, the outflow recess 1212 surrounding the inflow recess 1112 fits into the “one recess”. Further, when the outflow recess 1211 is fitted to the "other recess", the inflow recess 1112 surrounding the outflow recess 1211 fits into the "one recess". Since the "one recess" is a groove surrounding the "other recess", the area of the inner surface of the "one recess" is large.
Since the area of the inner surface (114 or 124) of one of the recesses is large, the pressure loss of the fluid (W) is further reduced, and the filtration flow rate can be further increased. Therefore, this aspect can provide a technique capable of further miniaturizing a product using an activated carbon molded body.
It is also possible to arrange a plurality of inflow recesses having a circular cross section or a polygonal cross section, such as the inflow recess 1111 shown in FIG. 5, instead of a groove as one recess around the other recess. This concept is not included in aspect 3, but is included in the present technology. However, there is a limit to the number of concave portions having a circular cross section or a polygonal cross section around them because the recesses having a circular cross section or a polygonal cross section must be spaced apart from each other to ensure the strength of the activated carbon molded product. Yes, even if the area of the inner surface of the recess is combined, it does not reach the area of the inner surface of the "one recess" in the case of the groove of the third aspect. As described above, in the third aspect, the area of the inner surface (114 or 124) of the “one concave portion” in the case of the groove is increased, the pressure loss of the fluid (W) is further reduced, and the filtration flow rate is further increased. ..

上記溝は、上記凹部の内、深さ(図5に示す例では方向D1,D2における長さ)を問わず流入端部や流出端部の表面に沿ってくぼんだ平面視細長いところを意味する。「平面視細長い」とは、平面視において溝の両端が離れている(繋がっていない)形状に限定されず、平面視において環状や四角状といった元に戻る形状、すなわち、両端が閉じている(繋がっている)形状も含む。図5に示す例の場合、溝は、流入凹部1111とは異なり、内方向D3側の内側面と外方向D4側の内側面との間にある平面視細長状の凹部を意味する。
「一方の凹部」が「他方の凹部」を囲むとは、「他方の凹部」の周りにある「一方の凹部」に隙間が無いことに限定されず、「一方の凹部」が渦巻き状やC字形の溝であるといった、「他方の凹部」の周りにある「一方の凹部」に隙間があることも含む。
上述したように、流出凹部を囲む溝である流入凹部と、流入凹部を囲む溝である流出凹部と、の両方が活性炭成型体にあってもよいし、片方のみ活性炭成型体にあってもよい。
上記態様3は、「一方の凹部」が「流入凹部」である場合、「前記一以上の流入凹部には、前記流入凹部及び前記流出凹部と交差する横断面において前記一以上の流出凹部の少なくとも一つを囲む溝が含まれる」と言い換えることができる。また、「一方の凹部」が「流出凹部」である場合、「前記一以上の流出凹部には、前記流入凹部及び前記流出凹部と交差する横断面において前記一以上の流入凹部の少なくとも一つを囲む溝が含まれる」と言い換えることができる。
すなわち、「一方の凹部」としての「流入凹部」が二以上ある場合には少なくとも一つの「流入凹部」が「流出凹部」を囲む溝であれば態様3に含まれ、「一方の凹部」としての「流出凹部」が二以上ある場合には少なくとも一つの「流出凹部」が「流入凹部」を囲む溝であれば態様3に含まれる。
また、具体的には後述するが、他方の凹部を囲む溝の横断面形状には、円形、楕円形、四角形といった多角形、等が含まれる。
The groove means an elongated portion in a plan view that is recessed along the surface of the inflow end portion or the outflow end portion regardless of the depth (the length in directions D1 and D2 in the example shown in FIG. 5) in the recess. .. The term "elongated in plan view" is not limited to a shape in which both ends of the groove are separated (not connected) in a plan view, but a shape that returns to the original shape such as an annular shape or a square shape in a plan view, that is, both ends are closed ( Also includes shapes (which are connected). In the case of the example shown in FIG. 5, the groove means an elongated recess in a plan view between the inner surface on the inward D3 side and the inner surface on the outer D4 side, unlike the inflow recess 1111.
The fact that "one recess" surrounds "the other recess" is not limited to the fact that there is no gap in "one recess" around the "other recess", and "one recess" is spiral or C. It also includes a gap in the "one recess" around the "other recess", such as a glyphic groove.
As described above, both the inflow recess which is the groove surrounding the outflow recess and the outflow recess which is the groove surrounding the inflow recess may be in the activated carbon molded body, or only one of them may be in the activated carbon molded body. ..
In the third aspect, when "one of the recesses" is the "inflow recess", "the one or more inflow recesses have at least one or more outflow recesses in the cross section intersecting the inflow recesses and the outflow recesses. It includes a groove that surrounds one. " When the "one recess" is the "outflow recess", "the one or more outflow recesses include at least one of the inflow recesses and the one or more inflow recesses in the cross section intersecting the outflow recesses. It includes a groove that surrounds it. "
That is, when there are two or more "inflow recesses" as "one recess", if at least one "inflow recess" is a groove surrounding the "outflow recess", it is included in aspect 3 and is referred to as "one recess". When there are two or more "outflow recesses", if at least one "outflow recess" is a groove surrounding the "inflow recess", the third aspect is included.
Further, as will be described in detail later, the cross-sectional shape of the groove surrounding the other recess includes polygons such as a circle, an ellipse, and a quadrangle.

[態様4]
また、本技術の一態様に係る濾過カートリッジ(例えば浄水カートリッジ20)は、態様1〜3のいずれか一つに記載の活性炭成型体100、及び、前記流体(例えば水W)の流通口(例えば流出口75)を有して前記活性炭成型体100を保持する流通口部材(例えば中空糸膜ケース70)を備える。本態様の濾過カートリッジ(20)の活性炭成型体100は、横断面CS1において流入凹部111と流出凹部121の両方が存在することにより、流体(W)の圧力損失が低くなり、濾過流量を多くすることができる。このため、例えば、活性炭の粒子を小さくすることができ、単位体積における活性炭量を増やして活性炭の吸着性能を向上させることができる。従って、本態様は、活性炭成型体100を収容した濾過カートリッジ(20)を小型化することができ、小型化された濾過カートリッジを提供することができる。
ここで、流通口は、流体が流出する流出口でもよいし、流体が流入する流入口でもよい。流通口部材は、前記流出口と前記流入口の両方を有してもよい。
[Aspect 4]
Further, the filtration cartridge (for example, the water purification cartridge 20) according to one aspect of the present technology includes the activated carbon molded body 100 according to any one of the first to third aspects and the flow port (for example, water W) of the fluid (for example, water W). A flow port member (for example, a hollow fiber membrane case 70) having an outlet 75) and holding the activated carbon molded body 100 is provided. In the activated carbon molded body 100 of the filtration cartridge (20) of this embodiment, the pressure loss of the fluid (W) is reduced and the filtration flow rate is increased due to the presence of both the inflow recess 111 and the outflow recess 121 in the cross section CS1. be able to. Therefore, for example, the particles of activated carbon can be made smaller, and the amount of activated carbon in a unit volume can be increased to improve the adsorption performance of activated carbon. Therefore, in this aspect, the filtration cartridge (20) containing the activated carbon molded body 100 can be miniaturized, and the miniaturized filtration cartridge can be provided.
Here, the flow port may be an outflow port through which the fluid flows out, or an inflow port through which the fluid flows in. The distribution port member may have both the outlet and the inlet.

[態様5]
さらに、本技術の一態様に係る浄水器(例えば水栓1)は、活性炭AC1を含む活性炭成型体100を有する浄水カートリッジ20、及び、該浄水カートリッジ20を収容する浄水器本体(例えば吐水ヘッド10)を備える。この浄水器本体(10)は、水入口(例えばホース19)及び水出口13を有する。前記活性炭成型体100は、水Wが流入する一以上の流入凹部111の開口端112が配置された流入端部110と、前記水Wが流出する一以上の流出凹部121の開口端122が配置された流出端部120と、前記流入端部110から前記流出端部120に繋がる側面部(例えば外側面130)と、を有する。前記流入凹部111は、前記流出端部120側の端部に閉塞した第一閉塞端113を有する。前記流出凹部121は、前記流入端部110側の端部に閉塞した第二閉塞端123を有する。前記第一閉塞端113は、前記第二閉塞端123よりも前記流出端部120側にある。本浄水器(1)は、前記水入口(19)から流入した前記水Wが前記流入凹部111に入り、前記流出凹部121から出た前記水Wが前記水出口13から流出する。
[Aspect 5]
Further, the water purifier (for example, faucet 1) according to one aspect of the present technology includes a water purification cartridge 20 having an activated carbon molded body 100 containing activated carbon AC1 and a water purifier main body (for example, a water discharge head 10) accommodating the water purification cartridge 20. ) Is provided. The water purifier main body (10) has a water inlet (for example, a hose 19) and a water outlet 13. The activated carbon molded body 100 has an inflow end 110 in which the opening ends 112 of one or more inflow recesses 111 into which water W flows in are arranged, and an opening end 122 of one or more outflow recesses 121 in which the water W flows out. It has an outflow end portion 120 and a side surface portion (for example, an outer surface 130) connected from the inflow end portion 110 to the outflow end portion 120. The inflow recess 111 has a first closed end 113 closed at the end on the outflow end 120 side. The outflow recess 121 has a second closed end 123 that is closed at the end on the inflow end 110 side. The first closed end 113 is closer to the outflow end portion 120 than the second closed end 123. In the water purifier (1), the water W flowing in from the water inlet (19) enters the inflow recess 111, and the water W discharged from the outflow recess 121 flows out from the water outlet 13.

上記態様5において、流入凹部111の開口端112から流入凹部111に流入した水Wは、流入凹部111の内側面114から活性炭成型体100内に入り、少なくとも一部が横断面CS1に沿った方向(例えば図5,6に示す方向D3,D4)にある流出凹部121へ移動して流出凹部121の開口端122から外部へ流出する。活性炭成型体100内において、水Wが濾過されて浄化される。横断面CS1において流入凹部111と流出凹部121の両方が存在することにより、水Wの圧力損失が低くなり、濾過流量を多くすることができる。このため、例えば、活性炭の粒子を小さくすることができ、単位体積における活性炭量を増やして活性炭の吸着性能を向上させることができる。従って、本態様は、活性炭成型体100を収容した浄水器(1)を小型化することができ、小型化された浄水器を提供することができる。 In the above aspect 5, the water W flowing into the inflow recess 111 from the opening end 112 of the inflow recess 111 enters the activated carbon molded body 100 from the inner side surface 114 of the inflow recess 111, and at least a part thereof is in the direction along the cross section CS1. It moves to the outflow recess 121 in (for example, directions D3 and D4 shown in FIGS. 5 and 6) and flows out from the opening end 122 of the outflow recess 121. Water W is filtered and purified in the activated carbon molded body 100. Since both the inflow recess 111 and the outflow recess 121 are present in the cross section CS1, the pressure loss of the water W can be reduced and the filtration flow rate can be increased. Therefore, for example, the particles of activated carbon can be made smaller, and the amount of activated carbon in a unit volume can be increased to improve the adsorption performance of activated carbon. Therefore, in this aspect, the water purifier (1) accommodating the activated carbon molded body 100 can be miniaturized, and a miniaturized water purifier can be provided.

(2)濾過カートリッジを有する浄水器の具体例:
図1は、浄水機能付き水栓1(浄水器の例)を組み込んだシステムキッチンSY1を模式的に例示している。この例の浄水器は、いわゆるスパウトイン浄水器であり、浄水カートリッジ20(濾過カートリッジの例)により浄水機能を発揮する。尚、各部の位置関係の説明は、例示に過ぎない。従って、左右方向を上下方向又は前後方向に変更したり、上下方向を左右方向や前後方向に変更したり、前後方向を左右方向や上下方向に変更したり、回転方向を逆方向に変更したり等することも、本技術に含まれる。また、方向や位置等の同一は、厳密な一致に限定されず、誤差により厳密な一致からずれることを含む。
(2) Specific example of a water purifier having a filtration cartridge:
FIG. 1 schematically illustrates a system kitchen SY1 incorporating a faucet 1 with a water purification function (an example of a water purifier). The water purifier of this example is a so-called spout-in water purifier, and the water purification cartridge 20 (example of a filtration cartridge) exerts a water purification function. The explanation of the positional relationship of each part is merely an example. Therefore, the left-right direction can be changed to the up-down direction or the front-back direction, the up-down direction can be changed to the left-right direction or the front-back direction, the front-back direction can be changed to the left-right direction or the up-down direction, or the rotation direction can be changed to the opposite direction. Etc. are also included in this technology. In addition, the same direction, position, etc. are not limited to exact matching, and include deviation from exact matching due to an error.

図1に示すシステムキッチンSY1には、水平に延びるカウンター801にキャビネット802、凹状のシンク803、水栓1、等が組み込まれている。水栓1は、カウンター801の下面に配置されたシンク803を上下に貫通して取付けられた水栓本体2、この水栓本体2に対して着脱可能な吐水ヘッド(浄水器本体の例)10、水栓本体2に対して傾動可能な開栓レバー3、等を備えている。尚、本具体例の浄水器本体は、浄水カートリッジ20を除いた吐水ヘッド10を意味する。吐水ヘッド10には、水栓本体2に通されているホース19(水入口の例)が接続されている。ホース19は、開栓レバー3が開いている時に図示しない給水管からの水道水を吐水ヘッド10に供給する。水栓本体2から吐水ヘッド10が取り外されると、水栓本体2からホース19が引き出される。水栓本体2に吐水ヘッド10を取り付ける時には、水栓本体2にホース19が引き込まれる。開栓レバー3は、開位置(例えば傾動範囲の上側の位置)にある時にホース19を介して吐水ヘッド10へ水道水が供給されるようにし、閉位置(例えば傾動範囲の下側の位置)にある時に吐水ヘッド10への水道水の供給を停止させる。 In the system kitchen SY1 shown in FIG. 1, a cabinet 802, a concave sink 803, a faucet 1, and the like are incorporated in a horizontally extending counter 801. The faucet 1 is a faucet main body 2 attached by penetrating the sink 803 arranged on the lower surface of the counter 801 up and down, and a water discharge head (example of a water purifier main body) 10 that can be attached to and detached from the faucet main body 2. , An opening lever 3 that can be tilted with respect to the faucet main body 2, and the like. The water purifier main body of this specific example means a water discharge head 10 excluding the water purification cartridge 20. A hose 19 (example of a water inlet) passing through the faucet main body 2 is connected to the water discharge head 10. The hose 19 supplies tap water from a water supply pipe (not shown) to the water discharge head 10 when the opening lever 3 is open. When the water discharge head 10 is removed from the faucet main body 2, the hose 19 is pulled out from the faucet main body 2. When the water discharge head 10 is attached to the faucet body 2, the hose 19 is pulled into the faucet body 2. The opening lever 3 allows tap water to be supplied to the water discharge head 10 via the hose 19 when it is in the open position (for example, the position above the tilt range), and the closed position (for example, the position below the tilt range). The supply of tap water to the spout head 10 is stopped at the time of.

図2(a)は、浄水カートリッジ20を取り付けた吐水ヘッド10を一部断面視して例示している。図2(b)は、浄水カートリッジ20を取り付けた吐水部を例示している。図2に示す吐水ヘッド10は、先端側、すなわち、水の流下方向D1の下流側にある吐水部11、及び、水栓本体2に対して着脱される把持部18を有し、交換部品である浄水カートリッジ20が組み込まれている。吐水ヘッド10の内側において浄水カートリッジ20の外側は、水道水が流れる水道水通路10aとされている。吐水部11には、浄水カートリッジ20との接続口12、及び、接続口12からの浄水を出すか水道水通路10aからの水道水を出すかの切替操作可能な切替レバー15が設けられている。切替レバー15は、浄水側(例えば回転範囲の一端側)にある時に水道水を止めて浄水を吐水部11の水出口13から吐出させ、水道水側(例えば回転範囲の他端側)にある時浄水を止めて水道水を吐水部11の水出口13から吐出させる。 FIG. 2A exemplifies a partial cross-sectional view of the water discharge head 10 to which the water purification cartridge 20 is attached. FIG. 2B illustrates a water discharge portion to which the water purification cartridge 20 is attached. The water discharge head 10 shown in FIG. 2 has a water discharge portion 11 on the tip side, that is, a downstream side in the water flow direction D1, and a grip portion 18 attached to and detached from the faucet body 2, and is a replacement part. A water purification cartridge 20 is incorporated. Inside the water discharge head 10, the outside of the water purification cartridge 20 is a tap water passage 10a through which tap water flows. The water discharge unit 11 is provided with a connection port 12 for connecting to the water purification cartridge 20 and a switching lever 15 capable of switching between discharging purified water from the connection port 12 and tap water from the tap water passage 10a. .. The switching lever 15 stops tap water when it is on the purified water side (for example, one end side of the rotation range), discharges purified water from the water outlet 13 of the water discharge unit 11, and is on the tap water side (for example, the other end side of the rotation range). When the water purification is stopped, tap water is discharged from the water outlet 13 of the water discharge unit 11.

図2に示すように、吐水部11の上流側における端部の外周に雄ねじ11aが形成され、把持部18の下流側における端部の内周に雌ねじ18aが形成されている。両ねじ11a,18aを螺合することにより把持部18を吐水部11に取り付けることができ、雄ねじ11aから雌ねじ18aを外すことにより吐水部11から把持部18を取り外すことができる。 As shown in FIG. 2, a male screw 11a is formed on the outer circumference of the end portion on the upstream side of the water discharge portion 11, and a female screw 18a is formed on the inner circumference of the end portion on the downstream side of the grip portion 18. The grip portion 18 can be attached to the water discharge portion 11 by screwing both screws 11a and 18a, and the grip portion 18 can be removed from the water discharge portion 11 by removing the female screw 18a from the male screw 11a.

水栓本体2に収容される交換可能な浄水カートリッジ20は、活性炭成型体100を含む吸着剤部30、及び、中空糸膜H1を複数束ねた中空糸膜束BH1の収容部71を有する中空糸膜ケース70(流通口部材の例)を備えている。吸着剤部30は流下方向D1の上流側に配置され、中空糸膜ケース70は流下方向D1の下流側に配置されている。浄水カートリッジ20に流入した水道水は、吸着剤部30、中空糸膜束収容部71、の順に入り、浄化される。 The replaceable water purification cartridge 20 housed in the faucet body 2 is a hollow fiber having an adsorbent part 30 including an activated carbon molded body 100 and a hollow fiber membrane bundle BH1 accommodating part 71 in which a plurality of hollow fiber membranes H1 are bundled. A membrane case 70 (an example of a distribution port member) is provided. The adsorbent portion 30 is arranged on the upstream side of the flow direction D1, and the hollow fiber membrane case 70 is arranged on the downstream side of the flow direction D1. The tap water that has flowed into the water purification cartridge 20 enters the adsorbent portion 30 and the hollow fiber membrane bundle accommodating portion 71 in this order to be purified.

中空糸膜束収容部71は、吐水部11に対して流下方向D1へ挿入されて取り付けられる。この時、中空糸膜束収容部71の流出口75(流通口の例)が吐水部11の接続口12に挿入される。浄水カートリッジ20は、吸着剤部30、及び、中空糸膜ケース70の外嵌部80が吐水部11から出た状態で吐水部11に固定される。浄水カートリッジ20は、吐水部11から流下方向D1とは反対の方向(延出方向D2)へ引き出すことにより取り外される。従って、浄水カートリッジ20は、吐水ヘッド10に対して着脱可能である。 The hollow fiber membrane bundle accommodating portion 71 is inserted and attached to the water discharge portion 11 in the flow direction D1. At this time, the outlet 75 (example of the distribution port) of the hollow fiber membrane bundle accommodating portion 71 is inserted into the connection port 12 of the water discharge portion 11. The water purification cartridge 20 is fixed to the water discharge portion 11 with the adsorbent portion 30 and the outer fitting portion 80 of the hollow fiber membrane case 70 protruding from the water discharge portion 11. The water purification cartridge 20 is removed by pulling it out from the water discharge portion 11 in the direction opposite to the flow direction D1 (extending direction D2). Therefore, the water purification cartridge 20 is removable from the water discharge head 10.

図3は、浄水カートリッジ20の中心軸AX1を通る縦断面を例示している。図4は、浄水カートリッジ20を分解して例示している。図5は、吸着剤部30の活性炭成型体100の中心軸AX1を通る縦断面、流入端部110(右上の二点鎖線の囲み内)、及び、流出端部120(右下の二点鎖線の囲み内)を例示している。図6は、活性炭成型体100の要部を模式的に例示している。
図6に示すように、活性炭成型体100は、活性炭AC1を含んでいる。活性炭成型体100は、活性炭AC1のみからなる成型体でもよいが、活性炭AC1を主成分としてバインダーB1やイオン交換体等といった副成分を含む成型体でもよい。吸着剤部30は、活性炭成型体100のみからなる部位でもよいが、不織布31等といった材料を有してもよい。図3,4に示す吸着剤部30は、活性炭成型体100の外側面130(側面部の例)をほぼ覆う円筒状の不織布31を有している。不織布31は、浄水カートリッジ20を交換する際に活性炭成型体100が手に触れないようにする役割を有する。不織布31は水中の微粒子を除去しながら水W(流体の例)を通すので、外側面130から活性炭成型体100の内部に水Wが入る。不織布31には、ポリエチレン(PE)繊維やポリプロピレン(PP)繊維といったポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維、これらの組合せ、といった熱可塑性樹脂(合成樹脂)の繊維等を用いることができる。
FIG. 3 illustrates a vertical cross section of the water purification cartridge 20 passing through the central axis AX1. FIG. 4 illustrates the disassembled water purification cartridge 20. FIG. 5 shows a vertical cross section of the adsorbent portion 30 passing through the central axis AX1 of the activated carbon molded body 100, an inflow end 110 (inside the upper right two-dot chain line), and an outflow end 120 (lower right two-dot chain line). (Inside the box) is illustrated. FIG. 6 schematically illustrates a main part of the activated carbon molded body 100.
As shown in FIG. 6, the activated carbon molded body 100 contains the activated carbon AC1. The activated carbon molded body 100 may be a molded carbon composed of only activated carbon AC1, but may be a molded carbon containing activated carbon AC1 as a main component and containing auxiliary components such as a binder B1 and an ion exchanger. The adsorbent portion 30 may be a portion made of only the activated carbon molded body 100, or may have a material such as a non-woven fabric 31 or the like. The adsorbent portion 30 shown in FIGS. 3 and 4 has a cylindrical non-woven fabric 31 that substantially covers the outer surface 130 (example of the side surface portion) of the activated carbon molded body 100. The non-woven fabric 31 has a role of preventing the activated carbon molded body 100 from touching the hand when the water purification cartridge 20 is replaced. Since the non-woven fabric 31 passes water W (example of a fluid) while removing fine particles in water, water W enters the inside of the activated carbon molded body 100 from the outer surface 130. As the non-woven fabric 31, polyolefin fibers such as polyethylene (PE) fibers and polypropylene (PP) fibers, polyester fibers, polyamide fibers, polyvinyl alcohol fibers, and thermoplastic resin (synthetic resin) fibers such as a combination thereof can be used. ..

図2〜4に示すように、中空糸膜ケース70は、内部空間70cとなる凹部に中空糸膜束BH1が固定された本体部70aと、流出口75を有する蓋部70bとを嵌め合わせた構造を有している。この構造を有する中空糸膜ケース70は、内部空間70cに中空糸膜束BH1が収容された収容部71、及び、吸着剤部30の流下方向D1における端部30bの外嵌部80が形成されている。収容部71には、中空糸膜束BH1の閉塞端部BH1aに対向する連絡口74、及び、中空糸膜束BH1の開口端部BH1bに対向する流出口75が形成されている。外嵌部80は、連絡口74の外側において中空糸膜束収容部71から吸着剤部30側(延出方向D2)へ延出し、吸着剤部30の下流側の端部30bが挿入される。外嵌部80に吸着剤部30の端部30bを入れてホットメルト等といった接着剤で固定すると、吸着剤部30が中空糸膜ケース70に保持される。尚、外嵌部80と吸着剤部30との固定手段は、接着剤に限定されず、Oリング等といったシール部材でもよい。中空糸膜ケース70には、ABS樹脂、AS樹脂、PE樹脂やPP樹脂といったポリオレフィン樹脂、PS樹脂、フッ素樹脂、これらの組合せ、といった熱可塑性樹脂(合成樹脂)等を用いることができる。 As shown in FIGS. 2 to 4, in the hollow fiber membrane case 70, a main body portion 70a in which the hollow fiber membrane bundle BH1 is fixed in a concave portion serving as an internal space 70c and a lid portion 70b having an outlet 75 are fitted together. It has a structure. In the hollow fiber membrane case 70 having this structure, an accommodating portion 71 in which the hollow fiber membrane bundle BH1 is accommodated is formed in the internal space 70c, and an outer fitting portion 80 of the end portion 30b in the flow direction D1 of the adsorbent portion 30 is formed. ing. The accommodating portion 71 is formed with a contact port 74 facing the closed end portion BH1a of the hollow fiber membrane bundle BH1 and an outlet 75 facing the open end portion BH1b of the hollow fiber membrane bundle BH1. The outer fitting portion 80 extends from the hollow fiber membrane bundle accommodating portion 71 to the adsorbent portion 30 side (extending direction D2) on the outside of the communication port 74, and the end portion 30b on the downstream side of the adsorbent portion 30 is inserted. .. When the end portion 30b of the adsorbent portion 30 is put into the outer fitting portion 80 and fixed with an adhesive such as hot melt, the adsorbent portion 30 is held by the hollow fiber membrane case 70. The fixing means between the outer fitting portion 80 and the adsorbent portion 30 is not limited to the adhesive, and may be a sealing member such as an O-ring. For the hollow thread film case 70, a thermoplastic resin (synthetic resin) such as ABS resin, AS resin, polyolefin resin such as PE resin or PP resin, PS resin, fluororesin, or a combination thereof can be used.

中空糸膜束BH1は、処理対象の水から1μm程度以上の細かい濁りや鉄サビや一般細菌を取り除く。中空糸膜束BH1を構成する中空糸膜H1の材質には、PE樹脂やPP樹脂といったポリオレフィン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリテトラフルオロエチレン樹脂、ポリフッ化ビニリデン樹脂、ポリアクリロニトリル(PAN)樹脂、ポリエーテルスルホン(PES)樹脂、セルロース、これらの組合せ、等を採用することができる。また、これらに酸化アルミニウム(化学量論比でAl23)、酸化ジルコニウム(化学量論比でZr02)、酸化チタン(化学量論比でTi02)、ステンレス(SUS)、ガラス(例えばシラス多孔質ガラス(SPG))、といった無機材料を添加してもよい。例えば、U字状に曲げた中空糸膜H1を複数束ねた中空糸膜束BH1を閉塞端部BH1aから本体部70aの凹部に挿入して開口端部BH1bをポッティング剤で固定し、開口端部BH1bを覆うように蓋部70bを本体部70aに嵌め合わせると、中空糸膜束BH1が収容された中空糸膜ケース70が形成される。ポッティング剤には、ホットメルトといった熱可塑性樹脂系接着剤、ウレタン樹脂系接着剤やエポキシ樹脂系接着剤やシリコーン樹脂系接着剤や不飽和ポリエステル樹脂系接着剤やフェノール樹脂系接着剤といった硬化性樹脂系接着剤、等を用いることができる。 The hollow fiber membrane bundle BH1 removes fine turbidity of about 1 μm or more, iron rust, and general bacteria from the water to be treated. The material of the hollow thread film H1 constituting the hollow thread film bundle BH1 includes polyolefin resin such as PE resin and PP resin, polysulfone resin, polyamide resin, polyimide resin, polytetrafluoroethylene resin, polyvinylidene fluoride resin, and polyacrylonitrile (PAN). ) Resin, polyethersulfone (PES) resin, cellulose, a combination thereof, etc. can be adopted. These aluminum oxide (Al 2 0 3 in a stoichiometric ratio), (Zr0 2 in a stoichiometric ratio) zirconium oxide, (Ti0 2 in a stoichiometric ratio) of titanium oxide, stainless (SUS), glass (e.g. Inorganic materials such as silas porous glass (SPG)) may be added. For example, a hollow fiber membrane bundle BH1 obtained by bundling a plurality of U-shaped bent hollow fiber membranes H1 is inserted from the closed end portion BH1a into the recess of the main body portion 70a, the open end portion BH1b is fixed with a potting agent, and the open end portion is fixed. When the lid portion 70b is fitted to the main body portion 70a so as to cover the BH1b, a hollow fiber membrane case 70 in which the hollow fiber membrane bundle BH1 is housed is formed. Potting agents include thermoplastic resin adhesives such as hot melt, urethane resin adhesives, epoxy resin adhesives, silicone resin adhesives, unsaturated polyester resin adhesives, and phenolic resin adhesives. A system adhesive, etc. can be used.

図3〜5に示す活性炭成型体100は、凹部111,121を有する略円柱状であり、水Wが流入する上流側に略円形の流入端部110を向け、水Wが流出する下流側に略円形の流出端部120を向けて、水栓本体2に配置される。活性炭成型体100の外側面130は、横断面略円形であり、流入端部110から流出端部120に繋がっている。尚、活性炭成型体100の脱型を考慮して、活性炭成型体100を僅かにテーパー状にしてもよい。 The activated carbon molded body 100 shown in FIGS. 3 to 5 has a substantially columnar shape having recesses 111 and 121, and the substantially circular inflow end 110 is directed to the upstream side where the water W flows in, and the downstream side where the water W flows out. The faucet body 2 is arranged with the substantially circular outflow end 120 facing. The outer surface 130 of the activated carbon molded body 100 has a substantially circular cross section, and is connected from the inflow end 110 to the outflow end 120. In consideration of the demolding of the activated carbon molded body 100, the activated carbon molded body 100 may be slightly tapered.

流入端部110には、水Wが流入する流入凹部111の開口端112が配置されている。流入凹部111は、活性炭成型体100を含む浄水カートリッジ20の中心軸AX1に沿って開口端112から流出端部120近くの第一閉塞端113まで延びている。第一閉塞端113は、流入凹部111における流出端部120側の閉塞した端部である。流出端部120には、水Wが流出する流出凹部121の開口端122が配置されている。流出凹部121は、中心軸AX1に沿って開口端122から流入端部110近くの第二閉塞端123まで延びている。第二閉塞端123は、流出凹部121における流入端部110側の閉塞した端部である。本具体例の活性炭成型体100は、中心軸AX1に沿った方向(D1,D2)において、流入凹部111の第一閉塞端113が流出凹部121の第二閉塞端123よりも流出端部120側にあるという特徴を有する。これにより、図5,6に示すように、開口端112から流入凹部111に流入した水Wの少なくとも一部が中心軸AX1と直交する横断面CS1に沿った方向(D3,D4)にある流出凹部121へ移動して開口端122から外部へ流出する。その際、水Wが濾過されて浄化される。尚、流入凹部111から流出凹部121への水Wの移動は、隙間105を通る移動であり、厳密に中心軸AX1と直交する方向(D3,D4)へ直進する移動に限定されない。 An opening end 112 of an inflow recess 111 into which water W flows is arranged at the inflow end 110. The inflow recess 111 extends from the opening end 112 to the first closed end 113 near the outflow end 120 along the central axis AX1 of the water purification cartridge 20 containing the activated carbon molded body 100. The first closed end 113 is a closed end of the inflow recess 111 on the outflow end 120 side. The open end 122 of the outflow recess 121 from which the water W flows out is arranged at the outflow end 120. The outflow recess 121 extends from the opening end 122 along the central axis AX1 to the second closed end 123 near the inflow end 110. The second closed end 123 is a closed end of the outflow recess 121 on the inflow end 110 side. In the activated carbon molded body 100 of this specific example, the first closed end 113 of the inflow recess 111 is closer to the outflow end 120 than the second closed end 123 of the outflow recess 121 in the directions (D1, D2) along the central axis AX1. It has the characteristic of being in. As a result, as shown in FIGS. 5 and 6, at least a part of the water W flowing into the inflow recess 111 from the opening end 112 flows out in the direction (D3, D4) along the cross section CS1 orthogonal to the central axis AX1. It moves to the recess 121 and flows out from the opening end 122 to the outside. At that time, the water W is filtered and purified. The movement of the water W from the inflow recess 111 to the outflow recess 121 is a movement through the gap 105, and is not limited to a movement that goes straight in the direction (D3, D4) strictly orthogonal to the central axis AX1.

ここで、中心軸AX1と直交する横断面CS1が軸AX1に沿った方向(D1,D2)において第一閉塞端113と第二閉塞端123との間の部分P1にあるものとする。この場合、横断面CS1は、凹部111,121の全てと交差する。図5に示す活性炭成型体100は、凹部111,121として、中心軸AX1から外方向D4へ順に、流入凹部1111、横断面CS1において流入凹部1111を囲む環状の流出凹部1211、横断面CS1において流出凹部1211を囲む環状の流入凹部1112、及び、横断面CS1において流入凹部1112を囲む環状の流出凹部1212を有している。図5に示す凹部1211,1112,1212の横断面形状は、円形である。凹部1111,1211,1112,1212は、軸AX1を中心とする同心円状に配置され、軸AX1を含む縦断面において略平行に配置されている。尚、流入凹部111は流入凹部1111,1112を総称し、流出凹部121は流出凹部1211,1212を総称する。 Here, it is assumed that the cross section CS1 orthogonal to the central axis AX1 is located in the portion P1 between the first closed end 113 and the second closed end 123 in the directions (D1, D2) along the axis AX1. In this case, the cross section CS1 intersects all of the recesses 111 and 121. The activated carbon molded body 100 shown in FIG. 5 has recesses 111 and 121, which flow out in the inflow recess 1111 in the outward direction D4 from the central axis AX1, the annular outflow recess 1211 surrounding the inflow recess 1111 in the cross section CS1, and the cross section CS1. It has an annular inflow recess 1112 that surrounds the recess 1211 and an annular outflow recess 1212 that surrounds the inflow recess 1112 in the cross section CS1. The cross-sectional shape of the recesses 1211, 1112, 1212 shown in FIG. 5 is circular. The recesses 1111, 1211, 1112, 1212 are arranged concentrically with the axis AX1 as the center, and are arranged substantially parallel in the vertical cross section including the axis AX1. The inflow recess 111 is a general term for the inflow recesses 1111, 1112, and the outflow recess 121 is a general term for the outflow recesses 1211, 1212.

図5に示す例では、中心にある流入凹部1111を上記態様3の「他方の凹部」に当てはめると、流出凹部1211,1212が「一方の凹部」に当てはまる。流出凹部1211を上記態様3の「他方の凹部」に当てはめると、流入凹部1112が「一方の凹部」に当てはまる。流入凹部1112を上記態様3の「他方の凹部」に当てはめると、流出凹部1212が「一方の凹部」に当てはまる。 In the example shown in FIG. 5, when the inflow recess 1111 in the center is fitted to the “other recess” of the above aspect 3, the outflow recesss 1211 and 1212 are fitted to the “one recess”. When the outflow recess 1211 is fitted to the "other recess" of the above aspect 3, the inflow recess 1112 fits into the "one recess". When the inflow recess 1112 is fitted to the "other recess" of the above aspect 3, the outflow recess 1212 fits into the "one recess".

図5,6に示すように、中心にある流入凹部1111に流入した水Wは、この流入凹部1111の内側面114から隙間105を通って外方向D4にある平面視環状溝の流出凹部1211へ移動する。平面視環状溝である流入凹部1112に流入した水Wは、この流入凹部1112の内側面114から隙間105を通って内方向D3にある平面視環状溝の流出凹部1211と外方向D4にある平面視環状溝の流出凹部1212へ移動する。活性炭成型体100の外側面130に流入した水Wは、隙間105を通って内方向D3にある平面視環状溝の流出凹部1212へ移動する。 As shown in FIGS. 5 and 6, the water W flowing into the central inflow recess 1111 passes through the gap 105 from the inner side surface 114 of the inflow recess 1111 to the outflow recess 1211 of the annular groove in the plan view in the outward direction D4. Moving. The water W that has flowed into the inflow recess 1112, which is the annular groove in the plan view, passes through the gap 105 from the inner side surface 114 of the inflow recess 1112 and passes through the gap 105 to the outflow recess 1211 of the annular groove in the plan view and the plane in the outer direction D4. It moves to the outflow recess 1212 of the annular groove. The water W that has flowed into the outer surface 130 of the activated carbon molded body 100 moves through the gap 105 to the outflow recess 1212 of the annular groove in the plan view in the inward direction D3.

ここで、中心軸AX1に沿った方向(D1,D2)における第一閉塞端113と第二閉塞端123との距離をLとする。第一閉塞端113と第二閉塞端123との間の部分P1における活性炭成型体100の外側面130の面積Soutは、以下の通りとなる。
Sout=L×π×2×rout
ただし、routは、中心軸AX1を基準とした外側面130の半径である。
Here, let L be the distance between the first closed end 113 and the second closed end 123 in the directions (D1, D2) along the central axis AX1. The area Sout of the outer surface 130 of the activated carbon molded body 100 in the portion P1 between the first closed end 113 and the second closed end 123 is as follows.
Sout = L × π × 2 × out
However, runout is the radius of the outer surface 130 with respect to the central axis AX1.

閉塞端113,123の間の部分P1における各凹部1111,1211,1112,1212の内側面(図6に示す内側面114又は124)の面積Sin、及び、面積比Sin/Soutは、以下の通りとなる。
(流入凹部1111の内側面114の場合)
Sin=L×π×Ri
ただし、Riは流入凹部1111の直径である。
Sin/Sout=(Ri/2)/rout
(流出凹部1211の内側面124の場合)
Sin=L×(π×2×ro1+π×2×ro2)
ただし、ro1は流出凹部1211の内側面124における内側の中心軸AX1を基準とした半径であり、ro2は流出凹部1211の内側面124における外側の中心軸AX1を基準とした半径である。
Sin/Sout=(ro1+ro2)/rout
(流入凹部1112の内側面114の場合)
Sin=L×(π×2×ri1+π×2×ri2)
ただし、ri1は流入凹部1112の内側面114における内側の中心軸AX1を基準とした半径であり、ri2は流入凹部1112の内側面114における外側の中心軸AX1を基準とした半径である。
Sin/Sout=(ri1+ri2)/rout
(流出凹部1212の内側面124の場合)
Sin=L×(π×2×ro3+π×2×ro4)
ただし、ro3は流出凹部1212の内側面124における内側の中心軸AX1を基準とした半径であり、ro4は流出凹部1212の内側面124における外側の中心軸AX1を基準とした半径である。
Sin/Sout=(ro3+ro4)/rout
The area Sin and the area ratio Sin / Sout of the inner side surface (inner side surface 114 or 124 shown in FIG. 6) of each recess 1111, 1211, 1112, 1212 in the portion P1 between the closed ends 113 and 123 are as follows. It becomes.
(In the case of the inner surface 114 of the inflow recess 1111)
Sin = L × π × Ri
However, Ri is the diameter of the inflow recess 1111.
Sin / Sout = (Ri / 2) / runout
(In the case of the inner side surface 124 of the outflow recess 1211)
Sin = L × (π × 2 × ro1 + π × 2 × ro2)
However, ro1 is a radius based on the inner central axis AX1 on the inner side surface 124 of the outflow recess 1211, and ro2 is a radius based on the outer central axis AX1 on the inner side surface 124 of the outflow recess 1211.
Sin / Sout = (ro1 + ro2) / runout
(In the case of the inner side surface 114 of the inflow recess 1112)
Sin = L × (π × 2 × ri1 + π × 2 × ri2)
However, ri1 is a radius based on the inner central axis AX1 on the inner side surface 114 of the inflow recess 1112, and ri2 is a radius based on the outer central axis AX1 on the inner side surface 114 of the inflow recess 1112.
Sin / Sout = (ri1 + ri2) / runout
(In the case of the inner side surface 124 of the outflow recess 1212)
Sin = L × (π × 2 × ro3 + π × 2 × ro4)
However, ro3 is a radius based on the inner central axis AX1 on the inner side surface 124 of the outflow recess 1212, and ro4 is a radius based on the outer central axis AX1 on the inner side surface 124 of the outflow recess 1212.
Sin / Sout = (ro3 + ro4) / runout

流入凹部1111のように単純な断面円形の流入凹部及び流出凹部を略円柱状の活性炭成型体に設ける場合であって、流入凹部と流出凹部とが同じ直径である場合、流入凹部及び流出凹部の直径は活性炭成型体の直径の0.5倍未満となる。従って、最も大きい凹部の内側面の面積は、活性炭成型体の外側面の面積の0.5倍未満(Sin/Sout<0.5)となる。 When the inflow recess and the outflow recess having a simple circular cross section are provided in the activated carbon molded body having a substantially columnar shape as in the inflow recess 1111 and the inflow recess and the outflow recess have the same diameter, the inflow recess and the outflow recess The diameter is less than 0.5 times the diameter of the activated carbon molded body. Therefore, the area of the inner surface of the largest recess is less than 0.5 times the area of the outer surface of the activated carbon molded body (Sin / Sout <0.5).

本具体例のように凹部111,121を環状溝にすると、内側面114,124における内側の半径が活性炭成型体100の外側面130の半径の1/4以上あればSin/Sout>0.5となる。例えば、流入凹部1112の内側面114における内側の半径ri1はrout/4よりも遥かに大きいため、流入凹部1112の内側面114の面積Sinは、活性炭成型体100の外側面130の面積Soutの0.5倍よりも遥かに大きくなる。実際には、(ri1+ri2)/2がrout/2程度であるため、面積比Sin/Soutは1程度となる。また、流出凹部1212の内側面124の場合、(ro3+ro4)/2が(3/4)×rout程度であるため、面積比Sin/Soutは1.5程度となる。 When the recesses 111 and 121 are made into annular grooves as in this specific example, if the inner radius of the inner side surfaces 114 and 124 is 1/4 or more of the radius of the outer surface 130 of the activated carbon molded body 100, Sin / Sout> 0.5. It becomes. For example, since the inner radius ri1 of the inner surface 114 of the inflow recess 1112 is much larger than that of runout / 4, the area Sin of the inner surface 114 of the inflow recess 1112 is 0 of the area Sout of the outer surface 130 of the activated carbon molded body 100. Much larger than .5 times. Actually, since (ri1 + ri2) / 2 is about round / 2, the area ratio Sin / Sout is about 1. Further, in the case of the inner side surface 124 of the outflow recess 1212, since (ro3 + ro4) / 2 is about (3/4) × roout, the area ratio Sin / Sout is about 1.5.

水Wの圧力損失を低くして活性炭成型体100の濾過流量を多くする点から、面積比Sin/Soutは、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましい。凹部111,121が環状溝である場合、活性炭成型体100の強度を向上させる点から、面積比Sin/Soutは、1.9以下が好ましく、1.8以下がより好ましく、1.7以下がさらに好ましい。 The area ratio Sin / Sout is preferably 0.5 or more, more preferably 0.6 or more, and further 0.7 or more, from the viewpoint of lowering the pressure loss of water W and increasing the filtration flow rate of the activated carbon molded body 100. preferable. When the recesses 111 and 121 are annular grooves, the area ratio Sin / Sout is preferably 1.9 or less, more preferably 1.8 or less, and 1.7 or less, from the viewpoint of improving the strength of the activated carbon molded body 100. More preferred.

図5に示す活性炭成型体100の場合、面積Sinが最も大きい最大凹部は流出凹部1212である。この最大凹部の内側面の面積Sinが活性炭成型体100の外側面130の面積Soutの0.5倍以上と大きいことにより、水Wの圧力損失をさらに低くすることができ、濾過流量をさらに多くすることができる。このため、活性炭が粒子状である場合は活性炭の粒子を小さくすることができ、単位体積における活性炭量を増やして活性炭の吸着性能を向上させることができる。
尚、流入凹部111の内側面114の面積SinがSin/Sout≧0.5と大きい場合、水Wの圧力損失が低いうえ、内側面114が目詰まりし難くなり、活性炭成型体100の寿命が長くなる。
以上説明したように、環状の「一方の凹部」が環状の「他方の凹部」を囲むためには、平面視において「一方の凹部」が「他方の凹部」よりも周長を大きくする必要がある。これは、「一方の凹部」の内側面の面積Sinを大きくする。流入凹部1111のような断面円形の穴を複数配置して「他方の凹部」を囲む場合、活性炭成型体の強度確保のために肉厚(図6のTaに相当)を確保する必要があるので、穴の数に限界があり、これらの穴の内側面の面積を合わせても環状溝の内側面の面積よりも遥かに小さくなる。環状溝といった「一方の凹部」が「他方の凹部」を囲む閉じた溝である場合、内側の内側面と外側の内側面とが連続しているので、内側面の面積を大きくするのに好適である。
また、流入端部や流出端部の限られた面積の中で、効率良く流入凹部や流出凹部を配置するためには、「一方の凹部」と「他方の凹部」との距離(パス長)を活性炭成型体の強度と浄水性能が保てる範囲でできるだけ短く均一にする方が好ましい。このようにすれば、効率良く水を浄化することができ、活性炭成型体の長寿命化に繋がる。従って、「他方の凹部」を囲む「一方の凹部」は、「他方の凹部」の外周近くにおいて該外周に沿った形状が好ましい。環状溝といった「一方の凹部」が「他方の凹部」を囲む閉じた溝である場合、流入凹部1111のような断面円形の穴を複数配置する場合よりも、パス長の均一化を図り易い。
平面視においてC字形の溝といった閉じていない「一方の凹部」が「他方の凹部」を囲んでいる場合も、「他方の凹部」の外周近くに配置されると、効率良く水を浄化することができ、活性炭成型体の長寿命化に繋がる。
In the case of the activated carbon molded body 100 shown in FIG. 5, the maximum recess having the largest area Sin is the outflow recess 1212. Since the area Sin of the inner surface of the maximum recess is as large as 0.5 times or more the area Sout of the outer surface 130 of the activated carbon molded body 100, the pressure loss of water W can be further reduced and the filtration flow rate is further increased. can do. Therefore, when the activated carbon is in the form of particles, the particles of the activated carbon can be made smaller, and the amount of activated carbon in a unit volume can be increased to improve the adsorption performance of the activated carbon.
When the area Sin of the inner side surface 114 of the inflow recess 111 is as large as Sin / Sout ≧ 0.5, the pressure loss of water W is low, the inner side surface 114 is less likely to be clogged, and the life of the activated carbon molded body 100 is extended. become longer.
As described above, in order for the annular "one recess" to surround the annular "other recess", it is necessary for the "one recess" to have a larger circumference than the "other recess" in a plan view. is there. This increases the area Sin of the inner surface of the "one recess". When a plurality of holes having a circular cross section such as the inflow recess 1111 are arranged to surround the "other recess", it is necessary to secure a wall thickness (corresponding to Ta in FIG. 6) in order to secure the strength of the activated carbon molded body. , There is a limit to the number of holes, and even if the areas of the inner surfaces of these holes are combined, the area of the inner surface of the annular groove is much smaller. When the "one recess" such as an annular groove is a closed groove surrounding the "other recess", the inner inner surface and the outer inner surface are continuous, which is suitable for increasing the area of the inner surface. Is.
Further, in order to efficiently arrange the inflow recess and the outflow recess in the limited area of the inflow end and the outflow end, the distance (path length) between the "one recess" and the "other recess". It is preferable to make it as short and uniform as possible within the range where the strength and water purification performance of the activated carbon molded body can be maintained. By doing so, water can be purified efficiently, which leads to a long life of the activated carbon molded body. Therefore, the "one recess" surrounding the "other recess" preferably has a shape along the outer circumference of the "other recess" near the outer circumference. When the "one recess" such as the annular groove is a closed groove surrounding the "other recess", it is easier to make the path length uniform than when a plurality of holes having a circular cross section such as the inflow recess 1111 are arranged.
Even if an unclosed "one recess" such as a C-shaped groove surrounds the "other recess" in a plan view, if it is placed near the outer circumference of the "other recess", water can be purified efficiently. This leads to a longer life of the activated carbon molded body.

さらに、流入凹部111が複数ある場合、その分、通水面積が増えるため、水Wの圧力損失がさらに低くなり、活性炭成型体100の濾過流量がさらに多くなる。流出凹部121が複数ある場合も、その分、通水面積が増えるため、水Wの圧力損失がさらに低くなり、活性炭成型体100の濾過流量がさらに多くなる。 Further, when there are a plurality of inflow recesses 111, the water flow area is increased by that amount, so that the pressure loss of the water W is further reduced and the filtration flow rate of the activated carbon molded body 100 is further increased. Even when there are a plurality of outflow recesses 121, the water flow area is increased by that amount, so that the pressure loss of the water W is further reduced, and the filtration flow rate of the activated carbon molded body 100 is further increased.

図5に示す凹部111,121は、中心軸AX1に沿った方向(D1,D2)における位置に関わらず同じ断面形状を有している。むろん、脱型を考慮して凹部111,121をテーパー状にしてもよい。 The recesses 111 and 121 shown in FIG. 5 have the same cross-sectional shape regardless of their positions in the directions (D1, D2) along the central axis AX1. Of course, the recesses 111 and 121 may be tapered in consideration of demolding.

図6において模式的に示す活性炭成型体100は、活性炭AC1同士がバインダーB1で接着され、活性炭AC1の粒子間に隙間105がある。この隙間105を水Wが内方向D3や外方向D4へ流通する。むろん、活性炭成型体100の形状が保持される限り、バインダーを省略しても良い。活性炭成型体100は、水Wが活性炭AC1の粒子間の隙間105を通過するときに活性炭AC1の浄化機能が発揮される。 In the activated carbon molded body 100 schematically shown in FIG. 6, the activated carbon AC1s are bonded to each other by the binder B1, and there is a gap 105 between the particles of the activated carbon AC1. Water W flows through the gap 105 in the inward direction D3 and the outward direction D4. Of course, the binder may be omitted as long as the shape of the activated carbon molded body 100 is maintained. In the activated carbon molded body 100, the purification function of the activated carbon AC1 is exhibited when the water W passes through the gap 105 between the particles of the activated carbon AC1.

活性炭AC1には、粒状、粉砕状、繊維状、等の活性炭を用いることができる。粉砕状及び粒状には、粉末状が含まれる。粉砕状の概念と粒状の概念とは、一部が重複するものとする。粉砕状の概念と繊維状の概念とは、一部が重複するものとする。 As the activated carbon AC1, granular, pulverized, fibrous, or the like activated carbon can be used. The pulverized form and the granular form include a powder form. The concept of crushing and the concept of granules shall partially overlap. The concept of crushing and the concept of fibrous shall partially overlap.

賦活前の活性炭原料には、植物系、石炭系、石油系、合成樹脂系、天然素材系、各種有機灰、等を用いることができる。なお、活性炭原料は、賦活前の原料や炭化前の原料が含まれる。すなわち、賦活には、炭化処理後に賦活処理することが含まれる。
植物系の炭素質材料には、ヤシ殻やアーモンド殻といった果実殻、木材、おが屑、竹、草、等を用いることができる。石炭系の炭素質材料には、泥炭、亜炭、かつ炭、瀝青炭、無煙炭、等を用いることができる。石油系の炭素質材料には、石油ピッチ等を用いることができる。合成樹脂系の炭素質材料には、フェノール系樹脂、エポキシ系樹脂、ユリア系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂、等を用いることができる。天然素材系の炭素質材料には、木綿といった天然繊維、レーヨンといった再生繊維、アセテートといった半合成繊維、等を用いることができる。
As the activated carbon raw material before activation, plant-based, coal-based, petroleum-based, synthetic resin-based, natural material-based, various organic ash, and the like can be used. The activated carbon raw material includes a raw material before activation and a raw material before carbonization. That is, activation includes activation treatment after carbonization treatment.
As the plant-based carbonaceous material, fruit shells such as palm shells and almond shells, wood, sawdust, bamboo, grass, and the like can be used. As the carbonaceous material of the coal system, peat, lignite, charcoal, bituminous coal, anthracite, etc. can be used. Petroleum pitch or the like can be used as the petroleum-based carbonaceous material. As the synthetic resin-based carbonaceous material, a phenol-based resin, an epoxy-based resin, a urea-based resin, a polyamide-based resin, a polyvinyl alcohol-based resin, a polyacrylonitrile-based resin, a polyolefin-based resin, or the like can be used. As the carbonaceous material of the natural material system, natural fibers such as cotton, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, and the like can be used.

粉砕状の活性炭には、活性炭原料の賦活物を砕いて得られる活性炭、活性炭原料の粉砕物を賦活して得られる活性炭、等を用いることができる。粉砕状活性炭には、100メッシュ(直径0.15mm)よりも小さい粉末活性炭が含まれるものとする。粒状の活性炭には、ヤシ殻系活性炭、木炭、竹炭、石炭系活性炭、合成樹脂系活性炭、等を用いることができる。粒状活性炭は、賦活物を砕いて所定粒度にふるい分けして得られる活性炭でも良いし、所定粒度の炭素質材料を賦活して得られる活性炭でも良い。粒状活性炭には、粉末活性炭が含まれるものとする。繊維状の活性炭には、石炭ピッチ、石油ピッチ、合成樹脂系活性炭、天然素材系活性炭、等を用いることができる。繊維状の活性炭を用いると、活性炭成型体100の強度が向上する。 As the crushed activated carbon, activated carbon obtained by crushing the activated carbon of the activated carbon raw material, activated carbon obtained by activating the crushed product of the activated carbon raw material, and the like can be used. The pulverized activated carbon shall contain powdered activated carbon smaller than 100 mesh (diameter 0.15 mm). As the granular activated carbon, coconut shell-based activated carbon, charcoal, bamboo charcoal, coal-based activated carbon, synthetic resin-based activated carbon, and the like can be used. The granular activated carbon may be activated carbon obtained by crushing an activator and sieving it to a predetermined particle size, or may be activated carbon obtained by activating a carbonaceous material having a predetermined particle size. The granular activated carbon shall include powdered activated carbon. As the fibrous activated carbon, coal pitch, petroleum pitch, synthetic resin-based activated carbon, natural material-based activated carbon, and the like can be used. When fibrous activated carbon is used, the strength of the activated carbon molded body 100 is improved.

粒径を求めることができる活性炭AC1の平均粒径は、0.2〜500μmが好ましく、1〜300μmがより好ましく、2〜200μmがさらに好ましく、3〜150μmが特に好ましい。尚、平均粒径は、50μm以上の粒子についてはJIS K1474:2007(活性炭試験方法)に規定される50%粒径(D50、メジアン径)とし、50μm未満の粒子についてはJIS K5600-9-3:2006(塗料一般試験方法−第9部:粉体塗料−第3節:レーザ回折による粒度分布の測定方法)に準拠した粒子径分布からJIS Z8819-2(粒子径測定結果の表現―第2部:粒子径分布からの平均粒子径又は平均粒子直径及びモーメントの計算)に従って求められる重み付き体積平均粒子径とする。平均粒径を前記下限以上とすることにより、活性炭成型体内(隙間105)を流れる水が好ましい流量に増える。また、平均粒径を前記上限以下とすることにより、例えば中空糸膜のような好ましい濾過性能(例えば濁り成分除去性能)が得られる。
活性炭は、一種類でもよいが、二種類以上の組合せでもよい。
The average particle size of the activated carbon AC1 from which the particle size can be determined is preferably 0.2 to 500 μm, more preferably 1 to 300 μm, further preferably 2 to 200 μm, and particularly preferably 3 to 150 μm. The average particle size shall be 50% particle size (D50, median diameter) specified in JIS K1474: 2007 (activated carbon test method) for particles of 50 μm or more, and JIS K 5600-9-3 for particles of less than 50 μm. : From the particle size distribution based on 2006 (General paint test method-Part 9: Powder coating-Section 3: Measurement method of particle size distribution by laser diffraction) JIS Z8819-2 (Expression of particle size measurement result-Part 2) Part: Average particle size from particle size distribution or calculation of average particle size and moment) Weighted volume average particle size. By setting the average particle size to the lower limit or higher, the amount of water flowing through the activated carbon molding body (gap 105) increases to a preferable flow rate. Further, by setting the average particle size to the above upper limit or less, preferable filtration performance (for example, turbidity component removing performance) such as that of a hollow fiber membrane can be obtained.
The activated carbon may be one type or a combination of two or more types.

バインダーB1には、熱可塑性バインダー、熱硬化性バインダー、無機バインダー、等を用いることができる。バインダーは、疎水性でもよいし、親水性(水溶性を含む。)でもよい。
熱可塑性バインダーには、ポリエチレン(PE)樹脂やポリプロピレン(PP)樹脂といったポリオレフィン樹脂、ポリエチレンテレフタレート樹脂といったポリエステル樹脂、熱可塑性エラストマー、これらの樹脂を親水化するための改質剤を添加した樹脂、これらの樹脂の混合物、等を用いることができる。尚、これらの樹脂は、熱可塑性樹脂に含まれるものとする。疎水性の熱可塑性バインダーの具体例として、三井化学株式会社製ポリエチレンパウダー(ミペロン(登録商標))、旭化成ケミカルズ株式会社製ポリエチレンパウダー(サンファイン(登録商標))、等を挙げることができる。親水性の熱可塑性バインダーの具体例として、三井化学株式会社製ポリオレフィン水性ディスパージョン(ケミパール(登録商標))等を挙げることができる。
As the binder B1, a thermoplastic binder, a thermosetting binder, an inorganic binder, or the like can be used. The binder may be hydrophobic or hydrophilic (including water-soluble).
The thermoplastic binder includes polyolefin resins such as polyethylene (PE) resin and polypropylene (PP) resin, polyester resins such as polyethylene terephthalate resin, thermoplastic elastomers, and resins to which a modifier for making these resins hydrophilic is added. A mixture of the above resins, etc. can be used. It should be noted that these resins are included in the thermoplastic resin. Specific examples of the hydrophobic thermoplastic binder include polyethylene powder manufactured by Mitsui Chemicals, Inc. (Miperon (registered trademark)), polyethylene powder manufactured by Asahi Kasei Chemicals Co., Ltd. (Sunfine (registered trademark)), and the like. Specific examples of the hydrophilic thermoplastic binder include a polyolefin aqueous dispersion (Chemipal (registered trademark)) manufactured by Mitsui Chemicals, Inc.

無機バインダーには、p−アルミナ(Al23・nH2O)、リン酸系バインダー、ケイ素系バインダー、チタン系バインダー、等を用いることができる。また、層状ケイ酸塩鉱物などの粘土状鉱物も無機バインダーとして用いることができる。
水溶性バインダーには、上述したp−アルミナの他、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、リン酸アルミニウム系バインダー、等が含まれる。
As the inorganic binder, p-alumina (Al 2 O 3 · nH 2 O), a phosphoric acid-based binder, a silicon-based binder, a titanium-based binder, or the like can be used. Clay minerals such as layered silicate minerals can also be used as the inorganic binder.
In addition to the above-mentioned p-alumina, the water-soluble binder includes carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), aluminum phosphate-based binder, and the like.

バインダーは、一種類でもよいが、二種類以上の組合せでもよい。
バインダーの配合量は、例えば、活性炭100重量部に対して2〜150重量部、より好ましくは3〜100重量部、さらに好ましくは5〜50重量部とすることができる。バインダーの配合量を前記下限以上とすると、活性炭成型体100の中で活性炭の粒子同士が好ましい接着力で接着される。また、バインダーの配合量を前記上限以下とすると、活性炭の活性を有する表面が好ましい割合で残り、活性炭成型体100が好ましい吸着活性を示す。バインダーの配合比は、活性炭成型体100の形状保持性の観点から、活性炭の平均粒径が小さくなるほど多くするのが好ましい。
The binder may be one type or a combination of two or more types.
The blending amount of the binder can be, for example, 2 to 150 parts by weight, more preferably 3 to 100 parts by weight, still more preferably 5 to 50 parts by weight with respect to 100 parts by weight of activated carbon. When the blending amount of the binder is at least the above lower limit, the particles of activated carbon are adhered to each other with a preferable adhesive force in the activated carbon molded body 100. Further, when the blending amount of the binder is not more than the above upper limit, the surface having the activity of activated carbon remains in a preferable ratio, and the activated carbon molded body 100 exhibits preferable adsorption activity. From the viewpoint of shape retention of the activated carbon molded body 100, the blending ratio of the binder is preferably increased as the average particle size of the activated carbon becomes smaller.

活性炭成型体100の構成成分は活性炭とバインダーの組合せのみでも良いが、活性炭100重量部に対して0.1〜100重量部程度の添加剤を添加しても良い。添加剤には、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂、無機系のイオン交換体、これらの組合せ、といったイオン交換体、抗菌剤、等を用いることができる。陽イオン交換樹脂やキレート樹脂は、金属処理剤として機能する。抗菌剤には、銀系無機抗菌剤等を用いることができ、具体的には、東亞合成株式会社製ノバロン(登録商標)AG、株式会社シナネンゼオミック製ゼオミック(登録商標)、富士ケミカル株式会社製バクテキラー(登録商標)、クラレケミカル株式会社製抗菌活性炭、等を用いることができる。繊維状活性炭、繊維状活性炭原料、等の繊維状材料を添加すると、活性炭成型体100の強度が向上する。
添加剤の平均粒径を求めることができる場合、添加剤の平均粒径は、0.2〜500μmが好ましく、1〜300μmがより好ましく、2〜200μmがさらに好ましく、3〜150μmが特に好ましい。平均粒径を前記下限以上とすることにより、活性炭成型体100を横断面CS1に沿った方向(D3,D4)へ流れる水Wが好ましい流量に増える。また、平均粒径を前記上限以下とすることにより、好ましい濾過性能が得られる。
The constituent component of the activated carbon molded body 100 may be only a combination of the activated carbon and the binder, but an additive of about 0.1 to 100 parts by weight may be added to 100 parts by weight of the activated carbon. As the additive, an ion exchanger such as a cation exchange resin, an anion exchange resin, a chelate resin, an inorganic ion exchanger, a combination thereof, an antibacterial agent, or the like can be used. The cation exchange resin and the chelate resin function as a metal treatment agent. As the antibacterial agent, a silver-based inorganic antibacterial agent or the like can be used. Specifically, Novalon (registered trademark) AG manufactured by Toa Synthetic Co., Ltd., Zeomic (registered trademark) manufactured by Sinanen Zeomic Co., Ltd., and Fuji Chemical Co., Ltd. Bactekiller (registered trademark), antibacterial activated charcoal manufactured by Kuraray Chemical Co., Ltd., etc. can be used. When a fibrous material such as a fibrous activated carbon or a fibrous activated carbon raw material is added, the strength of the activated carbon molded body 100 is improved.
When the average particle size of the additive can be determined, the average particle size of the additive is preferably 0.2 to 500 μm, more preferably 1 to 300 μm, further preferably 2 to 200 μm, and particularly preferably 3 to 150 μm. By setting the average particle size to the lower limit or more, the water W flowing in the direction (D3, D4) along the cross section CS1 of the activated carbon molded body 100 increases to a preferable flow rate. Further, by setting the average particle size to the above upper limit or less, preferable filtration performance can be obtained.

活性炭成型体100の各部の大きさは、特に限定されないが、例えば、以下のようにすることができる。図5,6を参照して、活性炭成型体100の各部の大きさを説明する。ここで、略円柱状である場合の活性炭成型体100の直径をa=2×rout(図5参照)とし、略四角柱状である場合の活性炭成型体の横断面の一辺をaとする。
横断面CS1に沿った方向(D3,D4)における肉厚Taは、1.0〜6.0mmが好ましく、1.5〜4.0mmがより好ましい。また、略円柱状である場合の活性炭成型体100の直径をa=2×rout(図5参照)とし、略四角柱状である場合の活性炭成型体の横断面の一辺をaとする。a>9.0mmである場合、肉厚Taは、1.0〜a/4.0mmが好ましく、1.5〜a/6.0mmがより好ましい。尚、流入凹部111と流出凹部121との間の厚さと、流出凹部1212と外側面130との間の厚さは、同じでもよいし、異なってもよい。流入凹部111と流出凹部121との間の各厚さも、同じでもよいし、異なってもよい。肉厚Taを前記下限以上にすると、活性炭成型体100の強度が良好となる。肉厚Taを前記上限以下にすると、内側面114及び外側面130から流出凹部121へ水Wが移動し易くなって水Wの濾過流量が特に良好となる。
The size of each part of the activated carbon molded body 100 is not particularly limited, but can be, for example, as follows. The size of each part of the activated carbon molded body 100 will be described with reference to FIGS. 5 and 6. Here, the diameter of the activated carbon molded body 100 in the case of a substantially cylindrical shape is a = 2 × rout (see FIG. 5), and one side of the cross section of the activated carbon molded body in the case of a substantially square columnar shape is a.
The wall thickness Ta in the direction (D3, D4) along the cross section CS1 is preferably 1.0 to 6.0 mm, more preferably 1.5 to 4.0 mm. Further, the diameter of the activated carbon molded body 100 in the case of a substantially columnar shape is a = 2 × rout (see FIG. 5), and one side of the cross section of the activated carbon molded body in the case of a substantially square columnar shape is a. When a> 9.0 mm, the wall thickness Ta is preferably 1.0 to a / 4.0 mm, more preferably 1.5 to a / 6.0 mm. The thickness between the inflow recess 111 and the outflow recess 121 and the thickness between the outflow recess 1212 and the outer surface 130 may be the same or different. The thickness between the inflow recess 111 and the outflow recess 121 may be the same or different. When the wall thickness Ta is at least the above lower limit, the strength of the activated carbon molded body 100 becomes good. When the wall thickness Ta is set to the upper limit or less, the water W easily moves from the inner side surface 114 and the outer surface 130 to the outflow recess 121, and the filtration flow rate of the water W becomes particularly good.

横断面CS1に沿った方向(D3,D4)における溝(凹部1211,1112,1212)の幅Tgは、0.3〜3.0mmが好ましく、0.5〜2.0mmがより好ましい。また、活性炭成型体の直径又は一辺aがa>6.5mmである場合、幅Tgは、0.3〜(a−4.0)mmが好ましく、0.5〜(a−6.0)mmがより好ましい。尚、各溝の幅は、同じでもよいし、異なってもよい。幅Tgを前記下限以上にすると、活性炭成型体100の成型性が良好となる。幅Tgを前記上限以下にすると、活性炭成型体100の濾過能力が特に良好となる。 The width Tg of the grooves (recesses 1211, 1112, 1212) in the directions (D3, D4) along the cross section CS1 is preferably 0.3 to 3.0 mm, more preferably 0.5 to 2.0 mm. When the diameter or side a of the activated carbon molded body is a> 6.5 mm, the width Tg is preferably 0.3 to (a-4.0) mm, and 0.5 to (a-6.0). mm is more preferable. The width of each groove may be the same or different. When the width Tg is at least the above lower limit, the moldability of the activated carbon molded body 100 becomes good. When the width Tg is set to the upper limit or less, the filtration capacity of the activated carbon molded body 100 becomes particularly good.

断面円形の流入凹部1111の直径Riは、0.3〜3.0mmが好ましく、0.5〜2.0mmがより好ましい。また、活性炭成型体の直径又は一辺aがa>6.5mmである場合、直径Riは、0.3〜(a−4)mmが好ましく、0.5〜(a−6)mmがより好ましい。直径Riを前記下限以上にすると、活性炭成型体100の成型性が良好となる。直径Riを前記上限以下にすると、活性炭成型体100の濾過能力が特に良好となる。 The diameter Ri of the inflow recess 1111 having a circular cross section is preferably 0.3 to 3.0 mm, more preferably 0.5 to 2.0 mm. When the diameter or side a of the activated carbon molded body is a> 6.5 mm, the diameter Ri is preferably 0.3 to (a-4) mm, more preferably 0.5 to (a-6) mm. .. When the diameter Ri is set to the lower limit or more, the moldability of the activated carbon molded body 100 becomes good. When the diameter Ri is set to the above upper limit or less, the filtration capacity of the activated carbon molded body 100 becomes particularly good.

中心軸AX1に沿った方向(D1,D2)における第一閉塞端113と流出端部120との距離L1、及び、第二閉塞端123と流入端部110との距離L2は、2.0〜10.0mm程度(より好ましくは4.0〜7.0mm程度)とすることができる。尚、距離L1,L2は、同じでもよいし、異なってもよい。また、中心軸AX1に沿った方向(D1,D2)における活性炭成型体100の全長FL(=L+L1+L2)に対する距離L1,L2の比L1/FL,L2/FLは、0.02〜0.2程度(より好ましくは0.05〜0.15程度)とすることができる。 The distance L1 between the first closed end 113 and the outflow end 120 and the distance L2 between the second closed end 123 and the inflow end 110 in the directions (D1, D2) along the central axis AX1 are 2.0 to 2. It can be about 10.0 mm (more preferably about 4.0 to 7.0 mm). The distances L1 and L2 may be the same or different. Further, the ratios L1 / FL and L2 / FL of the distances L1 and L2 to the total length FL (= L + L1 + L2) of the activated carbon molded body 100 in the directions (D1, D2) along the central axis AX1 are about 0.02 to 0.2. (More preferably, it is about 0.05 to 0.15).

尚、内側面114,124の面積SinがSin/Sout≧0.5である凹部を有する活性炭成型体は、図5で示した活性炭成型体100に限定されない。
図7は、活性炭成型体100Aの中心軸AX1を通る縦断面、流入端部110(右上の二点鎖線の囲み内)、横断面CS1(右中段の二点鎖線の囲み内)、及び、流出端部120(右下の二点鎖線の囲み内)を例示している。尚、活性炭成型体100Aの概念は、活性炭成型体100の大概念に含まれる。以下、図5で示した活性炭成型体100と共通する説明は省略し、図5で示した活性炭成型体100との相違点を説明する。
The activated carbon molded body having a recess in which the areas Sin of the inner side surfaces 114 and 124 is Sin / Sout ≧ 0.5 is not limited to the activated carbon molded body 100 shown in FIG.
FIG. 7 shows a vertical cross section of the activated carbon molded body 100A passing through the central axis AX1, an inflow end 110 (inside the two-dot chain line in the upper right), a cross section CS1 (inside the two-dot chain line in the middle right), and an outflow. The end 120 (inside the box of the alternate long and short dash line in the lower right) is illustrated. The concept of the activated carbon molded body 100A is included in the general concept of the activated carbon molded body 100. Hereinafter, the description common to the activated carbon molded body 100 shown in FIG. 5 will be omitted, and the differences from the activated carbon molded body 100 shown in FIG. 5 will be described.

活性炭成型体100Aにおいて、流入凹部111及び流出凹部121は、横断面CS1において渦巻き状に形成されている。断面渦巻き状の流入凹部111と断面渦巻き状の流出凹部121とが間隔を空けて互いに入り込むことにより、閉塞端113,123の間の部分P1において凹部111,121の内側面114,124の面積Sinが活性炭成型体100Aの外側面130の面積Soutの0.5倍よりも遥かに大きくなっている。図7に示す凹部111,121は、約2回転の渦巻き状であり、閉塞端113,123の間の部分P1において内側面114,124の面積Sinは外側面130の面積Soutの約2倍となっている。これにより、水Wの圧力損失がさらに低くなり、濾過流量をさらに多くなる。 In the activated carbon molded body 100A, the inflow recess 111 and the outflow recess 121 are formed in a spiral shape in the cross section CS1. The inflow recess 111 having a spiral cross section and the outflow recess 121 having a spiral cross section enter each other at intervals, so that the area Sin of the inner side surfaces 114 and 124 of the recesses 111 and 121 in the portion P1 between the closed ends 113 and 123. Is much larger than 0.5 times the area Sout of the outer surface 130 of the activated carbon molded body 100A. The recesses 111 and 121 shown in FIG. 7 have a spiral shape of about two rotations, and the area Sin of the inner side surfaces 114 and 124 at the portion P1 between the closed ends 113 and 123 is about twice the area Sout of the outer surface 130. It has become. As a result, the pressure loss of the water W is further reduced, and the filtration flow rate is further increased.

また、活性炭成型体の形状は、図5等で示した略円柱状に限定されず、略四角柱状といった略多角形状等でもよい。
図8は、活性炭成型体100Bの外観、流入端部110(右上の二点鎖線の囲み内)、横断面CS1(右中段の二点鎖線の囲み内)、及び、流出端部120(右下の二点鎖線の囲み内)を例示している。尚、活性炭成型体100Bの概念も、活性炭成型体100の大概念に含まれる。図9は、活性炭成型体100Bの中心軸AX1を通る縦断面を示している。以下、図5で示した活性炭成型体100と共通する説明は省略し、図5で示した活性炭成型体100との相違点を説明する。
Further, the shape of the activated carbon molded body is not limited to the substantially cylindrical shape shown in FIG. 5 and the like, and may be a substantially polygonal shape such as a substantially square columnar shape.
FIG. 8 shows the appearance of the activated carbon molded body 100B, the inflow end 110 (inside the two-dot chain line in the upper right), the cross section CS1 (inside the two-dot chain line in the middle right), and the outflow end 120 (lower right). (Inside the box of the alternate long and short dash line) is illustrated. The concept of the activated carbon molded body 100B is also included in the general concept of the activated carbon molded body 100. FIG. 9 shows a vertical cross section of the activated carbon molded body 100B passing through the central axis AX1. Hereinafter, the description common to the activated carbon molded body 100 shown in FIG. 5 will be omitted, and the differences from the activated carbon molded body 100 shown in FIG. 5 will be described.

活性炭成型体100Bの端部110,120は、開口端112,122を有する略正方形(略長方形)である。流入凹部111の開口端112は、流入端部110において1本、直線状に配置されている。流出凹部121の開口端122は、流出端部120において4本、互いに並行する直線状に配置されている。活性炭成型体100の外側面130は、流入凹部111の開口部115を有する横断面略正方形であり、流入端部110から流出端部120に繋がっている。すなわち、流入凹部111は、流入端部110に開口端112を有し、且つ、4箇所の外側面130のうち互いに反対側にある2箇所の外側面に開口部115を有している。外側面130は水Wが入る面であり、開口端112とともに開口部115から水Wが流入凹部111に流入する。 The ends 110 and 120 of the activated carbon molded body 100B are substantially square (substantially rectangular) having open ends 112 and 122. One opening end 112 of the inflow recess 111 is linearly arranged at the inflow end 110. Four open ends 122 of the outflow recess 121 are arranged in a straight line parallel to each other at the outflow end 120. The outer surface 130 of the activated carbon molded body 100 has a substantially square cross section having an opening 115 of the inflow recess 111, and is connected from the inflow end 110 to the outflow end 120. That is, the inflow recess 111 has an opening end 112 at the inflow end 110, and has openings 115 on two outer surfaces on opposite sides of the four outer surfaces 130. The outer side surface 130 is a surface on which water W enters, and water W flows into the inflow recess 111 from the opening 115 together with the opening end 112.

図9に示すように、流入凹部111は開口端112から第一閉塞端113に向かう途中で3つに分岐し、その内の2つの流入凹部111は分岐点から外方向D4へ延びた折れ曲がり部位116を有している。流出凹部121は、流入凹部111同士の間の2箇所、及び、外側面130と流入凹部111との間の2箇所に配置されている。外側面130と流入凹部111との間の流出凹部121は、開口端122から流入端部110の方(方向D2)へ凹んでから内方向D3へ折れ曲がって第二閉塞端123に至る形状を有している。折れ曲がり部位126は、折れ曲がり点からは内方向D3へ延び、言い換えると、第二閉塞端123からは外方向D4へ延びている。
凹部111,121に折れ曲がり部位116,126があることにより、凹部111,121の内側面114,124が拡張され、水Wの圧力損失がさらに低くなり、濾過流量をさらに多くなる。
As shown in FIG. 9, the inflow recess 111 branches into three on the way from the opening end 112 to the first closed end 113, and two of the inflow recesses 111 are bent portions extending outward D4 from the branch point. Has 116. The outflow recesses 121 are arranged at two locations between the inflow recesses 111 and at two locations between the outer surface 130 and the inflow recess 111. The outflow recess 121 between the outer side surface 130 and the inflow recess 111 has a shape that is recessed from the opening end 122 toward the inflow end 110 (direction D2) and then bends inward D3 to reach the second closed end 123. are doing. The bent portion 126 extends inward D3 from the bent point, in other words, extends outward D4 from the second closed end 123.
Since the recesses 111 and 121 have the bent portions 116 and 126, the inner side surfaces 114 and 124 of the recesses 111 and 121 are expanded, the pressure loss of the water W is further reduced, and the filtration flow rate is further increased.

(3)活性炭成型体を含む濾過カートリッジの製造方法の具体例:
次に、図8,9に示す活性炭成型体100Bを例にとって、活性炭成型体の製造方法の例を説明する。
図10に示す製法は、バインダーB1を用いて活性炭成型体100Bの1/2分割体101を製造する例を示している。
(3) Specific example of a method for manufacturing a filtration cartridge containing an activated carbon molded body:
Next, an example of a method for producing the activated carbon molded body will be described by taking the activated carbon molded body 100B shown in FIGS. 8 and 9 as an example.
The manufacturing method shown in FIG. 10 shows an example of manufacturing a 1/2 divided body 101 of the activated carbon molded body 100B using the binder B1.

混合工程S1では、活性炭AC1とバインダーB1と必要に応じて添加剤AD1とを含む材料を混合する。この混合には、粉体混合、液状分散媒に固体分散質を分散させる混練、等が含まれる。添加剤AD1には、水といった分散媒が含まれる。混合には、ミキサー、ブレンダー、水平円筒型、V型、二重円錐型、正方立体型、S型、連続V型、ボールミル型、ロッキング型、クロスロータリー型、リボン型、スクリュー型、ロター型、パグミル型、遊星型、タービン型、高速流動型、回転円板型、等の混合装置を使用しても良い。混合装置の回転速度は、混合物の温度の偏りを少なくする速度であればよく、例えば、15〜200rpmとすることができる。 In the mixing step S1, a material containing activated carbon AC1, binder B1, and additive AD1 if necessary is mixed. This mixing includes powder mixing, kneading in which a solid dispersant is dispersed in a liquid dispersion medium, and the like. Additive AD1 contains a dispersion medium such as water. For mixing, mixer, blender, horizontal cylindrical type, V type, double cone type, square three-dimensional type, S type, continuous V type, ball mill type, locking type, cross rotary type, ribbon type, screw type, rotor type, A mixing device such as a pug mill type, a planetary type, a turbine type, a high-speed flow type, a rotary disk type, or the like may be used. The rotation speed of the mixing device may be any speed as long as it reduces the bias in the temperature of the mixture, and can be, for example, 15 to 200 rpm.

充填工程S2では、混合工程S1で得られる混合物M1を例えば図11に示すような成型装置200の成形型のキャビティ230内に充填する。 In the filling step S2, the mixture M1 obtained in the mixing step S1 is filled into the cavity 230 of the molding die of the molding apparatus 200 as shown in FIG. 11, for example.

図11に示す成型装置200は、金型210,220、金型210に挿入された入子型212、ヒーター(不図示)、油圧プレス機(不図示)、等を備えている。入子型212は、母型である金型210に対して嵌め込まれる固定式の部分的金型である。金型210,220と入子型212とで形成されるキャビティ230は、活性炭成型体100Bの1/2分割体101の形状に合わせられている。尚、図11に示すキャビティ230は、分割体101同士を合わせる面が下となる形状である。充填工程S2では、入子型212が嵌め込まれた金型210の中に混合物M1を充填し、金型210,220を閉じる。 The molding apparatus 200 shown in FIG. 11 includes dies 210 and 220, a nesting die 212 inserted into the die 210, a heater (not shown), a hydraulic press (not shown), and the like. The nesting mold 212 is a fixed partial mold that is fitted into a mold 210 that is a master mold. The cavity 230 formed by the molds 210 and 220 and the nesting mold 212 is matched to the shape of the 1/2 divided body 101 of the activated carbon molded body 100B. The cavity 230 shown in FIG. 11 has a shape in which the surface on which the divided bodies 101 are aligned is on the bottom. In the filling step S2, the mixture M1 is filled in the mold 210 into which the nesting mold 212 is fitted, and the molds 210 and 220 are closed.

成型工程S3では、キャビティ230内の混合物M1のバインダーB1が軟化温度以上となるようにヒーターで金型210,220を加熱し、油圧プレス機で混合物M1に圧縮力を加える圧縮成形を行う。圧縮成形とは、閉じたキャビティの中の材料に圧力を加える成形をいう。バインダーの軟化温度が範囲Tsl〜Tsh(℃)で示される場合、加熱温度の下限をTshとすればよい。軟化温度は、JIS K7206:1999(プラスチック―熱可塑性プラスチック―ビカット軟化温度(VST)試験方法)に規定されるビカット軟化温度とする。バインダーの軟化温度が不明である場合、軟化温度よりも高い融点を加熱温度の下限とすればよい。また、バインダーの発火点が最低温度Tilで示される場合、加熱温度の上限をTil未満とすればよい。なお、ポリエチレン等の熱可塑性樹脂の発火点は、通常、350℃以上であるため、加熱混合温度の好ましい上限は350℃未満である。バインダーの融点が範囲Tml〜Tmhで示される場合、加熱温度のより好ましい上限はTml+70℃とすればよく、加熱温度の好ましい下限はTmhとすればよい。
尚、活性炭を含む材料の圧縮成形は、特開2015-47523号公報に開示された技術等を準用することができる。
In the molding step S3, the dies 210 and 220 are heated by a heater so that the binder B1 of the mixture M1 in the cavity 230 becomes equal to or higher than the softening temperature, and compression molding is performed by applying a compressive force to the mixture M1 by a hydraulic press. Compression molding refers to molding that applies pressure to the material in a closed cavity. When the softening temperature of the binder is indicated by the range T sl to T sh (° C.), the lower limit of the heating temperature may be T sh . The softening temperature shall be the Vicat softening temperature specified in JIS K7206: 1999 (Plastic-thermoplastic plastic-Vicat softening temperature (VST) test method). When the softening temperature of the binder is unknown, the melting point higher than the softening temperature may be set as the lower limit of the heating temperature. Further, when the ignition point of the binder is indicated by the minimum temperature Til , the upper limit of the heating temperature may be set to less than Til . Since the ignition point of a thermoplastic resin such as polyethylene is usually 350 ° C. or higher, the preferable upper limit of the heating and mixing temperature is less than 350 ° C. When the melting point of the binder is indicated in the range T ml to T mh , the more preferable upper limit of the heating temperature may be T ml + 70 ° C., and the preferable lower limit of the heating temperature may be T mh .
For compression molding of materials containing activated carbon, the techniques disclosed in JP-A-2015-47523 can be applied mutatis mutandis.

冷却工程S4では、金型210,220の加熱を停止し、成型物の温度がバインダーB1の軟化温度未満となるように成型物を冷却する。この冷却には、水冷といった液体の冷却媒体による強制冷却、送風冷却といった気体の冷却媒体による強制冷却、等を用いることができる。
脱型工程S5では、油圧プレス機のプレス圧から金型210,220を解放して開き、キャビティ230から成型物である1/2分割体101を取り出す。
尚、成型工程S3の直後に脱型工程を行って分割体101を取り出し、冷却工程を行って分割体101を冷却してもよい。
In the cooling step S4, the heating of the molds 210 and 220 is stopped, and the molded product is cooled so that the temperature of the molded product is lower than the softening temperature of the binder B1. For this cooling, forced cooling using a liquid cooling medium such as water cooling, forced cooling using a gas cooling medium such as blast cooling, or the like can be used.
In the demolding step S5, the dies 210 and 220 are released from the press pressure of the hydraulic press and opened, and the 1/2 divided body 101 which is a molded product is taken out from the cavity 230.
Immediately after the molding step S3, a demolding step may be performed to take out the divided body 101, and a cooling step may be performed to cool the divided body 101.

最後に、1/2分割体101同士を合わせるための金型に分割体101同士を合わせた状態で入れて再加熱して接合したり、分割体101同士を接着剤等といった接合手段で接合したりすると、活性炭成型体100Bが得られる。上述したように、分割体101同士を合わせる面は、図11に示すキャビティ230において下を向いている面である。
尚、接合する分割体101は、同体(同じ形状の分割体)に限らず、左右対称の分割体同士、左右非対称の分割体同士でもよい。むろん、接合する分割体は、3個以上でもよい。
Finally, the divided bodies 101 are put together in a mold for joining the 1/2 divided bodies 101 and reheated for joining, or the divided bodies 101 are joined by a joining means such as an adhesive. Then, the activated carbon molded body 100B is obtained. As described above, the surface where the divided bodies 101 are aligned with each other is the surface facing downward in the cavity 230 shown in FIG.
The divided body 101 to be joined is not limited to the same body (divided body having the same shape), but may be symmetrical divided bodies or asymmetrical divided bodies. Of course, the number of divided bodies to be joined may be three or more.

以上の工程S1〜S5により、活性炭成型体を製造することができる。
尚、キャビティの形状を活性炭成型体100の全体形状に合わせることができれば、脱型工程により活性炭成型体100を取り出すことができる。
また、成型装置の成形型は、図11に示す入子型212を除いた2個に限定されず、3個以上(入子型を除く。)でもよい。
The activated carbon molded body can be produced by the above steps S1 to S5.
If the shape of the cavity can be matched to the overall shape of the activated carbon molded body 100, the activated carbon molded body 100 can be taken out by the demolding step.
Further, the molding die of the molding apparatus is not limited to two except for the nesting die 212 shown in FIG. 11, and may be three or more (excluding the nesting die).

尚、活性炭AC1の代わりに賦活前の活性炭原料を用い、得られる成型物を賦活して活性炭成型体100を形成してもよい。賦活とは、炭素質材料の微細孔を発達させ多孔質に変える反応である。賦活には、水蒸気、二酸化炭素、空気、等の存在下で高温処理するガス賦活、塩化亜鉛、硫酸塩、リン酸、等で薬品処理する薬品賦活、薬品と水蒸気を併用する賦活、等がある。賦活には、炭化処理後に賦活処理することが含まれる。炭化処理は、例えば、窒素、アルゴン、等の不活性雰囲気下、600〜800℃で成型物を炭化する処理とすることができる。炭化処理後の賦活処理は、例えば、水蒸気、二酸化炭素、等の酸化性ガスの雰囲気下、700〜1100℃で炭化物を活性化する処理とすることができる。 Instead of the activated carbon AC1, an activated carbon raw material before activation may be used, and the obtained molded product may be activated to form the activated carbon molded body 100. Activation is a reaction that develops micropores in a carbonaceous material to make it porous. Activation includes gas activation that is treated at high temperature in the presence of water vapor, carbon dioxide, air, etc., chemical activation that is treated with chemicals such as zinc chloride, sulfate, and phosphoric acid, and activation that uses both chemicals and water vapor. .. Activation includes activation treatment after carbonization treatment. The carbonization treatment can be a treatment of carbonizing the molded product at 600 to 800 ° C. under an inert atmosphere such as nitrogen or argon. The activation treatment after the carbonization treatment can be, for example, a treatment for activating the carbide at 700 to 1100 ° C. in an atmosphere of an oxidizing gas such as water vapor or carbon dioxide.

得られた活性炭成型体100は、浄水カートリッジ20の吸着剤部30に使用することができる。外方向D4において活性炭成型体100の外側に筒状の不織布31を配置する場合には、例えば、筒状の不織布31に活性炭成型体100を挿入することにより吸着剤部30を形成することができる。中空糸膜束BH1が収容された中空糸膜ケース70の外嵌部80に吸着剤部30の端部30bを入れて接着剤で固定すると、吸着剤部30が中空糸膜ケース70に保持され、浄水カートリッジ20が形成される。 The obtained activated carbon molded body 100 can be used for the adsorbent portion 30 of the water purification cartridge 20. When the tubular non-woven fabric 31 is arranged outside the activated carbon molded body 100 in the outward direction D4, for example, the adsorbent portion 30 can be formed by inserting the activated carbon molded body 100 into the tubular non-woven fabric 31. .. When the end portion 30b of the adsorbent portion 30 is inserted into the outer fitting portion 80 of the hollow fiber membrane case 70 containing the hollow fiber membrane bundle BH1 and fixed with an adhesive, the adsorbent portion 30 is held by the hollow fiber membrane case 70. , The water purification cartridge 20 is formed.

吐水ヘッド10から使用済みの浄水カートリッジ20を取り外す場合、まず、ねじ11a,18aの螺合を解除する向きに把持部18を回し、吐水部11から把持部18を取り外す。このとき、図2(b)に示すように、吐水部11から浄水カートリッジ20における吸着剤部30及び外嵌部80が出た状態となる。次に、外嵌部80を掴み、吐水部11から浄水カートリッジ20を流下方向D1とは反対の方向(延出方向D2)へ引き出せばよい。吐水ヘッド10に新しい浄水カートリッジ20を取り付ける場合、外嵌部80を掴み、吐水部11に流出口75から浄水カートリッジ20を流下方向D1へ押し込めばよい。図2(a)に示すように流出口75が吐水部11の接続口12に挿入されると、浄水カートリッジ20が吐水部11に取り付けられる。 When removing the used water purification cartridge 20 from the water discharge head 10, first, the grip portion 18 is turned in the direction of unscrewing the screws 11a and 18a, and the grip portion 18 is removed from the water discharge portion 11. At this time, as shown in FIG. 2B, the adsorbent portion 30 and the outer fitting portion 80 of the water purification cartridge 20 are exposed from the water discharge portion 11. Next, the outer fitting portion 80 may be grasped, and the water purification cartridge 20 may be pulled out from the water discharge portion 11 in the direction opposite to the flow direction D1 (extension direction D2). When a new water purification cartridge 20 is attached to the water discharge head 10, the outer fitting portion 80 may be grasped and the water purification cartridge 20 may be pushed into the water discharge portion 11 from the outlet 75 in the flow direction D1. When the outlet 75 is inserted into the connection port 12 of the water discharge unit 11 as shown in FIG. 2A, the water purification cartridge 20 is attached to the water discharge unit 11.

さらに、図2,3を参照して、浄水カートリッジ20が取り付けられた吐水ヘッド10の水の流れを説明する。
切替レバー15が水道水側にある時、浄水カートリッジ20からの浄水は流出しない。ホース19からの水道水は、吐水ヘッド10の中で浄水カートリッジ20の外側を流下方向D1へ流れ、吐水部11の水出口13から吐出される。
Further, with reference to FIGS. 2 and 3, the flow of water in the water discharge head 10 to which the water purification cartridge 20 is attached will be described.
When the switching lever 15 is on the tap water side, the purified water from the water purification cartridge 20 does not flow out. The tap water from the hose 19 flows in the water discharge head 10 on the outside of the water purification cartridge 20 in the flow direction D1, and is discharged from the water outlet 13 of the water discharge unit 11.

切替レバー15が浄水側にある時、吐水ヘッド10の中で浄水カートリッジ20の外側にある水道水は流出しない。図1に示すホース19からの水道水(原水)は、図3に示す矢印のように、活性炭成型体100の流入端部110、及び、外側面130の外側の不織布31から吸着剤部30に入る。図5,6に示すように、流入端部110に配置されている開口端112から流入凹部111に流入した原水(W)は、流入凹部111の内側面114から活性炭成型体100内に入り、少なくとも一部が横断面CS1に沿った方向(D3,D4)にある流出凹部121へ移動する。また、不織布31を通過した水Wは、外側面130から活性炭成型体100内に入り、少なくとも一部が内方向D3にある流出凹部121へ移動する。活性炭成型体100内において、水W1は隙間105を通る間に活性炭AC1の機能により吸着対象の物質(例えば遊離残留塩素や有機物等の微量成分)が除去される。浄化されて内側面124から流出凹部121内に入った水Wは、流出端部120に配置されている開口端122から外部へ流出し、連絡口74から中空糸膜束収容部71の内部空間70cに入る。内部空間70cの水は、中空糸膜束BH1において閉塞端部BH1aから開口端部BH1bへ移動し、1μm程度以上の細かい濁りや鉄サビや一般細菌が取り除かれる。開口端部BH1bからの浄水は、流出口75から流出し、吐水部11の水出口13から吐出される。 When the switching lever 15 is on the water purification side, the tap water outside the water purification cartridge 20 does not flow out in the water discharge head 10. The tap water (raw water) from the hose 19 shown in FIG. 1 is transferred from the inflow end 110 of the activated carbon molded body 100 and the non-woven fabric 31 outside the outer surface 130 to the adsorbent portion 30 as shown by the arrows in FIG. enter. As shown in FIGS. 5 and 6, the raw water (W) that has flowed into the inflow recess 111 from the opening end 112 arranged at the inflow end 110 enters the activated carbon molded body 100 from the inner surface 114 of the inflow recess 111. At least a part moves to the outflow recess 121 in the direction (D3, D4) along the cross section CS1. Further, the water W that has passed through the non-woven fabric 31 enters the activated carbon molded body 100 from the outer surface 130, and at least a part of the water W moves to the outflow recess 121 in the inward direction D3. In the activated carbon molded body 100, substances to be adsorbed (for example, trace components such as free residual chlorine and organic substances) are removed by the function of the activated carbon AC1 while the water W1 passes through the gap 105. The water W that has been purified and entered the outflow recess 121 from the inner side surface 124 flows out from the opening end 122 arranged at the outflow end portion 120, and flows out from the communication port 74 to the internal space of the hollow fiber membrane bundle accommodating portion 71. Enter 70c. The water in the internal space 70c moves from the closed end BH1a to the open end BH1b in the hollow fiber membrane bundle BH1, and fine turbidity of about 1 μm or more, iron rust, and general bacteria are removed. The purified water from the opening end portion BH1b flows out from the outflow port 75 and is discharged from the water outlet 13 of the water discharge portion 11.

吸着剤部30に不織布31が無い場合、ホース19からの水道水が直接、外側面130から活性炭成型体100内に入り、少なくとも一部が流出凹部121へ移動する。その間に活性炭AC1の機能により吸着対象の物質が除去される。 When the non-woven fabric 31 is not present in the adsorbent portion 30, tap water from the hose 19 directly enters the activated carbon molded body 100 from the outer surface 130, and at least a part of the tap water moves to the outflow recess 121. During that time, the substance to be adsorbed is removed by the function of the activated carbon AC1.

図7に示す活性炭成型体100Aを用いる場合、流入端部110に配置されている渦巻き状の開口端112から流入凹部111に流入した原水(W)が内側面114から活性炭成型体100内に入り、少なくとも一部が流出凹部121へ移動する。また、外側面130から活性炭成型体100内に入った水Wの少なくとも一部が内方向D3にある流出凹部121へ移動する。水Wが隙間105を通る間に活性炭AC1の機能により吸着対象の物質が除去される。浄化されて内側面124から流出凹部121内に入った水Wは、流出端部120に配置されている渦巻き状の開口端122から外部へ流出し、中空糸膜束BH1を通過して浄水として流出口75から流出し、水出口13から吐出される。 When the activated carbon molded body 100A shown in FIG. 7 is used, the raw water (W) that has flowed into the inflow recess 111 from the spiral opening end 112 arranged at the inflow end 110 enters the activated carbon molded body 100 from the inner side surface 114. , At least a part moves to the outflow recess 121. Further, at least a part of the water W that has entered the activated carbon molded body 100 from the outer surface 130 moves to the outflow recess 121 in the inward direction D3. While the water W passes through the gap 105, the substance to be adsorbed is removed by the function of the activated carbon AC1. The water W that has been purified and entered the outflow recess 121 from the inner side surface 124 flows out from the spiral opening end 122 arranged at the outflow end portion 120, passes through the hollow fiber membrane bundle BH1, and is used as purified water. It flows out from the outlet 75 and is discharged from the water outlet 13.

図8,9に示す活性炭成型体100Bを用いる場合、流入端部110に配置されている直線状の開口端112から原水(W)が流入凹部111に流入する。この水Wは、3つに分岐した流入凹部111の内側面114から活性炭成型体100内に入り、少なくとも一部が横断面CS1に沿った方向(D3,D4)にある流出凹部121へ移動する。また、一部の水Wは、流入凹部111の折れ曲がり部位116から流出凹部121の折れ曲がり部位126へ移動する。さらに、流入端部110から直接、活性炭成型体100B内に原水(W)が入り、少なくとも一部が流下方向D1にある折れ曲がり部位126(流出凹部121)へ移動する。外側面130から活性炭成型体100内に入った水Wの少なくとも一部は、内方向D3にある流出凹部121へ移動する。水Wが隙間105を通る間に活性炭AC1の機能により吸着対象の物質が除去される。浄化されて内側面124から流出凹部121内に入った水Wは、流出端部120に配置されている直線状の開口端122から外部へ流出し、中空糸膜束BH1を通過して浄水として流出口75から流出し、水出口13から吐出される。 When the activated carbon molded body 100B shown in FIGS. 8 and 9 is used, raw water (W) flows into the inflow recess 111 from the linear opening end 112 arranged at the inflow end 110. This water W enters the activated carbon molded body 100 from the inner side surface 114 of the inflow recess 111 branched into three, and moves to the outflow recess 121 in which at least a part thereof is in the direction (D3, D4) along the cross section CS1. .. Further, some water W moves from the bent portion 116 of the inflow recess 111 to the bent portion 126 of the outflow recess 121. Further, the raw water (W) enters the activated carbon molded body 100B directly from the inflow end 110, and at least a part of the raw water (W) moves to the bent portion 126 (outflow recess 121) in the flow direction D1. At least a part of the water W that has entered the activated carbon molded body 100 from the outer side surface 130 moves to the outflow recess 121 in the inward direction D3. While the water W passes through the gap 105, the substance to be adsorbed is removed by the function of the activated carbon AC1. The water W that has been purified and entered the outflow recess 121 from the inner side surface 124 flows out from the linear opening end 122 arranged at the outflow end portion 120, passes through the hollow fiber membrane bundle BH1, and is used as purified water. It flows out from the outlet 75 and is discharged from the water outlet 13.

活性炭成型体100は、閉塞端113,123の間の横断面CS1において流入凹部111と流出凹部121の両方が存在することにより、水Wの圧力損失が低く、濾過流量が多い。このため、活性炭の粒子を小さくすることができ、単位体積における活性炭量を増やして活性炭の吸着性能を向上させることができる。また、流入凹部111の内側面114の面積Sinが大きいので、目詰まりし難く、活性炭成型体100の寿命が長くなる。活性炭成型体100の寿命が長くなれば、その分、活性炭成型体100を小さくすることができる。従って、本具体例は、活性炭成型体を使用した浄水カートリッジ及び浄水器を小型化することが可能な技術を提供することができる。 In the activated carbon molded body 100, the pressure loss of water W is low and the filtration flow rate is large because both the inflow recess 111 and the outflow recess 121 are present in the cross section CS1 between the closed ends 113 and 123. Therefore, the particles of activated carbon can be made smaller, and the amount of activated carbon in a unit volume can be increased to improve the adsorption performance of activated carbon. Further, since the area Sin of the inner side surface 114 of the inflow recess 111 is large, clogging is unlikely to occur, and the life of the activated carbon molded body 100 is extended. The longer the life of the activated carbon molded body 100 is, the smaller the activated carbon molded body 100 can be. Therefore, this specific example can provide a technique capable of miniaturizing a water purification cartridge and a water purifier using an activated carbon molded body.

(4)変形例:
本発明は、種々の変形例が考えられる。
例えば、浄水カートリッジを設けた水栓は、洗面化粧台や浴室等、システムキッチン以外の場所に設けられてもよい。洗面化粧台や浴室等では、シャワー用浄水器として水栓を使用することができる。
吐水装置は、浄水と水道水を切替可能な吐水ヘッド以外にも、浄水のみを吐出する吐水ヘッド等でもよい。
活性炭成型体を有する濾過カートリッジは、浄水カートリッジに限定されず、空気(流体の例)から除去対象の物質を除去する空気清浄機用の濾過カートリッジ等でもよい。
活性炭成型体を保持する流通口部材は、中空糸膜を収容した中空糸膜ケースに限定されず、中空糸膜を収容していない保持部材(流出口を有する部材や流入口を有する部材)、流入口と流出口を有して活性炭成型体を中に収容する活性炭成型体ケース、等でもよい。
(4) Modification example:
Various modifications of the present invention can be considered.
For example, the faucet provided with the water purification cartridge may be provided in a place other than the system kitchen, such as a vanity or a bathroom. A faucet can be used as a water purifier for a shower in a vanity, a bathroom, or the like.
The water discharge device may be a water discharge head or the like that discharges only purified water, in addition to the water discharge head that can switch between purified water and tap water.
The filtration cartridge having the activated carbon molded body is not limited to the water purification cartridge, and may be a filtration cartridge for an air purifier that removes a substance to be removed from air (example of a fluid).
The flow port member that holds the activated carbon molded body is not limited to the hollow fiber membrane case that contains the hollow fiber membrane, but is a holding member that does not contain the hollow fiber membrane (a member having an outlet or a member having an inflow port). An activated carbon molded body case having an inlet and an outlet and accommodating the activated carbon molded body may be used.

浄水器における活性炭成型体の向きは、図3で示した向きに限定されず、部位120が流入端部となって部位110が流出端部となるような逆の向きでもよい。
例えば、図5に示す活性炭成型体100を浄水カートリッジ20において逆の向きに配置すると、凹部121が流入凹部として機能し、凹部111が流出凹部として機能する。この場合、「最大凹部」は、流入凹部としての凹部1212となる。ここで、浄化された水Wが外側面130から活性炭成型体100外に出るように吐水ヘッド10を設計すれば、流入凹部としての最大凹部1212から外側面130へ水Wが移動するので、効率良く水Wを浄化することができる。
図7に示す活性炭成型体100Aは、浄水カートリッジ20において逆の向きに配置しても渦巻きの向きが逆になるだけであり、類似する作用及び効果により水Wを浄化することができる。
図8,9に示す活性炭成型体100Bも、浄水カートリッジ20において逆の向きに配置することが可能である。この場合、浄化された水Wが外側面130から活性炭成型体100外に出るように吐水ヘッド10を設計すればよい。
The orientation of the activated carbon molded body in the water purifier is not limited to the orientation shown in FIG. 3, and may be the opposite orientation such that the portion 120 is the inflow end and the portion 110 is the outflow end.
For example, when the activated carbon molded body 100 shown in FIG. 5 is arranged in the opposite direction in the water purification cartridge 20, the recess 121 functions as an inflow recess and the recess 111 functions as an outflow recess. In this case, the "maximum recess" is the recess 1212 as the inflow recess. Here, if the water discharge head 10 is designed so that the purified water W goes out of the activated carbon molded body 100 from the outer surface 130, the water W moves from the maximum recess 1212 as the inflow recess to the outer surface 130, which is efficient. Water W can be purified well.
Even if the activated carbon molded body 100A shown in FIG. 7 is arranged in the opposite direction in the water purification cartridge 20, the direction of the spiral is only reversed, and the water W can be purified by a similar action and effect.
The activated carbon molded body 100B shown in FIGS. 8 and 9 can also be arranged in the opposite direction in the water purification cartridge 20. In this case, the water discharge head 10 may be designed so that the purified water W goes out of the activated carbon molded body 100 from the outer surface 130.

溝形状の流入凹部や流出凹部は、平面視において、環状や渦巻き状の溝に限定されず、四角形といった多角形の溝、波形状の溝、折れ線状の溝、星形の溝、D字形の溝、C字形の溝(例えば270〜359°繋がっていて1〜90°切れている溝)、環状溝を複数に分割した溝、等でもよい。これらの溝は、いずれも、「他方の凹部」を囲む「一方の凹部」となり得る。すなわち、「一方の凹部」は、平面視において閉じている溝のみならず、平面視において閉じていない溝、例えば、渦巻き状の溝、C字形の溝、環状溝を複数に分割した溝、等でもよい。従って、流入凹部及び流出凹部と交差する横断面において、渦巻き状の溝の「他方の凹部」を環状溝の「一方の凹部」が囲んだ活性炭成型体、環状溝の「他方の凹部」を渦巻き状の溝の「一方の凹部」が囲んだ活性炭成型体、等も、本技術に含まれる。
尚、流入凹部及び流出凹部と交差する横断面において「他方の凹部」を囲む溝の「一方の凹部」が無い場合や、Sin/Sout≧0.5の内側面の凹部が無い場合も、流入凹部の第一閉塞端が流出凹部の第二閉塞端よりも流出端部側にあれば、本技術の基本的な作用及び効果が得られる。
Groove-shaped inflow recesses and outflow recesses are not limited to annular or spiral grooves in a plan view, but are polygonal grooves such as quadrangles, wavy grooves, polygonal grooves, star-shaped grooves, and D-shaped grooves. A groove, a C-shaped groove (for example, a groove connected by 270 to 359 ° and cut by 1 to 90 °), a groove obtained by dividing an annular groove into a plurality of grooves, and the like may be used. Each of these grooves can be a "one recess" that surrounds the "other recess." That is, the "one concave portion" is not only a groove that is closed in a plan view, but also a groove that is not closed in a plan view, for example, a spiral groove, a C-shaped groove, a groove obtained by dividing an annular groove into a plurality of grooves, and the like. It may be. Therefore, in the cross section intersecting the inflow recess and the outflow recess, the activated carbon molded body in which the "other recess" of the spiral groove is surrounded by the "one recess" of the annular groove, and the "other recess" of the annular groove are swirled. The present technology also includes an activated carbon molded body surrounded by "one concave portion" of a shaped groove.
It should be noted that the inflow also occurs when there is no "one recess" of the groove surrounding the "other recess" in the cross section intersecting the inflow recess and the outflow recess, or when there is no recess on the inner surface of Sin / Sout ≥ 0.5. If the first closed end of the recess is closer to the outflow end than the second closed end of the outflow recess, the basic actions and effects of the present technology can be obtained.

(5)結び:
以上説明したように、本発明によると、種々の態様により、活性炭成型体を使用した製品を小型化することが可能な技術等を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(5) Conclusion:
As described above, according to the present invention, it is possible to provide a technique or the like capable of miniaturizing a product using an activated carbon molded body according to various aspects. Of course, the above-mentioned basic actions and effects can be obtained even with a technique consisting of only the constituent requirements according to the independent claims.
In addition, the configurations disclosed in the above-mentioned examples are mutually replaced or the combinations are changed, the known techniques and the configurations disclosed in the above-mentioned examples are mutually replaced or the combinations are changed. It is also possible to implement the above-mentioned configuration. The present invention also includes these configurations and the like.

1…水栓(浄水器の例)、2…水栓本体、
10…吐水ヘッド(浄水器本体の例)、10a…水道水通路、
11…吐水部、12…接続口、13…水出口、15…切替レバー、
18…把持部、19…ホース(水入口の例)、
20…浄水カートリッジ(濾過カートリッジの例)、
30…吸着剤部、30b…端部、
31…不織布、
70…中空糸膜ケース(流通口部材の例)、
70a…本体部、70b…蓋部、70c…内部空間、
71…収容部、74…連絡口、
75…流出口(流通口の例)、
80…外嵌部、
100,100A,100B…活性炭成型体、101…分割体、105…隙間、
110…流入端部、
111…流入凹部、112…開口端、113…第一閉塞端、114…内側面、115…開口部、116…折れ曲がり部位、
120…流出端部、
121…流出凹部、122…開口端、123…第二閉塞端、124…内側面、126…折れ曲がり部位、
130…外側面(側面部の例)、
200…成型装置、210,220…金型、212…入子型、230…キャビティ、
AC1…活性炭、AD1…添加剤、AX1…軸、B1…バインダー、
BH1…中空糸膜束、BH1a…閉塞端部、BH1b…開口端部、
CS1…横断面、
D1…流下方向、D2…延出方向、D3…内方向、D4…外方向、
H1…中空糸膜、M1…混合物、
P1…第一閉塞端と第二閉塞端との間の部分、
SY1…システムキッチン、W…水(流体の例)。
1 ... Faucet (example of water purifier), 2 ... Faucet body,
10 ... Water discharge head (example of water purifier body), 10a ... Tap water passage,
11 ... Water discharge part, 12 ... Connection port, 13 ... Water outlet, 15 ... Switching lever,
18 ... Grip, 19 ... Hose (example of water inlet),
20 ... Water purification cartridge (example of filtration cartridge),
30 ... Adsorbent part, 30b ... End part,
31 ... Non-woven fabric,
70 ... Hollow fiber membrane case (example of distribution port member),
70a ... main body, 70b ... lid, 70c ... internal space,
71 ... containment unit, 74 ... contact port,
75 ... Outlet (example of distribution port),
80 ... Outer fitting part,
100, 100A, 100B ... Activated carbon molded body, 101 ... Split body, 105 ... Gap,
110 ... Inflow end,
111 ... Inflow recess, 112 ... Opening end, 113 ... First closed end, 114 ... Inner surface, 115 ... Opening, 116 ... Bent part,
120 ... Outflow end,
121 ... Outflow recess, 122 ... Open end, 123 ... Second closed end, 124 ... Inner surface, 126 ... Bent part,
130 ... Outer surface (example of side surface),
200 ... molding device, 210, 220 ... mold, 212 ... nesting mold, 230 ... cavity,
AC1 ... activated carbon, AD1 ... additive, AX1 ... shaft, B1 ... binder,
BH1 ... Hollow fiber membrane bundle, BH1a ... Closed end, BH1b ... Open end,
CS1 ... Cross section,
D1 ... Downflow direction, D2 ... Extension direction, D3 ... Inward direction, D4 ... Outward direction,
H1 ... Hollow fiber membrane, M1 ... Mixture,
P1 ... The part between the first closed end and the second closed end,
SY1 ... system kitchen, W ... water (example of fluid).

Claims (5)

活性炭を含む活性炭成型体であって、
流体が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記流体が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記一以上の流入凹部及び前記一以上の流出凹部の個々の凹部のうち前記第一閉塞端と前記第二閉塞端との間の部分における内側面の面積Sinが最も大きい凹部における前記面積Sinは、前記側面部の面積の0.5倍以上である、活性炭成型体。
It is an activated carbon molded body containing activated carbon.
An inflow end where the open ends of one or more inflow recesses into which the fluid flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses into which the fluid flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
Wherein Ri said outflow end portion side near than the first closed end said second closed end,
Of the individual recesses of the one or more inflow recesses and the one or more outflow recesses, the area Sin in the recess having the largest area Sin of the inner surface in the portion between the first closed end and the second closed end is , An activated carbon molded body having an area of 0.5 times or more the area of the side surface portion .
活性炭を含む活性炭成型体であって、
流体が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記流体が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記流入凹部と前記流出凹部のうち一方の凹部には、他方の凹部及び前記一方の凹部と交差する横断面において前記他方の凹部を囲む溝が含まれる活性炭成型体。
It is an activated carbon molded body containing activated carbon.
An inflow end where the open ends of one or more inflow recesses into which the fluid flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses into which the fluid flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
The first closed end is closer to the outflow end than the second closed end,
Wherein one of the recesses of the inflow recess and the outflow recess includes a groove surrounding the other recess in cross-section intersecting the other recess and said one recess, activated carbon molded body.
請求項1又は請求項2に記載の活性炭成型体と、
前記流体の流通口を有し、前記活性炭成型体を保持する流通口部材と、を備える濾過カートリッジ。
The activated carbon molded product according to claim 1 or 2 .
A filtration cartridge including a flow port member having a flow port for the fluid and holding the activated carbon molded body.
活性炭を含む活性炭成型体を有する浄水カートリッジと、
水入口及び水出口を有し、前記浄水カートリッジを収容する浄水器本体と、を備え、
前記活性炭成型体は、
水が流入する一以上の流入凹部の開口端が配置された流入端部と、
前記水が流出する一以上の流出凹部の開口端が配置された流出端部と、
前記流入端部から前記流出端部に繋がる側面部と、を有し、
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、
前記一以上の流入凹部及び前記一以上の流出凹部の個々の凹部のうち前記第一閉塞端と前記第二閉塞端との間の部分における内側面の面積Sinが最も大きい凹部における前記面積Sinは、前記側面部の面積の0.5倍以上であり、
前記水入口から流入した前記水が前記流入凹部に入り、前記流出凹部から出た前記水が前記水出口から流出する、浄水器。
A water purification cartridge having an activated carbon molded body containing activated carbon,
A water purifier main body having a water inlet and a water outlet and accommodating the water purification cartridge is provided.
The activated carbon molded body is
An inflow end where the open ends of one or more inflow recesses into which water flows are arranged, and
An outflow end portion in which an opening end of one or more outflow recesses from which water flows out is arranged,
It has a side surface portion that connects the inflow end portion to the outflow end portion.
The inflow recess has a first closed end that is closed at the end on the outflow end side.
The outflow recess has a second closed end that is closed at the end on the inflow end side.
The first closed end is closer to the outflow end than the second closed end,
Of the individual recesses of the one or more inflow recesses and the one or more outflow recesses, the area Sin in the recess having the largest area Sin of the inner surface in the portion between the first closed end and the second closed end is , 0.5 times or more the area of the side surface
A water purifier in which the water flowing in from the water inlet enters the inflow recess and the water discharged from the outflow recess flows out from the water outlet.
活性炭を含む活性炭成型体を有する浄水カートリッジと、 A water purification cartridge having an activated carbon molded body containing activated carbon,
水入口及び水出口を有し、前記浄水カートリッジを収容する浄水器本体と、を備え、 A water purifier main body having a water inlet and a water outlet and accommodating the water purification cartridge is provided.
前記活性炭成型体は、 The activated carbon molded body is
水が流入する一以上の流入凹部の開口端が配置された流入端部と、 An inflow end where the open ends of one or more inflow recesses into which water flows are arranged, and
前記水が流出する一以上の流出凹部の開口端が配置された流出端部と、 An outflow end portion in which an opening end of one or more outflow recesses from which water flows out is arranged,
前記流入端部から前記流出端部に繋がる側面部と、を有し、 It has a side surface portion that connects the inflow end portion to the outflow end portion.
前記流入凹部は、前記流出端部側の端部に閉塞した第一閉塞端を有し、 The inflow recess has a first closed end that is closed at the end on the outflow end side.
前記流出凹部は、前記流入端部側の端部に閉塞した第二閉塞端を有し、 The outflow recess has a second closed end that is closed at the end on the inflow end side.
前記第一閉塞端が前記第二閉塞端よりも前記流出端部側にあり、 The first closed end is closer to the outflow end than the second closed end,
前記流入凹部と前記流出凹部のうち一方の凹部には、他方の凹部及び前記一方の凹部と交差する横断面において前記他方の凹部を囲む溝が含まれ、 One of the inflow recess and the outflow recess includes a groove surrounding the other recess in a cross section intersecting the other recess and the one recess.
前記水入口から流入した前記水が前記流入凹部に入り、前記流出凹部から出た前記水が前記水出口から流出する、浄水器。 A water purifier in which the water flowing in from the water inlet enters the inflow recess and the water discharged from the outflow recess flows out from the water outlet.
JP2017230467A 2017-11-30 2017-11-30 Activated carbon molded body, filtration cartridge, and water purifier Active JP6762923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230467A JP6762923B2 (en) 2017-11-30 2017-11-30 Activated carbon molded body, filtration cartridge, and water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230467A JP6762923B2 (en) 2017-11-30 2017-11-30 Activated carbon molded body, filtration cartridge, and water purifier

Publications (2)

Publication Number Publication Date
JP2019099408A JP2019099408A (en) 2019-06-24
JP6762923B2 true JP6762923B2 (en) 2020-09-30

Family

ID=66975731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230467A Active JP6762923B2 (en) 2017-11-30 2017-11-30 Activated carbon molded body, filtration cartridge, and water purifier

Country Status (1)

Country Link
JP (1) JP6762923B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131015A (en) * 1987-11-13 1989-05-23 Toyota Motor Corp Monolith activated carbon
US20070265161A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Activated carbon honeycomb catalyst beds and methods for the manufacture of same
JP2010162497A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water purification cartridge
CN104010966B (en) * 2012-07-26 2016-01-06 托客乐思股份有限公司 Tubulose carbonaceous material containing gac or gac raw material, tubulose carbonaceous material assembly, cartridge filter, water purifier, water tap and manufacture method thereof

Also Published As

Publication number Publication date
JP2019099408A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US8167141B2 (en) Gravity flow filter
WO2016056594A1 (en) Water purifier
US10865125B2 (en) Liquid treatment cartridge, set of such cartridges and method of manufacturing it
JP2010500240A5 (en)
JP7140239B2 (en) Filter cartridge for water purifier
CN205419963U (en) Water purifying filter cartridge
US20150068987A1 (en) Filtration systems for faucets
US20110073551A1 (en) Filter modules for improved media utilization and use in generally cylindrical housing
JP6762923B2 (en) Activated carbon molded body, filtration cartridge, and water purifier
WO2014017196A1 (en) Cylindrical carbonaceous object containing activated carbon or activated carbon material, cylindrical carbonaceous object module, filter cartridge, water purifier, water faucet, and method for producing same
KR20140043623A (en) Filter assembly and waterpurifier including the same
JP6182819B2 (en) Water purification cartridge, water purifier
TW201822863A (en) Water purifier, water purifier holder, and water purifier filter cartridge
JP5775038B2 (en) Method for producing activated carbon or cylindrical carbonaceous material containing activated carbon raw material
JP6906867B2 (en) Manufacturing method of granular activated carbon and manufacturing method of filtration cartridge
JP5805033B2 (en) Cylindrical carbonaceous body module containing activated carbon or activated carbon raw material and method for producing the same
JP4255070B2 (en) Water purification cartridge, method for producing the same, and water purifier provided with the same
WO2010111692A3 (en) Filter modules for improved media utilization and use generally cylindrical housing
JP4713624B2 (en) Shower head with water purification function
TWI769858B (en) Water purifier bracket and water purifier
JP2014108409A (en) Water purifier and faucet
JP5081749B2 (en) Water purifier cartridge
JP3194144U (en) Water purification cartridge and water purification device
JP4646282B2 (en) Water purifier
JP2014033978A (en) Filter cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250