JP6762719B2 - How to make a heat exchanger - Google Patents

How to make a heat exchanger Download PDF

Info

Publication number
JP6762719B2
JP6762719B2 JP2016002323A JP2016002323A JP6762719B2 JP 6762719 B2 JP6762719 B2 JP 6762719B2 JP 2016002323 A JP2016002323 A JP 2016002323A JP 2016002323 A JP2016002323 A JP 2016002323A JP 6762719 B2 JP6762719 B2 JP 6762719B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
brazing
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016002323A
Other languages
Japanese (ja)
Other versions
JP2017122549A (en
Inventor
剛史 細野
剛史 細野
昭 柳田
昭 柳田
晴紀 新郷
晴紀 新郷
健 井口
健 井口
佐藤 直樹
直樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Aircool Corp
Original Assignee
Denso Aircool Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Aircool Corp filed Critical Denso Aircool Corp
Priority to JP2016002323A priority Critical patent/JP6762719B2/en
Publication of JP2017122549A publication Critical patent/JP2017122549A/en
Application granted granted Critical
Publication of JP6762719B2 publication Critical patent/JP6762719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、クロスフィンチューブ型の熱交換器の製造方法に関する。 The present invention relates to a method of manufacturing a cross fin tube type heat exchanger.

近年では、熱交換器の材料費低減のために、アルミニウム製の伝熱管及び接続管が用いられ始めている。そこで、フィン等の薄肉材の座屈変形防止やろう付け温度の低温化を図るためのAl−Cu−Si系やAl−Cu−Si−Zn系の低融点ろう材が、例えば特許文献1で提案されている。 In recent years, aluminum heat transfer tubes and connecting tubes have begun to be used in order to reduce the material cost of heat exchangers. Therefore, Al-Cu-Si-based and Al-Cu-Si-Zn-based low melting point brazing materials for preventing buckling deformation of thin-walled materials such as fins and lowering the brazing temperature are described in Patent Document 1, for example. Proposed.

特開2001−62587号公報Japanese Unexamined Patent Publication No. 2001-62587

ここで、発明者らは、上述のAl−Cu−Si系やAl−Cu−Si−Zn系の低融点ろう材が、伝熱管、接続管、及びフィンを含んで構成されたクロスフィンチューブ型の熱交換器の部分ろう付けにも有効な手段になり得ると考えた。そこで、発明者らは、従来の銅製からアルミニウム製に変更した熱交換器への低融点ろう材の適用検討を進めた。しかしながら、以下の低融点ろう材特有の問題があることを発見した。 Here, the inventors have described a cross-fin tube type in which the above-mentioned Al-Cu-Si-based or Al-Cu-Si-Zn-based low melting point brazing material includes a heat transfer tube, a connecting tube, and fins. I thought that it could be an effective means for partial brazing of the heat exchanger. Therefore, the inventors have proceeded with a study on the application of a low melting point brazing material to a heat exchanger that has been changed from the conventional copper to aluminum. However, it was discovered that there are the following problems peculiar to low melting point brazing materials.

まず、Al−Cu−Si系やAl−Cu−Si−Zn系の低融点ろう材は、Al−Si系のろう材と比較して比重が1.5倍〜1.6倍と重いので、部分ろう付け時に重力の影響を受けて低融点ろう材が重力方向の下側へ流れやすいという特徴がある。そのため、溶融した低融点ろう材がろう材充填部に流れ込む際に、シリコンを含む成分がアルミニウムの母材に侵入して母材の一部をろう材化させてしまう。すなわち、低融点ろう材が母材の一部を浸食して母材の著しい減肉が起こり易くなってしまう。 First, Al-Cu-Si-based and Al-Cu-Si-Zn-based low-melting point brazing materials have a heavier specific gravity of 1.5 to 1.6 times that of Al-Si-based brazing materials. It is characterized by the fact that the low melting point brazing material easily flows downward in the direction of gravity due to the influence of gravity during partial brazing. Therefore, when the molten low melting point brazing material flows into the brazing material filling portion, the component containing silicon invades the aluminum base material and makes a part of the base material into a brazing material. That is, the low melting point brazing material erodes a part of the base material, and the base material is likely to be significantly thinned.

本発明は上記点に鑑み、アルミニウム製のクロスフィンチューブ型の熱交換器において製造の歩留まりを向上させることができる製造方法を提供することを目的とする The present invention has been made in view of the above point, the purpose is to provide a manufacturing method that can improve the yield of manufacturing the aluminum cross fin tube type heat exchanger.

上記目的を達成するため、請求項1に記載の発明では、アルミニウム製の接続管(40)と、アルミニウム製のフィン(20)が接合されていると共に先端部(13)の内径が接続管の外径よりも大きいアルミニウム製の伝熱管(10)と、を用意し、接続管が重力方向の上側に位置すると共に伝熱管が重力方向の下側に位置するように接続管を伝熱管の先端部に差し込んで嵌合部(42)を構成し、当該嵌合部を部分ろう付けする接合工程を含んでいる。 In order to achieve the above object, in the invention according to claim 1, the connecting pipe (40) made of aluminum and the fin (20) made of aluminum are joined, and the inner diameter of the tip portion (13) is the connecting pipe. Prepare an aluminum heat transfer tube (10) larger than the outer diameter, and attach the connection tube to the tip of the heat transfer tube so that the connection tube is located on the upper side in the gravity direction and the heat transfer tube is located on the lower side in the gravity direction. It includes a joining step of inserting into a portion to form a fitting portion (42) and partially brazing the fitting portion.

そして、接合工程では、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材(60)を用いて部分ろう付けを行い、さらに、接続管として伝熱管よりも厚肉のものを用いると共に、ろう材が溶融して接続管の一部を浸食してろう材化するために嵌合部にろう材が流れる際に接続管に減肉が発生するろう付け方法であって、接合工程では、ろう材として、Al−Si系のろう材と比較して比重が大きいものを用いる。接合工程では、部分ろう付けの前に、少なくともろう材の一部が伝熱管の先端部の端面(16)の上方に位置するように、接続管の外壁面にろう材を供給する。 Then, in the joining step, partial brazing is performed using an Al-Cu-Si-based or Al-Cu-Si-Zn-based brazing material (60), and a connection tube thicker than the heat transfer tube is used. used Rutotomoni, a brazing method thinning the connection tube when the flow braze the fitting portion to the brazing material is a brazing material of eroding a portion of the connection by melting tube occurs, in the bonding step, as the brazing material, Ru using specific gravity is large compared with the Al-Si based brazing material. In the joining step, the brazing material is supplied to the outer wall surface of the connecting pipe so that at least a part of the brazing material is located above the end surface (16) of the tip end portion of the heat transfer tube before the partial brazing.

これによると、部分ろう付け時にアルミニウム製の接続管がろう材に浸食されて減肉が起きても、厚肉の接続管が減肉するだけであるので、接続管の厚みを一定以上に維持することができる。したがって、熱交換器の製造の歩留まりを向上させることができる。 According to this, even if the aluminum connecting pipe is eroded by the brazing material during partial brazing and the wall thickness is reduced, the thick connecting pipe is only thinned, so the thickness of the connecting pipe is maintained above a certain level. can do. Therefore, the manufacturing yield of the heat exchanger can be improved.

なお、この欄及び特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 In addition, the reference numerals in parentheses of each means described in this column and the scope of claims indicate the correspondence with the specific means described in the embodiment described later.

本発明の一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on one Embodiment of this invention. 図1に示された伝熱管の断面図である。It is sectional drawing of the heat transfer tube shown in FIG. 伝熱管と接続管との嵌合部付近の一部断面図である。It is a partial cross-sectional view of the vicinity of the fitting portion of a heat transfer tube and a connection tube. 図3のA部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of part A in FIG. 熱交換器の製造工程のうちの拡管工程を説明するための図である。It is a figure for demonstrating the tube expansion process in the manufacturing process of a heat exchanger. 熱交換器の製造工程のうちの接合工程を説明するための図である。It is a figure for demonstrating the joining process in the manufacturing process of a heat exchanger. 比較例の一つを示した嵌合部付近の一部断面図である。It is a partial cross-sectional view of the vicinity of the fitting portion which showed one of the comparative examples. 図7とは異なる比較例を示した嵌合部付近の一部断面図である。It is a partial cross-sectional view of the vicinity of the fitting portion which showed the comparative example different from FIG.

以下、本発明の一実施形態について図を参照して説明する。本実施形態に係る熱交換器は、例えば冷凍サイクルの冷媒と空気との間で熱交換を行うクロスフィンチューブ型の熱交換器に適用される。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The heat exchanger according to the present embodiment is applied to, for example, a cross fin tube type heat exchanger that exchanges heat between the refrigerant and air in the refrigeration cycle.

図1に示されるように、クロスフィンチューブ型の熱交換器1は、伝熱管10、フィン20、サイドプレート30、31、接続管40、及びヘッダ50、51を備えている。これら伝熱管10、フィン20、サイドプレート30、31、接続管40、及びヘッダ50、51は、アルミニウム製である。アルミニウム製とは、アルミニウムまたはアルミニウム合金により構成されていることを意味する。 As shown in FIG. 1, the cross fin tube type heat exchanger 1 includes a heat transfer tube 10, fins 20, side plates 30, 31, connecting tubes 40, and headers 50, 51. The heat transfer tubes 10, fins 20, side plates 30, 31, connecting tubes 40, and headers 50, 51 are made of aluminum. Made of aluminum means that it is made of aluminum or an aluminum alloy.

伝熱管10は、内部を冷媒が流通する管部品である。伝熱管10は、ヘアピン状すなわち略U字状に曲折されて構成されている。伝熱管10は、長手部分が並列に配置されるように熱交換器1に複数設けられている。各伝熱管10のU字部分はそれぞれ長手部分の一方向に配置されている。そして、各伝熱管10はフィン20に接合されている。 The heat transfer tube 10 is a tube component through which a refrigerant flows. The heat transfer tube 10 is formed by being bent into a hairpin shape, that is, a substantially U shape. A plurality of heat transfer tubes 10 are provided in the heat exchanger 1 so that the longitudinal portions are arranged in parallel. The U-shaped portion of each heat transfer tube 10 is arranged in one direction of the longitudinal portion. Each heat transfer tube 10 is joined to the fin 20.

図2に示されるように、伝熱管10の内面には、複数の溝11が螺旋状に形成されている。すなわち、伝熱管10は内面溝付管である。溝11は、伝熱管10の管軸と傾斜する方向に延びている。伝熱管10の内面には、螺旋状の溝11間の突起として螺旋状に延びるフィン12が形成されている。伝熱管10の内面に溝11及びフィン12が形成されていることにより、伝熱管10の内面と冷媒との接触面積が増えるので、伝熱管10の伝熱性能が向上する。 As shown in FIG. 2, a plurality of grooves 11 are spirally formed on the inner surface of the heat transfer tube 10. That is, the heat transfer tube 10 is a tube with an inner groove. The groove 11 extends in a direction inclined with the tube axis of the heat transfer tube 10. On the inner surface of the heat transfer tube 10, fins 12 extending spirally as protrusions between the spiral grooves 11 are formed. Since the grooves 11 and fins 12 are formed on the inner surface of the heat transfer tube 10, the contact area between the inner surface of the heat transfer tube 10 and the refrigerant is increased, so that the heat transfer performance of the heat transfer tube 10 is improved.

フィン20は、空気と伝熱管10との伝熱面積を増大させて空気と冷媒との熱交換を促進する伝熱促進部材である。フィン20は、プレート状に形成されたプレートフィンである。フィン20は熱交換器1に複数設けられている。サイドプレート30、31は、複数のフィン20の最上層と最下層とに設けられた板部品である。 The fin 20 is a heat transfer promoting member that increases the heat transfer area between the air and the heat transfer tube 10 and promotes heat exchange between the air and the refrigerant. The fin 20 is a plate fin formed in a plate shape. A plurality of fins 20 are provided in the heat exchanger 1. The side plates 30 and 31 are plate parts provided in the uppermost layer and the lowermost layer of the plurality of fins 20.

接続管40は、複数の伝熱管10の先端部13同士を接続する管部品である。接続管40は、U字状に形成されている。接続管40は、伝熱管10よりも厚肉のものである。例えば、接続管40として、肉厚が伝熱管10の底肉厚の1.5倍以上の平滑管が用いられる。なお、底肉厚は、伝熱管10の溝11の底面から外壁面までの厚みである。ヘッダ50、51は、伝熱管10に対して冷媒の分配または集合を行う部品である。 The connection tube 40 is a tube component that connects the tip portions 13 of the plurality of heat transfer tubes 10 to each other. The connecting pipe 40 is formed in a U shape. The connecting tube 40 is thicker than the heat transfer tube 10. For example, as the connecting pipe 40, a smooth pipe having a wall thickness of 1.5 times or more the bottom wall thickness of the heat transfer pipe 10 is used. The bottom wall thickness is the thickness from the bottom surface of the groove 11 of the heat transfer tube 10 to the outer wall surface. The headers 50 and 51 are parts that distribute or assemble the refrigerant to the heat transfer tube 10.

次に、伝熱管10と接続管40との接続構造について説明する。図3に示されるように、伝熱管10の先端部13は、口拡部14及びフレア加工部15を有している。口拡部14は、内径が接続管40の外径よりも大きくされた部分である。フレア加工部15は、口拡部14の先端部分が円錐状に広げられた部分である。 Next, the connection structure between the heat transfer tube 10 and the connection tube 40 will be described. As shown in FIG. 3, the tip portion 13 of the heat transfer tube 10 has a mouth expanding portion 14 and a flared portion 15. The mouth expansion portion 14 is a portion whose inner diameter is larger than the outer diameter of the connecting pipe 40. The flared portion 15 is a portion in which the tip portion of the mouth expanding portion 14 is expanded in a conical shape.

そして、接続管40の先端部41が伝熱管10の先端部13に差し込まれることで嵌合部42が構成されている。図4に示されるように、嵌合部42における伝熱管10の長手方向の長さ、すなわち伝熱管10の径方向に伝熱管10と接続管40とがオーバーラップしている部分の長さは1mm以上になっている。 The fitting portion 42 is formed by inserting the tip portion 41 of the connecting pipe 40 into the tip portion 13 of the heat transfer tube 10. As shown in FIG. 4, the length of the heat transfer tube 10 in the fitting portion 42 in the longitudinal direction, that is, the length of the portion where the heat transfer tube 10 and the connecting tube 40 overlap in the radial direction of the heat transfer tube 10 is It is 1 mm or more.

また、嵌合部42において口拡部14の内面と接続管40の外面との管の隙間は管径差で0.05mm以上である。当該隙間にろう材60が充填されている。ろう材60は、伝熱管10の長手方向において、伝熱管10の先端部13の端面16よりも接続管40の先端部41側の位置から、接続管40の先端部41の端面43の一部を覆う位置まで充填されている。なお、図3ではろう材60を省略している。 Further, in the fitting portion 42, the gap between the inner surface of the mouth expanding portion 14 and the outer surface of the connecting pipe 40 is 0.05 mm or more in terms of pipe diameter difference. The gap is filled with the brazing filler metal 60. The brazing material 60 is a part of the end face 43 of the tip 41 of the connection tube 40 from the position on the tip 41 side of the connection tube 40 with respect to the end face 16 of the tip 13 of the heat transfer tube 10 in the longitudinal direction of the heat transfer tube 10. It is filled to the position where it covers. Note that the brazing material 60 is omitted in FIG.

ろう材60は、嵌合部42おいて伝熱管10と接続管40とを固定する固定材である。ろう材60は、弗化セシウム系の非腐食性フラックスを塗布したAl−Cu−Siの3元素系共晶組成近傍のものや、その成分にZnを添加したものが用いられる。すなわち、ろう材60は、Al−Cu−Si系またはAl−Cu−Si−Zn系のものである。 The brazing material 60 is a fixing material for fixing the heat transfer tube 10 and the connecting tube 40 at the fitting portion 42. As the brazing material 60, a material having a three-element eutectic composition of Al—Cu—Si coated with a cesium fluoride-based non-corrosive flux, or a material having Zn added to the component thereof is used. That is, the brazing material 60 is an Al-Cu-Si type or an Al-Cu-Si-Zn type.

Al−Cu−Si系のろう材60は、固相線温度510℃、液相線温度540℃程度に成分調整されている。これにより、ろう材60は、従来のAl−Si系の固相線温度577℃に対して大幅に低温化されている。すなわち、本実施形態に係るろう材60は低融点ろう材である。この温度域でろう付けするためにフラックスは420℃の低温から活性を有する。 The components of the Al—Cu—Si based brazing material 60 are adjusted so that the solidus temperature is 510 ° C. and the liquidus temperature is about 540 ° C. As a result, the brazing material 60 is significantly lowered in temperature with respect to the conventional Al—Si-based solid phase temperature of 577 ° C. That is, the brazing material 60 according to the present embodiment is a low melting point brazing material. The flux is active from a low temperature of 420 ° C. for brazing in this temperature range.

ここで、接続管40は凹部44を有している。凹部44は、ろう付け時にろう材60によって接続管40の一部が浸食されて形成された部分である。一方、ろう付けによって接続管40に凹部44が形成されない場合もある。しかしながら、接続管40に凹部44が形成される場合も形成されない場合も、ろう材60のSi成分が接続管40に侵入する。このため、凹部44に対応する部分には必ずSi成分が残されている。以上が、熱交換器1の全体構成である。 Here, the connecting pipe 40 has a recess 44. The recess 44 is a portion formed by erosion of a part of the connecting pipe 40 by the brazing material 60 at the time of brazing. On the other hand, the recess 44 may not be formed in the connecting pipe 40 due to brazing. However, the Si component of the brazing filler metal 60 penetrates into the connecting pipe 40 regardless of whether the recess 44 is formed or not formed in the connecting pipe 40. Therefore, the Si component is always left in the portion corresponding to the recess 44. The above is the overall configuration of the heat exchanger 1.

次に、熱交換器1の製造方法について説明する。まず、引き抜き加工によりアルミニウムまたはアルミニウム合金からなる管を形成する。また、管の内面に転造加工を施すことにより内面に溝11が設けられた伝熱管10を形成する。 Next, a method of manufacturing the heat exchanger 1 will be described. First, a tube made of aluminum or an aluminum alloy is formed by drawing. Further, by rolling the inner surface of the pipe, a heat transfer tube 10 having a groove 11 is formed on the inner surface.

続いて、複数のフィン20及びサイドプレート30、31を用意し、各フィン20及びサイドプレート30、31に伝熱管10が挿通される図示しない貫通孔を形成する。そして、複数のフィン20を等間隔に配置した後、貫通孔に伝熱管10を挿通する。 Subsequently, a plurality of fins 20 and side plates 30 and 31 are prepared, and through holes (not shown) through which the heat transfer tube 10 is inserted are formed in the fins 20 and the side plates 30 and 31. Then, after arranging the plurality of fins 20 at equal intervals, the heat transfer tube 10 is inserted into the through hole.

この後、伝熱管10を拡管する拡管工程を行う。図5に示されるように、伝熱管10の内径より径が大きい拡管子100を伝熱管10内に挿通し、拡管子100により伝熱管10を機械的に拡管する。伝熱管10を拡管することで、複数のフィン20及びサイドプレート30、31と伝熱管10とを密着させて接合する。また、同様の工法で伝熱管10の先端部13に口拡部14及びフレア加工部15を形成する。なお、図5では伝熱管10の内面の溝11を省略している。 After that, a tube expansion step of expanding the heat transfer tube 10 is performed. As shown in FIG. 5, a tube expander 100 having a diameter larger than the inner diameter of the heat transfer tube 10 is inserted into the heat transfer tube 10, and the heat transfer tube 10 is mechanically expanded by the tube expander 100. By expanding the heat transfer tube 10, the plurality of fins 20, the side plates 30 and 31, and the heat transfer tube 10 are brought into close contact with each other and joined. Further, the mouth expansion portion 14 and the flare processing portion 15 are formed at the tip portion 13 of the heat transfer tube 10 by the same construction method. In FIG. 5, the groove 11 on the inner surface of the heat transfer tube 10 is omitted.

次に、伝熱管10に接続管40を接合する接合工程を行う。このため、拡管工程で取得した伝熱管10と接続管40とを用意する。接続管40として、伝熱管10よりも厚肉のものを用いる。また、接続管40が重力方向の上側に位置すると共に伝熱管10が重力方向の下側に位置するように接続管40を伝熱管10の先端部13に差し込んで嵌合部42を構成する。 Next, a joining step of joining the connecting tube 40 to the heat transfer tube 10 is performed. Therefore, the heat transfer tube 10 and the connection tube 40 acquired in the tube expansion step are prepared. As the connecting tube 40, one having a thickness thicker than that of the heat transfer tube 10 is used. Further, the connecting tube 40 is inserted into the tip portion 13 of the heat transfer tube 10 so that the connecting tube 40 is located on the upper side in the gravity direction and the heat transfer tube 10 is located on the lower side in the gravity direction to form the fitting portion 42.

そして、嵌合部42の部分ろう付けの前に、図6に示されるように、少なくともろう材60の一部が伝熱管10の先端部13の端面16の上方に位置するように、接続管40の外壁面45にろう材60を供給する。例えば、ろう材60を接続管40の周方向に連続的に一周配置するか、または周方向に断続的に部分配置する。上述のように、ろう材60としてAl−Cu−Si系またはAl−Cu−Si−Zn系のものを用いる。 Then, before the partial brazing of the fitting portion 42, as shown in FIG. 6, the connecting pipe is provided so that at least a part of the brazing material 60 is located above the end surface 16 of the tip portion 13 of the heat transfer tube 10. The brazing material 60 is supplied to the outer wall surface 45 of the 40. For example, the brazing filler metal 60 is continuously arranged once in the circumferential direction of the connecting pipe 40, or partially arranged intermittently in the circumferential direction. As described above, the brazing material 60 used is Al-Cu-Si type or Al-Cu-Si-Zn type.

このようにろう材60を接続管40に供給することで、溶けたろう材60が嵌合部42の隙間に引き込まれるようにすることができる。また、ろう材60にボイドが含まれた状態で嵌合部42に引き込まれることを抑制することができる。なお、ろう材60の全体を先端部13の端面16の上方に位置させることでこのような効果をさらに高めることができる。 By supplying the brazing filler metal 60 to the connecting pipe 40 in this way, the melted brazing filler metal 60 can be drawn into the gap of the fitting portion 42. Further, it is possible to prevent the brazing material 60 from being drawn into the fitting portion 42 in a state where the voids are contained. It should be noted that such an effect can be further enhanced by locating the entire brazing material 60 above the end surface 16 of the tip portion 13.

続いて、嵌合部42を部分ろう付けする。このため、まず、接続管40を伝熱管10よりも優先的に加熱する。具体的には、接続管40のうちろう材60を配した部位を550℃程度に局所加熱してろう材60を溶融させる。また、伝熱管10の温度を接続管40の温度よりも低く加熱する。例えば、嵌合部42の下部すなわち伝熱管10の口拡部14の下部の温度をろう材60の固相線温度以下(例えば410℃)に調整する。 Subsequently, the fitting portion 42 is partially brazed. Therefore, first, the connection pipe 40 is heated with priority over the heat transfer pipe 10. Specifically, the portion of the connecting pipe 40 where the brazing filler metal 60 is arranged is locally heated to about 550 ° C. to melt the brazing filler metal 60. Further, the temperature of the heat transfer tube 10 is heated lower than the temperature of the connection tube 40. For example, the temperature of the lower part of the fitting portion 42, that is, the lower part of the opening portion 14 of the heat transfer tube 10 is adjusted to be equal to or lower than the solidus temperature of the brazing material 60 (for example, 410 ° C.).

このように嵌合部42を加熱することで、溶融したろう材60が厚肉の接続管40側から薄肉の伝熱管10側のフレア加工部15を介して嵌合部42の隙間に流れ込む。上述のように、伝熱管10の内面には複数の溝11が形成されているので、毛細管現象によってろう材60が当該隙間に引き込まれる。 By heating the fitting portion 42 in this way, the molten brazing material 60 flows from the thick connecting pipe 40 side into the gap of the fitting portion 42 via the flared portion 15 on the thin heat transfer tube 10 side. As described above, since a plurality of grooves 11 are formed on the inner surface of the heat transfer tube 10, the brazing material 60 is drawn into the gap by the capillary phenomenon.

ここで、接続管40に塗布されたろう材60が溶融温度に到達すると、ろう材60は伝熱管10の口拡部14と接続管40の先端部41との隙間に流れ込むが、ろう材60の比重が高いので、接続管40には少なからず母材の浸食が発生して減肉が起こる。しかしながら、厚肉の接続管40が減肉するだけであるので、接続管40の厚みを一定以上に維持することができる。もちろん、接続管40の耐圧強度上の問題も起きない。 Here, when the brazing material 60 applied to the connecting pipe 40 reaches the melting temperature, the brazing material 60 flows into the gap between the mouth expanding portion 14 of the heat transfer tube 10 and the tip portion 41 of the connecting pipe 40, but the brazing material 60 Since the specific gravity is high, the connecting pipe 40 is not a little eroded by the base metal, and the wall thickness is reduced. However, since the thick connecting pipe 40 is only thinned, the thickness of the connecting pipe 40 can be maintained above a certain level. Of course, there is no problem with the pressure resistance of the connecting pipe 40.

また、伝熱管10の口拡部14の下部の温度がろう材60の固相線温度以下に調整されているので、ろう材60は口拡部14の下部で凝固しやすくなっている。したがって、伝熱管10として内面溝付管を用いたとしても、ろう材60が嵌合部42よりもさらに重力方向の下側に流れていくことはない。また、ろう材60が嵌合部42よりも重力方向の下側に流れにくくなるので、嵌合部42がろう付け不良になる恐れがない。そして、伝熱管10は接続管40よりも温度が低いので、伝熱管10はろう材60に浸食されることがほぼない。 Further, since the temperature of the lower part of the mouth expansion portion 14 of the heat transfer tube 10 is adjusted to be equal to or lower than the solidus temperature of the brazing material 60, the brazing material 60 is likely to solidify at the lower part of the mouth expansion portion 14. Therefore, even if the inner grooved tube is used as the heat transfer tube 10, the brazing material 60 does not flow further downward in the gravity direction than the fitting portion 42. Further, since the brazing material 60 is less likely to flow below the fitting portion 42 in the direction of gravity, there is no possibility that the fitting portion 42 will be poorly brazed. Since the heat transfer tube 10 has a lower temperature than the connecting tube 40, the heat transfer tube 10 is hardly eroded by the brazing material 60.

さらに、ヘッダ50、51を伝熱管10にろう付け接合する。その他、仕上げ工程等を行う。こうして、熱交換器1が完成する。 Further, the headers 50 and 51 are brazed and joined to the heat transfer tube 10. In addition, the finishing process is performed. In this way, the heat exchanger 1 is completed.

ここで、部分ろう付けの比較例を説明する。図7に示す比較例では、接続管110の温度が伝熱管120よりも高いが、接続管110の厚みが伝熱管120とほぼ同じである。この構成では、接続管110側にろう材60の浸食による顕著な減肉が発生した。この場合、耐圧上必要な接続管110の肉厚を確保できなくなる。また、伝熱管120の長手方向における嵌合部130のろう付け長さも上記の構成よりも短くなった。 Here, a comparative example of partial brazing will be described. In the comparative example shown in FIG. 7, the temperature of the connecting tube 110 is higher than that of the heat transfer tube 120, but the thickness of the connecting tube 110 is substantially the same as that of the heat transfer tube 120. In this configuration, significant wall thinning occurred on the connecting pipe 110 side due to erosion of the brazing filler metal 60. In this case, the wall thickness of the connecting pipe 110 required for pressure resistance cannot be secured. Further, the brazing length of the fitting portion 130 in the longitudinal direction of the heat transfer tube 120 is also shorter than that of the above configuration.

図8に示す別の比較例では、伝熱管120の温度が接続管110よりも高くなっており、接続管110の厚みが伝熱管120とほぼ同じである。この場合、ろう材60が嵌合部130の隙間に留まらずに、嵌合部130の下部に流れてしまった。このため、伝熱管120の長手方向におけるろう付け長さが極端に短くなり、耐圧上必要なろう付け長さを確保できない。また、伝熱管120にろう材60の浸食が発生して減肉が起こってしまった。 In another comparative example shown in FIG. 8, the temperature of the heat transfer tube 120 is higher than that of the connection tube 110, and the thickness of the connection tube 110 is substantially the same as that of the heat transfer tube 120. In this case, the brazing material 60 did not stay in the gap of the fitting portion 130, but flowed to the lower part of the fitting portion 130. Therefore, the brazing length in the longitudinal direction of the heat transfer tube 120 becomes extremely short, and the brazing length required for pressure resistance cannot be secured. In addition, the heat transfer tube 120 was eroded by the brazing material 60, resulting in wall thinning.

上記の比較例に対し、本実施形態では、接続管40が伝熱管10よりも厚肉であるので、熱交換器1の製造の歩留まりを向上させることができる。また、接続管40の温度が伝熱管10よりも高いので、ろう材60が嵌合部42に留まりやすくなり、ろう材60のろう付け長さを確保することができる。 In contrast to the above comparative example, in the present embodiment, since the connecting pipe 40 is thicker than the heat transfer pipe 10, the manufacturing yield of the heat exchanger 1 can be improved. Further, since the temperature of the connecting tube 40 is higher than that of the heat transfer tube 10, the brazing material 60 can easily stay in the fitting portion 42, and the brazing length of the brazing material 60 can be secured.

そして、伝熱管10は拡管子100によって広げられるが、アルミニウム製の伝熱管10では拡管荷重が高いほど拡管時に拡管子100が凝着して拡管できないことがある。しかし、伝熱管10でろう材60の浸食が起こりにくいので、伝熱管10を薄肉に構成することができる。伝熱管10を薄肉化できるので低い拡管荷重で伝熱管10を拡管することができ、伝熱管10の拡管不良が発生することもない。また、伝熱管10の圧力損失を低減することができる。 The heat transfer tube 10 is expanded by the tube expander 100. However, in the aluminum heat transfer tube 10, the higher the tube expansion load, the more the tube expander 100 adheres to the tube and the tube cannot be expanded. However, since erosion of the brazing material 60 is unlikely to occur in the heat transfer tube 10, the heat transfer tube 10 can be made thin. Since the heat transfer tube 10 can be thinned, the heat transfer tube 10 can be expanded with a low tube expansion load, and the heat transfer tube 10 does not fail to expand. In addition, the pressure loss of the heat transfer tube 10 can be reduced.

さらに、低融点のろう材60を用いることで、母材とろう材60との融点差が大きくなる。このため、ろう付け可能な温度域が広がるので、ラインバーナ等の設備を用いた加熱によって多数のろう付け部位で温度バラツキが発生しても、歩留り良く熱交換器1を製造することができる。 Further, by using the brazing material 60 having a low melting point, the difference in melting point between the base material and the brazing material 60 becomes large. Therefore, since the temperature range in which brazing is possible is widened, the heat exchanger 1 can be manufactured with good yield even if temperature variations occur in many brazed parts due to heating using equipment such as a line burner.

(他の実施形態)
上記各実施形態で示された熱交換器1の構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、接合工程では、接続管40を伝熱管10よりも優先的に加熱する必要はない。
(Other embodiments)
The configuration of the heat exchanger 1 shown in each of the above embodiments is an example, and the configuration is not limited to the configuration shown above, and other configurations capable of realizing the present invention can be used. For example, in the joining step, it is not necessary to heat the connecting pipe 40 more preferentially than the heat transfer pipe 10.

また、接続管40に浸食が発生しても接続管40の品質を維持できるという観点では、接合工程で伝熱管10の温度を接続管40の温度よりも低くする必要はない。具体的には、伝熱管10の口拡部14下部すなわち嵌合部42よりも重力方向の下側の温度は必ずしもろう材60の固相線温度以下でなくても良い。 Further, from the viewpoint that the quality of the connecting pipe 40 can be maintained even if the connecting pipe 40 is eroded, it is not necessary to lower the temperature of the heat transfer pipe 10 to be lower than the temperature of the connecting pipe 40 in the joining step. Specifically, the temperature below the opening portion 14 of the heat transfer tube 10, that is, below the fitting portion 42 in the direction of gravity does not necessarily have to be lower than the solidus temperature of the brazing filler metal 60.

接合工程における接続管40へのろう材60の供給方法は、リング状のろう材鋳物、樹脂バインダの成形品、ゴムバインダ成形品等を用いても良い。 As a method of supplying the brazing material 60 to the connecting pipe 40 in the joining step, a ring-shaped brazing material casting, a molded product of a resin binder, a molded product of a rubber binder, or the like may be used.

上記では、伝熱管10として内面溝付管を用いる例について説明したが、伝熱管10として平滑管を用いても良い。 In the above, an example in which an inner grooved tube is used as the heat transfer tube 10 has been described, but a smooth tube may be used as the heat transfer tube 10.

10 伝熱管
13 先端部
20 フィン
40 接続管
42 嵌合部
60 ろう材
10 Heat transfer tube 13 Tip part 20 Fin 40 Connection tube 42 Fitting part 60 Wax material

Claims (3)

アルミニウム製の接続管(40)と、アルミニウム製のフィン(20)が接合されていると共に先端部(13)の内径が前記接続管の外径よりも大きいアルミニウム製の伝熱管(10)と、を用意し、前記接続管が重力方向の上側に位置すると共に前記伝熱管が前記重力方向の下側に位置するように前記接続管を前記伝熱管の前記先端部に差し込んで嵌合部(42)を構成し、当該嵌合部を部分ろう付けする接合工程を含んだクロスフィンチューブ型の熱交換器の製造方法であって、
前記接合工程では、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材(60)を用いて前記部分ろう付けを行い、さらに、前記接続管として前記伝熱管よりも厚肉のものを用いると共に、前記ろう材が溶融して前記接続管の一部を浸食してろう材化するために前記嵌合部に前記ろう材が流れる際に前記接続管に減肉が発生するろう付け方法であって、前記接合工程では、前記ろう材として、Al−Si系のろう材と比較して比重が大きいものを用い
前記接合工程では、前記部分ろう付けの前に、少なくとも前記ろう材の一部が前記伝熱管の前記先端部の端面(16)の上方に位置するように、前記接続管の外壁面に前記ろう材を供給する熱交換器の製造方法。
An aluminum heat transfer tube (10) to which an aluminum connecting pipe (40) and an aluminum fin (20) are joined and the inner diameter of the tip portion (13) is larger than the outer diameter of the connecting pipe. The connecting tube is inserted into the tip of the heat transfer tube so that the connecting tube is located on the upper side in the gravity direction and the heat transfer tube is located on the lower side in the gravity direction. ), Which is a method for manufacturing a cross-fin tube type heat exchanger including a joining step of partially brazing the fitting portion.
In the joining step, the partial brazing is performed using an Al-Cu-Si-based or Al-Cu-Si-Zn-based brazing material (60), and further, the connecting pipe is thicker than the heat transfer pipe. Rutotomoni with things, thinning to the connection tube when said brazing material to flow into the fitting portion to the brazing material is a brazing material of eroding a portion of said connection tube by melting occurs It is a brazing method, and in the joining step, a brazing material having a larger specific gravity than an Al—Si-based brazing material is used .
In the joining step, the brazing is applied to the outer wall surface of the connecting pipe so that at least a part of the brazing material is located above the end surface (16) of the tip end portion of the heat transfer tube before the partial brazing. A method of manufacturing a heat exchanger that supplies materials.
前記接合工程では、前記接続管として前記伝熱管よりも1.5倍以上の厚肉のものを用いる請求項1に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 1, wherein in the joining step, a connection tube having a thickness 1.5 times or more thicker than that of the heat transfer tube is used . 前記接合工程では、前記接続管を前記伝熱管よりも優先的に加熱し、さらに、前記伝熱管の温度を前記接続管の温度よりも低くする請求項1または2に記載の熱交換器の製造方法。The manufacture of the heat exchanger according to claim 1 or 2, wherein in the joining step, the connecting pipe is heated preferentially over the heat transfer pipe, and the temperature of the heat transfer pipe is made lower than the temperature of the connecting pipe. Method.
JP2016002323A 2016-01-08 2016-01-08 How to make a heat exchanger Active JP6762719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002323A JP6762719B2 (en) 2016-01-08 2016-01-08 How to make a heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002323A JP6762719B2 (en) 2016-01-08 2016-01-08 How to make a heat exchanger

Publications (2)

Publication Number Publication Date
JP2017122549A JP2017122549A (en) 2017-07-13
JP6762719B2 true JP6762719B2 (en) 2020-09-30

Family

ID=59306237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002323A Active JP6762719B2 (en) 2016-01-08 2016-01-08 How to make a heat exchanger

Country Status (1)

Country Link
JP (1) JP6762719B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357178B2 (en) 2015-07-30 2018-07-11 株式会社デンソーエアクール Heat exchanger and manufacturing method thereof
WO2019058514A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730593A4 (en) * 2017-12-18 2021-10-27 Daikin Industries, Ltd. Refrigeration machine oil for refrigerant or refrigerant composition, method for using refrigeration machine oil, and use of refrigeration machine oil
US20200385622A1 (en) 2017-12-18 2020-12-10 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
WO2019123898A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration machine oil for refrigerant or refrigerant composition, method for using refrigeration machine oil, and use of refrigeration machine oil
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2023073749A1 (en) * 2021-10-25 2023-05-04 三菱電機株式会社 Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704632B2 (en) * 1997-12-24 2005-10-12 三菱アルミニウム株式会社 Fin material for aluminum heat exchanger and method for manufacturing aluminum heat exchanger
JP3842081B2 (en) * 2001-07-27 2006-11-08 株式会社日立製作所 Heat exchanger manufacturing apparatus and manufacturing method
JP2008309443A (en) * 2007-06-18 2008-12-25 Daikin Ind Ltd Heat transfer pipe connecting structure

Also Published As

Publication number Publication date
JP2017122549A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6762719B2 (en) How to make a heat exchanger
JP5310714B2 (en) Metal tube joining structure and heat exchanger
KR102085716B1 (en) Heat exchanger and method for manufacturing the same
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
JP5710946B2 (en) Flat tubes and heat exchangers for heat exchangers
US11007592B2 (en) Heat exchanger and method for producing same
JP2016017666A (en) Heat exchanger and its process of manufacture
WO2017018438A1 (en) Heat exchanger and method for producing same
JP2015139811A (en) Method for manufacturing heat exchanger and diameter enlarging implement
JP2002011569A (en) Heat exchanger and its manufacture
JP2002267382A (en) Method of manufacturing aluminum heat exchanger brazing structure
KR20010101714A (en) Manifold for heat exchanger
JP2010017721A (en) Brazing method for heat exchanger
JP2015150566A (en) Tube expansion plug
JP6333468B2 (en) Tube connection structure and heat exchanger
JP5731106B2 (en) Method for joining pipe materials, and heat exchanger for joining pipe materials and fin materials joined by the joining method
JP2016138731A (en) Heat exchanger
JP2012139708A (en) Joint structure for metallic pipes
JP2022029195A (en) Heat exchanger and its manufacturing method
JP2006231349A (en) Heat exchanger
JP2001255090A (en) Heat exchanger and method of manufacturing the same
JP2018151040A (en) Pipe joint, heat exchanger and manufacturing method of heat exchanger
JP2798760B2 (en) Heat exchanger manufacturing method
JP2008279507A (en) Method for joining component made of high strength aluminum material, and heat exchanger assembled by the method
KR20160031833A (en) Connecting method of aluminum material and copper material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250