JP6762654B2 - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP6762654B2
JP6762654B2 JP2016035140A JP2016035140A JP6762654B2 JP 6762654 B2 JP6762654 B2 JP 6762654B2 JP 2016035140 A JP2016035140 A JP 2016035140A JP 2016035140 A JP2016035140 A JP 2016035140A JP 6762654 B2 JP6762654 B2 JP 6762654B2
Authority
JP
Japan
Prior art keywords
temperature
battery
internal combustion
combustion engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016035140A
Other languages
Japanese (ja)
Other versions
JP2017151006A (en
Inventor
康正 大西
康正 大西
正樹 竹葉
正樹 竹葉
祥明 仲谷
祥明 仲谷
芳樹 岡崎
芳樹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2016035140A priority Critical patent/JP6762654B2/en
Publication of JP2017151006A publication Critical patent/JP2017151006A/en
Application granted granted Critical
Publication of JP6762654B2 publication Critical patent/JP6762654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車載のバッテリの液温を推測する制御装置に関する。 The present invention relates to a control device for estimating the liquid temperature of an in-vehicle battery.

車両用のバッテリとして広く採用されている鉛バッテリは、バッテリ内部を満たすバッテリ液である電解液の温度が低下すると内部抵抗が増大して充電受入性が悪化する。故に、現在のバッテリ液温を把握した上で、そのバッテリ液温に応じて充電期間の長さを調整する必要が生じる(例えば、下記特許文献を参照)。さもなくば、バッテリ液温が低い場合にバッテリが十分に充電されず蓄電量が不足する、またサルフェーションによるバッテリ寿命の短命化を招く懸念が生じる。 In a lead battery widely used as a battery for a vehicle, when the temperature of an electrolytic solution, which is a battery fluid that fills the inside of the battery, decreases, the internal resistance increases and the charge acceptability deteriorates. Therefore, it is necessary to grasp the current battery liquid temperature and adjust the length of the charging period according to the battery liquid temperature (see, for example, the following patent documents). Otherwise, if the battery fluid temperature is low, there is a concern that the battery will not be fully charged and the amount of electricity stored will be insufficient, and that the battery life will be shortened due to sulfation.

バッテリ液は強酸性であることから、バッテリ液中に温度センサを投入してその液温を直接計測することは困難である。そこで、従来、バッテリの電極の付近に温度センサ(サーミスタ)を配置し、バッテリ近傍の雰囲気の温度を検出することを通じて、バッテリ液温の推測を行っている。 Since the battery fluid is strongly acidic, it is difficult to put a temperature sensor into the battery fluid and directly measure the temperature of the battery fluid. Therefore, conventionally, a temperature sensor (thermistor) is arranged near the electrode of the battery, and the temperature of the battery liquid temperature is estimated by detecting the temperature of the atmosphere near the battery.

しかしながら、上述の温度センサにより検出されるバッテリ近傍の雰囲気の温度は、実際のバッテリ液温を必ずしも精確には表さない。例えば、外気温が低い環境下で長時間駐車していた車両の内燃機関を冷間始動した場合、その始動後暫くの間は、エンジンルーム内の雰囲気の温度の上昇に対してバッテリ液温の上昇が遅れ、温度センサによる検出温度と実際のバッテリ液温との間に乖離が生じる。即ち、バッテリ液温が実際よりも高く見積もられてしまう。 However, the temperature of the atmosphere near the battery detected by the above-mentioned temperature sensor does not necessarily accurately represent the actual battery liquid temperature. For example, when the internal combustion engine of a vehicle that has been parked for a long time in an environment with a low outside air temperature is cold-started, for a while after the start, the battery fluid temperature rises against the rise in the temperature of the atmosphere in the engine room. The rise is delayed, causing a discrepancy between the temperature detected by the temperature sensor and the actual battery fluid temperature. That is, the battery fluid temperature is estimated to be higher than the actual temperature.

また、稼働していた内燃機関を停止して車両を比較的短時間(数十分から一時間程度)駐車する際には、内燃機関の運転停止後、エンジン冷却水の循環やエンジンルームへの走行風の流入がなくなることから、エンジンルーム内の雰囲気が一時的に昇温し、これに伴い温度センサで検出される温度もまた上昇する。一方で、バッテリ液温はエンジンルーム内の雰囲気の温度の上昇に必ずしも追従しない。結果として、比較的短時間の駐車後の内燃機関の再始動時における温度センサの検出温度が実際のバッテリ液温よりも高くなることがある。 In addition, when the internal combustion engine that was in operation is stopped and the vehicle is parked for a relatively short time (several tens of minutes to an hour), after the internal combustion engine is stopped, the engine cooling water is circulated and the vehicle is moved to the engine room. Since the inflow of running wind is eliminated, the atmosphere in the engine room temporarily rises, and the temperature detected by the temperature sensor also rises accordingly. On the other hand, the battery fluid temperature does not always follow the rise in the temperature of the atmosphere in the engine room. As a result, the temperature detected by the temperature sensor at the time of restarting the internal combustion engine after parking for a relatively short time may be higher than the actual battery liquid temperature.

特開平07−298507号公報Japanese Unexamined Patent Publication No. 07-298507

本発明は、車載のバッテリの液温をより精確に把握することを所期の目的とする。 An object of the present invention is to more accurately grasp the liquid temperature of an in-vehicle battery.

本発明では、内燃機関の再始動時における内燃機関の温度を示唆する流体の温度、直近の内燃機関の停止時におけるバッテリの液温の推測値、及び内燃機関の再始動時におけるバッテリ近傍の雰囲気の温度を参照してこれら温度値のうち最も値の小さいものを、内燃機関の再始動時のバッテリの液温の初期値と見なし、その初期値及び以降車載のバッテリの近傍の雰囲気の温度を検出するセンサを介して得られる温度値の時系列をなまし処理することを通じて現在のバッテリの液温を推測することとし、車速が高い場合におけるなましの程度を車速が低い場合におけるなましの程度から変更する制御装置を構成した。 In the present invention, the temperature of the fluid suggesting the temperature of the internal combustion engine when the internal combustion engine is restarted, the estimated value of the liquid temperature of the battery when the internal combustion engine is stopped most recently, and the atmosphere near the battery when the internal combustion engine is restarted. The smallest of these temperature values is regarded as the initial value of the battery liquid temperature when the internal combustion engine is restarted, and the initial value and the temperature of the atmosphere in the vicinity of the in-vehicle battery thereafter are taken into consideration. The current battery fluid temperature is estimated by smoothing the time series of temperature values obtained through the detecting sensor, and the degree of smoothing when the vehicle speed is high is the degree of smoothing when the vehicle speed is low. A control device that changes from the degree was configured.

本発明によれば、車載のバッテリの液温をより精確に把握することが可能となる。 According to the present invention, it is possible to more accurately grasp the liquid temperature of the vehicle-mounted battery.

本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。The figure which shows the schematic structure of the internal combustion engine for a vehicle and the control device in one Embodiment of this invention. 同実施形態における車両の発電システムの概要を示す電気回路図。The electric circuit diagram which shows the outline of the power generation system of the vehicle in the same embodiment. 内燃機関を一旦停止後再始動する場合におけるバッテリ近傍の雰囲気の温度及びバッテリ液の温度の変動の推移を例示する図。The figure exemplifying the transition of the temperature of the atmosphere near the battery and the temperature of the battery liquid when the internal combustion engine is temporarily stopped and then restarted. 内燃機関及び車両の稼働中のバッテリ近傍の雰囲気の温度及びバッテリ液の温度の変動の推移、並びにバッテリ液の温度の推測値を例示する図。The figure which illustrates the transition of the temperature of the atmosphere near the battery in operation of an internal combustion engine and a vehicle, the temperature fluctuation of the battery liquid, and the estimated value of the temperature of the battery liquid.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態の内燃機関は、ポート噴射式の4ストローク火花点火エンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備する。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を気筒1毎に設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle according to the present embodiment. The internal combustion engine of the present embodiment is a port injection type 4-stroke spark ignition engine, and includes a plurality of cylinders 1 (one of which is illustrated in FIG. 1). An injector 11 for injecting fuel is provided for each cylinder 1 in the vicinity of the intake port of each cylinder 1. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives an induction voltage generated by the ignition coil and induces a spark discharge between the center electrode and the ground electrode. The ignition coil is integrally built in the coil case together with the igniter which is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. An air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream on the intake passage 3.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 to the outside from the exhaust port of each cylinder 1. An exhaust manifold 42 and a three-way catalyst 41 for purifying exhaust gas are arranged on the exhaust passage 4.

EGR(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、特にサージタンク33に接続している。 The EGR (Exhaust Gas Recirculation) device 2 realizes a so-called high-pressure loop EGR, and has an external EGR passage 21 that communicates between the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3. The EGR cooler 22 provided on the EGR passage 21 and the EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of the EGR gas flowing through the EGR passage 21 are elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined position downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined position downstream of the throttle valve 32 in the intake passage 3, particularly a surge tank 33.

車両には、各種の電気負荷が実装されている。その具体例としては、内燃機関の点火系や各種バルブ23、32等の他、照明灯(ヘッドランプ、テールランプ、フォグランプ、ウィンカ(ターンシグナルランプ)等)、エンジン冷却水を空冷するラジエータのファン、電動パワーステアリング装置、内燃機関の始動時にクランクシャフトを回転駆動する電動機(スタータモータ。但し、発電機110と一体化したISG(Integrated Starter Generator)であることがある)、車室内空調用のエアコンディショナの送風用ブロワ、リアガラスの曇りを取るデフォッガ、オーディオ機器、カーナビゲーションシステム等が挙げられる。 Various electric loads are mounted on the vehicle. Specific examples include ignition systems for internal combustion engines, various valves 23 and 32, lighting lights (headlamps, tail lamps, fog lamps, winkers (turn signal lamps), etc.), radiator fans that air-cool engine cooling water, etc. Electric power steering device, electric motor that rotates and drives the crankshaft when the internal combustion engine is started (starter motor, however, it may be an ISG (Integrated Starter Generator) integrated with the generator 110), air conditioner for vehicle interior air conditioning. Examples include a blower for blowing Shona, a defogger for removing fogging of the rear glass, audio equipment, and a car navigation system.

電気負荷への電力供給の源となる発電機(オルタネータ。但し、電動機と一体化したISGであることがある)110は、ベルト及びプーリを要素とする巻掛伝動機構等を介して内燃機関の出力軸であるクランクシャフトに接続しており、クランクシャフトから回転トルクの伝達を受けて回転駆動され、発電した電力を車載のバッテリ120に充電し、及び/または,車両に実装された各種の電気負荷に給電する。バッテリ120は、車両用として周知の鉛バッテリや、ニッケル水素バッテリ、リチウムイオンバッテリ等である。また、発電機110は、回生発電を行うことがある。即ち、運転者がアクセルペダルを踏んでおらず、車両の加速を要求していない(減速を容認している)場合において、クランクシャフト及び車軸(駆動輪)の回転のエネルギを電気エネルギに変換してバッテリ120に回収しつつ、内燃機関及び車両を減速させる。 The generator (alternator, which may be an ISG integrated with the electric motor) 110, which is the source of power supply to the electric load, is an internal combustion engine via a winding transmission mechanism having a belt and a pulley as elements. It is connected to the crank shaft, which is the output shaft, is rotationally driven by receiving rotational torque from the crank shaft, charges the generated power to the in-vehicle battery 120, and / or various types of electricity mounted on the vehicle. Power the load. The battery 120 is a lead battery, a nickel hydrogen battery, a lithium ion battery, or the like, which are well known for vehicles. In addition, the generator 110 may generate regenerative power generation. That is, when the driver does not depress the accelerator pedal and does not require acceleration of the vehicle (allows deceleration), the rotational energy of the crankshaft and axle (driving wheels) is converted into electrical energy. The internal combustion engine and the vehicle are decelerated while being collected by the battery 120.

図2に、発電システムの等価回路を示している。発電機110は、ステータに巻回されたステータコイル111と、ステータの内側に配置され回転するロータに巻回されたフィールドコイル112とを有する。ステータコイル111は三相コイルであり、三相交流の誘起電流を発電する。この誘起電流は、ダイオードを用いてなる整流器113によって直流電流とした上でバッテリ120に蓄電する。 FIG. 2 shows an equivalent circuit of a power generation system. The generator 110 has a stator coil 111 wound around a stator and a field coil 112 wound around a rotating rotor arranged inside the stator. The stator coil 111 is a three-phase coil and generates an induced current of three-phase alternating current. This induced current is converted into a direct current by a rectifier 113 using a diode and then stored in the battery 120.

レギュレータ130は、発電機110に付随し、発電機110が発電して出力する電圧の大きさを制御するIC式のものである。レギュレータ130は、半導体スイッチング素子を用いた切替回路131を介してフィールドコイル112に通電する。 The regulator 130 is an IC type that is attached to the generator 110 and controls the magnitude of the voltage generated and output by the generator 110. The regulator 130 energizes the field coil 112 via a switching circuit 131 using a semiconductor switching element.

レギュレータ130の電圧制御回路132は、制御装置たるECU(Electronic Control Unit)0から発電機110の目標電圧を指令する信号mを受け付け、バッテリ120の端子電圧をその指令された目標電圧に追従させるべく、パワーデバイス131をスイッチ動作させるPWM(Pulse Width Modulation)制御を行う。発電機110の出力電圧、即ち発電機110のステータコイルに誘起される電圧は、フィールドコイル112を流れる励磁電流のDUTY比であるfDUTYに比例して大きくなる。発電機110による発電量、換言すればバッテリ120への充電量及び/または電気負荷への給電量は、fDUTYが高いほど増加し、fDUTYが低いほど減少する。 The voltage control circuit 132 of the regulator 130 receives a signal m for commanding the target voltage of the generator 110 from the ECU (Electronic Control Unit) 0 which is a control device, and causes the terminal voltage of the battery 120 to follow the commanded target voltage. , PWM (Pulse Width Modulation) control for switching the power device 131 is performed. The output voltage of the generator 110, that is, the voltage induced in the stator coil of the generator 110 increases in proportion to fDUTY, which is the DUTY ratio of the exciting current flowing through the field coil 112. The amount of power generated by the generator 110, in other words, the amount of charge to the battery 120 and / or the amount of power supplied to the electric load increases as the fDUTY increases, and decreases as the fDUTY decreases.

発電機110は、内燃機関から見れば機械的な負荷となる。発電機110の出力電圧がバッテリ120の端子電圧を超越するとき、バッテリ120が充電され、かつ発電機110から電気負荷に電力が供給される。つまり、発電機110がクランクシャフトの回転のエネルギを費やして電気エネルギを生成する仕事をする。バッテリ120への充電量及び電気負荷への給電量は、発電機110の出力電圧とバッテリ120電圧との電位差に依存する。 The generator 110 is a mechanical load when viewed from the internal combustion engine. When the output voltage of the generator 110 exceeds the terminal voltage of the battery 120, the battery 120 is charged and power is supplied from the generator 110 to the electric load. That is, the generator 110 does the job of spending the energy of the rotation of the crankshaft to generate electrical energy. The amount of charge to the battery 120 and the amount of power supplied to the electric load depend on the potential difference between the output voltage of the generator 110 and the voltage of the battery 120.

逆に、発電機110の出力電圧がバッテリ120電圧に満たないか、バッテリ120電圧に近いときには、バッテリ120が充電されず、また発電機110から電気負荷に電力が供給されない(バッテリ120から電気負荷に電力供給されることはある)。つまり、発電機110がクランクシャフトの回転のエネルギを費やす仕事をしないか、またはその仕事が小さくなる。 On the contrary, when the output voltage of the generator 110 is less than the battery 120 voltage or close to the battery 120 voltage, the battery 120 is not charged and the generator 110 does not supply power to the electric load (electric load from the battery 120). May be powered). That is, the generator 110 does not do the work of consuming the energy of the rotation of the crankshaft, or the work is reduced.

要するに、ECU0からレギュレータ130に高い出力電圧を指令すると、エンジン回転に対する発電機110の機械負荷が増し、低い出力電圧を指令すると、エンジン回転に対する発電機110の機械負荷が減る。 In short, when a high output voltage is commanded from the ECU 0 to the regulator 130, the mechanical load of the generator 110 with respect to the engine rotation increases, and when a low output voltage is commanded, the mechanical load of the generator 110 with respect to the engine rotation decreases.

内燃機関及び発電機110等の運転制御を司るECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。 The ECU 0 that controls the operation of the internal combustion engine, the generator 110, and the like is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に対する要求トルク)として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の温度を示唆するエンジン冷却水温を検出する水温センサから出力される冷却水温信号e、吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号f、バッテリ120に対して流出入する電流及びバッテリ120の電極端子近傍の雰囲気の温度を検出する電流・温度センサ(サーミスタを含む)140から出力されるバッテリ電流・温度信号g、レギュレータ130の内蔵回路133から出力される励磁電流の通電/遮断(パワーデバイス131の点弧/消弧)の波形ひいては励磁電流の大きさを示すfDUTY信号h等が入力される。 The input interface of ECU0 has a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle of the crank shaft of the internal combustion engine and the engine rotation speed. , Accelerator opening signal c output from a sensor that detects the amount of depression of the accelerator pedal or the opening of the throttle valve 32 as the accelerator opening (so to speak, the required torque for the internal combustion engine), the intake passage 3 (particularly, the surge tank 33). Intake temperature / intake pressure signal d output from the temperature / pressure sensor that detects the intake air temperature and pressure inside, cooling water temperature signal e output from the water temperature sensor that detects the engine cooling water temperature that suggests the temperature of the internal combustion engine, The cam angle signal f output from the cam angle sensor at a plurality of cam angles of the intake cam shaft or the exhaust cam shaft, the current flowing in and out of the battery 120, and the current for detecting the temperature of the atmosphere near the electrode terminal of the battery 120. -The waveform of the battery current / temperature signal g output from the temperature sensor (including the thermista) 140 and the energization / cutoff (ignition / extinguishing of the power device 131) of the exciting current output from the built-in circuit 133 of the regulator 130. An fDUTY signal h or the like indicating the magnitude of the exciting current is input.

ECU0の出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、発電機110の出力電圧を制御する電圧レギュレータ130に対して電圧指令信号m等を出力する。 From the output interface of ECU 0, the ignition signal i is applied to the igniter of the spark plug 12, the fuel injection signal j is applied to the injector 11, the opening operation signal k is applied to the throttle valve 32, and the opening operation is performed to the EGR valve 23. The voltage command signal m and the like are output to the signal l and the voltage regulator 130 that controls the output voltage of the generator 110.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGR量)、発電機110の出力電圧(発電量)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、mを出力インタフェースを介して印加する。 The processor of ECU 0 interprets and executes a program stored in the memory in advance, calculates an operation parameter, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for the operation control of the internal combustion engine via the input interface, obtains the engine speed, and fills the cylinder 1. Estimate the intake amount. Then, based on the engine speed and intake amount, the required fuel injection amount, fuel injection timing (including the number of fuel injections per combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR amount). ), Various operating parameters such as the output voltage (power generation amount) of the generator 110 are determined. The ECU 0 applies various control signals i, j, k, l, and m corresponding to the operation parameters via the output interface.

また、ECU0は、内燃機関の始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)時において、電動機を稼働させるための制御信号oを入力し、当該電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が内燃機関の温度(冷却水温)等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。 Further, the ECU 0 inputs a control signal o for operating the electric motor at the time of starting the internal combustion engine (may be a cold start or a return from the idling stop), and the crankshaft is operated by the electric motor. Perform cranking to rotate. Cranking occurs when the internal combustion engine goes from the initial explosion to the continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds the judgment value determined according to the temperature (cooling water temperature) of the internal combustion engine (complete explosion). End (assuming it is).

本実施形態のECU0は、バッテリ温度信号gを参照して、現在のバッテリ120の液温の推測を行う。 The ECU 0 of the present embodiment estimates the current liquid temperature of the battery 120 with reference to the battery temperature signal g.

まず、停止していた内燃機関の再始動時(特に、冷間始動時)におけるバッテリ液温の初期値の決定方法を述べる。即ち、ECU0は、
(A)内燃機関の再始動時におけるエンジン冷却水の温度
(B)直近の内燃機関の停止時におけるバッテリ液温の推測値
(C)内燃機関の再始動時におけるバッテリ120近傍の雰囲気の温度
のうち、最も値の小さいものを、内燃機関の再始動時のバッテリ液温と見なす。
First, a method for determining the initial value of the battery fluid temperature at the time of restarting the stopped internal combustion engine (particularly at the time of cold start) will be described. That is, ECU 0
(A) Engine cooling water temperature when the internal combustion engine is restarted (B) Estimated value of battery liquid temperature when the internal combustion engine is stopped most recently (C) Temperature of the atmosphere near the battery 120 when the internal combustion engine is restarted Of these, the one with the smallest value is regarded as the battery fluid temperature when the internal combustion engine is restarted.

(A)のエンジン冷却水温は、冷却水温信号eを参照して知得することができる。(B)のバッテリ液温の推測値については、後述する。そして、(C)のバッテリ120近傍の雰囲気の温度は、バッテリ温度信号gを参照して知得することができる。 The engine cooling water temperature of (A) can be known by referring to the cooling water temperature signal e. The estimated value of the battery fluid temperature in (B) will be described later. Then, the temperature of the atmosphere in the vicinity of the battery 120 in (C) can be known by referring to the battery temperature signal g.

図3は、稼働していた内燃機関を停止して車両を比較的短時間(数十分から一時間程度)駐車し、その後内燃機関を再始動した場合における、バッテリ120近傍の雰囲気の温度及びバッテリ液の温度の変動の推移の一例を示すものである。図3中、鎖線はバッテリ120近傍の雰囲気の温度を表し、実線はバッテリ液の温度を表している。内燃機関の運転を停止して駐車した時点t0以降、エンジン冷却水の循環やエンジンルームへの走行風の流入がなくなることから、エンジンルーム内の雰囲気が一時的に昇温する。これに伴い、バッテリ120の電極端子近傍に設置した温度センサ140により検出される温度、換言すればバッテリ温度信号gを参照して知得される温度もまた上昇する。一方で、バッテリ液温は、エンジンルーム内の雰囲気の温度の上昇に必ずしも追従しない。 FIG. 3 shows the temperature of the atmosphere near the battery 120 when the operating internal combustion engine is stopped, the vehicle is parked for a relatively short time (about several tens of minutes to one hour), and then the internal combustion engine is restarted. It shows an example of the transition of the temperature fluctuation of the battery liquid. In FIG. 3, the chain line represents the temperature of the atmosphere near the battery 120, and the solid line represents the temperature of the battery fluid. After t 0 when the internal combustion engine is stopped and parked, the circulation of the engine cooling water and the inflow of the running wind into the engine room are eliminated, so that the atmosphere in the engine room temporarily rises. Along with this, the temperature detected by the temperature sensor 140 installed near the electrode terminal of the battery 120, in other words, the temperature known by referring to the battery temperature signal g also rises. On the other hand, the battery fluid temperature does not always follow the rise in the temperature of the atmosphere in the engine room.

従来は、内燃機関の再始動時点t1のバッテリ液温を、専らバッテリ温度信号gのみを参照して決定していた。このため、ECU0が認識しているバッテリ液温と、実際のバッテリ液温とが乖離することがあった。これに対し、本実施形態では、上掲の(A)、(B)及び(C)の各温度値のうち最も低いものを内燃機関の再始動時点t1のバッテリ液温とすることにより、ECU0が認識するバッテリ液温と実際のバッテリ液温との乖離の抑制を図っている。 Conventionally, the battery liquid temperature at t 1 at the time of restarting the internal combustion engine has been determined solely by referring to the battery temperature signal g. Therefore, the battery liquid temperature recognized by ECU 0 may deviate from the actual battery liquid temperature. On the other hand, in the present embodiment, the lowest of the above temperature values (A), (B) and (C) is set as the battery liquid temperature at t 1 at the time of restarting the internal combustion engine. The deviation between the battery liquid temperature recognized by ECU 0 and the actual battery liquid temperature is suppressed.

続いて、内燃機関及び車両の稼働中のバッテリ液温の推測に関して述べる。本実施形態のECU0は、バッテリ温度信号gを所定時間毎にサンプリングして得られる、バッテリ120近傍の雰囲気の温度値の時系列をなまし処理することで、現在のバッテリ120の液温を推測する。具体的には、
y(n)=y(n−1)+{u(n)−y(n−1)}/f(n)
のように、温度値の時系列の移動平均をとることで、温度値をなまし処理する。上式において、u(n)はバッテリ温度信号gの現時点でのサンプリング値、y(n)はバッテリ温度信号gのサンプリング値をなまし処理した結果として得られる現在のバッテリ液温の推測値、y(n−1)は直近の過去のバッテリ液温の推測値、1/f(n)はなましの程度(なまし処理の強さ)を規定する係数であり、(n)は離散時間におけるn番目のサンプリング値を意味する。
Next, the estimation of the battery fluid temperature during the operation of the internal combustion engine and the vehicle will be described. The ECU 0 of the present embodiment estimates the current liquid temperature of the battery 120 by smoothing the time series of the temperature values of the atmosphere near the battery 120 obtained by sampling the battery temperature signal g at predetermined time intervals. To do. In particular,
y (n) = y (n-1) + {u (n) -y (n-1)} / f (n)
By taking the time-series moving average of the temperature values as in the above, the temperature values are annealed. In the above equation, u (n) is the current sampling value of the battery temperature signal g, and y (n) is the estimated current battery temperature obtained as a result of smoothing the sampling value of the battery temperature signal g. y (n-1) is an estimated value of the latest past battery fluid temperature, 1 / f (n) is a coefficient that defines the degree of smoothing (strength of smoothing processing), and (n) is a discrete time. Means the nth sampling value in.

なましの程度は、係数1/f(n)が大きいほど(換言すれば、f(n)が小さいほど)強くなる。その上で、本実施形態では、車速が比較的高い場合におけるなまし処理の係数1/f(n)を、車速が比較的低い場合におけるなまし処理の係数1/f(n)と比較して大きく設定する、つまりは現在の車速に応じてなまし処理の係数1/f(n)を変更することとしている。具体的には、車速信号aを参照して知得される車速がある閾値(例えば、60km/h)以上であるときの係数1/f(n)を、車速が同閾値未満であるときの係数1/f(n)と比較して大きく設定する。さらに、車速が閾値以上の高車速域において、車速が高くなるほど係数1/f(n)を大きく設定する。 The degree of smoothing becomes stronger as the coefficient 1 / f (n) is larger (in other words, the smaller f (n) is). Then, in the present embodiment, the coefficient of smoothing processing 1 / f (n) when the vehicle speed is relatively high is compared with the coefficient 1 / f (n) of the smoothing processing when the vehicle speed is relatively low. In other words, the coefficient 1 / f (n) of the smoothing process is changed according to the current vehicle speed. Specifically, the coefficient 1 / f (n) when the vehicle speed obtained by referring to the vehicle speed signal a is equal to or higher than a certain threshold value (for example, 60 km / h) is set to the coefficient 1 / f (n) when the vehicle speed is less than the same threshold value. It is set larger than the coefficient 1 / f (n). Further, in a high vehicle speed range in which the vehicle speed is equal to or higher than the threshold value, the coefficient 1 / f (n) is set larger as the vehicle speed increases.

なまし処理の係数1/f(n)を車速に応じて変更するのは、車速が高いほど内燃機関の発熱量が大きいこと、及びエンジンルームに吹き込む走行風の風量が増すことから、低温なバッテリ液の温度上昇の速さや高温のバッテリ液の温度低下の速さが増すことに基づく。 The reason why the coefficient 1 / f (n) of the smoothing process is changed according to the vehicle speed is that the higher the vehicle speed, the larger the heat generation of the internal combustion engine, and the larger the amount of running wind blown into the engine room, so the temperature is low. It is based on the increase in the rate of temperature rise of the battery fluid and the rate of temperature decrease of the hot battery fluid.

図4に、本実施形態のECU0によるバッテリ液温の推測結果を例示している。図4中、鎖線はバッテリ温度信号gをサンプリングして得られるバッテリ120近傍の雰囲気の温度値の時系列を表し、実線は実際のバッテリ液の温度を表している。並びに、太い破線は本実施形態の手法により推測(なまし処理)したバッテリ液温を表し、細い破線はなまし処理の係数1/f(n)を現在の車速によらず一定として推測したバッテリ液温を表している。図4から明らかなように、車速に応じてなまし処理の係数1/f(n)を変更することで、バッテリ液温の推測値と実際のバッテリ液温との間の乖離が縮小することができる。 FIG. 4 illustrates the estimation result of the battery liquid temperature by the ECU 0 of the present embodiment. In FIG. 4, the chain line represents the time series of the temperature values of the atmosphere near the battery 120 obtained by sampling the battery temperature signal g, and the solid line represents the actual temperature of the battery fluid. In addition, the thick broken line represents the battery liquid temperature estimated (tanned) by the method of the present embodiment, and the thin broken line represents the battery whose coefficient 1 / f (n) of the smoothing is estimated to be constant regardless of the current vehicle speed. It represents the liquid temperature. As is clear from FIG. 4, by changing the coefficient 1 / f (n) of the smoothing process according to the vehicle speed, the discrepancy between the estimated value of the battery fluid temperature and the actual battery fluid temperature is reduced. Can be done.

本実施形態では、停止していた内燃機関の再始動時における車載のバッテリ120の液温を推測するものであって、内燃機関の再始動時における内燃機関の温度を示唆する流体(エンジン冷却水)の温度、直近の内燃機関の停止時におけるバッテリ120の液温の推測値、及び内燃機関の再始動時におけるバッテリ120近傍の雰囲気の温度のうち最も値の小さいものを、内燃機関の再始動時のバッテリ120の液温と見なす制御装置0を構成した。本実施形態によれば、停止していた内燃機関の再始動直後におけるバッテリ120の液温をより精確に把握することができる。 In the present embodiment, the liquid temperature of the in-vehicle battery 120 at the time of restarting the stopped internal combustion engine is estimated, and the fluid (engine cooling water) suggesting the temperature of the internal combustion engine at the time of restarting the internal combustion engine. ), The estimated value of the liquid temperature of the battery 120 when the internal combustion engine is stopped most recently, and the temperature of the atmosphere near the battery 120 when the internal combustion engine is restarted. A control device 0 which is regarded as the liquid temperature of the battery 120 at the time is configured. According to this embodiment, the liquid temperature of the battery 120 immediately after restarting the stopped internal combustion engine can be grasped more accurately.

並びに、本実施形態では、車載のバッテリ120の近傍の雰囲気の温度を検出するセンサ140を介して得られる温度値の時系列をなまし処理することを通じて現在のバッテリ120の液温を推測するものであって、車速が高い場合におけるなましの程度を、車速が低い場合におけるなましの程度と比較して大きくする制御装置0を構成した。本実施形態によれば、内燃機関及び車両の稼働中のバッテリ120の液温をより精確に把握することができる。ひいては、発電機110の発電及びバッテリ120の充電の制御の最適化を図ることが可能となり、バッテリ120の充電不足の回避、バッテリ120の寿命の延命、発電及び充電の効率化による燃費性能の向上に寄与し得る。 Further, in the present embodiment, the current liquid temperature of the battery 120 is estimated by smoothing the time series of the temperature values obtained through the sensor 140 that detects the temperature of the atmosphere in the vicinity of the vehicle-mounted battery 120. Therefore, the control device 0 is configured to increase the degree of smoothing when the vehicle speed is high as compared with the degree of smoothing when the vehicle speed is low. According to this embodiment, the liquid temperature of the battery 120 in operation of the internal combustion engine and the vehicle can be grasped more accurately. As a result, it is possible to optimize the control of the power generation of the generator 110 and the charging of the battery 120, avoiding insufficient charging of the battery 120, extending the life of the battery 120, and improving the fuel efficiency by improving the efficiency of power generation and charging. Can contribute to.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、内燃機関の再始動時におけるバッテリ120の液温を推測するにあたり、エンジン冷却水の温度を用いていた。だが、これに代えて、エンジン潤滑油の温度や、内燃機関と車軸(駆動輪)とを繋ぐ駆動系のトルクコンバータ若しくは変速機に利用される作動液(トランスミッションフルード(CVTFやATF))の温度を、(A)の内燃機関の温度を示唆する流体の温度として用いても構わない。 The present invention is not limited to the embodiments described in detail above. For example, in the above embodiment, the temperature of the engine cooling water is used to estimate the liquid temperature of the battery 120 when the internal combustion engine is restarted. However, instead of this, the temperature of the engine lubricating oil and the temperature of the hydraulic fluid (transmission fluid (CVTF or ATF)) used in the torque converter or transmission of the drive system that connects the internal combustion engine and the axle (drive wheels). May be used as the temperature of the fluid suggesting the temperature of the internal combustion engine (A).

また、バッテリ温度信号gをサンプリングして得られる温度値の時系列をなまし処理してバッテリ120の液温を推測するにあたり、そのなまし処理のためのフィルタの演算式及びなましの強度を変更する具体的な手法は、上記実施形態のそれに限定されない。例えば、なましの強度を変える他の方法として、移動平均をとるために用いる過去の温度値の個数を増減させることも考えられる。即ち、過去にサンプリングした複数個の温度値の時系列の移動平均をとることでなまし処理を行う場合において、車速が比較的高い場合にはx個の温度値の移動平均をとることとし、車速がそれよりも低い場合にはx個よりも少ないy個の温度値の移動平均をとることとする。 Further, when estimating the liquid temperature of the battery 120 by annealing the time series of the temperature values obtained by sampling the battery temperature signal g, the calculation formula of the filter for the annealing treatment and the strength of the annealing are used. The specific method to be changed is not limited to that of the above embodiment. For example, as another method of changing the strength of annealing, it is conceivable to increase or decrease the number of past temperature values used for taking a moving average. That is, in the case of performing the smoothing process by taking the time-series moving average of a plurality of temperature values sampled in the past, if the vehicle speed is relatively high, the moving average of x temperature values is taken. When the vehicle speed is lower than that, the moving average of y temperature values, which is less than x, is taken.

その他、各部の具体的構成や処理の内容等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part, the content of the process, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、内燃機関、発電機及びバッテリが搭載された車両の制御に適用することができる。 The present invention can be applied to the control of a vehicle equipped with an internal combustion engine, a generator and a battery.

0…制御装置(ECU)
120…バッテリ
140…バッテリの近傍の雰囲気の温度を検出するセンサ
g…バッテリ温度信号
0 ... Control unit (ECU)
120 ... Battery 140 ... Sensor that detects the temperature of the atmosphere near the battery g ... Battery temperature signal

Claims (1)

内燃機関の再始動時における内燃機関の温度を示唆する流体の温度、直近の内燃機関の停止時におけるバッテリの液温の推測値、及び内燃機関の再始動時におけるバッテリ近傍の雰囲気の温度を参照してこれら温度値のうち最も値の小さいものを、内燃機関の再始動時のバッテリの液温の初期値と見なし、
その初期値及び以降車載のバッテリの近傍の雰囲気の温度を検出するセンサを介して得られる温度値の時系列をなまし処理することを通じて現在のバッテリの液温を推測することとし、車速が高い場合におけるなましの程度を車速が低い場合におけるなましの程度から変更する制御装置。
See the fluid temperature, which suggests the temperature of the internal combustion engine when the internal combustion engine is restarted, the estimated value of the battery liquid temperature when the internal combustion engine is stopped most recently, and the temperature of the atmosphere near the battery when the internal combustion engine is restarted. Then, the smallest of these temperature values is regarded as the initial value of the battery fluid temperature when the internal combustion engine is restarted.
The current battery fluid temperature is estimated by smoothing the initial value and the time series of the temperature value obtained through the sensor that detects the temperature of the atmosphere near the in-vehicle battery, and the vehicle speed is high. A control device that changes the degree of smoothing in a case from the degree of smoothing in a low vehicle speed .
JP2016035140A 2016-02-26 2016-02-26 Control device Active JP6762654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016035140A JP6762654B2 (en) 2016-02-26 2016-02-26 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035140A JP6762654B2 (en) 2016-02-26 2016-02-26 Control device

Publications (2)

Publication Number Publication Date
JP2017151006A JP2017151006A (en) 2017-08-31
JP6762654B2 true JP6762654B2 (en) 2020-09-30

Family

ID=59740620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035140A Active JP6762654B2 (en) 2016-02-26 2016-02-26 Control device

Country Status (1)

Country Link
JP (1) JP6762654B2 (en)

Also Published As

Publication number Publication date
JP2017151006A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
EP3476680A1 (en) Method for heating an exhaust aftertreatment system and a hybrid vehicle adapted to heat an exhaust aftertreatment system
JP6695626B2 (en) Control device
US11939902B2 (en) Apparatus and method for purifying exhaust gas in hybrid electric vehicle
JP2015120462A (en) Device for controlling vehicle
US20150051821A1 (en) Method of controlling a tandem solenoid starter
JP6762654B2 (en) Control device
JP6223038B2 (en) Control device for internal combustion engine
JP6565634B2 (en) Hybrid vehicle and control method thereof
JP6012400B2 (en) Control device for internal combustion engine
JP2017046525A (en) Control apparatus
JP6016504B2 (en) Control device for vehicle air conditioner
JP2017065442A (en) Control device
JP2016044614A (en) Vehicular control device
WO2023007528A1 (en) Method and device for controlling start and stop of internal combustion engine in hybrid vehicle
JP5825416B2 (en) Control device for hybrid vehicle
JP2017153328A (en) Control unit
JP2016101081A (en) Control device for vehicle
JP5206424B2 (en) Alternator power generation control device
JP6614967B2 (en) Vehicle control device
JP6573281B2 (en) Control device for internal combustion engine
JP2016011635A (en) Control device
JP2016044615A (en) Vehicular control device
JP6176911B2 (en) Control device
JP2014177908A (en) Control device
JP2016043916A (en) Control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6762654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250