JP6756124B2 - 物体検出装置および物体検出プログラム - Google Patents

物体検出装置および物体検出プログラム Download PDF

Info

Publication number
JP6756124B2
JP6756124B2 JP2016052311A JP2016052311A JP6756124B2 JP 6756124 B2 JP6756124 B2 JP 6756124B2 JP 2016052311 A JP2016052311 A JP 2016052311A JP 2016052311 A JP2016052311 A JP 2016052311A JP 6756124 B2 JP6756124 B2 JP 6756124B2
Authority
JP
Japan
Prior art keywords
dimensional object
estimated
dimensional
cell
pointless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016052311A
Other languages
English (en)
Other versions
JP2017166971A (ja
Inventor
雅能 寺部
雅能 寺部
敦史 北山
敦史 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016052311A priority Critical patent/JP6756124B2/ja
Publication of JP2017166971A publication Critical patent/JP2017166971A/ja
Application granted granted Critical
Publication of JP6756124B2 publication Critical patent/JP6756124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Image Analysis (AREA)

Description

本発明は、物体検出装置および物体検出プログラムに関する。
車両が道路を走行する際に前方に存在する立体物をLIDAR(light detection and ranging ,laser imaging detection and ranging ;レーザレーダ)を用いて検出する物体検出装置がある。例えば自動車の車室前面部にレーザレーダを設けて、前方の路面に向けて照射してその反射光により距離を測定している。
自車から前方の様々な方向に向けて測定点までの距離を検出し、距離が等しい測定点が複数存在する場合に、その高さ寸法を算出することで前方の立体物の存在を検出することができる。この場合、立体物の存在は反射光による距離情報により検出しているが、投光先の路面までの距離情報が得られる場合には車両と立体物との間においては立体物の存在が検出されていないことから、路面であると判断することができる。
しかし、実際には路上に反射率が低い黒い物体や反射光が投光側に戻らない物体などが存在すると、距離情報が得られていない場合や十分な距離情報の個数が得られていない領域が発生することが想定される。そして、この場合には立体物が存在していても検出できない場合が生じ、立体物が検出されないために路面であると誤判定してしまうおそれがあった。
特開2013−140515号公報
本発明は、上記事情を考慮してなされたもので、その目的は、反射光による距離情報が得られない領域が存在する場合に、この領域が立体物を含むか否かを推定することができるようにした物体検出装置および物体検出プログラムを提供することにある。
請求項1に記載の物体検出装置は、自車両の少なくとも前方の3次元距離情報を取得する3次元距離検出部(3)と、前記3次元距離検出部の視点を基準とする鳥瞰グリッドで区切ったセル毎に前記3次元距離情報に基づいて立体物の有無を検出する立体物検出部(4)と、前記立体物が存在する場合に、前記自車両と前記立体物との間の距離情報が有る有点セルを路面として検出する路面検出部(5)と、前記自車両と前記立体物との間に距離情報が無い無点セルが含まれる無点領域がある場合に、その無点領域内に存在し得る最大高さT1の推定立体物を次式(A)により推定する立体物推定部(6)と、路面を基準とした静止グリッドのセルに少なくとも前記推定立体物のセルを変換し、前記自車両の移動に伴い前記3次元距離検出部により得られる新たな3次元距離情報から前記立体物推定部により推定された前記推定立体物のセルを前記静止グリッドに変換したときに繰り返し同じ路面位置で推定されている場合に立体物として検出する立体物判定部(2d)とを備え、前記立体物判定部(2d)は、前記立体物推定部により推定された推定立体物の高さに応じて推定重みを設定し、前記自車両の移動に伴う前記3次元距離情報から得た前記推定立体物の推定重みを複数回連続して加算した値が増加する場合に前記立体物を検出する。
T1=T0・(re−r1)/re …(A)
ただし、T0:3次元距離検出部の高さ、re:無点領域の遠点距離、r1:無点領域の近点距離である。
上記構成を採用することにより、3次元距離検出部により自車両の少なくとも前方の3次元距離情報を取得し、取得した3次元距離情報を鳥瞰グリッドで区切ったセル毎にあてはめて、立体物検出部によりセル毎に立体物の有無を検出する。立体物の存在が検出された場合に、路面検出部は、自車両と立体物との間のセルのうち、距離情報が有る有点セルを路面として検出する。また、自車両と立体物との間に距離情報が無い無点セルが含まれる無点領域がある場合には、立体物推定部は、式(A)により無点領域内に存在し得る最大高さT1の推定立体物を推定する。立体物判定部は、静止グリッドのセルに少なくとも前記推定立体物のセルを変換し、自車両の移動に伴い3次元距離検出部により得られる新たな3次元距離情報から立体物推定部により推定された推定立体物のセルを静止グリッドに変換したときに繰り返し同じ路面位置で推定されている場合に立体物として検出することができる。これにより、3次元距離検出部による3次元距離情報が得られていない無点領域がある場合でも、その無点領域に立体物が存在するか否かを推定することができ、誤判定の発生を低減させることができる。
第1実施形態を示す機能ブロック構成図 3次元距離検出部の検知範囲と鳥瞰グリッドを示す(a)立面図および(b)平面図 鳥瞰グリッドに有点距離情報を示した例を示す図 静止グリッドの配置図 物体検出処理のフローチャート 鳥瞰グリッド内における立体物の高さ検出の説明図 鳥瞰グリッドの無点範囲の最大高さを推定する作用説明図 無点領域の異なる推定立体物の例 無点領域の幅と推定立体物の高さの説明図 鳥瞰グリッドの有点距離情報の分布の具体例を示す部分図 鳥瞰グリッドの点数判定結果の具体例を示す部分図 (a)静止グリッドに鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドの点数分布図 (a)静止グリッドに移動後の鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドに移動後の点数を加算した場合の点数分布図 第2実施形態を示す鳥瞰グリッドの点数判定結果の具体例を示す図 鳥瞰グリッドの無点セル毎の最大高さを推定する作用説明図 (a)静止グリッドに鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドの点数分布図 (a)静止グリッドに移動後の鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドに移動後の点数を加算した場合の点数分布図 第3実施形態を示す鳥瞰グリッドの点数判定結果の具体例を示す図 (a)静止グリッドに鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドの点数分布図 (a)静止グリッドに移動後の鳥瞰グリッドを重ねた場合の作用説明図、(b)鳥瞰グリッドの部分図 静止グリッドに移動後の点数を加算した場合の点数分布図
(第1実施形態)
以下、本発明の第1実施形態について、図1〜図15を参照して説明する。
図2(a)、(b)物体検出装置1は、例えば車両Aの前面部上部に搭載されるもので、車室内のフロントガラスの内側上部などに設けられる。物体検出装置1は、図1に示すように、制御装置2を主体として3次元距離検出部3、記憶部4および出力部5を備えている。
制御装置2は、CPU、ROM、RAMおよびインタフェースなどを備えたもので、車載ECUに組み込まれたものでも良いし、別途設ける構成のもでも良い。制御装置2は、後述する物体検出プログラムに基づいて3次元距離検出部3により検出された距離情報から車両Aの前方に存在する立体物を検出する。図1には、制御装置2の機能による構成を示している。構成要素としては、立体検出部2a、路面検出部2b、立体物推定部2c、立体物判定部2dを備えている。
3次元距離検出部3は、いわゆるレーザレーダ(LIDAR)と言われるもので、例えば車両Aの前方の様々な方向に向けて測距用のレーザ光を照射して前方の走行範囲の距離を3次元的に検出するものである。記憶部4は、制御装置2内に設けることもできるし、外部に別途設ける構成とすることもできる。記憶部4は、制御装置2により実行される物体検出プログラムが記憶されるとともに、各種の情報が記憶されている。出力部5は、立体物の検出結果を表示するもので、車室内に設けられたディスプレイなどを利用して表示させることができる。
3次元距離検出部3は、図2(a)に示すように、車両Aの前方路面R上にレーザ光を照射する。車両Aの前面直下の位置を原点(O)として近点側から路面R上の距離r1、r2、…、rnのように、照射点Pをほぼ等間隔で遠点側に移動させながら反射光の到達時間を検出して距離を算出している。また、3次元距離検出部3は、図2(b)に示すように、前方r方向を中心として左右に方向を変化させてレーザ光を振って扇型の検出エリアで距離を測定している。
この場合、レーザ光が路面Rに照射される場合には、その路面Rの照射点Pに対応する距離の情報が得られる。一方、路面R上に立体物などの物体が存在する場合には、レーザ光が路面Rに到達する前に立体物に照射され、その反射光を受光して距離を算出するので、路面Rの照射点Pよりも近い位置の距離情報が得られる。
3次元距離検出部3により得られる距離情報は、図2(b)に示しているように、レーザ光の照射範囲に応じて車両Aに対応して鳥瞰グリッドGで分割した複数のセルGθn(例えば、方向θ:a〜e、距離n:0〜4)に分けて立体物の判定を行う。鳥瞰グリッドGは、車両Aの進行方向を示すr軸に対して、このr軸を含んだ所定角度の範囲を車両Aに近い側から所定距離毎にセルGa0〜Ga4のように区切っている。同様にして、車両Aの進行方向に対してセルGa0〜Ga4の左側の所定角度範囲にセルGb0〜Gb4、さらにその左側にセルGc0〜Gc4を設定するように区切っている。また、車両Aの進行方向に対してセルGa0〜Ga4の右側の所定角度範囲にセルGd0〜Gd4、さらにその右側にセルGe0〜Ge4を設定するように区切っている。
レーザ光の反射により得られる距離情報は、図3に示すように、距離に応じて鳥瞰グリッドGのセルGθnに対応付けられる。図中には対応するセルに距離情報を示す位置を黒丸(ドット)で示している。
一方、立体物の判定には、図4に示すように、路面Rに対応した直交座標系の静止グリッドSが設定される。静止グリッドSは、路面Rの車両の進行方向と直交する方向をx、進行方向をyとするとき、x方向およびy方向の位置に対応して矩形マトリクス状のセルSxy(例えばS00〜S77までの8×8個のセル)などが設定されている。図4では車両Aの物体検出装置1の位置が静止グリッドS上に示されている。
次に、物体検出装置1による物体検出処理について、図5を参照して説明する。この物体検出処理のフローチャートは、物体検出プログラムとして記憶部4に記憶されているものである。制御装置2は、物体検出処理を開始するにあたり、記憶部4から物体検出プログラムを読み出す。
制御装置2は、プログラムを開始すると、まずステップS1で静止グリッドS上のデータを初期化し、自車Aの位置に対応して前方の路面Aを含む領域に静止グリッドSを設定する。次に、制御装置2は、ステップS2に進むと、3次元距離検出部3のレーザレーダにより車両Aの前方(鳥瞰グリッドGではr方向;静止グリッドSではy方向)に向けてレーザ光を照射して距離情報を鳥瞰グリッドGの位置に対応して取得する。この場合、制御装置2は、3次元距離検出部3により得られる距離情報の点群情報を取得する。点群情報はレーザ光の照射角度と距離との情報であり、3次元距離検出部3の位置を中心とした極座標の情報である。
制御装置2は、ステップS3で、取得した点群情報を鳥瞰グリッドGにマッピングする。このとき、距離の情報が路面R上での距離よりも短いときには、距離に応じたセルGθnにマッピングする。例えば、図6に示すように、路面R近くの点Paに対して、これよりも遠い位置に対応する点Pbの距離が同じであるとすると、ここにレーザ光を遮って反射させる立体物が存在することが推定できる。
このときの高さHaが、しきい値として設定される所定以上、例えば5〜10センチ以上あるときには、車両Aが進行すると乗り上げる障害物となる可能性がある。このような場合には、立体物があることが検出できる。このように同じセルGθnに属する距離情報の点Pを図7に示すように、鳥瞰グリッドGの各セルGθnに対応付ける。
次に、制御装置2は、ステップS4で、立体物検出処理を行う。ここでは、図6で説明したように、一つのセルGθn内に入る距離情報について、複数の距離情報が存在していてその高さHを算出し、しきい値以上の高さがある場合に立体物の存在を検出する。具体的には、制御装置2は、セルGθn内に複数の距離情報が存在するものについて、そのセルGθn内の距離情報に基づいて測定点の高さを求める。
ここでは、制御装置2は、複数の測定点の高さ情報から、最低の高さの点Paと最高の高さのPbとの間の差を演算して高さHaを求める。制御装置2は、得られた高さHaの値が立体物を判定するしきい値Ho以上である場合に、セルGθn内に立体物が存在することを判定する。続いて、制御装置2は、ステップS5に進み、立体物が検出されたセルGθnに対して、立体物確率の点数として「+1」を設定する。
次に、制御装置2は、ステップS6で、路面検出処理を行う。具体的には、制御装置2は、自車両Aと立体物が検出されたセルGθnとの間のセルGθ0〜Gθ(n−1)のうち、距離情報が得られているものについて、路面Rが検出されたセルであると判定する。続いて、制御装置2は、ステップS7で、セルGθ0〜Gθ(n−1)のうちの路面として判定したセルについて立体物確率の点数として「−1」を設定する。
次に、制御装置2は、ステップS8で、距離情報が得られていないセルGθk(k:0≦k<nの整数)について、次のように処理を行う。すなわち、制御装置2は、立体物の存在を検出したセルGθnの方向θについて、立体物の手前のセルGθ0〜Gθ(n−1)のうち、路面と判定されなかったセルつまり距離情報が得られていないセルGθk(k:0≦k<nの整数)について、これを無点領域NPとして認識する。この場合、無点領域NPは1個のセルである場合もあるし、複数個の連続したセルである場合もある。無点領域NPには、その領域中にレーザ光を反射しないか反射率が低い立体物が存在することも考えられる。
そこで、制御装置2は、まず、無点領域NP内において立体物が存在した場合の最も高いものについて推定処理を行う。図7を参照して算出の原理を説明する。無点領域NPの遠点距離をre、近点距離をr1とし、物体検出装置1の高さをT0とすると、無点領域NPに存在加納な最も高い立体物は、近点位置r1に存在した場合であるから、その高さT1は、次式(A)で算出できる。
T1=T0・(re−r1)/re …(A)
ただし、T0:3次元距離検出部の高さ、re:無点領域NPの遠点距離、r1:無点領域NPの近点距離である。
この場合、上式(A)で推定できるのは、存在しうる最も高い立体物の高さであり、実際にはそれ以下の高さの立体物が存在することもありうる。例えば、図8に示すように、無点領域NPとして、連続した3つのセルGa3〜Ga5がある場合に、セルGa3の近点の位置に最も高いHaの高さの立体物Xaが存在する(a)の場合がある。また、セルGa3〜Ga5にまたがるように低い高さHbの立体物Xbが存在する(b)の場合もある。さらには、2つのセルGa3およびGa4にまたがる高さHcの立体物Xcが存在する(c)の場合もある。
一方、図9に示すように、存在し得る立体物は奥行きが短い場合には、高さに応じて無点セルの連続個数が決まる。例えば、図9(a)のように高さHaの立体物では、連続する3つの無点セルGa3〜Ga5が発生する。また、図9(b)のように高さHdの立体物では、1個の無点セルGa5が発生する。無点セルが1個の場合には、セルの奥行き寸法によっては最大高さがしきい値よりも小さくなることがあり、立体物として判定しないことがある。
以上のことから、制御装置2は、ステップS9で、無点領域の最大高さがしきい値を超える場合にこの無点領域に立体物が存在することを推定し、推定立体物として設定する。続いて、制御装置2は、ステップS10で、推定立体物の存在を推定したセルについて推定重みαを設定する。ここでは、例えば推定立体物の推定重みαとして、0から1の範囲で定められている値を立体物確率として設定する。
制御装置2は、次に、ステップS11に進み、極座標系の鳥瞰グリッドGの各セルについて得られた結果を、直交座標系の静止グリッドSのセルに変換する処理を行う。この場合、直接路面Rの位置に対応した静止グリッドSに対応付ける処理をすることもできるし、自車両Aの物体検出装置1の位置を原点とする直交座標系の移動する鳥瞰グリッドを想定して変換処理をすることもできる。
直交座標系の移動する鳥瞰グリッドに変換する場合には、変換後の直交座標系を路面Rに対応した静止グリッドSに宛てはめる処理をすることで、結果として同じ処理を実施することができる。次に、制御装置2は、静止グリッドS上の各セルSxyに対して、前述のようにして得られた立体物確率の値を加算処理する。
制御装置2は、ステップS13に進み、自車両Aの位置情報に基づいて静止グリッドSにおける自車両Aの位置を変更設定する。この後、制御装置2は、ステップS2に戻り、上記処理と同様の処理を移動後の位置の点群情報に基づいて行い、以下、ステップS2〜S13を繰り返し実行する。
制御装置2は、上記の処理とは別に、立体物の判定処理を行っている。上記の処理を繰り返した結果、静止グリッドSのセルSxyには、立体物確率が加算されていくことで、路面Rに静止している立体物が存在する場合あるいは推定立体物が存在する場合には、そのセルの立体物確率の値が増加していく。これにより、制御装置2は、路面Rに存在する静止した立体物を正確に推定することができる。
また、他の車両などの移動する立体物が存在する場合には、他の車両の移動とともに立体物が移動するため、立体物確率の値は増加するのではなく、セル間を移動するようになる。さらに、無点領域に立体物が存在していなかった場合には、複数回の加算処理で立体物確率の値が増加することがないため、立体物の存在は判定されない。
次に、図10から図15を参照して具体的な事例を説明する。
図10は鳥瞰グリッドGのうちのr方向(セルGanの列の方向)に対応した8個のセルGa0〜Ga7を示している。前述のように、制御装置2は、図5に示したプログラムのステップS1を経てステップS2で、3次元距離検出部3により取得された測定点Pに対するレーザ光による距離情報を点群情報として取り込んでいる。実際には、図3で示したように、鳥瞰グリッドGのすべてのセルについて点群情報が得られており、制御装置2は、これらのすべてについて以下の処理を実行するが、簡単のために図10に示す8個のセルGa0〜Ga7についての処理で説明する。
制御装置2は、ステップS3で、点群情報を鳥瞰グリッドGのすべてのセルに対してマッピングしている。図10は、r方向の8個のセルでのマッピングの例である。ここでは、距離情報が得られている有点セルGa0、Ga1、Ga5、Ga6、距離情報が得られていない無点セルGa2〜Ga4、Ga7がある。
制御装置2は、有点セルGa0、Ga1、Ga5、Ga6のうち、路面Rの照射点Pまでの距離よりも短い距離情報が含まれている有点セルGa6については、ステップS4で立体物検出処理を行って立体物を検出する。制御装置2は、ステップS5で、立体物が含まれた立体物セルGa5に対して立体物確率「+1」を設定する。この結果は、図11に示すように、立体物セルGa6に「+1」を設定するようにマッピングされる。制御装置2は、他の有点セルGa0、Ga1、Ga5についても同様の立体物処理を行うが、路面Rの照射点Pまでの距離とほぼ等しい距離情報である場合には立体物は検出されない。
次に、制御装置2は、立体物セルと判定されない有点セルGa0、Ga1、Ga5について、立体物セルGa5と自車両Aとの間に位置することから、ステップS6で路面セルとして検出する。制御装置2は、路面セルGa0、Ga1、Ga5について、ステップS7で、立体物確率として「−1」を設定する。この結果は、図11に示すように、路面セルGa0、Ga1、Ga5に「−1」を設定するようにマッピングされる。
続いて、制御装置2は、無点セルGa2〜Ga4を含む無点領域NPについて、ステップS8で立体物が存在する場合に最も高い場合の高さT1を推定する処理を行う。この場合には、式(A)の無点領域NPの遠点距離reは、物体検出装置1の位置を原点として無点セルGa4の遠点までの距離となる。無点領域NPの近点距離r1は、無点セルGa2の近点までの距離となる。算出した高さT1がしきい値を超えるときにはこれを推定立体物として設定する。
制御装置2は、無点領域NPに推定立体物が存在すると判断したときには、無点領域NPの各セルGa2〜Ga4に推定立体物の推定重み設定を行う。この設定処理では、制御装置2は、推定重みαとして、例えば「0.5」を立体物の立体物確率「+1」に乗ずる。この結果、制御装置2は、無点セルGa2〜Ga4に推定立体物の立体物確率「+0.5」を設定する。
以上の処理を鳥瞰グリッドGの全体について実施することで自車両Aの前方に存在する立体物、路面および推定立体物の情報が得られる。図11では、鳥瞰グリッドGのうち、8個のセルGa0〜Ga7についての結果を示している。なお、立体物が検出されたセルGa6よりも前方の距離情報が得られていない無点セルGa7については、立体物の存在は不明であるから立体物確率として「0」が設定されている。
図12〜図15では、鳥瞰グリッドGで検出された情報を静止グリッドSに変換する場合の具体例を示している。ここでは簡単のために、図12(b)に示すように、鳥瞰グリッドGにおいては、有点セルGa4で立体物が検出され、その手前に位置するセルGa0〜Ga3のうち、有点セルGa0、Ga3は路面として検出され、無点セルGa1、Ga2において推定立体物が推定されている場合で説明する。
図12(b)に示す鳥瞰グリッドGでは、立体物確率として、立体物が検出された有点セルGa4では「+1」、路面が検出された有点セルGa0、Ga3では「−1」、推定立体物が検出された無点セルGa1、Ga2では「+0.5」が設定されている。他のセルについても立体物が検出されたセルに「+1」、路面が検出されたセルに「−1」が設定されている。
制御装置2は、ステップS11で、鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に変換する。静止グリッドSの各セルSxyは、初期状態ではすべて「0」に設定されている。これに鳥瞰グリッドGの原点位置である物体検出装置1の位置は、セルS30の位置にある。図12(a)に示すように、静止グリッドS上に鳥瞰グリッドGを重ねると、例えば無点セルGa1がセルS31に、無点セルGa2がセルS32に対応する。制御装置2は、ステップS12で、変換された立体物確率のデータを静止グリッドSに加算し、図13に示すようなデータを得る。
この後、制御装置2は、自車両Aの現在位置情報に基づいて、静止グリッドS上での自車位置をシフトするように処理する。これにより、例えば図14(a)に示すように、自車両Aの物体検出装置1の位置が静止グリッドS上でセルS42に移動していることを認識してシフトさせる。
以下、上述と同様の処理を繰り返し実行することで、移動先の位置での鳥瞰グリッドGの点群情報が得られ、制御装置2は、その点群情報から、新たな鳥瞰グリッドGの点群情報を得る。図14(b)には、移動先での無点セルの分布状態を示している。ここでは、推定立体物が推定される無点セルGb1、Gc0〜Gc2が検出され、それぞれに立体物確率「+0.5」が設定されている。
このような鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に対応付けて変換すると、図14(a)に示すようになる。ここでは、4個の無点セルGb1、Gc0〜Gc2に対して、静止グリッドSのセルS32、S23、S33に対して立体物確率「+0.5」が設定される。
次に、制御装置2は、上記の結果得られた図14に示す静止グリッドSの立体物確率のデータを前述の図13に示した静止グリッドSに加算する。この結果、図15に示すような加算された静止グリッドSが得られる。この図15からわかるように、2回の立体物確率の加算により、静止グリッドSのセルS31が「+0.5」、セルS32が「+1」、セルS23が「+1.5」、セルS33が「−0.5」となる。
この結果、セルS32、S23の立体物確率が高くなっており、推定立体物が立体物である確率が高いということになり、距離情報が得られていない無点セルであっても、立体物の存在を検出することができるようになる。
なお、推定立体物から立体物への判定においては、上記したように鳥瞰グリッドGの点群情報を2回取得して求めることもできるし、3回以上の複数回の取得結果により求めることもできる。
このような第1実施形態によれば、制御装置2により、3次元距離検出部3が検出した距離情報に基づいて路面R上の立体物を判定する際に、距離情報が得られない無点セルが有るときは立体物が存在した場合を仮定して最も高い推定立体物の存在を推定して立体物確率を、推定重みα(=0.5)を乗ずることで設定した。これにより、静止グリッドS上で複数回の結果を加算することで、立体物確率が上昇したセルに対して立体物が存在することを判定することができるようになる。
この結果、自車両Aの周囲にレーザレーダにより照射したレーザ光による距離情報が得られない無点セルが存在する場合でも、立体物の存在を推定することができるようになり、路面R上に存在する立体物の推定を適切に行うことができるようになる。
(第2実施形態)
図16〜図21は第2実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態は、無点セルが有る場合の処理方法において検出精度を高めることができるようにしたものである。
図16は、第1実施形態で示した図11に対応するもので、図10と同様に点群情報が得られたときに、この実施形態では、制御装置2は、図5で示した物体検出処理のステップS9、S10での推定立体物に関する処理を次のようにして行う。すなわち、制御装置2は、無点領域NPでの推定立体物の算出過程において、無点セルが連続する場合には、無点セル毎に立体物を推定する。
図17に示すように、例えば無点領域NPがn個の連続する無点セルからなる場合には、制御装置2は、n個の無点セルのそれぞれについて最も高い立体物を推定する。ここでは、第1実施形態と同様に、無点領域NPの遠点距離をreとしている。また、無点領域NPの最も近い無点セルの近点位置をr1とし、k番目(n≧k>1の整数)の無点セルの近点位置をrkとしている。前述同様に3次元距離検出部3の高さをT0とすると、各無点セル内に存在し得る最も高い立体物は、近点位置rkに存在した場合を想定すると、その高さTkは、次式(B)で算出できる。
Tk=T0・(re−rk)/re …(B)
この場合、式(B)は、最も近い位置の無点セルについては式(A)と同じ式となる。また、遠い位置にある無点セルについては、分子の値すなわち遠点reとの距離の差が小さくなるので、推定立体物の高さTkがしきい値以下になることがある。
したがって、例えば図16に示す例では、無点領域NPの3個の無点セルGa2〜Ga4の内、近い側の無点セルGa2、Ga3はしきい値以上となる推定立体物であるので、立体物確率として「0.5」が設定される。一方、無点領域NPの遠い位置の無点セルGa4はしきい値よりも低い推定立体物であるので路面としてみなされ、立体物確率として「−1」が設定される。
図18〜図21では、第1実施形態と同様に、鳥瞰グリッドGで検出された情報を静止グリッドSに変換する場合の具体例を示している。図18(b)は、図12(b)と同様の条件で取得された点群情報の分布図であるが、この実施形態では、無点領域NPの2個の無点セルGa1、Ga2のうち、制御装置2によりステップS9での処理で、無点セルGa1で推定立体物が推定され、無点セルGa2で路面が推定された場合で説明する。
図18(b)に示す鳥瞰グリッドGでは、無点領域NPの2個の無点セルGa1、Ga2のうち、推定立体物が検出された無点セルGa1では「+0.5」が設定され、路面が判定された無点セルGa2では「−1」が設定されている。
制御装置2は、ステップS11で、鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に変換した後、静止グリッドS上に鳥瞰グリッドGを重ねると、図18(a)に示すようになる。この結果、図19に示すように、無点セルGa1の立体物確率「+0.5」がセルS31に、無点セルGa2の立体物確率「−1」がセルS32に変換されている。
この後、制御装置2は、自車両Aの位置をシフトさせてから同様の処理をすることで、移動先の位置での新たな鳥瞰グリッドGの点群情報から、図20(b)に示すような無点セルの分布状態を得る。推定立体物の算出処理を式(B)に従って演算した結果、無点セルGb1、Gc2は路面として判定されたため「−1」が設定され、無点セルGc0、Gc1は推定立体物と判定されたため「+0.5」が設定される。
このような鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に対応付けて変換すると、図20(a)に示すようになる。ここでは、4個の無点セルGb1、Gc0〜Gc2のうち、推定立体物が設定された無点セルGc0、Gc1に対して、静止グリッドSのセルS32に対して立体物確率「+0.5」が設定される。
次に、制御装置2は、上記の結果得られた図20に示す静止グリッドSの立体物確率のデータを前述の図19に示した静止グリッドSに加算する。この結果、図21に示すような加算された静止グリッドSが得られる。この図21からわかるように、2回の立体物確率の加算により、静止グリッドSのセルS31が「+0.5」となるが、セルS32は「−0.5」、セルS23は「0」、セルS33は「−2」となる。
この結果、セルS32の立体物確率が「+0.5」であるから立体物の存在が確認できないが可能性は残った状態である。また、他の無点セルS32、S23、S33は負の立体物確率となることから路面である可能性が高くなっている。
このような第2実施形態によれば、第1実施形態と同様の作用効果を得る事ができるとともに、制御装置2により、無点領域NPが複数の無点セルからなる場合には、無点セル毎に最も高い推定立体物を算出するようにしたので、さらにセル毎に細かい判定を行うことができるようになる。
(第3実施形態)
図22〜図26は第3実施形態を示すもので、以下、第2実施形態と異なる部分について説明する。この実施形態は、無点セルの推定立体物について立体物確率の設定の仕方を高さに応じて設定するようにしているものである。
図22は、第2実施形態で示した図16に対応するもので、図10と同様に点群情報が得られたときに、この実施形態では、制御装置2は、図5で示した物体検出処理のステップS9、S10での推定立体物に関する処理を次のようにして行う。すなわち、制御装置2は、無点領域NPでの推定立体物の算出過程において、無点セルが連続する場合には、無点セル毎に立体物を推定する。
ここでは、制御装置2は、第2実施形態と同様にして式(B)に基いて推定立体物の最も高い値を演算する。この結果、無点領域NP内では、図17にも示したように、物体検出装置1に近い側の無点セルの高さが高く、遠くなる程低くなる。制御装置2は、この推定立体物の高さに応じて、例えば、高いと推定重みαを「0.8」のように大きく設定し、低いと推定重みαを「0.2」のように低く設定している。この結果、制御装置2は、ステップS10で、図22に示すように、各セルに対応して立体物確率が設定される。
図23〜図26では、第2実施形態と同様に、鳥瞰グリッドGで検出された情報を静止グリッドSに変換する場合の具体例を示している。図23(b)は、図18(b)と同様の条件で取得された点群情報の分布図であるが、この実施形態では、制御装置2によりステップS9での処理で、無点領域NPの2個の無点セルGa1、Ga2で推定立体物が推定され、推定重みαが推定立体物の高さに応じて異なるように対応付けられた結果の立体物確率が示されている。ここでは、例えば、無点セルGa1で「+0.5」が設定され、無点セルGa2で「+0.3」が設定された場合で説明する。
制御装置2は、ステップS11で、鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に変換した後、静止グリッドS上に鳥瞰グリッドGを重ねると、図23(a)に示すようになる。この結果、図24に示すように、無点セルGa1の立体物確率「+0.5」がセルS31に、無点セルGa2の立体物確率「+0.3」がセルS32に変換されている。
この後、制御装置2は、自車両Aの位置をシフトさせてから同様の処理をすることで、移動先の位置での新たな鳥瞰グリッドGの点群情報から、図25(b)に示すような無点セルの分布状態を得る。推定立体物の算出処理を式(B)に従って演算した結果、無点セルGb1、Gc0〜Gc2の全てにおいて推定立体物が検出されている。すなわち、無点セルGb1で「+0.2」、無点セルGb0で「+0.5」、無点セルGc1で「+0.2」、無点セルGc2で「+0.1」が設定される。
このような鳥瞰グリッドGのセル情報を静止グリッドSのセル情報に対応付けて変換すると、図25(a)に示すようになる。ここでは、4個の無点セルGb1、Gc0〜Gc2に対して、立体物確率は、静止グリッドSのセルS32に対して「+0.5」、セルS33に対して「+0.2」、セルS23に対して「+0.1」が設定される。
次に、制御装置2は、上記の結果得られた図25(a)に示す静止グリッドSの立体物確率のデータを前述の図24に示した静止グリッドSに加算する。この結果、図26に示すような加算された静止グリッドSが得られる。この図26からわかるように、2回の立体物確率の加算により、静止グリッドSのセルS31が「+0.5」、セルS32が「+0.8」、セルS23が「+1.1」、セルS33が「−0.8」となる。
この結果、セルS32とS23で立体物確率が高くなり、立体物が存在する可能性が高くなっている。また、他の無点セルS33は負の立体物確率となることから路面である可能性が高くなっている。
このような第3実施形態によれば、第2実施形態と同様の作用効果を得ることができるとともに、制御装置2により、無点領域NPが複数の無点セルから算出される推定立体物の高さに応じて推定重みαを乗じて立体物確率を求めるようにしたので、さらにセル毎に立体物の判定を細かく行うことができるようになる。
(他の実施形態)
なお、本発明は、上述した実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能であり、例えば、以下のように変形または拡張することができる。
上記各実施形態では、鳥瞰グリッドGとして、自車両Aの前方に向けた範囲を設定した場合を示したが、自車両Aの側方や後方などにも向けた範囲を設定することもできる。この場合には、検出方向に対応して複数の3次元距離検出部を設けることができる。
鳥瞰グリッドGの各セルに対応して立体物確率を検出したものを静止グリッドSに変換する際に、物体検出装置1の位置を静止グリッドSの位置に対応させて行う例を示したが、鳥瞰グリッドGを物体検出装置1の位置を固定した直交座標による直交グリッドを想定し、この直交グリッドに変換した後、これを静止グリッドSの位置に対応して重ねあわせるように処理しても良い。
図面中、1は物体検出装置、2は制御装置、2aは立体物検出部、2bは路面検出部、2cは立体物推定部、2dは立体物判定部、3は3次元距離検出部、4は記憶部、5は出力部である。

Claims (3)

  1. 自車両の少なくとも前方の3次元距離情報を取得する3次元距離検出部(3)と、
    前記3次元距離検出部の視点を基準とする鳥瞰グリッドで区切ったセル毎に前記3次元距離情報に基づいて立体物の有無を検出する立体物検出部(2a)と、
    前記立体物が存在する場合に、前記自車両と前記立体物との間の距離情報が有る有点セルを路面として検出する路面検出部(2b)と、
    前記自車両と前記立体物との間に距離情報が無い無点セルが含まれる無点領域がある場合に、その無点領域内に存在し得る最大高さT1の推定立体物を次式(A)により推定する立体物推定部(2c)と、
    路面を基準とした静止グリッドのセルに少なくとも前記推定立体物のセルを変換し、前記自車両の移動に伴い前記3次元距離検出部により得られる新たな3次元距離情報から前記立体物推定部により推定された前記推定立体物のセルを前記静止グリッドに変換したときに繰り返し同じ路面位置で推定されている場合に立体物として検出する立体物判定部(2d)とを備え
    前記立体物判定部(2d)は、前記立体物推定部により推定された推定立体物の高さに応じて推定重みを設定し、前記自車両の移動に伴う前記3次元距離情報から得た前記推定立体物の推定重みを複数回連続して加算した値が増加する場合に前記立体物を検出する物体検出装置。
    T1=T0・(re−r1)/re …(A)
    ただし、T0:3次元距離検出部の高さ、re:無点領域の遠点距離、r1:無点領域の近点距離である。
  2. 請求項1に記載の物体検出装置において、
    前記立体物推定部(2c)は、前記無点領域が複数個の連続する無点セルである場合に、前記無点セル毎に存在し得る最大高さTkの推定立体物を次式(B)により推定する物体検出装置。
    Tk=T0・(re−rk)/re …(B)
    ただし、T0:3次元距離検出部の高さ、re:無点領域の遠点距離、rk:対象となる無点セルの近点距離である。
  3. コンピュータに、
    自車両の少なくとも前方の3次元距離情報を取得する3次元距離検出処理、
    前記3次元距離検出処理での視点を基準とする鳥瞰グリッドで区切ったセル毎に前記3次元距離情報に基づいて立体物の有無を検出する立体物検出処理、
    前記立体物が存在する場合に、前記自車両と前記立体物との間の距離情報が有る有点セルを路面として検出する路面検出処理、
    前記自車両と前記立体物との間に距離情報が無い無点セルが含まれる無点領域がある場合に、その無点領域内に存在し得る最大高さT1の推定立体物を次式(A)により推定する立体物推定処理、
    路面を基準とした静止グリッドのセルに少なくとも前記推定立体物のセルを変換し、前記自車両の移動に伴い前記3次元距離検出処理により得られる新たな3次元距離情報から前記立体物推定処理により推定された前記推定立体物のセルを前記静止グリッドに変換したときに繰り返し同じ路面位置で推定されている場合に立体物として検出する立体物判定処理を実行させ
    前記立体物判定処理では、前記立体物推定処理により推定された推定立体物の高さに応じて推定重みを設定し、前記自車両の移動に伴う前記3次元距離情報から得た前記推定立体物の推定重みを複数回連続して加算した値が増加する場合に前記立体物を検出する物体検出プログラム。
    T1=T0・(re−r1)/re …(A)
    ただし、T0:3次元距離検出部の高さ、re:無点領域の遠点距離、r1:無点領域の近点距離である。
JP2016052311A 2016-03-16 2016-03-16 物体検出装置および物体検出プログラム Active JP6756124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052311A JP6756124B2 (ja) 2016-03-16 2016-03-16 物体検出装置および物体検出プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052311A JP6756124B2 (ja) 2016-03-16 2016-03-16 物体検出装置および物体検出プログラム

Publications (2)

Publication Number Publication Date
JP2017166971A JP2017166971A (ja) 2017-09-21
JP6756124B2 true JP6756124B2 (ja) 2020-09-16

Family

ID=59913744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052311A Active JP6756124B2 (ja) 2016-03-16 2016-03-16 物体検出装置および物体検出プログラム

Country Status (1)

Country Link
JP (1) JP6756124B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868564B (zh) 2018-03-22 2024-05-07 日立安斯泰莫株式会社 物体识别装置
DE112018007135B4 (de) * 2018-03-26 2022-02-17 Mitsubishi Electric Corporation Objekterkennungsvorrichtung, fahrzeug, objekterkennungsverfahren und objekterkennungsprogramm
CN110599762A (zh) * 2018-06-12 2019-12-20 光宝电子(广州)有限公司 道路状况感测***及方法
KR102144048B1 (ko) * 2018-07-11 2020-08-12 경북대학교 산학협력단 빔 스캐닝 분석시 가중치를 적용하는 동작위치 검출 방법 및 장치
JP7147651B2 (ja) * 2019-03-22 2022-10-05 トヨタ自動車株式会社 物体認識装置及び車両制御システム
JP7152355B2 (ja) * 2019-05-20 2022-10-12 株式会社Soken 障害物検出装置および障害物検出方法
WO2021021672A2 (en) * 2019-07-26 2021-02-04 Deka Products Limited Partnership System and method for free space estimation
JP7406350B2 (ja) * 2019-11-15 2023-12-27 日本信号株式会社 物体検知装置及び物体検知プログラム
CN110850439B (zh) * 2020-01-15 2020-04-21 奥特酷智能科技(南京)有限公司 一种高精度三维点云地图构建方法
JP7417466B2 (ja) 2020-05-07 2024-01-18 株式会社トヨタマップマスター 情報処理装置、情報処理方法及び情報処理プログラム
KR20230026130A (ko) 2021-08-17 2023-02-24 충북대학교 산학협력단 자율 주행을 위한 단일 계층 3차원 다중 객체 검출 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146547A (ja) * 1998-11-17 2000-05-26 Toyota Central Res & Dev Lab Inc 車両の障害物形状検出装置
JP2000181541A (ja) * 1998-12-21 2000-06-30 Komatsu Ltd 自走式車輌
JP4960599B2 (ja) * 2005-03-23 2012-06-27 三井造船株式会社 衝突防止装置及び衝突防止装置搭載車両
JP4887849B2 (ja) * 2006-03-16 2012-02-29 日産自動車株式会社 車両用路上障害物検出装置、路上障害物検出方法および路上障害物検出装置付き車両
JP5531474B2 (ja) * 2008-12-12 2014-06-25 株式会社豊田中央研究所 地図生成装置、走路推定装置、移動可能領域推定装置、及びプログラム
US8736463B1 (en) * 2012-01-30 2014-05-27 Google Inc. Object bounding box estimation

Also Published As

Publication number Publication date
JP2017166971A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6756124B2 (ja) 物体検出装置および物体検出プログラム
KR102463720B1 (ko) 차량의 경로 생성 시스템 및 방법
US10684133B2 (en) Route generator, route generation method, and route generation program
CN104181512B (zh) 用于求取车辆的雷达传感器的失准的方法和设备
US11255681B2 (en) Assistance control system
JP6453701B2 (ja) 姿勢推定装置
CN110632617B (zh) 一种激光雷达点云数据处理的方法及装置
US10325163B2 (en) Vehicle vision
CN110674705A (zh) 基于多线激光雷达的小型障碍物检测方法及装置
KR102464581B1 (ko) 스테레오 점군 처리장치 및 그 방법
JP2017015409A (ja) 路面検知装置、移動体、路面検知方法、および路面検知プログラム
JP2019046150A (ja) 走行支援装置
JP6297956B2 (ja) 経路生成装置
GB2560619A (en) Object tracking by unsupervised learning
JP2012123471A (ja) 物体認識装置
US11400923B2 (en) Information processing device, vehicle control device, and mobile object control method
EP3499483A1 (en) Object detection device and vehicle control system comprising object detection device
CN106080397A (zh) 自适应巡航***及车载设备
CN114384491B (zh) 用于激光雷达的点云处理方法及装置、存储介质
JP7130580B2 (ja) 路面検出装置
JP7081098B2 (ja) 走行環境認識装置、走行環境認識方法、プログラム
JP2018206038A (ja) 点群データ処理装置、移動ロボット、移動ロボットシステム、および点群データ処理方法
US20220137207A1 (en) Systems and methods for radar false track mitigation with camera
JP6631226B2 (ja) 自車線情報推定装置
JP6604052B2 (ja) 走路境界推定装置及び走路境界推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200810

R151 Written notification of patent or utility model registration

Ref document number: 6756124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250