JP6755425B1 - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP6755425B1
JP6755425B1 JP2020054990A JP2020054990A JP6755425B1 JP 6755425 B1 JP6755425 B1 JP 6755425B1 JP 2020054990 A JP2020054990 A JP 2020054990A JP 2020054990 A JP2020054990 A JP 2020054990A JP 6755425 B1 JP6755425 B1 JP 6755425B1
Authority
JP
Japan
Prior art keywords
fuel
reforming
unit
supply amount
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020054990A
Other languages
Japanese (ja)
Other versions
JP2021157896A (en
Inventor
雄也 宅和
雄也 宅和
雅也 佐々木
雅也 佐々木
井上 修一
修一 井上
遠藤 聡
聡 遠藤
光国 太田
光国 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Osaka Gas Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Osaka Gas Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2020054990A priority Critical patent/JP6755425B1/en
Application granted granted Critical
Publication of JP6755425B1 publication Critical patent/JP6755425B1/en
Publication of JP2021157896A publication Critical patent/JP2021157896A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の運転状態が安定したままで燃料利用率を上げることができる燃料電池装置を提供する。【解決手段】燃料電池装置において、運転制御部16は、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ改質部7への改質用水の供給量を目標水供給量まで減少させることで燃料電池10での燃料利用率を上昇させる燃料利用率上昇処理を行う場合、水供給量調節部4の動作を制御して改質部7への改質用水の供給量の減少を開始した後に所定の処理継続条件が満たされたか否かを判定し、処理継続条件が満たされた後に改質部7への原燃料ガスの供給量の減少を開始させる。【選択図】図1PROBLEM TO BE SOLVED: To provide a fuel cell device capable of increasing a fuel utilization rate while keeping an operating state of a fuel cell stable. SOLUTION: In a fuel cell device, an operation control unit 16 reduces and modifies the supply amount of raw fuel gas to the reforming unit 7 to a target raw fuel supply amount in a state where the output current of the fuel cell 10 is stable. When the fuel utilization rate increase process for increasing the fuel utilization rate in the fuel cell 10 is performed by reducing the supply amount of reforming water to the quality unit 7 to the target water supply amount, the operation of the water supply amount adjusting unit 4 is performed. After controlling and starting to reduce the supply amount of reforming water to the reforming section 7, it is determined whether or not the predetermined treatment continuation condition is satisfied, and after the treatment continuation condition is satisfied, the reforming section 7 is subjected to. Start reducing the supply of raw materials and fuel gas. [Selection diagram] Fig. 1

Description

本発明は、原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成する改質部と、改質部で生成された燃料ガスが供給されるアノード及び酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後にアノードから排出される排出燃料ガスに含まれる前記燃料ガスを燃焼させ、その燃焼熱によって改質部を加熱する燃焼部とを備え、改質部と燃料電池と燃焼部とは筐体の内部に収容される燃料電池装置に関する。 The present invention has a reforming section for steam reforming the raw material fuel gas to generate a fuel gas containing hydrogen, an anode to which the fuel gas generated in the reforming section is supplied, and a cathode to which oxygen gas is supplied. It is provided with a fuel cell and a combustion unit that burns the fuel gas contained in the exhaust fuel gas discharged from the anode after being used in a power generation reaction and heats the reforming unit by the combustion heat. The battery and the combustion unit relate to a fuel cell device housed inside the housing.

改質部で原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成し、その燃料ガスが供給されるアノード及び酸素ガスが供給されるカソードを有する燃料電池で発電を行う場合、その効率を向上させるためには、アノードに供給される燃料ガスの量に対応する原燃料ガスの量に対する、アノードで発電反応に用いられる燃料ガスの量に対応する原燃料ガスの量の比率である燃料利用率を上昇させるという手法がある。例えば、燃料電池の出力電流が安定した状態で燃料利用率を上昇させるためには、改質部への原燃料ガスの供給量を減少させればよい。但し、その場合には、燃焼部で燃焼される、発電反応で用いられた後にアノードから排出される排出燃料ガスに含まれる燃料ガスの量が減少するため、燃料電池を収容している筐体の内部の温度が低下するという問題がある。 When the raw fuel gas is steam reformed in the reforming section to generate a fuel gas containing hydrogen, and power is generated by a fuel cell having an anode to which the fuel gas is supplied and a cathode to which the oxygen gas is supplied, the efficiency is high. The fuel is the ratio of the amount of raw fuel gas corresponding to the amount of fuel gas used for the power generation reaction at the anode to the amount of raw fuel gas corresponding to the amount of fuel gas supplied to the anode. There is a method of increasing the utilization rate. For example, in order to increase the fuel utilization rate in a state where the output current of the fuel cell is stable, the amount of raw fuel gas supplied to the reforming section may be reduced. However, in that case, the amount of fuel gas contained in the discharged fuel gas discharged from the anode after being used in the power generation reaction, which is burned in the combustion part, is reduced, so that the housing containing the fuel cell is housed. There is a problem that the temperature inside the fuel cell drops.

尚、改質部への改質用水の供給量を減少させると、改質用水によって奪われる熱量が減少するため、筐体の内部の温度を上昇させることができる。そこで、特許文献1(特開2017−162746号公報)に記載の発明では、燃料利用率Ufを上げるとともに水の投入量(S/C)も減らすことで、筐体の内部の温度を高温に保とうとしている。
つまり、燃料電池の出力電流が安定した状態で、改質部に供給する原燃料ガスの量及び改質用水の量を減少させることで、燃料利用率を上げながら、筐体の内部の温度を高温に保とうとしている。
When the amount of reforming water supplied to the reforming portion is reduced, the amount of heat taken by the reforming water is reduced, so that the temperature inside the housing can be raised. Therefore, in the invention described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-162746), the temperature inside the housing is raised to a high temperature by increasing the fuel utilization rate Uf and reducing the amount of water input (S / C). I'm trying to keep it.
In other words, while the output current of the fuel cell is stable, the temperature inside the housing can be raised while increasing the fuel utilization rate by reducing the amount of raw fuel gas and the amount of reforming water supplied to the reforming section. I'm trying to keep it hot.

特開2017−162746号公報Japanese Unexamined Patent Publication No. 2017-162746

但し、改質部に供給する原燃料ガスの量及び改質用水の量の減少を同時に開始しても、改質用水は気化してから水蒸気として改質部での改質処理に利用されるため、改質部では、原燃料ガスの減少の方が、水蒸気(改質用水)の減少よりも先に現れると考えてもよい。そのため、原燃料ガスの減少による筐体の内部の温度の低下が先に現れる可能性が高い。そして、場合によっては燃料電池の運転状態が不安定になる。 However, even if the amount of raw fuel gas supplied to the reforming section and the amount of reforming water are started to decrease at the same time, the reforming water is vaporized and then used as steam for the reforming process in the reforming section. Therefore, in the reforming section, it may be considered that the decrease in raw material and fuel gas appears before the decrease in steam (reforming water). Therefore, there is a high possibility that the temperature inside the housing will decrease due to the decrease in raw material and fuel gas. Then, in some cases, the operating state of the fuel cell becomes unstable.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、燃料電池の運転状態が安定したままで燃料利用率を上げることができる燃料電池装置を提供する点にある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell device capable of increasing the fuel utilization rate while keeping the operating state of the fuel cell stable.

上記目的を達成するための本発明に係る燃料電池装置の特徴構成は、原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成する改質部と、
前記改質部で生成された前記燃料ガスが供給されるアノード及び酸素ガスが供給されるカソードを有する燃料電池と、
発電反応で用いられた後に前記アノードから排出される排出燃料ガスに含まれる前記燃料ガスを燃焼させ、その燃焼熱によって前記改質部を加熱する燃焼部と、
前記改質部への原燃料ガスの供給量を調節する原燃料供給量調節部と、
前記改質部への改質用水の供給量を調節する水供給量調節部と、
前記カソード及び前記燃焼部への前記酸素ガスの供給量を調節する酸素供給量調節部と、
前記原燃料供給量調節部及び前記酸素供給量調節部及び前記水供給量調節部の動作を制御する運転制御部とを備え、
前記改質部と前記燃料電池と前記燃焼部とは筐体の内部に収容され、
前記運転制御部は、前記燃料電池の出力電流が安定した状態で、前記改質部への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ前記改質部への改質用水の供給量を目標水供給量まで減少させることで前記燃料電池での燃料利用率を上昇させる燃料利用率上昇処理を行う場合、前記水供給量調節部の動作を制御して前記改質部への改質用水の供給量の減少を開始した後に所定の処理継続条件が満たされたか否かを判定し、前記処理継続条件が満たされた後に前記改質部への原燃料ガスの供給量の減少を開始させる点にある。
The characteristic configuration of the fuel cell apparatus according to the present invention for achieving the above object is a reforming unit for steam reforming the raw material fuel gas to generate a fuel gas containing hydrogen.
A fuel cell having an anode to which the fuel gas is supplied and a cathode to which the oxygen gas is supplied generated in the reforming unit,
A combustion unit that burns the fuel gas contained in the exhaust fuel gas discharged from the anode after being used in a power generation reaction and heats the reforming unit by the combustion heat.
A raw fuel supply amount adjusting unit that adjusts the raw material fuel supply amount to the reforming unit,
A water supply amount adjusting unit that adjusts the supply amount of reforming water to the reforming unit,
An oxygen supply amount adjusting unit that adjusts the supply amount of the oxygen gas to the cathode and the combustion unit, and
It includes the raw material fuel supply amount adjusting unit, the oxygen supply amount adjusting unit, and an operation control unit that controls the operation of the water supply amount adjusting unit.
The reforming unit, the fuel cell, and the combustion unit are housed inside the housing.
The operation control unit reduces the supply amount of raw fuel gas to the reforming unit to the target raw material fuel supply amount in a state where the output current of the fuel cell is stable, and reforming water to the reforming unit. When the fuel utilization rate increasing process for increasing the fuel utilization rate in the fuel cell is performed by reducing the supply amount to the target water supply amount, the operation of the water supply amount adjusting unit is controlled to the reforming unit. After starting to reduce the supply amount of reforming water, it is determined whether or not the predetermined treatment continuation condition is satisfied, and after the treatment continuation condition is satisfied, the supply amount of raw fuel gas to the reforming portion is reduced. Is at the point of starting.

上記特徴構成によれば、燃料電池の出力電流が安定した状態で、改質部への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ改質部への改質用水の供給量を目標水供給量まで減少させることで燃料電池での燃料利用率を上昇させる燃料利用率上昇処理を行うことで、燃料電池の効率を向上させることができる。
加えて、燃料利用率上昇処理を行う場合、改質部への改質用水の供給量の減少を開始した後に改質部への原燃料ガスの供給量の減少を開始させる。つまり、改質部への改質用水の供給量を減少させて、筐体の内部の温度が上昇し得る状態にした後で、改質部への原燃料ガスの供給量を減少させる。その結果、改質部への原燃料ガスの供給量の減少に伴って筐体の内部の温度が低下傾向になるとしても、先に開始されている改質部への改質用水の供給量の減少に伴って筐体の内部の温度が上昇傾向になることと相殺されるため、筐体の内部の温度に大きな変化が生じないことが期待される。
従って、燃料電池の運転状態が安定したままで燃料利用率を上げることができる燃料電池装置を提供できる。
According to the above characteristic configuration, the supply amount of raw material fuel gas to the reforming part is reduced to the target raw material fuel supply amount and the supply amount of reforming water to the reforming part is in a state where the output current of the fuel cell is stable. The efficiency of the fuel cell can be improved by performing the fuel utilization rate increase treatment that increases the fuel utilization rate in the fuel cell by reducing the amount of water supplied to the target amount.
In addition, when the fuel utilization rate increase treatment is performed, the amount of raw fuel gas supplied to the reforming section is started to decrease after the amount of reforming water supplied to the reforming section is started to decrease. That is, after the amount of reforming water supplied to the reforming section is reduced so that the temperature inside the housing can rise, the amount of raw fuel gas supplied to the reforming section is reduced. As a result, even if the temperature inside the housing tends to decrease as the supply amount of raw fuel gas to the reforming part decreases, the supply amount of reforming water to the reforming part started earlier. It is expected that the temperature inside the housing will not change significantly because the temperature inside the housing tends to rise as the temperature decreases.
Therefore, it is possible to provide a fuel cell device capable of increasing the fuel utilization rate while keeping the operating state of the fuel cell stable.

本発明に係る燃料電池装置の別の特徴構成は、前記筐体の内部の所定部位の温度を検出する内部温度検出部を備え、
前記運転制御部は、前記内部温度検出部が検出する前記筐体の内部の温度が所定期間連続して基準内部温度以上である場合、前記処理継続条件が満たされたと判定する点にある。
Another characteristic configuration of the fuel cell device according to the present invention includes an internal temperature detection unit that detects the temperature of a predetermined portion inside the housing.
The operation control unit determines that the processing continuation condition is satisfied when the temperature inside the housing detected by the internal temperature detection unit is continuously equal to or higher than the reference internal temperature for a predetermined period.

上記特徴構成によれば、燃料利用率上昇処理を行う場合、改質部への改質用水の供給量を減少させた後、筐体の内部の温度が所定期間連続して基準内部温度以上であるという処理継続条件が満たされた後で、改質部への原燃料ガスの供給量を減少させる。つまり、筐体の内部の温度が十分に安定して高い状態で、改質部への原燃料ガスの供給量の減少が行われる。その結果、改質部への原燃料ガスの供給量の減少に伴って筐体の内部の温度が低下傾向になるとしても、筐体の内部の温度が低くなり過ぎることを回避できる。 According to the above characteristic configuration, when the fuel utilization rate increase treatment is performed, after reducing the supply amount of reforming water to the reforming part, the temperature inside the housing is continuously above the reference internal temperature for a predetermined period. After the processing continuation condition of being present is satisfied, the supply amount of raw material fuel gas to the reforming part is reduced. That is, the supply amount of the raw material fuel gas to the reformed portion is reduced while the temperature inside the housing is sufficiently stable and high. As a result, even if the temperature inside the housing tends to decrease as the amount of raw material fuel gas supplied to the reforming portion decreases, it is possible to prevent the temperature inside the housing from becoming too low.

本発明に係る燃料電池装置の更に別の特徴構成は、前記燃料電池の出力電圧を検出する出力電圧検出部を備え、
前記運転制御部は、前記改質部への改質用水の供給量の減少を開始した後、前記出力電圧検出部が検出する前記燃料電池の出力電圧が所定期間連続して基準電圧以上である場合、前記処理継続条件が満たされたと判定する点にある。
Yet another characteristic configuration of the fuel cell device according to the present invention includes an output voltage detection unit that detects the output voltage of the fuel cell.
After the operation control unit starts reducing the amount of reforming water supplied to the reforming unit, the output voltage of the fuel cell detected by the output voltage detecting unit is continuously equal to or higher than the reference voltage for a predetermined period. In this case, it is determined that the processing continuation condition is satisfied.

上記特徴構成によれば、燃料利用率上昇処理を行う場合、改質部への改質用水の供給量を減少させた後、燃料電池の出力電圧が所定期間連続して基準電圧以上であるという処理継続条件が満たされた後で、改質部への原燃料ガスの供給量を減少させる。つまり、燃料電池の出力電圧が十分に安定して高い状態、即ち、燃料電池の運転状態が安定した状態で、改質部への原燃料ガスの供給量の減少が行われる。その結果、改質部への原燃料ガスの供給量の減少に伴って筐体の内部の温度が低下傾向になるとしても、燃料電池の運転状態が悪化することを回避できる。 According to the above characteristic configuration, when the fuel utilization rate increase treatment is performed, the output voltage of the fuel cell is continuously equal to or higher than the reference voltage for a predetermined period after reducing the amount of reforming water supplied to the reforming section. After the processing continuation condition is satisfied, the supply amount of raw material fuel gas to the reforming part is reduced. That is, the supply amount of the raw fuel gas to the reforming section is reduced in a state where the output voltage of the fuel cell is sufficiently stable and high, that is, in a state where the operating state of the fuel cell is stable. As a result, even if the temperature inside the housing tends to decrease as the supply amount of the raw material fuel gas to the reforming portion decreases, it is possible to avoid deterioration of the operating state of the fuel cell.

本発明に係る燃料電池装置の更に別の特徴構成は、前記運転制御部は、所定の待機時間が経過した場合、前記処理継続条件が満たされたと判定する点にある。 Yet another characteristic configuration of the fuel cell device according to the present invention is that the operation control unit determines that the processing continuation condition is satisfied when a predetermined standby time elapses.

上記特徴構成によれば、燃料利用率上昇処理を行う場合、改質部への改質用水の供給量を減少させた後、所定の待機時間が経過したという処理継続条件が満たされた後で、改質部への原燃料ガスの供給量を減少させる。つまり、改質部への改質用水の供給量を減少させて所定の待機時間が経過することで筐体の内部の温度が上昇し得る状態にした後で、改質部への原燃料ガスの供給量の減少が行われる。その結果、改質部への原燃料ガスの供給量の減少に伴って筐体の内部の温度が低下傾向になるとしても、先に開始されている改質部への改質用水の供給量の減少に伴って筐体の内部の温度が上昇傾向になることと相殺されるため、筐体の内部の温度に大きな変化が生じないことが期待される。 According to the above characteristic configuration, when the fuel utilization rate increase treatment is performed, after the treatment continuation condition that a predetermined waiting time has elapsed after reducing the supply amount of reforming water to the reforming section is satisfied. , Reduce the supply of raw material fuel gas to the reforming part. That is, after the amount of reforming water supplied to the reforming section is reduced so that the temperature inside the housing can rise after a predetermined standby time elapses, the raw fuel gas to the reforming section The supply of gas is reduced. As a result, even if the temperature inside the housing tends to decrease as the supply amount of raw fuel gas to the reforming part decreases, the supply amount of reforming water to the reforming part started earlier. It is expected that the temperature inside the housing will not change significantly because the temperature inside the housing tends to rise as the temperature decreases.

本発明に係る燃料電池装置の更に別の特徴構成は、前記燃料電池の出力電力及び出力電流のうちの少なくとも出力電流を出力情報として検出する出力情報検出部を備え、
前記運転制御部は、前記出力情報検出部の検出結果に基づいて前記燃料電池の前記出力情報が前記燃料利用率上昇処理を行う条件を満たしたと判定した場合に当該燃料利用率上昇処理を行う点にある。
Yet another characteristic configuration of the fuel cell device according to the present invention includes an output information detection unit that detects at least the output current of the output power and output current of the fuel cell as output information.
The operation control unit performs the fuel utilization rate increase process when it is determined that the output information of the fuel cell satisfies the condition for performing the fuel utilization rate increase process based on the detection result of the output information detection unit. It is in.

例えば燃料電池の出力が低すぎる場合や変動している場合などでは、燃料利用率を上昇させるために改質部への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ改質部への改質用水の供給量を目標水供給量まで減少させることを行うと、燃料電池の運転状態が不安定になる可能性がある。
そこで本特徴構成では、運転制御部は、出力情報検出部の検出結果に基づいて燃料電池の出力情報が燃料利用率上昇処理を行う条件を満たしたと判定した場合に燃料利用率上昇処理を行う。つまり、燃料電池の出力が所定の条件を満たす場合にのみ燃料利用率上昇処理を行うことで、燃料電池の運転状態が不安定になる可能性を低くできる。
For example, when the output of the fuel cell is too low or fluctuates, the amount of raw fuel gas supplied to the reforming section is reduced to the target amount of raw fuel supply in order to increase the fuel utilization rate, and the reforming section If the amount of reforming water supplied to the fuel cell is reduced to the target amount of water supply, the operating condition of the fuel cell may become unstable.
Therefore, in this feature configuration, the operation control unit performs the fuel utilization rate increase process when it is determined that the output information of the fuel cell satisfies the condition for performing the fuel utilization rate increase process based on the detection result of the output information detection unit. That is, the possibility that the operating state of the fuel cell becomes unstable can be reduced by performing the fuel utilization rate increase process only when the output of the fuel cell satisfies a predetermined condition.

本発明に係る燃料電池装置の更に別の特徴構成は、前記運転制御部は、前記出力情報検出部の検出結果に基づいて、前記燃料電池が定格出力で設定期間動作した場合に前記燃料利用率上昇処理を行う条件を満たしたと判定する点にある。
ここで、前記運転制御部は、前記燃料利用率上昇処理を行っている間に前記燃料電池の出力が定格出力ではなくなった場合、前記燃料利用率上昇処理を中止して、前記燃料電池での燃料利用率が元の値に戻るように前記改質部への原燃料ガスの供給量と前記改質部への改質用水の供給量を調節してもよい。
Another characteristic configuration of the fuel cell device according to the present invention is that the operation control unit operates the fuel cell at the rated output for a set period based on the detection result of the output information detection unit, and the fuel utilization rate is the same. The point is that it is determined that the conditions for performing the ascending process are satisfied.
Here, if the output of the fuel cell is no longer the rated output during the fuel utilization rate increase process, the operation control unit stops the fuel utilization rate increase process and uses the fuel cell. The amount of raw fuel gas supplied to the reforming section and the amount of reforming water supplied to the reforming section may be adjusted so that the fuel utilization rate returns to the original value.

上記特徴構成によれば、改質部への原燃料ガスの供給量が十分に多い状態が安定して設定期間経過し且つ改質部への改質用水の供給量が十分に多い状態が安定して設定期間経過した場合に燃料利用率上昇処理が行われる。つまり、改質部への原燃料ガスの供給量を減少させることによる影響が小さく且つ改質部への改質用水の供給量を減少させることによる影響が小さい状況で燃料利用率上昇処理が行われる。その結果、燃料利用率上昇処理を行うことで燃料電池の運転状態が不安定になる可能性を低くできる。 According to the above characteristic configuration, the state where the supply amount of the raw material fuel gas to the reforming part is sufficiently large is stable and the set period has elapsed, and the state where the supply amount of the reforming water to the reforming part is sufficiently large is stable. When the set period elapses, the fuel utilization rate increase process is performed. In other words, the fuel utilization rate increase treatment is performed in a situation where the effect of reducing the supply amount of raw fuel gas to the reforming section is small and the effect of reducing the supply amount of reforming water to the reforming section is small. Will be. As a result, it is possible to reduce the possibility that the operating state of the fuel cell becomes unstable by performing the fuel utilization rate increase process.

本発明に係る燃料電池装置の更に別の特徴構成は、前記運転制御部は、前記燃料利用率上昇処理において、前記改質部への原燃料ガスの供給量を前記目標原燃料供給量まで段階的に減少させる点にある。 Another characteristic configuration of the fuel cell device according to the present invention is that the operation control unit steps the supply amount of the raw material fuel gas to the reforming part up to the target raw material fuel supply amount in the fuel utilization rate increase process. The point is to reduce the fuel.

上記特徴構成によれば、燃料利用率上昇処理において、改質部への原燃料ガスの供給量の減少が段階的に行われるので、改質部への原燃料ガスの供給量を減少することに伴って筐体の内部の温度が低下することも段階的に発生する。つまり、改質部への原燃料ガスの供給量を目標原燃料供給量まで減少させる場合に筐体の内部の温度が急激に変化することが回避される。その結果、燃料電池の運転状態が不安定になることを回避できる。 According to the above characteristic configuration, in the fuel utilization rate increase process, the supply amount of the raw material fuel gas to the reforming part is gradually reduced, so that the supply amount of the raw material fuel gas to the reforming part is reduced. As a result, the temperature inside the housing may decrease in stages. That is, when the supply amount of the raw material fuel gas to the reforming part is reduced to the target raw material fuel supply amount, it is possible to avoid a sudden change in the temperature inside the housing. As a result, it is possible to prevent the operating state of the fuel cell from becoming unstable.

本発明に係る燃料電池装置の更に別の特徴構成は、前記運転制御部は、前記燃料利用率上昇処理において、前記改質部への改質用水の供給量を前記目標水供給量まで段階的に減少させる点にある。 Yet another characteristic configuration of the fuel cell device according to the present invention is that the operation control unit steps the amount of reforming water supplied to the reforming unit to the target water supply amount in the fuel utilization rate increase treatment. It is in the point of reducing to.

上記特徴構成によれば、燃料利用率上昇処理において、改質部への改質用水の供給量の減少が段階的に行われるので、改質部への改質用水の供給量を減少することに伴って筐体の内部の温度が上昇することも段階的に発生する。つまり、改質部への改質用水の供給量を目標水供給量まで減少させる場合に筐体の内部の温度が急激に変化することが回避される。その結果、燃料電池の運転状態が不安定になることを回避できる。 According to the above characteristic configuration, in the fuel utilization rate increase treatment, the supply amount of reforming water to the reforming section is gradually reduced, so that the supply amount of reforming water to the reforming section is reduced. Along with this, the temperature inside the housing also rises in stages. That is, when the supply amount of reforming water to the reforming portion is reduced to the target water supply amount, it is possible to avoid a sudden change in the temperature inside the housing. As a result, it is possible to prevent the operating state of the fuel cell from becoming unstable.

本発明に係る燃料電池装置の更に別の特徴構成は、前記筐体の内部の所定部位の温度を検出する内部温度検出部を備え、
前記運転制御部は、前記燃料利用率上昇処理を行っている間、前記内部温度検出部が検出する温度が目標内部温度に近づくように、前記酸素供給量調節部の動作を制御する点にある。
Yet another characteristic configuration of the fuel cell device according to the present invention includes an internal temperature detection unit that detects the temperature of a predetermined portion inside the housing.
The operation control unit controls the operation of the oxygen supply amount adjusting unit so that the temperature detected by the internal temperature detection unit approaches the target internal temperature during the fuel utilization rate increase processing. ..

酸素供給量調節部によって酸素ガスの単位時間当たりの供給量を増加すると筐体の内部の温度は低下傾向になり、酸素供給量調節部によって酸素ガスの単位時間当たりの供給量を減少すると筐体の内部の温度は上昇傾向になる。
そこで本特徴構成では、燃料利用率上昇処理を行っている間、酸素供給量調節部の動作を制御することで、内部温度検出部が検出する温度を目標内部温度に近づけることができる。
When the oxygen supply amount adjustment part increases the supply amount of oxygen gas per unit time, the temperature inside the housing tends to decrease, and when the oxygen supply amount adjustment part reduces the supply amount of oxygen gas per unit time, the housing The temperature inside the gas tends to rise.
Therefore, in this feature configuration, the temperature detected by the internal temperature detection unit can be brought close to the target internal temperature by controlling the operation of the oxygen supply amount adjusting unit during the fuel utilization rate increase processing.

燃料電池装置の構成を示す図である。It is a figure which shows the structure of the fuel cell apparatus. 燃料電池の出力電流と燃料電池での燃料利用率との関係を示すグラフである。It is a graph which shows the relationship between the output current of a fuel cell, and the fuel utilization rate in a fuel cell. 燃料電池の出力電流と改質部での改質処理のS/Cとの関係を示すグラフである。It is a graph which shows the relationship between the output current of a fuel cell and the S / C of the reforming process in a reforming part. 第1実施形態の燃料利用率上昇処理を説明する図である。It is a figure explaining the fuel utilization rate increase processing of 1st Embodiment. 第2実施形態の燃料利用率上昇処理を説明する図である。It is a figure explaining the fuel utilization rate increase processing of 2nd Embodiment.

<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係る燃料電池装置について説明する。
図1は、燃料電池装置の構成を示す図である。燃料電池装置は、原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成する改質部7と、改質部7で生成された燃料ガスが供給されるアノード9a及び酸素ガスが供給されるカソード9bを有する燃料電池10と、発電反応で用いられた後にアノード9aから排出される排出燃料ガスに含まれる燃料ガスを燃焼させ、その燃焼熱によって改質部7を加熱する燃焼部11とを備える。加えて、燃料電池装置は、原燃料供給量調節部2と、水供給量調節部4と、酸素供給量調節部15と、出力情報検出部20と、運転制御部16とを備える。本実施形態では、筐体1の内部に改質部7と燃料電池10と燃焼部11とが収容される。加えて、筐体1の内部には、供給される改質用水を気化する気化部6も収容されている。燃焼部11で発生した燃焼熱は気化部6にも与えられる。
<First Embodiment>
The fuel cell device according to the first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a fuel cell device. The fuel cell apparatus is supplied with a reforming unit 7 that steam reforms the raw material fuel gas to generate a fuel gas containing hydrogen, an anode 9a to which the fuel gas generated by the reforming unit 7 is supplied, and oxygen gas. A fuel cell 10 having a cathode 9b and a combustion unit 11 that burns a fuel gas contained in an exhaust fuel gas discharged from an anode 9a after being used in a power generation reaction and heats a reforming unit 7 by the combustion heat. To be equipped. In addition, the fuel cell device includes a raw material fuel supply amount adjusting unit 2, a water supply amount adjusting unit 4, an oxygen supply amount adjusting unit 15, an output information detecting unit 20, and an operation control unit 16. In the present embodiment, the reforming unit 7, the fuel cell 10, and the combustion unit 11 are housed inside the housing 1. In addition, a vaporizing unit 6 that vaporizes the supplied reforming water is also housed inside the housing 1. The combustion heat generated in the combustion unit 11 is also given to the vaporization unit 6.

燃料電池10は、改質部7で生成された水素を主成分とする燃料ガスが供給されるアノード9aと酸素ガス(空気)が供給されるカソード9bとを備えた固体酸化物形のセル9を複数個電気的に直列接続した状態で備えたセルスタックにて構成されている。図示は省略するが、セル9は、アノード9aとカソード9bとの間に固体電解質層を備えた固体酸化物形で構成される。アノード9aには燃料ガスが通流するように構成され、カソード9bには空気が通流するように構成される。燃料電池10は、複数のセル9がアノード9aの燃料ガス排出口(図示せず)及びカソード9bの空気排出口(図示せず)が上向きになる姿勢で横方向に並ぶ状態で、筐体1の内部に設置されている。尚、セル9の形状や構造は図1に例示したものに限定されない。 The fuel cell 10 is a solid oxide fuel cell 9 having an anode 9a to which a fuel gas containing hydrogen as a main component generated in the reforming unit 7 is supplied and a cathode 9b to which oxygen gas (air) is supplied. It is composed of a cell stack provided with a plurality of electrically connected in series. Although not shown, the cell 9 is composed of a solid oxide fuel cell having a solid electrolyte layer between the anode 9a and the cathode 9b. The anode 9a is configured to allow fuel gas to pass through, and the cathode 9b is configured to allow air to pass through. The fuel cell 10 has a plurality of cells 9 arranged side by side in a posture in which the fuel gas discharge port (not shown) of the anode 9a and the air discharge port (not shown) of the cathode 9b are facing upward. It is installed inside the. The shape and structure of the cell 9 are not limited to those illustrated in FIG.

燃料電池10には、改質部7から燃料ガス流路8を通して供給される燃料ガスを受け入れるガスマニホールド21が設けられる。複数のセル9は、ガスマニホールド21の上方側に上述のように並ぶ状態で配置され、ガスマニホールド21と複数のセル9におけるアノード9aの下端のガス導入口(図示せず)とが連通接続されている。そして、ガスマニホールド21に供給された燃料ガスが、複数のセル9の夫々のアノード9aに対して下端のガス導入口から供給され、各アノード9aに対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の燃料ガスは、上端の燃料ガス排出口から排出燃料ガスとして排出される。アノード9aから排出される排出燃料ガスには、発電反応で用いられなかった燃料ガスも含まれている。 The fuel cell 10 is provided with a gas manifold 21 that receives fuel gas supplied from the reforming unit 7 through the fuel gas flow path 8. The plurality of cells 9 are arranged on the upper side of the gas manifold 21 in a state of being lined up as described above, and the gas manifold 21 and the gas introduction port (not shown) at the lower end of the anode 9a in the plurality of cells 9 are communicatively connected. ing. Then, the fuel gas supplied to the gas manifold 21 is supplied from the gas introduction port at the lower end to each anode 9a of the plurality of cells 9, and flows from the lower side to the upper side to each anode 9a to generate electricity. Subject to reaction. The fuel gas after being subjected to the power generation reaction is discharged as exhaust fuel gas from the fuel gas outlet at the upper end. The discharged fuel gas discharged from the anode 9a also includes fuel gas that was not used in the power generation reaction.

筐体1には、空気導入口22が設けられ、ブロアなどを用いて実現される酸素供給量調節部15によって、酸素ガス(空気)がその空気導入口22を介して筐体1内に供給される。複数のセル9の夫々におけるカソード9bの下端部近傍には、筐体1内とカソード9bとを連通する空気供給孔(図示せず)が設けられている。複数のセル9の夫々のカソード9bには筐体1内の空気がこの空気供給孔を通して供給され、各カソード9bに対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の空気は、上端の空気排出口から排出酸素ガスとして排出される。また、筐体1の内部に供給された酸素ガス(空気)は、排出燃料ガスを燃焼部11で燃焼させるためにも利用される。つまり、酸素供給量調節部15は、カソード9b及び燃焼部11への酸素ガスの供給量を調節する役割を担う。
酸素供給量調節部15の動作は運転制御部16が制御する。
An air introduction port 22 is provided in the housing 1, and oxygen gas (air) is supplied into the housing 1 via the air introduction port 22 by an oxygen supply amount adjusting unit 15 realized by using a blower or the like. Will be done. An air supply hole (not shown) for communicating the inside of the housing 1 and the cathode 9b is provided in the vicinity of the lower end portion of the cathode 9b in each of the plurality of cells 9. The air in the housing 1 is supplied to each of the cathodes 9b of the plurality of cells 9 through the air supply holes, and flows from the lower side to the upper side with respect to each cathode 9b to be subjected to a power generation reaction. The air after being subjected to the power generation reaction is discharged as exhaust oxygen gas from the air outlet at the upper end. The oxygen gas (air) supplied to the inside of the housing 1 is also used to burn the discharged fuel gas in the combustion unit 11. That is, the oxygen supply amount adjusting unit 15 plays a role of adjusting the supply amount of oxygen gas to the cathode 9b and the combustion unit 11.
The operation of the oxygen supply amount adjusting unit 15 is controlled by the operation control unit 16.

燃料電池10の上方には、各セル9のアノード9aの燃料ガス排出口から排出される排出燃料ガスを燃焼させる燃焼空間が形成される。この燃焼空間が燃焼部11となる。気化部6と改質部7とが燃料電池10の上方の燃焼空間(燃焼部11)に隣接して設けられており、燃焼熱によって改質部7及び気化部6が加熱される。 A combustion space for burning the discharged fuel gas discharged from the fuel gas discharge port of the anode 9a of each cell 9 is formed above the fuel cell 10. This combustion space becomes the combustion unit 11. The vaporization section 6 and the reforming section 7 are provided adjacent to the combustion space (combustion section 11) above the fuel cell 10, and the reforming section 7 and the reforming section 6 are heated by the combustion heat.

筐体1には、燃焼部11にて発生した燃焼排ガスを外部に排出させる排出部23が下面部等に形成されている。そして、筐体1内には、筐体1の内部から排気される、燃焼部11で発生した燃焼排ガスを含む排気ガスに含まれる燃料ガスを触媒燃焼する燃焼触媒部12が設けられている。 The housing 1 is formed on the lower surface portion or the like with a discharge portion 23 for discharging the combustion exhaust gas generated by the combustion portion 11 to the outside. A combustion catalyst unit 12 is provided in the housing 1 to catalytically burn the fuel gas contained in the exhaust gas including the combustion exhaust gas generated in the combustion unit 11 exhausted from the inside of the housing 1.

気化部6には、原燃料ガスが供給される原燃料流路3と、改質用水が供給される改質用水流路5とが接続される。そして、気化部6の内部に、原燃料ガス及び改質用水が供給される。そして、気化部6へ供給された原燃料ガス及び改質用水は、全て改質部7へ供給される。原燃料流路3には、気化部6への原燃料ガスの単位時間当たりの供給量(即ち、改質部7への原燃料ガスの単位時間当たりの供給量)を調節する原燃料供給量調節部2が設けられる。改質用水流路5には、気化部6への改質用水の単位時間当たりの供給量(即ち、改質部7への改質用水の単位時間当たりの供給量)を調節する水供給量調節部4が設けられる。
燃料電池装置が備える原燃料供給量調節部2及び水供給量調節部4の動作は運転制御部16が制御する。
The vaporization unit 6 is connected to a raw fuel flow path 3 to which the raw fuel gas is supplied and a reforming water flow path 5 to which the reforming water is supplied. Then, the raw material fuel gas and the reforming water are supplied to the inside of the vaporization unit 6. Then, the raw fuel gas and the reforming water supplied to the vaporization section 6 are all supplied to the reforming section 7. The raw material and fuel flow path 3 is supplied with raw material and fuel for adjusting the amount of raw material and fuel gas supplied to the vaporizing unit 6 per unit time (that is, the amount of raw material and fuel gas supplied to the reforming unit 7 per unit time). The adjusting unit 2 is provided. The amount of water supplied to the reforming water channel 5 for adjusting the amount of reforming water supplied to the vaporization section 6 per unit time (that is, the amount of reforming water supplied to the reforming section 7 per unit time). The adjusting unit 4 is provided.
The operation control unit 16 controls the operations of the raw material fuel supply amount adjusting unit 2 and the water supply amount adjusting unit 4 included in the fuel cell device.

本実施形態において、原燃料供給量調節部2によって気化部6への原燃料ガスの単位時間当たりの供給量を調節することを、改質部7への原燃料ガスの単位時間当たりの供給量を調節する、と記載することもある。また、水供給量調節部4によって気化部6への改質用水の単位時間当たりの供給量を調節することを、改質部7への改質用水の単位時間当たりの供給量を調節する、と記載することもある。 In the present embodiment, adjusting the supply amount of the raw material fuel gas to the vaporization unit 6 per unit time by the raw material fuel supply amount adjusting unit 2 means that the supply amount of the raw material fuel gas to the reforming unit 7 per unit time is adjusted. May be described as adjusting. Further, the water supply amount adjusting unit 4 adjusts the supply amount of the reforming water to the vaporization unit 6 per unit time, and the water supply amount adjusting unit 4 adjusts the supply amount of the reforming water to the reforming unit 7 per unit time. It may be described as.

気化部6では、供給される改質用水を、燃焼部11から伝えられる燃焼熱を用いて加熱して蒸発させる。更に、気化部6では、改質用水の蒸発によって生成された水蒸気と、供給される原燃料ガスとが混合される。 The vaporization unit 6 heats and evaporates the supplied reforming water using the combustion heat transmitted from the combustion unit 11. Further, in the vaporization unit 6, the steam generated by the evaporation of the reforming water and the supplied raw material fuel gas are mixed.

改質部7は、供給される原燃料ガスを気化部6にて生成された水蒸気を用いて改質処理する。具体的には、改質部7の内部には改質触媒が充填されており、この改質触媒の触媒作用によって原燃料ガスが改質処理される。
改質部7に供給される原燃料ガスの量及び水蒸気の量を調節することで改質部7での燃料ガスの生成量、即ち、改質部7からアノード9aへの燃料ガスの供給量が調節される。
The reforming unit 7 reforms the supplied raw material fuel gas using the steam generated in the vaporization unit 6. Specifically, the reforming section 7 is filled with a reforming catalyst, and the raw material fuel gas is reformed by the catalytic action of the reforming catalyst.
By adjusting the amount of raw fuel gas and the amount of steam supplied to the reforming unit 7, the amount of fuel gas produced by the reforming unit 7, that is, the amount of fuel gas supplied from the reforming unit 7 to the anode 9a. Is adjusted.

燃料電池10には、例えばインバータ装置などの電力変換装置(図示せず)が接続されており、この電力変換装置を介して、燃料電池10の発電電力が様々な電力消費装置に供給される。 A power conversion device (not shown) such as an inverter device is connected to the fuel cell 10, and the generated power of the fuel cell 10 is supplied to various power consumption devices via the power conversion device.

本実施形態では、燃料電池10のセルスタックの出力電圧を検出する出力電圧検出部18と、燃料電池10のセルスタックの出力電流を検出する出力電流検出部19とが設けられる。これら出力電圧検出部18及び出力電流検出部19は、燃料電池10の出力電力及び出力電流のうちの少なくとも出力電流を出力情報として検出する出力情報検出部20として利用される。出力電圧検出部18の検出結果及び出力電流検出部19の検出結果は運転制御部16に伝達される。 In the present embodiment, an output voltage detection unit 18 for detecting the output voltage of the cell stack of the fuel cell 10 and an output current detection unit 19 for detecting the output current of the cell stack of the fuel cell 10 are provided. The output voltage detection unit 18 and the output current detection unit 19 are used as an output information detection unit 20 that detects at least the output current of the output power and the output current of the fuel cell 10 as output information. The detection result of the output voltage detection unit 18 and the detection result of the output current detection unit 19 are transmitted to the operation control unit 16.

燃料電池装置の筐体1の内部には、その筐体1の内部の温度を検出する内部温度検出部13が設けられる。内部温度検出部13が検出する温度は、例えば筐体1の内部での燃料電池10の周囲の温度である。内部温度検出部13の検出結果は運転制御部16に伝達される。 Inside the housing 1 of the fuel cell device, an internal temperature detecting unit 13 for detecting the temperature inside the housing 1 is provided. The temperature detected by the internal temperature detection unit 13 is, for example, the temperature around the fuel cell 10 inside the housing 1. The detection result of the internal temperature detection unit 13 is transmitted to the operation control unit 16.

燃料電池10では電力変換装置に出力される出力電流に応じた発電反応(即ち、出力電流に応じた燃料ガスの消費)が行われる。尚、燃料電池10の出力電流が所望の値になるためには、燃料電池10のアノード9aに対して適切な量の燃料ガスが供給されていること及びカソード9bに対して適切な量の酸素ガスが供給されていることが必要である。そのため、運転制御部16は、原燃料供給量調節部2及び水供給量調節部4の動作を制御して改質部7へ供給される原燃料の量及び改質用水の量を調節することで、改質部7で生成される燃料ガスの量、即ち、改質部7から燃料電池10のアノード9aに供給される燃料ガスの量を調節する。また、運転制御部16は、酸素供給量調節部15の動作を制御して、燃料電池10のカソード9bに供給される酸素ガスの量を調節する。 In the fuel cell 10, a power generation reaction (that is, consumption of fuel gas according to the output current) is performed according to the output current output to the power conversion device. In order for the output current of the fuel cell 10 to reach a desired value, an appropriate amount of fuel gas is supplied to the anode 9a of the fuel cell 10 and an appropriate amount of oxygen is supplied to the cathode 9b. It is necessary that gas is supplied. Therefore, the operation control unit 16 controls the operations of the raw material fuel supply amount adjusting unit 2 and the water supply amount adjusting unit 4 to adjust the amount of raw fuel supplied to the reforming unit 7 and the amount of reforming water. Then, the amount of fuel gas generated by the reforming unit 7, that is, the amount of fuel gas supplied from the reforming unit 7 to the anode 9a of the fuel cell 10 is adjusted. Further, the operation control unit 16 controls the operation of the oxygen supply amount adjusting unit 15 to adjust the amount of oxygen gas supplied to the cathode 9b of the fuel cell 10.

図2は、燃料電池10の出力電流Iと燃料電池10での燃料利用率Ufとの関係を示すグラフである。図3は、燃料電池10の出力電流Iと改質部7での改質処理のS/Cとの関係を示すグラフである。図2に示すような燃料電池10の出力電流Iと燃料電池10での燃料利用率Ufとの関係、及び、図3に示すような燃料電池10の出力電流Iと改質部7での改質処理のS/Cとの関係は、運転制御部16が参照可能な状態で記憶部17に記憶されている。本実施形態において、燃料利用率Ufは、アノード9aに供給される燃料ガスの量に対応する原燃料ガスの量(即ち、改質部7に供給される原燃料ガスの量)に対する、アノード9aで発電反応に用いられる燃料ガスの量に対応する原燃料ガスの量の比率であり、S/Cは、改質部7に供給される原燃料中のカーボンに対する水蒸気のモル比である。 FIG. 2 is a graph showing the relationship between the output current I of the fuel cell 10 and the fuel utilization rate Uf of the fuel cell 10. FIG. 3 is a graph showing the relationship between the output current I of the fuel cell 10 and the S / C of the reforming process in the reforming unit 7. The relationship between the output current I of the fuel cell 10 and the fuel utilization rate Uf in the fuel cell 10 as shown in FIG. 2, and the output current I of the fuel cell 10 and the modification in the reforming unit 7 as shown in FIG. The relationship between the quality processing and the S / C is stored in the storage unit 17 in a state in which the operation control unit 16 can refer to it. In the present embodiment, the fuel utilization rate Uf is the anode 9a with respect to the amount of raw fuel gas corresponding to the amount of fuel gas supplied to the anode 9a (that is, the amount of raw fuel gas supplied to the reforming unit 7). It is the ratio of the amount of raw material fuel gas corresponding to the amount of fuel gas used for the power generation reaction, and S / C is the molar ratio of water vapor to carbon in the raw material supplied to the reforming unit 7.

そして、運転制御部16は、出力電流検出部19で検出される出力電流と、燃料利用率の目標値を出力電流の関数として定めている図2の基準燃料利用率特性曲線と、S/Cの目標値を出力電流の関数として定めている図3の基準S/C特性曲線とに基づいて、原燃料供給量調節部2及び水供給量調節部4の動作を制御して改質部7(気化部6)への原燃料ガス及び改質用水の供給量を調節することで、改質部7での燃料ガスの生成量、即ち、改質部7からアノード9aへの燃料ガスの供給量を調節する。 Then, the operation control unit 16 sets the output current detected by the output current detection unit 19, the reference fuel utilization characteristic curve of FIG. 2 in which the target value of the fuel utilization rate is set as a function of the output current, and the S / C. Based on the reference S / C characteristic curve of FIG. 3, which defines the target value of the above as a function of the output current, the reforming unit 7 controls the operations of the raw material fuel supply amount adjusting unit 2 and the water supply amount adjusting unit 4. By adjusting the supply amount of raw fuel gas and reforming water to (vaporization section 6), the amount of fuel gas produced by the reforming section 7, that is, the supply of fuel gas from the reforming section 7 to the anode 9a. Adjust the amount.

以下に、改質部7(気化部6)に供給する原燃料ガスの量及び水蒸気の量が運転制御部16により決定される場合の手順例について説明する。
先ず、出力電流Iが決まると、その出力電流Iを燃料電池10で発生させるのに要する燃料ガスの量が決まる。つまり、燃料電池10のアノード9aで発電反応に用いられる燃料ガスの量が決まる。また、図2に示したように、出力電流Iが決まると、燃料利用率Ufが決まる。その結果、燃料電池10のアノード9aで発電反応に用いられる燃料ガスの量と、燃料利用率とから、燃料電池10のアノード9aで発電反応に用いられずに排出される排出燃料ガス中の燃料ガスの量も決まる。従って、出力電流Iに対して、図2の基準燃料利用率特性曲線で決定される燃料利用率を満たすための、燃料電池10のアノード9aに供給する必要がある燃料ガスの量(発電反応に用いられる燃料ガスの量、及び、発電反応に用いられずに排出される排出燃料ガス中の燃料ガスの量の合計)が決まる。そして、その燃料電池10のアノード9aに供給する必要がある燃料ガスの量は、改質部7で生成するべき燃料ガスの量であるので、その燃料ガスを生成するために必要な、改質部7(気化部6)に供給する原燃料ガスの量が決まる。
An example of a procedure when the amount of raw material fuel gas and the amount of steam supplied to the reforming unit 7 (vaporization unit 6) is determined by the operation control unit 16 will be described below.
First, when the output current I is determined, the amount of fuel gas required to generate the output current I in the fuel cell 10 is determined. That is, the amount of fuel gas used for the power generation reaction is determined by the anode 9a of the fuel cell 10. Further, as shown in FIG. 2, when the output current I is determined, the fuel utilization rate Uf is determined. As a result, based on the amount of fuel gas used for the power generation reaction at the anode 9a of the fuel cell 10 and the fuel utilization rate, the fuel in the discharged fuel gas discharged without being used for the power generation reaction at the anode 9a of the fuel cell 10 The amount of gas is also determined. Therefore, the amount of fuel gas that needs to be supplied to the anode 9a of the fuel cell 10 in order to satisfy the fuel utilization rate determined by the reference fuel utilization rate characteristic curve of FIG. 2 with respect to the output current I (for the power generation reaction). The amount of fuel gas used and the total amount of fuel gas in the discharged fuel gas discharged without being used in the power generation reaction) are determined. Then, since the amount of fuel gas that needs to be supplied to the anode 9a of the fuel cell 10 is the amount of fuel gas that should be generated by the reforming unit 7, reforming that is necessary to generate the fuel gas. The amount of raw material fuel gas supplied to the part 7 (vaporization part 6) is determined.

図3に示したように、出力電流Iが決まると、S/Cが決まる。上述したように、出力電流Iに応じた、改質部7に供給する原燃料ガスの量が決まるので、その原燃料ガスの量と、図3の基準S/C特性曲線とで決定されるS/Cを満たすための、改質部7(気化部6)に供給する必要のある水蒸気(改質用水)の量が決まる。 As shown in FIG. 3, when the output current I is determined, the S / C is determined. As described above, since the amount of raw fuel gas supplied to the reforming unit 7 is determined according to the output current I, it is determined by the amount of the raw fuel gas and the reference S / C characteristic curve of FIG. The amount of steam (reforming water) that needs to be supplied to the reforming unit 7 (vaporizing unit 6) to satisfy the S / C is determined.

次に、燃料電池10の運転状態が安定したままで燃料利用率を上げる場合の燃料電池装置の運転方法について説明する。 Next, an operation method of the fuel cell device when the fuel utilization rate is increased while the operating state of the fuel cell 10 is stable will be described.

燃料電池10で発電を行う場合、その効率を向上させるためには燃料利用率を上昇させるという手法がある。例えば、燃料電池10の出力電流が安定した状態で燃料利用率を上昇させるためには、改質部7への原燃料ガスの供給量を減少させればよい。但し、その場合には、燃焼部11で燃焼される、燃料電池10の発電反応で消費されずに排出される排出燃料ガス中の燃料ガスの量が減少するため、燃料電池10の筐体1の内部の温度が低下するという問題がある。尚、改質部7への改質用水の供給量を減少させると、燃料電池10の筐体1の内部の温度を上昇させることができるが、改質部7に供給する原燃料ガスの量及び改質用水の量を減少させる場合、先に改質部7への燃料ガスの供給量を減らすと、燃料電池10の筐体1の内部の温度が下がる現象が先に出て燃料電池10の運転状態が不安定になる可能性がある。但し、改質部7に供給する原燃料ガスの量及び改質用水の量の減少を同時に開始しても、改質用水は気化してから水蒸気として改質部7での改質処理に利用されるため、改質部7では、原燃料ガスの減少の方が、水蒸気(改質用水)の減少よりも先に現れると考えてもよい。そのため、原燃料ガスの減少による筐体1の内部の温度の低下が先に現れる可能性が高い。そして、場合によっては燃料電池10の運転状態が不安定になる。 When power is generated by the fuel cell 10, there is a method of increasing the fuel utilization rate in order to improve the efficiency. For example, in order to increase the fuel utilization rate in a state where the output current of the fuel cell 10 is stable, the supply amount of the raw fuel gas to the reforming unit 7 may be reduced. However, in that case, since the amount of fuel gas in the discharged fuel gas that is burned in the combustion unit 11 and is discharged without being consumed by the power generation reaction of the fuel cell 10 is reduced, the housing 1 of the fuel cell 10 There is a problem that the temperature inside the fuel cell drops. By reducing the amount of reforming water supplied to the reforming section 7, the temperature inside the housing 1 of the fuel cell 10 can be raised, but the amount of raw fuel gas supplied to the reforming section 7. When reducing the amount of reforming water, if the amount of fuel gas supplied to the reforming section 7 is reduced first, the phenomenon that the temperature inside the housing 1 of the fuel cell 10 drops first appears and the fuel cell 10 The operating condition of the vehicle may become unstable. However, even if the amount of raw fuel gas supplied to the reforming section 7 and the amount of reforming water are started to decrease at the same time, the reforming water is vaporized and then used as steam for the reforming process in the reforming section 7. Therefore, in the reforming section 7, it may be considered that the decrease in raw material and fuel gas appears before the decrease in steam (reforming water). Therefore, there is a high possibility that the temperature inside the housing 1 will decrease due to the decrease in raw material and fuel gas. Then, in some cases, the operating state of the fuel cell 10 becomes unstable.

図4は、第1実施形態の燃料利用率上昇処理を説明する図である。具体的には、図4は、改質部7(気化部6)への原燃料ガスの単位時間当たりの供給量及び改質用水の単位時間当たりの供給量の推移を示す図である。具体的には、運転制御部16が行う燃料利用率上昇処理は、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ改質部7への改質用水の供給量を目標水供給量まで減少させることで燃料電池10での燃料利用率を上昇させる処理である。つまり、この燃料利用率上昇処理は、燃料電池10の出力電流が変化している間には行われない。 FIG. 4 is a diagram illustrating the fuel utilization rate increase processing of the first embodiment. Specifically, FIG. 4 is a diagram showing changes in the supply amount of raw material fuel gas to the reforming unit 7 (vaporization unit 6) per unit time and the supply amount of reforming water per unit time. Specifically, the fuel utilization rate increase process performed by the operation control unit 16 reduces the supply amount of raw fuel gas to the reforming unit 7 to the target raw fuel supply amount while the output current of the fuel cell 10 is stable. This is a process for increasing the fuel utilization rate in the fuel cell 10 by reducing the supply amount of reforming water to the reforming unit 7 to the target water supply amount. That is, this fuel utilization rate increase process is not performed while the output current of the fuel cell 10 is changing.

本実施形態では、運転制御部16は、出力情報検出部20(出力電圧検出部18、出力電流検出部19)の検出結果に基づいて燃料電池10の出力情報が燃料利用率上昇処理を行う条件を満たしたと判定した場合に当該燃料利用率上昇処理を行う。図4に示す例では、運転制御部16は、出力情報検出部20(出力電圧検出部18、出力電流検出部19)の検出結果に基づいて燃料電池10が定格出力で設定期間動作した場合に燃料利用率上昇処理を行う条件を満たしたと判定する。燃料電池10の定格出力(定格出力電力、定格出力電流)の値は記憶部17に記憶されており、運転制御部16は、記憶部17に記憶されている燃料電池10の定格出力の値と、出力情報検出部20(出力電圧検出部18、出力電流検出部19)の検出結果とに基づいて、燃料電池10が定格出力であるか否かを判定できる。また、この場合の所定期間の長さは適宜設定される値であり、記憶部17に予め記憶されている。
図4に示す例では、時刻t10において運転制御部16は、燃料電池10が定格出力で設定期間動作したことで、燃料利用率上昇処理を行う条件を満たしたと判定する。
In the present embodiment, the operation control unit 16 is a condition in which the output information of the fuel cell 10 performs the fuel utilization rate increase processing based on the detection results of the output information detection unit 20 (output voltage detection unit 18, output current detection unit 19). When it is determined that the above conditions are satisfied, the fuel utilization rate increase process is performed. In the example shown in FIG. 4, the operation control unit 16 operates when the fuel cell 10 operates at the rated output for a set period based on the detection results of the output information detection unit 20 (output voltage detection unit 18, output current detection unit 19). It is determined that the conditions for performing the fuel utilization rate increase processing are satisfied. The value of the rated output (rated output power, rated output current) of the fuel cell 10 is stored in the storage unit 17, and the operation control unit 16 is the value of the rated output of the fuel cell 10 stored in the storage unit 17. Based on the detection results of the output information detection unit 20 (output voltage detection unit 18, output current detection unit 19), it can be determined whether or not the fuel cell 10 has a rated output. Further, the length of the predetermined period in this case is a value that is appropriately set and is stored in advance in the storage unit 17.
In the example shown in FIG. 4, the operation control unit 16 determines that the condition for performing the fuel utilization rate increase processing is satisfied because the fuel cell 10 operates at the rated output for a set period at time t10.

運転制御部16は、時刻t10以前では、図2の基準燃料利用率特性曲線上の点Aで示すような、燃料電池10の出力電流(定格出力電流Ia)に対応した燃料利用率Ufaを決定し、その燃料利用率Ufaを達成するために改質部7(気化部6)に供給する原燃料ガスの量(基準原燃料供給量Qfa)を決定する。そして、運転制御部16は、決定した基準原燃料供給量Qfaの原燃料ガスを原燃料供給量調節部2から気化部6に供給させている。
また、運転制御部16は、時刻t10以前では、図3の基準S/C特性曲線上の点Cで示すような、燃料電池10の出力電流(定格出力電流Ia)に対応したS/Cの値Raを決定し、上述した改質部7に供給する原燃料ガスの量(基準原燃料供給量Qfa)とS/Cの値Raとを達成するために改質部7に供給する改質用水の量(基準水供給量Qwa)を決定する。そして、運転制御部16は、決定した基準水供給量Qwaの改質用水を水供給量調節部4から気化部6に供給させている。
Before time t10, the operation control unit 16 determines the fuel utilization rate Ufa corresponding to the output current (rated output current Ia) of the fuel cell 10 as shown by the point A on the reference fuel utilization rate characteristic curve of FIG. Then, the amount of raw material fuel gas supplied to the reforming unit 7 (vaporization unit 6) (reference raw material fuel supply amount Qfa) is determined in order to achieve the fuel utilization rate Ufa. Then, the operation control unit 16 supplies the raw material fuel gas of the determined reference raw material fuel supply amount Qfa from the raw material fuel supply amount adjusting unit 2 to the vaporization unit 6.
Further, before the time t10, the operation control unit 16 has an S / C corresponding to the output current (rated output current Ia) of the fuel cell 10 as shown by the point C on the reference S / C characteristic curve of FIG. The value Ra is determined, and the reforming is supplied to the reforming unit 7 in order to achieve the amount of raw fuel gas (reference raw fuel supply amount Qfa) supplied to the reforming unit 7 and the S / C value Ra. Determine the amount of irrigation water (reference water supply amount Qwa). Then, the operation control unit 16 supplies the reforming water of the determined reference water supply amount Qwa from the water supply amount adjusting unit 4 to the vaporization unit 6.

時刻t10において運転制御部16は、燃料利用率上昇処理によって燃料利用率を上昇させるにあたっての目標原燃料供給量Qfb及び目標水供給量Qwbを決定する。例えば、図2に示すように、燃料電池10の出力電流が定格出力電流Iaの場合、燃料利用率上昇処理によって燃料利用率をUfaから、図2の点Bで示すようなUfbへと変化(上昇)させることが記憶部17に予め記憶されている。また、図3に示すように、燃料電池10の出力電流が定格出力電流Iaの場合、燃料利用率上昇処理によってS/CをRaから、図3の点Dで示すようなRbへと変化(低下)させることが記憶部17に予め記憶されている。そして、運転制御部16は、燃料電池10の出力電流が定格出力電流Iaの場合に、燃料利用率の値Ufb及びS/Cの値Rbを達成するための目標原燃料供給量Qfb及び目標水供給量Qwbを決定する。 At time t10, the operation control unit 16 determines the target raw fuel supply amount Qfb and the target water supply amount Qwb for increasing the fuel utilization rate by the fuel utilization rate increase process. For example, as shown in FIG. 2, when the output current of the fuel cell 10 is the rated output current Ia, the fuel utilization rate is changed from Ufa to Ufb as shown by point B in FIG. 2 by the fuel utilization rate increase processing ( It is stored in the storage unit 17 in advance to raise the fuel. Further, as shown in FIG. 3, when the output current of the fuel cell 10 is the rated output current Ia, the S / C is changed from Ra to Rb as shown by the point D in FIG. 3 by the fuel utilization rate increase processing ( It is stored in advance in the storage unit 17 to reduce). Then, the operation control unit 16 determines the target raw fuel supply amount Qfb and the target water for achieving the fuel utilization rate value Ufb and the S / C value Rb when the output current of the fuel cell 10 is the rated output current Ia. Determine the supply Qwb.

本実施形態では、運転制御部16は、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量Qfbまで減少させ且つ改質部7への改質用水の供給量を目標水供給量Qwbまで減少させることで燃料電池10での燃料利用率をUfbまで上昇させる燃料利用率上昇処理を行う場合、水供給量調節部4の動作を制御して改質部7への改質用水の供給量の減少を開始した後に所定の処理継続条件が満たされたか否かを判定し、処理継続条件が満たされた後に改質部7への原燃料ガスの供給量の減少を開始させる。 In the present embodiment, the operation control unit 16 reduces the supply amount of the raw material fuel gas to the reforming unit 7 to the target raw material fuel supply amount Qfb in a state where the output current of the fuel cell 10 is stable, and the reforming unit 7 When the fuel utilization rate increase process for increasing the fuel utilization rate in the fuel cell 10 to Ufb is performed by reducing the supply amount of reforming water to the target water supply amount Qwb, the operation of the water supply amount adjusting unit 4 is performed. After controlling and starting to reduce the supply amount of reforming water to the reforming unit 7, it is determined whether or not the predetermined treatment continuation condition is satisfied, and after the treatment continuation condition is satisfied, the reforming unit 7 is subjected to. Start reducing the supply of raw materials and fuel gas.

つまり、時刻t10において運転制御部16は、時間的に先に改質部7への改質用水の供給量を基準水供給量Qwaから目標水供給量Qwbへと減少させるが、改質部7への原燃料ガスの供給量は変化させずに基準原燃料供給量Qfaのまま維持する。
そして、運転制御部16は、所定の処理継続条件が満たされたか否かを判定する。
That is, at time t10, the operation control unit 16 first reduces the supply amount of reforming water to the reforming unit 7 from the reference water supply amount Qwa to the target water supply amount Qwb, but the reforming unit 7 The supply amount of raw material fuel gas to is maintained unchanged at the standard raw material fuel supply amount Qfa.
Then, the operation control unit 16 determines whether or not the predetermined processing continuation condition is satisfied.

その後、時刻t11において運転制御部16は、以下のように、処理継続条件が満たされたと判定した場合、改質部7への原燃料ガスの供給量を基準原燃料供給量Qfaから目標原燃料供給量Qfbへと減少させる。このように、運転制御部16は、改質部7への改質用水の供給量の減少を開始した後に、改質部7への原燃料ガスの供給量の減少を開始させる。 After that, at time t11, when the operation control unit 16 determines that the processing continuation condition is satisfied as described below, the supply amount of the raw fuel gas to the reforming unit 7 is determined from the reference raw fuel supply amount Qfa to the target raw fuel. Reduce to supply Qfb. In this way, the operation control unit 16 starts reducing the supply amount of the raw fuel gas to the reforming unit 7 after starting the reduction of the supply amount of the reforming water to the reforming unit 7.

例えば、運転制御部16は、内部温度検出部13が検出する筐体1の内部の温度が所定期間連続して基準内部温度以上である場合、処理継続条件が満たされたと判定する。この場合の所定期間の長さ及び基準内部温度の値は適宜設定される値であり、記憶部17に予め記憶されている。つまり、筐体1の内部の温度が十分に安定して高い状態で、改質部7(気化部6)への原燃料ガスの供給量の減少が行われる。その結果、改質部7への原燃料ガスの供給量の減少に伴って筐体1の内部の温度が低下傾向になるとしても、筐体1の内部の温度が低くなり過ぎることを回避できる。 For example, the operation control unit 16 determines that the processing continuation condition is satisfied when the temperature inside the housing 1 detected by the internal temperature detection unit 13 is continuously equal to or higher than the reference internal temperature for a predetermined period. In this case, the length of the predetermined period and the value of the reference internal temperature are values that are appropriately set and are stored in advance in the storage unit 17. That is, the supply amount of the raw material fuel gas to the reforming unit 7 (vaporization unit 6) is reduced while the temperature inside the housing 1 is sufficiently stable and high. As a result, even if the temperature inside the housing 1 tends to decrease as the supply amount of the raw material fuel gas to the reforming unit 7 decreases, it is possible to prevent the temperature inside the housing 1 from becoming too low. ..

或いは、運転制御部16は、改質部7への改質用水の供給量の減少を開始した後、出力電圧検出部18が検出する燃料電池10の出力電圧が所定期間連続して基準電圧以上である場合、処理継続条件が満たされたと判定する。この場合の所定期間の長さ及び基準電圧の値は適宜設定される値であり、記憶部17に予め記憶されている。つまり、燃料電池10の出力電圧が十分に安定して高い状態、即ち、燃料電池10の運転状態が安定した状態で、改質部7(気化部6)への原燃料ガスの供給量の減少が行われる。その結果、改質部7への原燃料ガスの供給量の減少に伴って筐体1の内部の温度が低下傾向になるとしても、燃料電池10の運転状態が悪化することを回避できる。 Alternatively, after the operation control unit 16 starts reducing the amount of reforming water supplied to the reforming unit 7, the output voltage of the fuel cell 10 detected by the output voltage detecting unit 18 continuously exceeds the reference voltage for a predetermined period. If, it is determined that the processing continuation condition is satisfied. In this case, the length of the predetermined period and the value of the reference voltage are values that are appropriately set and are stored in advance in the storage unit 17. That is, when the output voltage of the fuel cell 10 is sufficiently stable and high, that is, when the operating state of the fuel cell 10 is stable, the amount of raw fuel gas supplied to the reforming section 7 (vaporizing section 6) is reduced. Is done. As a result, even if the temperature inside the housing 1 tends to decrease as the amount of raw fuel gas supplied to the reforming unit 7 decreases, it is possible to avoid deterioration of the operating state of the fuel cell 10.

また或いは、運転制御部16は、所定の待機時間が経過した場合、処理継続条件が満たされたと判定する。この場合の待機時間の長さは適宜設定される値であり、記憶部17に予め記憶されている。例えば、この待機時間の長さは、改質用水の供給量の変化の応答遅れ、即ち、気化部6への改質用水の供給量を変化させた後、改質部7へ供給される水蒸気量が変化するまでの要する時間などに設定される。つまり、改質部7(気化部6)への改質用水の供給量を減少させて所定の待機時間が経過することで筐体1の内部の温度が上昇し得る状態にした後で、改質部7への原燃料ガスの供給量の減少が行われる。その結果、改質部7への原燃料ガスの供給量の減少に伴って筐体1の内部の温度が低下傾向になるとしても、先に開始されている改質部7への改質用水の供給量の減少に伴って筐体1の内部の温度が上昇傾向になることと相殺されるため、筐体1の内部の温度に大きな変化が生じないことが期待される。 Alternatively, the operation control unit 16 determines that the processing continuation condition is satisfied when the predetermined standby time has elapsed. The length of the waiting time in this case is a value that is appropriately set and is stored in advance in the storage unit 17. For example, the length of this standby time is a delay in response to a change in the amount of reformed water supplied, that is, steam supplied to the reformed unit 7 after changing the amount of reformed water supplied to the vaporizing unit 6. It is set to the time required for the amount to change. That is, after reducing the supply amount of reforming water to the reforming section 7 (vaporizing section 6) so that the temperature inside the housing 1 can rise as a predetermined standby time elapses, the modification is performed. The supply amount of raw material fuel gas to the quality part 7 is reduced. As a result, even if the temperature inside the housing 1 tends to decrease as the supply amount of the raw material fuel gas to the reforming section 7 decreases, the reforming water for the reforming section 7 that has been started earlier It is expected that the temperature inside the housing 1 will not change significantly because the temperature inside the housing 1 tends to rise as the supply amount of the housing 1 decreases.

このような一連の制御により、運転制御部16は、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量Qfbまで減少させ且つ改質部7への改質用水の供給量を目標水供給量Qwbまで減少させることで燃料電池10での燃料利用率をUfbまで上昇させる燃料利用率上昇処理を行う。 By such a series of control, the operation control unit 16 reduces and modifies the supply amount of the raw material fuel gas to the reforming unit 7 to the target raw material fuel supply amount Qfb in a state where the output current of the fuel cell 10 is stable. By reducing the supply amount of reforming water to the quality unit 7 to the target water supply amount Qwb, the fuel utilization rate increase process for increasing the fuel utilization rate in the fuel cell 10 to Ufb is performed.

尚、運転制御部16は、燃料利用率上昇処理を行っている間に燃料電池10の出力電流が設定値以上変化した場合、燃料利用率上昇処理を中止して、燃料電池10での燃料利用率が元の値に戻るように改質部7への原燃料ガスの供給量と改質部7への改質用水の供給量を調節する。図4に示す例では、時刻t12において運転制御部16は、出力情報検出部20(出力電圧検出部18、出力電流検出部19)の検出結果に基づいて、燃料電池10が定格出力で無くなったと判定する。そして、運転制御部16は、燃料電池10での燃料利用率が元の値Ufaに戻るように、改質部7への原燃料ガスの供給量を基準原燃料供給量Qfaに変化させ、改質部7への改質用水の供給量を基準水供給量Qwaに変化させる。 If the output current of the fuel cell 10 changes by a set value or more while the fuel utilization rate increasing process is being performed, the operation control unit 16 stops the fuel utilization rate increasing process and uses the fuel in the fuel cell 10. The amount of raw fuel gas supplied to the reforming unit 7 and the amount of reforming water supplied to the reforming unit 7 are adjusted so that the rate returns to the original value. In the example shown in FIG. 4, at time t12, the operation control unit 16 states that the fuel cell 10 has lost its rated output based on the detection results of the output information detection unit 20 (output voltage detection unit 18, output current detection unit 19). judge. Then, the operation control unit 16 changes the supply amount of the raw fuel gas to the reforming unit 7 to the reference raw fuel supply amount Qfa so that the fuel utilization rate in the fuel cell 10 returns to the original value Ufa. The amount of reforming water supplied to the quality part 7 is changed to the reference water supply amount Qwa.

以上のように、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ改質部7への改質用水の供給量を目標水供給量まで減少させることで燃料電池10での燃料利用率を上昇させる燃料利用率上昇処理を行うことで、燃料電池10の効率を向上させることができる。
加えて、燃料利用率上昇処理を行う場合、改質部7への改質用水の供給量の減少を開始した後に改質部7への原燃料ガスの供給量の減少を開始させる。つまり、改質部7への改質用水の供給量を減少させて、筐体1の内部の温度が上昇し得る状態にした後で、改質部7への原燃料ガスの供給量を減少させる。その結果、改質部7への原燃料ガスの供給量の減少に伴って筐体1の内部の温度が低下傾向になるとしても、先に開始されている改質部7への改質用水の供給量の減少に伴って筐体1の内部の温度が上昇傾向になることと相殺されるため、筐体1の内部の温度に大きな変化が生じないことが期待される。
As described above, while the output current of the fuel cell 10 is stable, the supply amount of the raw material fuel gas to the reforming unit 7 is reduced to the target raw material fuel supply amount, and the reforming water is supplied to the reforming unit 7. The efficiency of the fuel cell 10 can be improved by performing the fuel utilization rate increase treatment for increasing the fuel utilization rate in the fuel cell 10 by reducing the amount to the target water supply amount.
In addition, when the fuel utilization rate increase treatment is performed, the reduction of the supply amount of the raw fuel gas to the reforming unit 7 is started after the reduction of the supply amount of the reforming water to the reforming unit 7 is started. That is, after reducing the amount of reforming water supplied to the reforming unit 7 so that the temperature inside the housing 1 can rise, the amount of raw fuel gas supplied to the reforming unit 7 is reduced. Let me. As a result, even if the temperature inside the housing 1 tends to decrease as the supply amount of the raw material fuel gas to the reforming section 7 decreases, the reforming water for the reforming section 7 that has been started earlier It is expected that the temperature inside the housing 1 will not change significantly because the temperature inside the housing 1 tends to rise as the supply amount of the housing 1 decreases.

<第2実施形態>
第2実施形態の燃料電池装置は、燃料利用率上昇処理の内容が上記実施形態と異なっている。以下に第2実施形態の燃料電池装置について説明するが、上記実施形態と同様の構成については説明を省略する。
<Second Embodiment>
The fuel cell device of the second embodiment is different from the above-described embodiment in the content of the fuel utilization rate increase processing. The fuel cell device of the second embodiment will be described below, but the description of the same configuration as that of the above embodiment will be omitted.

図5は第2実施形態の燃料利用率上昇処理を説明する図である。具体的には、図5は、改質部7(気化部6)への原燃料ガスの単位時間当たりの供給量及び改質用水の単位時間当たりの供給量の推移を示す図である。図示するように、運転制御部16は、燃料利用率上昇処理において、改質部7(気化部6)への原燃料ガスの供給量を目標原燃料供給量Qfbまで段階的に減少させる。図5に示す例では、運転制御部16は、改質部7への原燃料ガスの供給量を、基準原燃料供給量Qfaから、値Qf1及び値Qf2を経て、最終的に目標原燃料供給量Qfbへと段階的に減少させる。
また、運転制御部16は、燃料利用率上昇処理において、改質部7(気化部6)への改質用水の供給量を目標水供給量Qwbまで段階的に減少させる。図5に示す例では、運転制御部16は、改質部7への改質用水の供給量を、基準水供給量Qwaから、値Qw1を経て、最終的に目標水供給量Qwbへと段階的に減少させる。
FIG. 5 is a diagram illustrating the fuel utilization rate increase processing of the second embodiment. Specifically, FIG. 5 is a diagram showing changes in the supply amount of raw fuel gas to the reforming unit 7 (vaporization unit 6) per unit time and the supply amount of reforming water per unit time. As shown in the figure, the operation control unit 16 gradually reduces the supply amount of the raw material fuel gas to the reforming unit 7 (vaporization unit 6) to the target raw material fuel supply amount Qfb in the fuel utilization rate increase process. In the example shown in FIG. 5, the operation control unit 16 finally supplies the raw material fuel gas to the reforming unit 7 from the reference raw material fuel supply amount Qfa through the values Qf1 and the value Qf2. The amount is gradually reduced to Qfb.
Further, the operation control unit 16 gradually reduces the supply amount of reforming water to the reforming unit 7 (vaporization unit 6) to the target water supply amount Qwb in the fuel utilization rate increase process. In the example shown in FIG. 5, the operation control unit 16 steps the supply amount of reforming water to the reforming unit 7 from the reference water supply amount Qwa, through the value Qw1, and finally to the target water supply amount Qwb. To reduce.

具体的に説明すると、時刻t20において運転制御部16は、時間的に先に改質部7への改質用水の供給量を基準水供給量Qwaから値Qw1へと減少させるが、改質部7への原燃料ガスの供給量は変化させずに基準原燃料供給量Qfaのまま維持する。
そして、運転制御部16は、所定の処理継続条件が満たされたか否かを判定する。この処理継続条件は第1実施形態で説明したのと同様である。
Specifically, at time t20, the operation control unit 16 first reduces the supply amount of reforming water to the reforming unit 7 from the reference water supply amount Qwa to the value Qw1, but the reforming unit The supply amount of raw material fuel gas to 7 is maintained as the standard raw material fuel supply amount Qfa without changing.
Then, the operation control unit 16 determines whether or not the predetermined processing continuation condition is satisfied. This processing continuation condition is the same as described in the first embodiment.

その後、時刻t21において運転制御部16は、処理継続条件が満たされたと判定して、改質部7への原燃料ガスの供給量を基準原燃料供給量Qfaから値Qf1へと減少させる。このように、運転制御部16は、改質部7への改質用水の供給量の減少を開始した後に、改質部7への原燃料ガスの供給量の減少を開始させる。 After that, at time t21, the operation control unit 16 determines that the processing continuation condition is satisfied, and reduces the supply amount of the raw fuel gas to the reforming unit 7 from the reference raw fuel supply amount Qfa to the value Qf1. In this way, the operation control unit 16 starts reducing the supply amount of the raw fuel gas to the reforming unit 7 after starting the reduction of the supply amount of the reforming water to the reforming unit 7.

次に、時刻t22において運転制御部16は、処理継続条件が満たされたと判定して、改質部7への改質用水の供給量を値Qw1から目標水供給量Qwbへと減少させる。
そして、運転制御部16は、時刻t23において処理継続条件が満たされたと判定して、改質部7への原燃料ガスの供給量を値Qf1から値Qf2へと減少させ、時刻t24において処理継続条件が満たされたと判定して、改質部7への原燃料ガスの供給量を値Qf2から目標原燃料供給量Qfbへと減少させる。
Next, at time t22, the operation control unit 16 determines that the processing continuation condition is satisfied, and reduces the supply amount of reforming water to the reforming unit 7 from the value Qw1 to the target water supply amount Qwb.
Then, the operation control unit 16 determines that the processing continuation condition is satisfied at the time t23, reduces the supply amount of the raw material fuel gas to the reforming unit 7 from the value Qf1 to the value Qf2, and continues the processing at the time t24. It is determined that the conditions are satisfied, and the supply amount of the raw material fuel gas to the reforming unit 7 is reduced from the value Qf2 to the target raw material fuel supply amount Qfb.
..

このような一連の制御により、運転制御部16は、燃料電池10の出力電流が安定した状態で、改質部7への原燃料ガスの供給量を目標原燃料供給量Qfbまで減少させ且つ改質部7への改質用水の供給量を目標水供給量Qwbまで減少させることで燃料電池10での燃料利用率をUfbまで上昇させる燃料利用率上昇処理を行う。 By such a series of control, the operation control unit 16 reduces and modifies the supply amount of the raw material fuel gas to the reforming unit 7 to the target raw material fuel supply amount Qfb in a state where the output current of the fuel cell 10 is stable. By reducing the supply amount of reforming water to the quality unit 7 to the target water supply amount Qwb, the fuel utilization rate increase process for increasing the fuel utilization rate in the fuel cell 10 to Ufb is performed.

また、第1実施形態で説明したのと同様に、運転制御部16は、燃料利用率上昇処理を行っている間に燃料電池10の出力電流が設定値以上変化した場合、燃料利用率上昇処理を中止して、燃料電池10での燃料利用率が元の値に戻るように改質部7への原燃料ガスの供給量と改質部7への改質用水の供給量を調節する。図5に示す例では、時刻t25において運転制御部16は、出力情報検出部20(出力電圧検出部18、出力電流検出部19)の検出結果に基づいて、燃料電池10が定格出力で無くなったと判定する。そして、運転制御部16は、燃料電池10での燃料利用率が元の値Ufaに戻るように、改質部7への原燃料ガスの供給量を基準原燃料供給量Qfaに変化させ、改質部7への改質用水の供給量を基準水供給量Qwaに変化させる。 Further, as described in the first embodiment, the operation control unit 16 performs the fuel utilization rate increase process when the output current of the fuel cell 10 changes by the set value or more during the fuel utilization rate increase process. Is stopped, and the amount of raw fuel gas supplied to the reforming unit 7 and the amount of reforming water supplied to the reforming unit 7 are adjusted so that the fuel utilization rate in the fuel cell 10 returns to the original value. In the example shown in FIG. 5, at time t25, the operation control unit 16 states that the fuel cell 10 has lost its rated output based on the detection results of the output information detection unit 20 (output voltage detection unit 18, output current detection unit 19). judge. Then, the operation control unit 16 changes the supply amount of the raw fuel gas to the reforming unit 7 to the reference raw fuel supply amount Qfa so that the fuel utilization rate in the fuel cell 10 returns to the original value Ufa. The amount of reforming water supplied to the quality part 7 is changed to the reference water supply amount Qwa.

以上のように、本実施形態では、燃料利用率上昇処理において、改質部7への原燃料ガスの供給量の減少が段階的に行われるので、改質部7への原燃料ガスの供給量を減少することに伴って筐体1の内部の温度が低下することも段階的に発生する。つまり、改質部7への原燃料ガスの供給量を目標原燃料供給量まで減少させる場合に筐体1の内部の温度が急激に変化することが回避される。その結果、燃料電池10の運転状態が不安定になることを回避できる。
また、燃料利用率上昇処理において、改質部7への改質用水の供給量の減少が段階的に行われるので、改質部7への改質用水の供給量を減少することに伴って筐体1の内部の温度が上昇することも段階的に発生する。つまり、改質部7への改質用水の供給量を目標水供給量まで減少させる場合に筐体1の内部の温度が急激に変化することが回避される。その結果、燃料電池10の運転状態が不安定になることを回避できる。
As described above, in the present embodiment, in the fuel utilization rate increase process, the supply amount of the raw material fuel gas to the reforming unit 7 is gradually reduced, so that the raw material fuel gas is supplied to the reforming unit 7. As the amount is reduced, the temperature inside the housing 1 also gradually decreases. That is, when the supply amount of the raw material fuel gas to the reforming unit 7 is reduced to the target raw material fuel supply amount, it is possible to avoid a sudden change in the temperature inside the housing 1. As a result, it is possible to prevent the operating state of the fuel cell 10 from becoming unstable.
Further, in the fuel utilization rate increase treatment, the supply amount of reforming water to the reforming section 7 is gradually reduced, so that the supply amount of reforming water to the reforming section 7 is reduced. The temperature inside the housing 1 also rises step by step. That is, when the supply amount of reforming water to the reforming unit 7 is reduced to the target water supply amount, it is possible to avoid a sudden change in the temperature inside the housing 1. As a result, it is possible to prevent the operating state of the fuel cell 10 from becoming unstable.

<別実施形態>
<1>
上記実施形態では、燃料電池装置の構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
<Another Embodiment>
<1>
In the above embodiment, the configuration of the fuel cell device has been described with specific examples, but the configuration can be changed as appropriate.

<2>
上記実施形態では、燃料電池10の出力電流Iと燃料電池10での燃料利用率Ufとの関係(図2)、及び、燃料電池10の出力電流Iと改質部7での改質処理のS/Cとの関係(図3)について説明したが、それらは例示目的で記載したものであり、適宜変更可能である。
<2>
In the above embodiment, the relationship between the output current I of the fuel cell 10 and the fuel utilization rate Uf in the fuel cell 10 (FIG. 2), and the output current I of the fuel cell 10 and the reforming process in the reforming unit 7 are performed. The relationship with S / C (FIG. 3) has been described, but they are described for exemplification purposes and can be changed as appropriate.

<3>
上記実施形態では、燃料利用率上昇処理において燃料利用率を上昇させると共にS/Cを低下させる例を説明したが、S/Cを一定のままにしてもよい。その場合であっても、燃料利用率を上昇させるために改質部7への原燃料ガスの供給量を減少させると、S/Cを一定に維持するためには改質部7への改質用水の供給量も減少させる必要があるため、運転制御部16は、改質部7への改質用水の供給量の減少を開始した後に、改質部7への原燃料ガスの供給量の減少を開始させればよい。
<3>
In the above embodiment, an example in which the fuel utilization rate is increased and the S / C is decreased in the fuel utilization rate increase process has been described, but the S / C may be kept constant. Even in that case, if the amount of raw fuel gas supplied to the reforming unit 7 is reduced in order to increase the fuel utilization rate, the modification to the reforming unit 7 is performed in order to maintain the S / C constant. Since it is also necessary to reduce the supply amount of quality water, the operation control unit 16 starts to reduce the supply amount of reforming water to the reforming unit 7, and then supplies the raw material fuel gas to the reforming unit 7. Should be started to decrease.

<4>
上記実施形態では、燃料電池10が定格出力で設定期間動作した場合に燃料利用率上昇処理を行う条件を満たしたと判定される例を説明したが、燃料電池10の出力(出力情報)がどのような状態になった場合に燃料利用率上昇処理を行う条件を満たしたと判定されるのかは適宜設定可能である。例えば、運転制御部16は、燃料電池10が定格の90%出力や70%出力などの所定の一定出力で設定期間動作した場合に燃料利用率上昇処理を行う条件を満たしたと判定してもよい。
<4>
In the above embodiment, an example in which it is determined that the condition for performing the fuel utilization rate increase processing is satisfied when the fuel cell 10 operates at the rated output for a set period has been described, but what is the output (output information) of the fuel cell 10? It is possible to appropriately set whether or not it is determined that the condition for performing the fuel utilization rate increase processing is satisfied in the case of such a state. For example, the operation control unit 16 may determine that the condition for performing the fuel utilization rate increase process is satisfied when the fuel cell 10 operates at a predetermined constant output such as 90% output or 70% output of the rating for a set period. ..

<5>
上記実施形態において、改質部7への原燃料ガス及び改質用水の供給量を連続的に変化させてもよい。
例えば、図2に示した例では、時刻t10において改質部7への原燃料ガス及び改質用水の供給量を基準原燃料供給量Qfaから目標原燃料供給量Qfbまで減少させたが、例えば、時刻t10から設定期間(例えば数秒間など)をかけて改質部7への原燃料ガスの供給量を連続的に変化させてもよい。
<5>
In the above embodiment, the supply amounts of the raw fuel gas and the reforming water to the reforming unit 7 may be continuously changed.
For example, in the example shown in FIG. 2, the supply amount of the raw material fuel gas and the reforming water to the reforming unit 7 was reduced from the reference raw material fuel supply amount Qfa to the target raw material fuel supply amount Qfb at time t10. , The amount of raw material fuel gas supplied to the reforming unit 7 may be continuously changed over a set period (for example, several seconds) from time t10.

<6>
尚、上記実施形態(別実施形態を含む)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
<6>
The configurations disclosed in the above embodiment (including another embodiment) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and the present specification. The embodiment disclosed in the above is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、燃料電池の運転状態が安定したままで燃料利用率を上げることができる燃料電池装置に利用できる。 The present invention can be used in a fuel cell device capable of increasing the fuel utilization rate while the operating state of the fuel cell remains stable.

1 筐体
2 原燃料供給量調節部
4 水供給量調節部
7 改質部
9 セル
9a アノード
9b カソード
10 燃料電池(セルスタック)
11 燃焼部
13 内部温度検出部
15 酸素供給量調節部
16 運転制御部
18 出力電圧検出部(出力情報検出部 20)
19 出力電流検出部(出力情報検出部 20)
1 Housing 2 Raw fuel supply amount adjustment unit 4 Water supply amount adjustment unit 7 Reforming unit 9 Cell 9a Anode 9b Cathode 10 Fuel cell (cell stack)
11 Combustion unit 13 Internal temperature detection unit 15 Oxygen supply amount adjustment unit 16 Operation control unit 18 Output voltage detection unit (output information detection unit 20)
19 Output current detector (output information detector 20)

Claims (10)

原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成する改質部と、
前記改質部で生成された前記燃料ガスが供給されるアノード及び酸素ガスが供給されるカソードを有する燃料電池と、
発電反応で用いられた後に前記アノードから排出される排出燃料ガスに含まれる前記燃料ガスを燃焼させ、その燃焼熱によって前記改質部を加熱する燃焼部と、
前記改質部への原燃料ガスの供給量を調節する原燃料供給量調節部と、
前記改質部への改質用水の供給量を調節する水供給量調節部と、
前記カソード及び前記燃焼部への前記酸素ガスの供給量を調節する酸素供給量調節部と、
前記原燃料供給量調節部及び前記酸素供給量調節部及び前記水供給量調節部の動作を制御する運転制御部とを備え、
前記改質部と前記燃料電池と前記燃焼部とは筐体の内部に収容され、
前記運転制御部は、前記燃料電池の出力電流が安定した状態で、前記改質部への原燃料ガスの供給量を目標原燃料供給量まで減少させ且つ前記改質部への改質用水の供給量を目標水供給量まで減少させることで前記燃料電池での燃料利用率を上昇させる燃料利用率上昇処理を行う場合、前記水供給量調節部の動作を制御して前記改質部への改質用水の供給量の減少を開始した後に所定の処理継続条件が満たされたか否かを判定し、前記処理継続条件が満たされた後に前記改質部への原燃料ガスの供給量の減少を開始させる燃料電池装置。
A reforming unit that steam reforms raw fuel gas to generate fuel gas containing hydrogen,
A fuel cell having an anode to which the fuel gas is supplied and a cathode to which the oxygen gas is supplied generated in the reforming unit,
A combustion unit that burns the fuel gas contained in the exhaust fuel gas discharged from the anode after being used in a power generation reaction and heats the reforming unit by the combustion heat.
A raw fuel supply amount adjusting unit that adjusts the raw material fuel supply amount to the reforming unit,
A water supply amount adjusting unit that adjusts the supply amount of reforming water to the reforming unit,
An oxygen supply amount adjusting unit that adjusts the supply amount of the oxygen gas to the cathode and the combustion unit, and
It includes the raw material fuel supply amount adjusting unit, the oxygen supply amount adjusting unit, and an operation control unit that controls the operation of the water supply amount adjusting unit.
The reforming unit, the fuel cell, and the combustion unit are housed inside the housing.
The operation control unit reduces the supply amount of raw fuel gas to the reforming unit to the target raw material fuel supply amount in a state where the output current of the fuel cell is stable, and reforming water to the reforming unit. When the fuel utilization rate increasing process for increasing the fuel utilization rate in the fuel cell is performed by reducing the supply amount to the target water supply amount, the operation of the water supply amount adjusting unit is controlled to the reforming unit. After starting to reduce the supply amount of reforming water, it is determined whether or not the predetermined treatment continuation condition is satisfied, and after the treatment continuation condition is satisfied, the supply amount of raw fuel gas to the reforming portion is reduced. Fuel cell device to start.
前記筐体の内部の所定部位の温度を検出する内部温度検出部を備え、
前記運転制御部は、前記内部温度検出部が検出する前記筐体の内部の温度が所定期間連続して基準内部温度以上である場合、前記処理継続条件が満たされたと判定する請求項1に記載の燃料電池装置。
It is provided with an internal temperature detection unit that detects the temperature of a predetermined portion inside the housing.
The first aspect of claim 1, wherein the operation control unit determines that the processing continuation condition is satisfied when the temperature inside the housing detected by the internal temperature detection unit is continuously equal to or higher than the reference internal temperature for a predetermined period. Fuel cell device.
前記燃料電池の出力電圧を検出する出力電圧検出部を備え、
前記運転制御部は、前記改質部への改質用水の供給量の減少を開始した後、前記出力電圧検出部が検出する前記燃料電池の出力電圧が所定期間連続して基準電圧以上である場合、前記処理継続条件が満たされたと判定する請求項1又は2に記載の燃料電池装置。
It is provided with an output voltage detection unit that detects the output voltage of the fuel cell.
After the operation control unit starts reducing the amount of reforming water supplied to the reforming unit, the output voltage of the fuel cell detected by the output voltage detecting unit is continuously equal to or higher than the reference voltage for a predetermined period. The fuel cell device according to claim 1 or 2, wherein it is determined that the processing continuation condition is satisfied.
前記運転制御部は、所定の待機時間が経過した場合、前記処理継続条件が満たされたと判定する請求項1〜3の何れか一項に記載の燃料電池装置。 The fuel cell device according to any one of claims 1 to 3, wherein the operation control unit determines that the processing continuation condition is satisfied when a predetermined standby time has elapsed. 前記燃料電池の出力電力及び出力電流のうちの少なくとも出力電流を出力情報として検出する出力情報検出部を備え、
前記運転制御部は、前記出力情報検出部の検出結果に基づいて前記燃料電池の前記出力情報が前記燃料利用率上昇処理を行う条件を満たしたと判定した場合に当該燃料利用率上昇処理を行う請求項1〜4の何れか一項に記載の燃料電池装置。
It is provided with an output information detection unit that detects at least the output current of the output power and output current of the fuel cell as output information.
When the operation control unit determines that the output information of the fuel cell satisfies the condition for performing the fuel utilization rate increase process based on the detection result of the output information detection unit, the operation control unit performs the fuel utilization rate increase process. Item 2. The fuel cell device according to any one of Items 1 to 4.
前記運転制御部は、前記出力情報検出部の検出結果に基づいて、前記燃料電池が定格出力で設定期間動作した場合に前記燃料利用率上昇処理を行う条件を満たしたと判定する請求項5に記載の燃料電池装置。 The fifth aspect of claim 5 is that the operation control unit determines that the condition for performing the fuel utilization rate increase process is satisfied when the fuel cell operates at a rated output for a set period based on the detection result of the output information detection unit. Fuel cell device. 前記運転制御部は、前記燃料利用率上昇処理を行っている間に前記燃料電池の出力が定格出力ではなくなった場合、前記燃料利用率上昇処理を中止して、前記燃料電池での燃料利用率が元の値に戻るように前記改質部への原燃料ガスの供給量と前記改質部への改質用水の供給量を調節する請求項6に記載の燃料電池装置。 If the output of the fuel cell is no longer the rated output during the fuel utilization rate increase process, the operation control unit stops the fuel utilization rate increase process and the fuel utilization rate in the fuel cell. The fuel cell device according to claim 6, wherein the supply amount of the raw material fuel gas to the reforming section and the supply amount of reforming water to the reforming section are adjusted so that the value returns to the original value. 前記運転制御部は、前記燃料利用率上昇処理において、前記改質部への原燃料ガスの供給量を前記目標原燃料供給量まで段階的に減少させる請求項1〜7の何れか一項に記載の燃料電池装置。 According to any one of claims 1 to 7, the operation control unit gradually reduces the supply amount of raw material fuel gas to the reforming unit to the target raw material fuel supply amount in the fuel utilization rate increase process. The described fuel cell device. 前記運転制御部は、前記燃料利用率上昇処理において、前記改質部への改質用水の供給量を前記目標水供給量まで段階的に減少させる請求項1〜8の何れか一項に記載の燃料電池装置。 The operation control unit according to any one of claims 1 to 8, wherein in the fuel utilization rate increase treatment, the amount of reforming water supplied to the reforming unit is gradually reduced to the target water supply amount. Fuel cell device. 前記筐体の内部の所定部位の温度を検出する内部温度検出部を備え、
前記運転制御部は、前記燃料利用率上昇処理を行っている間、前記内部温度検出部が検出する温度が目標内部温度に近づくように、前記酸素供給量調節部の動作を制御する請求項1〜9の何れか一項に記載の燃料電池装置。
It is provided with an internal temperature detection unit that detects the temperature of a predetermined portion inside the housing.
The operation control unit controls the operation of the oxygen supply amount adjusting unit so that the temperature detected by the internal temperature detecting unit approaches the target internal temperature while the fuel utilization rate increasing process is being performed. The fuel cell device according to any one of 9 to 9.
JP2020054990A 2020-03-25 2020-03-25 Fuel cell device Active JP6755425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054990A JP6755425B1 (en) 2020-03-25 2020-03-25 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054990A JP6755425B1 (en) 2020-03-25 2020-03-25 Fuel cell device

Publications (2)

Publication Number Publication Date
JP6755425B1 true JP6755425B1 (en) 2020-09-16
JP2021157896A JP2021157896A (en) 2021-10-07

Family

ID=72432364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054990A Active JP6755425B1 (en) 2020-03-25 2020-03-25 Fuel cell device

Country Status (1)

Country Link
JP (1) JP6755425B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868268B1 (en) * 2011-01-05 2012-02-01 Toto株式会社 Solid oxide fuel cell
JP5804261B2 (en) * 2011-09-29 2015-11-04 Toto株式会社 Solid oxide fuel cell
JP2015204172A (en) * 2014-04-11 2015-11-16 Jx日鉱日石エネルギー株式会社 fuel cell system
JP6721363B2 (en) * 2016-03-11 2020-07-15 大阪瓦斯株式会社 Fuel cell system and operating method thereof

Also Published As

Publication number Publication date
JP2021157896A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US4904548A (en) Method for controlling a fuel cell
JP6066580B2 (en) Fuel cell system
US6572993B2 (en) Fuel cell systems with controlled anode exhaust
JP6759573B2 (en) Fuel cell system control method and fuel cell system
JP2017050049A (en) Fuel battery system
JP2018110079A (en) Fuel cell system and operation method therefor
JP6755425B1 (en) Fuel cell device
JP6721363B2 (en) Fuel cell system and operating method thereof
JP2004207135A (en) Fuel cell power generating system
JP5765668B2 (en) Solid oxide fuel cell
JP5748055B2 (en) Solid oxide fuel cell
JP2008248851A (en) Flow rate control method and device for pump device
JP6500997B2 (en) Fuel cell system and control method thereof
JP3999513B2 (en) Fuel cell power generation system and operation method thereof
JP2013164928A (en) Solid oxide fuel cell system, and operation method of solid oxide fuel cell system
JP6607803B2 (en) Fuel cell system
JP6637778B2 (en) Fuel cell system
JP6804686B1 (en) Fuel cell device and fuel cell management system
JP6804685B1 (en) Fuel cell device and fuel cell management system
JP7066561B2 (en) Fuel cell module and program
JP6804679B1 (en) Fuel cell device and fuel cell management system
JP5783370B2 (en) Solid oxide fuel cell
WO2021085088A1 (en) Fuel cell device
JP2004315284A (en) Reformer, and system using reformer
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6755425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250