JP6755376B2 - Spherical calcium fluoride - Google Patents

Spherical calcium fluoride Download PDF

Info

Publication number
JP6755376B2
JP6755376B2 JP2019176755A JP2019176755A JP6755376B2 JP 6755376 B2 JP6755376 B2 JP 6755376B2 JP 2019176755 A JP2019176755 A JP 2019176755A JP 2019176755 A JP2019176755 A JP 2019176755A JP 6755376 B2 JP6755376 B2 JP 6755376B2
Authority
JP
Japan
Prior art keywords
calcium fluoride
molten metal
raw material
spherical
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019176755A
Other languages
Japanese (ja)
Other versions
JP2020007223A (en
Inventor
拓人 岡部
拓人 岡部
深澤 元晴
元晴 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019176755A priority Critical patent/JP6755376B2/en
Publication of JP2020007223A publication Critical patent/JP2020007223A/en
Application granted granted Critical
Publication of JP6755376B2 publication Critical patent/JP6755376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glanulating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、球状フッ化カルシウムに関する。本発明は、例えば、フィラーとして、樹脂やプラスチック等の高分子材料に配合する際の流動性や充填性を高める目的で球状化した球状フッ化カルシウムに関する。本発明は、例えば、球状フッ化カルシウムを充填した樹脂組成物に関する。 The present invention relates to spherical calcium fluoride. The present invention relates to spheroidized calcium fluoride for the purpose of improving fluidity and filling property when blended with a polymer material such as resin or plastic as a filler, for example. The present invention relates to, for example, a resin composition filled with spherical calcium fluoride.

一般に、プラスチック、ゴム等の物性や機能等を向上させることを目的として、様々なフィラーが使用されている。フッ化カルシウムは、天然からは蛍石として産出される無機化合物であり、化学産業において排出される含フッ素化合物をカルシウム塩の形で補足した合成フッ化カルシウムとしても容易に入手可能な無機化合物である。又、フッ化カルシウムの屈折率は1.43、熱伝導率は10W/mK、熱膨張率は24ppm/K、誘電率は6.8であり、真空紫外から赤外の広範囲の光に対し優れた透過性を示す、シリカやアルミナに比べ、モース硬度が低く(モース硬度4)、金型を傷めにくい等、多様な特徴を有している。このため、プラスチックやゴム等の屈折率や熱伝導率、熱膨張率等を制御するために、多くの用途に使用されることが期待されている。 Generally, various fillers are used for the purpose of improving the physical properties and functions of plastics, rubbers and the like. Calcium fluoride is an inorganic compound that is naturally produced as fluorite, and is an inorganic compound that can be easily obtained as synthetic calcium fluoride that supplements the fluorine-containing compound discharged in the chemical industry in the form of a calcium salt. is there. The refractive index of calcium fluoride is 1.43, the thermal conductivity is 10 W / mK, the coefficient of thermal expansion is 24 ppm / K, and the dielectric constant is 6.8, which is excellent for a wide range of light from vacuum ultraviolet to infrared. It has various characteristics such as low Mohs hardness (Mohs hardness 4) and less damage to the mold as compared with silica and alumina, which show high permeability. Therefore, it is expected to be used in many applications in order to control the refractive index, thermal conductivity, thermal expansion coefficient, etc. of plastics and rubbers.

しかしながら、樹脂に配合されるフィラーとしては、それほど一般的ではない。例えば、特許文献1では、人工大理石中の充填材、特許文献2では、フッ化カルシウムを含有させた樹脂摺動部材が記載されている。このように、樹脂フィラーとしてのフッ化カルシウムは、特殊な用途にわずかに使用されているだけである。 However, it is not so common as a filler to be blended in a resin. For example, Patent Document 1 describes a filler in artificial marble, and Patent Document 2 describes a resin sliding member containing calcium fluoride. As described above, calcium fluoride as a resin filler is used only slightly for special purposes.

フィラーとしてより好適に使用するためには、樹脂への充填性や加工性、溶融流動性を向上させる必要があり、フッ化カルシウムの場合も球状で適当な粒度分布を持ち、且つ、凝集が少ないことが求められている。例えば、特許文献3では、破砕状フッ化カルシウムを79%充填しているが、シランカップリング剤で表面処理する必要があることに加え、樹脂として熱可塑性樹脂に限られている。特許文献4では、球形又は粒子形のフッ化カルシウムをポリマーに充填しているが、そこに例示されているフッ化カルシウムはアスペクト比が1.8であり、球形とは言いがたく、充填率も不十分であった。 In order to use it more preferably as a filler, it is necessary to improve the filling property, processability, and melt fluidity in the resin. Calcium fluoride is also spherical, has an appropriate particle size distribution, and has less aggregation. Is required. For example, in Patent Document 3, 79% of crushed calcium fluoride is filled, but in addition to the need for surface treatment with a silane coupling agent, the resin is limited to a thermoplastic resin. In Patent Document 4, spherical or particle-shaped calcium fluoride is packed in a polymer, but the calcium fluoride exemplified therein has an aspect ratio of 1.8, which is hard to say spherical and has a filling rate. Was also inadequate.

フッ化カルシウムの球状化方法としては種々の方法が開示されている。 Various methods have been disclosed as methods for spheroidizing calcium fluoride.

例えば、特許文献5では、モース硬度5以下の鉱物質微粒子をスラリーにし、噴射圧力100〜200MPaで両側から噴射して互いに衝突させることによる湿式粉砕により球状化する方法が明記されている。湿式処理では、フィラーとして用いるためには、得られた粒子の乾燥工程が必要であり、更に溶媒を使用する分コストがかかってしまう。非特許文献1では、塩化カルシウムとフッ化アンモニウムの反応による湿式合成により球状フッ化カルシウムを合成しているが、上記の湿式処理のデメリットに加え、フィラーとして好適に用いられるミクロンオーダーの粒子を合成することが困難である。 For example, Patent Document 5 specifies a method of making mineral fine particles having a Mohs hardness of 5 or less into a slurry, injecting them from both sides at an injection pressure of 100 to 200 MPa, and causing them to collide with each other to form spheroids by wet pulverization. In the wet treatment, in order to use it as a filler, a step of drying the obtained particles is required, and further, the cost is increased due to the use of the solvent. In Non-Patent Document 1, spherical calcium fluoride is synthesized by wet synthesis by the reaction of calcium chloride and ammonium fluoride. However, in addition to the above-mentioned disadvantages of the wet treatment, micron-order particles preferably used as a filler are synthesized. It is difficult to do.

又、非特許文献2では、ガスアトマイズ法により、フッ化バリウムとフッ化カルシウムの混合物を球状化しているが、樹脂への充填性に関する効果は明記されていない。又、フッ化カルシウムの割合が30%程度であり、主成分がフッ化バリウムであることから、水への溶解度、比重が大きくなり、樹脂に充填するフィラーとして適していない。更に、特許文献6では、アトマイズ法が可能であると記載があるが、アトマイズ法の詳細やアトマイズ法によって得られた粒子の粒径や平均円形度に関する記載がないことに加え、球状化したことによる効果が明記されていない。 Further, in Non-Patent Document 2, the mixture of barium fluoride and calcium fluoride is spheroidized by the gas atomizing method, but the effect on the filling property into the resin is not specified. Further, since the ratio of calcium fluoride is about 30% and the main component is barium fluoride, the solubility in water and the specific gravity are increased, and it is not suitable as a filler to be filled in a resin. Further, Patent Document 6 states that the atomizing method is possible, but in addition to not describing the details of the atomizing method and the particle size and average circularity of the particles obtained by the atomizing method, the particles are spheroidized. The effect of is not specified.

特許第4491619号公報Japanese Patent No. 4491619 特許第5465270号公報Japanese Patent No. 5465270 特開2003−40619号公報JP-A-2003-40619 特許第5547644号公報Japanese Patent No. 5547644 特許第4193913号公報Japanese Patent No. 4193913 特開2002−188007号公報JP-A-2002-188007

AsepBayu Dani Nandiyantoet al., KonapowderandParticle Journal, No.29, 141−157, 2011AsepBayu Dani Nandyantoet al., KonapowerandParticle Journal, No.29, 141-157, 2011 MalcolmK. Stanford, Tribology Transactions, 51, 829−834, 2008Malcolm K. Stanford, Tribology Transitions, 51, 829-834, 2008

本発明の目的は、樹脂に高充填した場合にも低粘度・高流動性を有する樹脂組成物を調製できる球状フッ化カルシウムを提供することにある。 An object of the present invention is to provide spherical calcium fluoride capable of preparing a resin composition having low viscosity and high fluidity even when the resin is highly filled.

(1)平均粒子径が1〜50μmであり、且つ、平均円形度が0.90以上である球状フッ化カルシウム。
(2)フッ化カルシウム原料を、融点以上の温度の高温域を通過させ球状化させる粉末溶融法によって製造する、(1)に記載の球状フッ化カルシウムの製造方法。
(3)フッ化カルシウムを溶解させ、ノズルを介して滴下した溶湯に対し、流体を噴射することにより、溶湯を分散・噴霧し急冷凝固させて球状化させるアトマイズ法によって製造する、(1)に記載の球状フッ化カルシウムの製造方法。
(4)フッ化カルシウムを溶解させ、ノズルを介して滴下した溶湯に対し、回転したディスクに溶湯を滴下することにより、溶湯を分散・噴霧し急冷凝固させて球状化させるアトマイズ法によって製造する、(1)に記載の球状フッ化カルシウムの製造方法。
(1) Spherical calcium fluoride having an average particle size of 1 to 50 μm and an average circularity of 0.90 or more.
(2) The method for producing spherical calcium fluoride according to (1), wherein the calcium fluoride raw material is produced by a powder melting method in which a raw material for calcium fluoride is passed through a high temperature region having a temperature equal to or higher than the melting point to be spherical.
(3) Manufactured by the atomization method in which calcium fluoride is dissolved and a fluid is sprayed onto the molten metal dropped through a nozzle to disperse and spray the molten metal, quench and solidify it, and spheroidize it. The method for producing spherical calcium fluoride according to the above.
(4) Calcium fluoride is dissolved, and the molten metal is dropped onto a rotating disk with respect to the molten metal dropped through the nozzle. The molten metal is dispersed and sprayed, rapidly cooled and solidified, and spheroidized. The method for producing spherical calcium fluoride according to (1).

本発明者によれば、樹脂組成物に高充填した場合にも低粘度・高流動性を有する樹脂組成物を調製できる球状フッ化カルシウムを提供することができる。 According to the present inventor, it is possible to provide spherical calcium fluoride capable of preparing a resin composition having low viscosity and high fluidity even when the resin composition is highly filled.

図1は実施例1で得られた球状フッ化カルシウムの走査型電子顕微鏡写真である。白線は寸法である。FIG. 1 is a scanning electron micrograph of the spherical calcium fluoride obtained in Example 1. The white line is the dimension. 図2は実施例1の原料及び比較例8で使用したフッ化カルシウムの走査型電子顕微鏡写真である。白線は寸法である。FIG. 2 is a scanning electron micrograph of the raw material of Example 1 and the calcium fluoride used in Comparative Example 8. The white line is the dimension.

本発明の球状フッ化カルシウムは、平均粒子径が1〜50μmであり、且つ、平均円形度が0.90以上である。球状フッ化カルシウムの平均粒子径が1μm未満であると、樹脂と混ぜ合わせた際の粘度の増大と樹脂組成物を金型等に注入する際の流動性が低下し、50μmより大きくなると、樹脂への充填性が悪くなる。又、球状フッ化カルシウムの平均円形度は0.90以上、好ましくは0.95以上である。平均円形度が0.90未満であると、樹脂と混合した際の粒子の転がり抵抗が大きくなり、流動性が低下する。 The spherical calcium fluoride of the present invention has an average particle size of 1 to 50 μm and an average circularity of 0.90 or more. When the average particle size of spherical calcium fluoride is less than 1 μm, the viscosity when mixed with the resin increases and the fluidity when the resin composition is injected into a mold or the like decreases, and when it becomes larger than 50 μm, the resin Poor filling property. The average circularity of spherical calcium fluoride is 0.90 or more, preferably 0.95 or more. When the average circularity is less than 0.90, the rolling resistance of the particles when mixed with the resin increases, and the fluidity decreases.

本発明の原料であるフッ化カルシウムは特に制限なく、天然の蛍石を粉砕したものを使用しても構わないし、合成フッ化カルシウムを使用しても構わない。合成フッ化カルシウムとしては、フッ素化合物を使用する化学工業或いは半導体工業等のプロセスから排出されるフッ酸或いはフッ化物イオンを、水酸化カルシウムや炭酸カルシウムと反応させてフッ化カルシウムとして回収した、回収フッ化カルシウムも含まれる。 The calcium fluoride used as the raw material of the present invention is not particularly limited, and crushed natural fluorite may be used, or synthetic calcium fluoride may be used. As the synthetic calcium fluoride, hydrofluoric acid or fluoride ions discharged from a process such as a chemical industry or a semiconductor industry using a fluorine compound is reacted with calcium hydroxide or calcium carbonate and recovered as calcium fluoride. Calcium fluoride is also included.

又、本発明の原料であるフッ化カルシウムの純度は、75質量%以上が好ましく、90質量%がより好ましい。75質量%未満だと、フッ化カルシウム自体の物性が損なわれることに加え、不純物も多くなる場合がある。本発明の原料であるフッ化カルシウムの平均粒子径は、1〜50μmが好ましい。 The purity of calcium fluoride, which is the raw material of the present invention, is preferably 75% by mass or more, more preferably 90% by mass. If it is less than 75% by mass, the physical properties of calcium fluoride itself may be impaired and impurities may increase. The average particle size of calcium fluoride, which is the raw material of the present invention, is preferably 1 to 50 μm.

本発明の球状フッ化カルシウムの製造方法は、粉末溶融法又はアトマイズ法が用いられる。 As the method for producing spherical calcium fluoride of the present invention, a powder melting method or an atomizing method is used.

粉末溶融法は、原料粉末を融点以上の温度の高温域を通過させる方法であり、例えば、化学炎又は熱プラズマ中に投入し溶融させ、自身の表面張力により球状化させる方法である。又、ここで記載する粉末溶融法は、化学炎又は熱プラズマを用いず原料粉末を融点以上の温度の高温域を通過させる方法も含み、例えば、縦型管状炉やタワーキルン中に原料を投入し、溶融させ、自身の表面張力により球状化させる方法も含む。 The powder melting method is a method in which a raw material powder is passed through a high temperature region having a temperature equal to or higher than the melting point. For example, it is a method in which the raw material powder is put into a chemical flame or thermal plasma to be melted and spheroidized by its own surface tension. The powder melting method described here also includes a method of passing the raw material powder through a high temperature region having a temperature higher than the melting point without using a chemical flame or thermal plasma. For example, the raw material is put into a vertical tube furnace or a tower kiln. Also includes a method of melting and spheroidizing by its own surface tension.

又、粉末溶融法はスプレードライヤー等により粉末状の原料を造粒した粒子、及び、バルク状材料を粉砕し、所望の粒度分布になるように調整した粒子等を用いることができ、それらの粒子を、粒子の凝集を抑制しながら化学炎又は熱プラズマ、縦型管状炉等の中に投入し、化学炎又は熱プラズマ、縦型管状炉等の中で溶融させることによって行われる。又、溶剤等に分散した原料の分散液を調整し、その液状原料を、ノズル等を用いて化学炎又は熱プラズマ、縦型管状炉等の中に噴霧し、分散媒を蒸発させた上で溶融させることによって行われる。 Further, in the powder melting method, particles obtained by granulating a powdery raw material with a spray dryer or the like, particles obtained by crushing a bulk material and adjusting to a desired particle size distribution, or the like can be used, and these particles can be used. Is put into a chemical flame or thermal plasma, a vertical tubular furnace or the like while suppressing the aggregation of particles, and melted in the chemical flame or thermal plasma, a vertical tubular furnace or the like. Further, a dispersion liquid of a raw material dispersed in a solvent or the like is prepared, and the liquid raw material is sprayed into a chemical flame or thermal plasma, a vertical tube furnace, etc. using a nozzle or the like to evaporate the dispersion medium. It is done by melting.

粉末溶融法において、化学炎とは、例えば、可燃性ガスをバーナーで燃焼することにより発生する炎をいう。化学炎の発生源としては、フッ化カルシウムの融点以上の温度が得られれば良く、例えば、可燃性ガスとして、天然ガス、プロパンガス、アセチレンガス、液化石油ガス(LPG)、水素等を用いることができる。支燃性ガスとして空気や酸素等を可燃性ガスに併用する。化学炎の大きさ、温度等の調整は、バーナーの大きさ、可燃性ガスと支燃性ガスの流量によって調整することができる。原料であるフッ化カルシウムの供給量は、可燃性ガスと支燃性ガスの総量に対し、0.01〜10kg/Nmが好ましく、0.05〜2kg/Nmがより好ましい。0.01kg/Nmよりも少量になると生産性が低下し、10kg/Nmよりも多くなるとフッ化カルシウムが凝集するため、粒子径の制御が難しくなる。特記しない限り、流量はノルマル表記である。又、熱プラズマの発生源としては、酸素、窒素、アルゴン、炭酸ガス及びこれらの混合ガスが好適に用いられる。更に、溶融源として、縦型管状炉やタワーキルンも用いることができる。炉の溶融雰囲気は、フッ化カルシウムの融点以上に加熱が可能であり、原料が蒸発又は分解せず、且つ、炉内部が著しく消耗しない雰囲気で行われることが好ましい。フレームを用いない場合、原料であるフッ化カルシウムの供給量は、雰囲気ガス1Nmあたり、0.01〜10kgが好ましい。0.01kgよりも少量になると生産性が低下し、10kgよりも多くなるとフッ化カルシウムが凝集するため、粒子径の制御が難しくなる。 In the powder melting method, the chemical flame means, for example, a flame generated by burning a flammable gas with a burner. As the source of the chemical flame, it is sufficient that a temperature equal to or higher than the melting point of calcium fluoride can be obtained. For example, natural gas, propane gas, acetylene gas, liquefied petroleum gas (LPG), hydrogen or the like is used as the flammable gas. Can be done. Air, oxygen, etc. are used in combination with the flammable gas as a flammable gas. The size of the chemical flame, the temperature, etc. can be adjusted by adjusting the size of the burner and the flow rates of the flammable gas and the combustible gas. The supply amount of calcium fluoride as a raw material is preferably 0.01 to 10 kg / Nm 3 and more preferably 0.05 to 2 kg / Nm 3 with respect to the total amount of flammable gas and combustible gas. 0.01 kg / Nm 3 is reduced and productivity low volume than, for many consisting of calcium fluoride than 10 kg / Nm 3 are aggregated, it becomes difficult to control the particle size. Unless otherwise specified, flow rates are in normal notation. Further, as a source of thermal plasma, oxygen, nitrogen, argon, carbon dioxide gas and a mixed gas thereof are preferably used. Further, as a melting source, a vertical tube furnace or a tower kiln can also be used. It is preferable that the melting atmosphere of the furnace is such that heating can be performed above the melting point of calcium fluoride, the raw materials do not evaporate or decompose, and the inside of the furnace is not significantly consumed. Without the frame, the supply amount of calcium fluoride as a raw material, the atmospheric gas 1Nm per 3, 0.01 to 10 is preferred. If the amount is less than 0.01 kg, the productivity is lowered, and if the amount is more than 10 kg, calcium fluoride aggregates, which makes it difficult to control the particle size.

アトマイズ法は、例えば、フッ化カルシウム原料を、坩堝等を用いて溶解させ、坩堝下部のノズルを介して滴下した溶湯に対し、水やガス等の流体を噴射したり、回転したディスクに溶湯を滴下したりすることにより、溶湯を分散・噴霧し、急冷凝固させて球状フッ化カルシウムを得る方法である。アトマイズ法としては、溶湯流の分散方法により、ガスアトマイズ法、遠心アトマイズ法、ハイブリッドアトマイズ法、水アトマイズ法、高速燃焼炎アトマイズ法等、いずれの手法でも好適に用いることができる。 In the atomizing method, for example, a calcium fluoride raw material is dissolved using a crucible or the like, and a fluid such as water or gas is sprayed onto the molten metal dropped through a nozzle at the bottom of the crucible, or the molten metal is poured onto a rotating disk. This is a method of obtaining spherical calcium fluoride by dispersing and spraying the molten metal by dropping it and quenching and solidifying it. As the atomizing method, any method such as a gas atomizing method, a centrifugal atomizing method, a hybrid atomizing method, a water atomizing method, and a high-speed combustion flame atomizing method can be preferably used depending on the method for dispersing the molten metal flow.

ガスアトマイズ法において、溶湯の温度(溶融温度)は、1500〜2000℃が好ましい。坩堝下部のノズルの直径は、0.5〜3.0mmが好ましい。ガスとしては、アルゴンガス等が挙げられる。流体の噴射圧は、0.8〜10MPaが好ましい。遠心アトマイズ法において、溶湯の温度(溶融温度)は、1500〜2000℃が好ましい。坩堝下部のノズルの直径は、0.5〜3.0mmが好ましい。ディスクの回転数は、20000rpm〜120000rpmが好ましい。ディスクの直径は、20mm〜100mmが好ましい。ディスクの材質としては、フッ化カルシウムよりも高い融点を持ち、熱衝撃に強い材料、例えば、Mo、W、Pt、SiC、BN等が選択される。 In the gas atomization method, the temperature of the molten metal (melting temperature) is preferably 1500 to 2000 ° C. The diameter of the nozzle at the bottom of the crucible is preferably 0.5 to 3.0 mm. Examples of the gas include argon gas and the like. The injection pressure of the fluid is preferably 0.8 to 10 MPa. In the centrifugal atomization method, the temperature of the molten metal (melting temperature) is preferably 1500 to 2000 ° C. The diameter of the nozzle at the bottom of the crucible is preferably 0.5 to 3.0 mm. The rotation speed of the disc is preferably 20000 rpm to 120,000 rpm. The diameter of the disc is preferably 20 mm to 100 mm. As the material of the disk, a material having a melting point higher than that of calcium fluoride and being resistant to thermal shock, for example, Mo, W, Pt, SiC, BN and the like is selected.

アトマイズ法の場合、原料の形状としては、粉体、バルク体のいずれでも良く、又、これらを組み合わせたものでも良い。これらの原料をフッ化カルシウムの融点より高い融点を有する坩堝、例えば、カーボン、Mo、W、Pt製等の坩堝に収容した後溶融させる。溶融方法は、原料をその融点以上に加熱することが可能な方法であれば、いかなる方法でも良く、例えば、高周波、プラズマ、レーザー、電子ビーム、光又は赤外線を用いることができる。原料の溶融は、原料が蒸発又は分解せず、且つ坩堝が著しく消耗しない雰囲気で行われることが好ましい。大気中、不活性ガス中、真空中等、加熱温度及び用いられる坩堝の材質に応じて最適な雰囲気が選択される。 In the case of the atomizing method, the shape of the raw material may be either a powder or a bulk material, or a combination thereof may be used. These raw materials are placed in a crucible having a melting point higher than that of calcium fluoride, for example, a crucible made of carbon, Mo, W, Pt, etc., and then melted. The melting method may be any method as long as it can heat the raw material above its melting point, and for example, high frequency, plasma, laser, electron beam, light or infrared rays can be used. The melting of the raw material is preferably carried out in an atmosphere in which the raw material does not evaporate or decompose and the crucible is not significantly consumed. The optimum atmosphere is selected according to the heating temperature and the material of the crucible used, such as in the air, in an inert gas, or in a vacuum.

本発明で得られた球状フッ化カルシウムは、平均円形度が高いため、極めて流動性が良く、樹脂に充填する際に極めて良好な成形性を示し、又、充填率を高めることができる。得られた球状粒子は、所望の充填率が得られるよう分級された後、必要に応じて表面処理が施され、更に充填率を上げることができる。表面処理剤としては、一般にシランカップリング剤が用いられるが、他にチタネートカップリング剤及びアルミネート系カップリング剤も用いることができる。 Since the spherical calcium fluoride obtained in the present invention has a high average circularity, it has extremely good fluidity, exhibits extremely good moldability when filled in a resin, and can increase the filling rate. The obtained spherical particles are classified so as to obtain a desired filling rate, and then surface-treated as necessary to further increase the filling rate. As the surface treatment agent, a silane coupling agent is generally used, but a titanate coupling agent and an aluminate-based coupling agent can also be used.

次に、本発明の樹脂組成物について説明する。 Next, the resin composition of the present invention will be described.

本発明で使用される樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。 Examples of the resin used in the present invention include polyamides such as epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, and polyetherimide, polybutylene terephthalate, and polyethylene terephthalate. Polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber, styrene) resin, AES (acrylonitrile, ethylene, propylene, diene rubber) -Sterinic) Resin and the like can be mentioned.

更に、本発明の樹脂組成物には、低応力化剤、シランカップリング剤、表面処理剤、難燃剤、難燃助剤、着色剤、離型剤等を必要に応じて含有することができる。低応力化剤としては、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、各種熱可塑性樹脂、シリコーン樹脂等や、更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーン等で変性した樹脂等が挙げられる。シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランな等が挙げられる。表面処理剤としては、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤等が挙げられる。難燃剤としては、ハロゲン化エポキシ樹脂やリン化合物等が挙げられる。難燃助剤としては、Sb、Sb、Sb等が挙げられる。着色剤としては、カーボンブラック、酸化鉄、染料、顔料等が挙げられる。離型剤としては、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル類、パラフィン等が挙げられる。 Further, the resin composition of the present invention may contain a low stress agent, a silane coupling agent, a surface treatment agent, a flame retardant, a flame retardant aid, a colorant, a mold release agent and the like, if necessary. .. Examples of the low stressing agent include silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, rubber-like substances such as styrene block copolymers and saturated elastomers, various thermoplastic resins, silicone resins, and epoxy resins. Examples thereof include a resin obtained by modifying a part or all of the phenol resin with amino silicone, epoxy silicone, alkoxy silicone or the like. Examples of the silane coupling agent include epoxysilanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, and N-. Examples thereof include aminosilanes such as phenylaminopropyltrimethoxysilane, hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, and octadecyltrimethoxysilane, and mercaptosilane. Examples of the surface treatment agent include Zr chelate, titanate coupling agent, aluminum-based coupling agent and the like. Examples of the flame retardant include halogenated epoxy resins and phosphorus compounds. Examples of the flame retardant aid include Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5, and the like. Examples of the colorant include carbon black, iron oxide, dyes, pigments and the like. Examples of the release agent include natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, paraffin and the like.

本発明の樹脂組成物において、樹脂の使用量は、球状フッ化カルシウム100質量部に対して、1〜50質量部が好ましく、10〜30質量部がより好ましい。 In the resin composition of the present invention, the amount of the resin used is preferably 1 to 50 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of spherical calcium fluoride.

本発明の樹脂組成物は、上記諸材料をブレンダーやミキサーで混合した後、加熱ロール、ニーダー、一軸又は二軸押出機、バンバリーミキサー等によって溶融混練し、冷却することによって製造することができる。 The resin composition of the present invention can be produced by mixing the above materials with a blender or a mixer, melt-kneading them with a heating roll, a kneader, a single-screw or twin-screw extruder, a Banbury mixer, or the like, and cooling them.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.

実施例1−4、比較例1−4
表1に示す平均粒子径のフッ化カルシウム原料粉末を、表1に示す量のLPGと表1に示す量の酸素ガスによって形成された高温火炎中に、表1に示す粉末供給量にて投入し球状化処理を行い、表3に示す平均粒子径及び平均円形度を有する球状フッ化カルシウムを作製した。使用したフッ化カルシウム原料粉末の純度は、99.5%である。
Example 1-4, Comparative Example 1-4
The calcium fluoride raw material powder having the average particle size shown in Table 1 is put into a high-temperature flame formed by the amount of LPG shown in Table 1 and the amount of oxygen gas shown in Table 1 at the powder supply amount shown in Table 1. The spheroidizing treatment was carried out to prepare spheroidal calcium fluoride having an average particle size and an average circularity shown in Table 3. The purity of the calcium fluoride raw material powder used is 99.5%.

上記の方法により得られた球状フッ化カルシウム100質量部、ビスフェノールA型液状エポキシ樹脂(三菱化学社製「JER828」)25質量部、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混練し、樹脂組成物を作製した。 100 parts by mass of spherical calcium fluoride obtained by the above method, 25 parts by mass of bisphenol A type liquid epoxy resin ("JER828" manufactured by Mitsubishi Chemical Corporation), planetary stirrer (Sinky "Awatori Rentaro AR-250"" , 2000 rpm) to prepare a resin composition.

実施例及び比較例にて作製した粒子組成物及び樹脂組成物の特性を、以下の方法で評価した。結果を図1及び表4に示す。 The characteristics of the particle composition and the resin composition prepared in Examples and Comparative Examples were evaluated by the following methods. The results are shown in FIGS. 1 and 4.

[平均粒子径]
ベックマンコールター製「レーザー回折式粒度分布測定装置LS 13 320」を用いて測定を行った。試料はガラスビーカーに10ccの純水と、球状フッ化カルシウム1g添加して、超音波洗浄機で1分間、分散処理を行った。分散処理を行った球状フッ化カルシウムの分散液をスポイトでレーザー回折式粒度分布測定装置に一滴ずつ添加し、再度超音波を90秒間照射した。照射してから60秒後に測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。ここでの%は体積%である。
[Average particle size]
The measurement was performed using a "laser diffraction type particle size distribution measuring device LS 13 320" manufactured by Beckman Coulter. As a sample, 10 cc of pure water and 1 g of spherical calcium fluoride were added to a glass beaker, and dispersion treatment was performed for 1 minute with an ultrasonic cleaner. The dispersion of spherical calcium fluoride that had been subjected to the dispersion treatment was added drop by drop to the laser diffraction type particle size distribution measuring device with a dropper, and ultrasonic waves were irradiated again for 90 seconds. The measurement was performed 60 seconds after the irradiation. In the laser diffraction type particle size distribution measuring device, the particle size distribution was calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was obtained by multiplying the measured particle size value by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The% here is the volume%.

[平均円形度]
セイシン企業社製粉体画像解析装置(PITA−1)を用いて測定を行った。試料を純水に分散させて、この液体を平面伸張流動セル内に流し、セル内を移動する球状フッ化カルシウム粒子の200個を、対物レンズにて画像として記録し、この記録画像及び次の式(1)から平均円形度を算出した。式(1)中、Sは撮影した記録画像の粒子投影図における面積、Lは粒子投影図の周囲長を表す。このようにして算出された粒子200個の平均値を球状フッ化カルシウム粒子の平均円形度とした。
平均円形度=4πS/L (1)
[Average circularity]
The measurement was performed using a powder image analyzer (PITA-1) manufactured by Seishin Enterprise Co., Ltd. The sample was dispersed in pure water, this liquid was flowed into a planar stretch flow cell, and 200 spherical calcium fluoride particles moving in the cell were recorded as an image with an objective lens, and this recorded image and the next The average circularity was calculated from the formula (1). In the formula (1), S represents the area of the captured recorded image in the particle projection drawing, and L represents the peripheral length of the particle projection drawing. The average value of 200 particles calculated in this way was taken as the average circularity of the spherical calcium fluoride particles.
Average circularity = 4πS / L 2 (1)

[粘度]
得られた樹脂組成物を、レオメーター(日本シイベルヘグナー社製「MCR−300」)を用い下記条件にて粘度を測定した。
プレート形状:円形平板25mmφ
試料厚み:1mm
温度:25±1℃
剪断速度:0.1s−1
[viscosity]
The viscosity of the obtained resin composition was measured under the following conditions using a rheometer (“MCR-300” manufactured by Siber Hegner, Japan).
Plate shape: Circular flat plate 25 mmφ
Sample thickness: 1 mm
Temperature: 25 ± 1 ° C
Shear rate: 0.1s -1

実施例5−8、比較例5−6
表1に示す平均粒子径のフッ化カルシウム原料粉末を、1600℃に設定した縦型管状炉内に、表1に粉末供給量にて投入し球状化処理を行い、表3に示す平均粒子径及び平均円形度を有する球状フッ化カルシウムを作製した。LPGと酸素ガスは使用しなかった。それ以外は、実施例1と同様に行った。結果を表4に示す。
Example 5-8, Comparative Example 5-6
The calcium fluoride raw material powder having the average particle size shown in Table 1 was put into a vertical tube furnace set at 1600 ° C. at the powder supply amount in Table 1 to perform spheroidizing treatment, and the average particle size shown in Table 3 was obtained. And spherical calcium fluoride having an average circularity was prepared. No LPG and oxygen gas were used. Other than that, the same procedure as in Example 1 was performed. The results are shown in Table 4.

実施例9−13、比較例7−9
表2に示す平均粒子径のフッ化カルシウム原料粉末を、カーボン坩堝で、表2に示す溶融温度で溶融させ、表2に示す直径を有するノズルを介して滴下させながら、表2に示す噴射圧のアルゴンガスを噴射することで溶湯を分散・噴霧させ球状化処理を行い、表3に示す平均粒子径及び平均円形度を有する球状フッ化カルシウムを作製した。それ以外は、実施例1と同様に行った。結果を表4に示す。
Example 9-13, Comparative Example 7-9
The calcium fluoride raw material powder having the average particle size shown in Table 2 is melted in a carbon chamber at the melting temperature shown in Table 2, and is dropped through a nozzle having the diameter shown in Table 2 while injecting pressure shown in Table 2. The molten metal was dispersed and sprayed by injecting the argon gas of No. 3 to perform a spheroidizing treatment to prepare spheroidal calcium fluoride having an average particle size and an average circularity shown in Table 3. Other than that, the same procedure as in Example 1 was performed. The results are shown in Table 4.

実施例16−17、比較例10−12
表3に示すフッ化カルシウム原料粉末を、カーボン坩堝で、表3に示す溶融温度で溶融させ、表3に示す直径を有するノズルを介して滴下させながら、表3に示すディスク直径及び回転数で溶湯を分散・噴霧させ球状化処理を行い、表3に示す平均粒子径及び平均円形度を有する球状フッ化カルシウムを作製した。それ以外は、実施例1と同様に行った。
結果を表4に示す。
Examples 16-17, Comparative Example 10-12
The calcium fluoride raw material powder shown in Table 3 is melted in a carbon chamber at the melting temperature shown in Table 3 and dropped through a nozzle having the diameter shown in Table 3 at the disc diameter and rotation speed shown in Table 3. The molten metal was dispersed and sprayed to perform spheroidizing treatment to prepare spheroidal calcium fluoride having an average particle size and an average circularity shown in Table 3. Other than that, the same procedure as in Example 1 was performed.
The results are shown in Table 4.

比較例8
実施例1で使用した、球状化処理していないフッ化カルシウム原料粉末そのものを使用したこと以外は、実施例1と同様に行った。結果を表4に示す。
Comparative Example 8
The same procedure as in Example 1 was carried out except that the calcium fluoride raw material powder itself, which had not been spheroidized, used in Example 1 was used. The results are shown in Table 4.

本発明の球状フッ化カルシウムを含有する樹脂組成物は、平均円形度が小さいフッ化カルシウムフィラーを含有する樹脂組成物と比較して、粘度が低く抑えられ、高充填できるという結果になった。実施例1で得られた球状フッ化カルシウムの形状を示す走査型電子顕微鏡写真を図1に示した。実施例1のフッ化カルシウム原料粉末(即ち、比較例8で使用したフッ化カルシウム)の形状を示す走査型電子顕微鏡写真を図2に示した。 As a result, the resin composition containing spherical calcium fluoride of the present invention has a lower viscosity and can be filled more highly than the resin composition containing a calcium fluoride filler having a small average circularity. A scanning electron micrograph showing the shape of the spherical calcium fluoride obtained in Example 1 is shown in FIG. A scanning electron micrograph showing the shape of the calcium fluoride raw material powder of Example 1 (that is, the calcium fluoride used in Comparative Example 8) is shown in FIG.

本発明は、上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。 It goes without saying that the present invention is not limited to the above examples, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. ..

本発明の球状フッ化カルシウムを用いた樹脂組成物は、粘度が低く高充填できるため、プラスチックやゴム等の屈折率や熱伝導率、熱膨張率等を制御するフィラーとして利用可能である。 Since the resin composition using spherical calcium fluoride of the present invention has low viscosity and can be highly filled, it can be used as a filler for controlling the refractive index, thermal conductivity, thermal expansion coefficient, etc. of plastics, rubbers, and the like.

Claims (4)

平均粒子径が41μmであり、且つ、平均円形度が0.93以上である球状フッ化カルシウム。 Spherical calcium fluoride having an average particle size of 3 to 41 μm and an average circularity of 0.93 or more. フッ化カルシウム原料を、融点以上の温度の高温域を通過させ球状化させる粉末溶融法によって製造する、請求項1に記載の球状フッ化カルシウムの製造方法。 The method for producing spherical calcium fluoride according to claim 1, wherein the calcium fluoride raw material is produced by a powder melting method in which a calcium fluoride raw material is passed through a high temperature region having a temperature equal to or higher than the melting point and spheroidized. フッ化カルシウムを溶解させ、ノズルを介して滴下した溶湯に対し、流体を噴射することにより、溶湯を分散・噴霧し急冷凝固させて球状化させるアトマイズ法によって製造する、請求項1に記載の球状フッ化カルシウムの製造方法。 The spherical shape according to claim 1, which is produced by an atomizing method in which calcium fluoride is dissolved and a fluid is sprayed onto the molten metal dropped through a nozzle to disperse and spray the molten metal and quench and solidify it to make it spheroidal. Method for producing calcium fluoride. フッ化カルシウムを溶解させ、ノズルを介して滴下した溶湯に対し、回転したディスクに溶湯を滴下することにより、溶湯を分散・噴霧し急冷凝固させて球状化させるアトマイズ法によって製造する、請求項1に記載の球状フッ化カルシウムの製造方法。 Claim 1 is manufactured by an atomizing method in which calcium fluoride is dissolved and the molten metal is dropped onto a rotating disk with respect to the molten metal dropped through a nozzle to disperse and spray the molten metal, quench and solidify it, and spheroidize it. The method for producing spherical calcium fluoride according to.
JP2019176755A 2019-09-27 2019-09-27 Spherical calcium fluoride Active JP6755376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019176755A JP6755376B2 (en) 2019-09-27 2019-09-27 Spherical calcium fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019176755A JP6755376B2 (en) 2019-09-27 2019-09-27 Spherical calcium fluoride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015224395A Division JP6618144B2 (en) 2015-11-17 2015-11-17 Spherical calcium fluoride

Publications (2)

Publication Number Publication Date
JP2020007223A JP2020007223A (en) 2020-01-16
JP6755376B2 true JP6755376B2 (en) 2020-09-16

Family

ID=69150614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019176755A Active JP6755376B2 (en) 2019-09-27 2019-09-27 Spherical calcium fluoride

Country Status (1)

Country Link
JP (1) JP6755376B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318288B2 (en) * 2003-05-23 2009-08-19 Tdk株式会社 Spherical powder production apparatus, powder processing burner, and spherical powder production method
EP1529754A1 (en) * 2003-10-29 2005-05-11 Corning Incorporated A method of producing a rounded powder of metal fluoride compounds
US20090130471A1 (en) * 2007-11-16 2009-05-21 E.I. Du Pont De Nemours And Company Thermally conductive plastic resin composition

Also Published As

Publication number Publication date
JP2020007223A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6618144B2 (en) Spherical calcium fluoride
TWI457286B (en) Alumina powder, its manufacturiing method and resin composition using the same
CN100431820C (en) Moldings of flame-retardant aromatic polycarbonate resin compositions
JP6934344B2 (en) Powder for spherical silica filler and its manufacturing method
WO2021200490A1 (en) Alumina powder, resin composition, and heat dissipation component
JP2008019157A (en) Dry-process fine silica particle
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
KR102653986B1 (en) Powders and mixed powders
JPWO2015129487A1 (en) Polyarylene sulfide resin granular composition and method for producing the same
JP5320263B2 (en) Spherical alumina powder, production method and use thereof
JP6755376B2 (en) Spherical calcium fluoride
JP2011102215A (en) Spherical alumina powder, and production method and application of the same
JP2015030827A (en) Polytetrafluoroethylene powder composition, anti-dripping agent comprising the same, and resin composition containing the agent
JP2020158379A (en) Spherical fluorinated magnesium
JP2016079061A (en) Inorganic filler and method for producing the same, resin composition and molded article
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JP5637691B2 (en) polymer
WO2024128321A1 (en) Powder of spherical alumina particles
WO2023026997A1 (en) Liquid crystal polyester pellet composition and injection molded article
WO2024128317A1 (en) Spherical alumina powder
WO2023153352A1 (en) Inorganic powder
TW202344467A (en) Spherical boron nitride particles, filler for resins, resin composition, and method for producing spherical boron nitride particles
WO2024128318A1 (en) Spherical alumina powder
WO2023153353A1 (en) Inorganic powder
WO2023153357A1 (en) Spherical silica powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6755376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250