JP6753652B2 - Manufacturing method of forged suspension member - Google Patents

Manufacturing method of forged suspension member Download PDF

Info

Publication number
JP6753652B2
JP6753652B2 JP2015073017A JP2015073017A JP6753652B2 JP 6753652 B2 JP6753652 B2 JP 6753652B2 JP 2015073017 A JP2015073017 A JP 2015073017A JP 2015073017 A JP2015073017 A JP 2015073017A JP 6753652 B2 JP6753652 B2 JP 6753652B2
Authority
JP
Japan
Prior art keywords
suspension member
machining
cross
region
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073017A
Other languages
Japanese (ja)
Other versions
JP2016190267A (en
Inventor
寛哲 細井
寛哲 細井
渡辺 泰彰
泰彰 渡辺
慶太 岡田
慶太 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015073017A priority Critical patent/JP6753652B2/en
Publication of JP2016190267A publication Critical patent/JP2016190267A/en
Application granted granted Critical
Publication of JP6753652B2 publication Critical patent/JP6753652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Forging (AREA)

Description

本発明は、金属素材から熱間鍛造によって製造されたサスペンション部材に関するものである。 The present invention relates to a suspension member manufactured from a metal material by hot forging.

サスペンション部材はサスペンションの構成部材であり、極めて高い安全性が求められる重要保安部品に位置づけられている。 The suspension member is a component of the suspension and is positioned as an important safety component that requires extremely high safety.

このサスペンション部材の軽量化は、自動車のバネ下重量の軽量化に貢献し、運動性能やドライバの乗り心地の向上などに大きく寄与するために、軽量化のなかでも特に優先順位が高いと考えられている。1990年代以前は、鋼板製や鋳鉄製のサスペンションアームが主であったが、高級車を中心として、アルミニウム合金製のサスペンションアームの採用が増加している。 This weight reduction of the suspension member contributes to the reduction of the unsprung weight of the automobile and greatly contributes to the improvement of the exercise performance and the ride comfort of the driver. Therefore, it is considered that the weight reduction has a particularly high priority. ing. Before the 1990s, suspension arms made of steel plates and cast iron were the main products, but the adoption of suspension arms made of aluminum alloy is increasing, mainly in luxury cars.

また、このアルミニウム合金製のサスペンションアームが採用されたサスペンション部材は、アルミニウム合金素材から熱間鍛造によって製造される場合が多い(例えば、特許文献1参照)。この特許文献1に開示された熱間鍛造後のサスペンション部材は、サスペンションアームと一体に製造されるボールジョイント取付部の輪郭を円形にせず、「非円形」にしたところに特徴がある。これにより、ボールジョイント取付部の周壁部のうちの第二基準面を挟んで対向する部分において、不必要な余肉部分が削ぎ落とされた格好となるので、熱間鍛造後のサスペンション部材の軽量化を図ることが可能になる。 Further, the suspension member in which the suspension arm made of an aluminum alloy is adopted is often manufactured from an aluminum alloy material by hot forging (see, for example, Patent Document 1). The suspension member after hot forging disclosed in Patent Document 1 is characterized in that the contour of the ball joint mounting portion manufactured integrally with the suspension arm is not circular but is "non-circular". As a result, the unnecessary surplus portion is scraped off at the portion of the peripheral wall portion of the ball joint mounting portion that faces the second reference surface, so that the weight of the suspension member after hot forging is reduced. It becomes possible to plan the conversion.

特開2011−83810号公報Japanese Unexamined Patent Publication No. 2011-83810

上述した特許文献1に開示された熱間鍛造後のサスペンション部材は、確かにボールジョイント取付部の軽量化には貢献する。しかし、熱間鍛造によって製造する場合には、上下金型(鍛造型)に所定の抜き勾配を設ける必要があるので、熱間鍛造後のサスペンション部材の肉厚は、パーティングライン(鍛造型の型合せ面)に向うに従って大きくなる(すなわち、形状制約を受ける)。したがって、どうしても、この形状制約による余肉部分が発生してしまい、熱間鍛造後のサスペンション部材の質量が嵩んでしまい、依然として軽量化が阻害されるという問題点があった。ましてや、熱間鍛造でリブ高さを大きくしたサスペンション部材を製造する場合は、上記余肉部分の体積は益々増加し、軽量化にとって、より深刻な問題であった。 The suspension member after hot forging disclosed in Patent Document 1 described above certainly contributes to weight reduction of the ball joint mounting portion. However, in the case of manufacturing by hot forging, it is necessary to provide a predetermined draft in the upper and lower dies (forging dies), so that the wall thickness of the suspension member after hot forging is the parting line (forging dies). It becomes larger (that is, subject to shape restrictions) toward the (molding surface). Therefore, there is a problem that a surplus portion is inevitably generated due to this shape restriction, the mass of the suspension member after hot forging increases, and weight reduction is still hindered. Furthermore, in the case of manufacturing a suspension member having a large rib height by hot forging, the volume of the excess wall portion is further increased, which is a more serious problem for weight reduction.

また、上記特許文献1に開示された熱間鍛造後のサスペンション部材は、熱間鍛造により製造する際に、アルミニウム合金素材の体積を上下金型のキャビティ体積に比べ、常にやや大きくなるように設計する。したがって、上下金型のキャビティに入りきらない素材は、パーティングラインからバリとして排出されていく。このバリは、一般的に、鍛造終了後にトリム加工によって除去されるが、工具とのクリランスの問題から完全に除去することはできず、2〜5mm程度の厚みのバリが残存してしまう。この残存するバリがあることによって、熱間鍛造後のサスペンション部材としては、他部材の可動域と干渉しないための指定の設計領域を実質的に狭くしなければならない。このように、実質的な設計領域が狭くなったとはいえ、所定の機械強度は確保しなければならない(例えば、曲げ中心軸まわりの断面係数は、所定の値を確保しなければならない)ため、どうしても熱間鍛造後のサスペンション部材の断面積も大きくなり(したがって、質量も嵩み)、熱間鍛造後のサスペンション部材の軽量化が阻害されるという問題点があった。 Further, the suspension member after hot forging disclosed in Patent Document 1 is designed so that the volume of the aluminum alloy material is always slightly larger than the cavity volume of the upper and lower dies when manufactured by hot forging. To do. Therefore, the material that does not fit in the cavity of the upper and lower molds is discharged as burrs from the parting line. This burr is generally removed by trimming after the forging is completed, but it cannot be completely removed due to the problem of clearance with the tool, and a burr having a thickness of about 2 to 5 mm remains. Due to the presence of the remaining burrs, the suspension member after hot forging must substantially narrow the designated design area so as not to interfere with the range of motion of other members. In this way, even though the practical design area is narrowed, a predetermined mechanical strength must be secured (for example, the cross-sectional coefficient around the bending center axis must secure a predetermined value). There is a problem that the cross-sectional area of the suspension member after hot forging is inevitably large (and therefore the mass is also large), which hinders the weight reduction of the suspension member after hot forging.

発明の目的は、指定の設計領域と所定の機械強度を確保しながらも、熱間鍛造の鍛造型(上下金型)に設定された抜き勾配に基づく形状制約による質量増加や熱間鍛造によるバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害等を解消し、軽量化を可能にする鍛造サスペンション部材を提供することにある。 The object of the present invention is to increase the mass due to the shape constraint based on the draft set in the forging die for hot forging (upper and lower dies) and the burr due to hot forging while ensuring the designated design area and the predetermined mechanical strength. It is an object of the present invention to provide a forged suspension member capable of weight reduction by eliminating the hindrance of weight reduction due to a substantial narrowing of the design area due to the residual.

この目的を達成するために、第1発明に係る鍛造サスペンション部材は、
金属素材から熱間鍛造によって製造されたサスペンション部材であって、
このサスペンション部材の一部の箇所は機械加工によって除去されており、前記機械加工によって除去された箇所は前記熱間鍛造に際して抜き勾配が設定された箇所を含む、ことを特徴とする鍛造サスペンション部材である。
In order to achieve this object, the forged suspension member according to the first invention is
Suspension member manufactured by hot forging from metal material
A forged suspension member characterized in that a part of the suspension member is removed by machining, and the portion removed by the machining includes a portion where a draft is set during hot forging. is there.

また、第2発明に係る鍛造サスペンション部材は、第1発明に係る鍛造サスペンション部材において、
前記機械加工によって除去された後の前記サスペンション部材の表面の勾配は、前記抜き勾配の角度よりも小さいことを特徴とする。
Further, the forged suspension member according to the second invention is the forged suspension member according to the first invention.
The slope of the surface of the suspension member after being removed by the machining is characterized in that it is smaller than the angle of the draft.

また、第3発明に係る鍛造サスペンション部材は、第1発明に係る鍛造サスペンション部材において、
前記機械加工によって除去された箇所は、前記サスペンション部材のリブ外側のバリを含む外周部であることを特徴とする。
Further, the forged suspension member according to the third invention is the forged suspension member according to the first invention.
The portion removed by the machining is an outer peripheral portion including burrs on the outer side of the rib of the suspension member.

また、第4発明に係る鍛造サスペンション部材は、第3発明に係る鍛造サスペンション部材において、
前記機械加工によって除去された箇所には、前記サスペンション部材のウエブを含むことを特徴とする。
Further, the forged suspension member according to the fourth invention is the forged suspension member according to the third invention.
The portion removed by the machining is characterized by including the web of the suspension member.

また、第5発明に係る鍛造サスペンション部材は、第1発明に係る鍛造サスペンション部材において、
前記機械加工で除去された箇所の質量は、前記熱間鍛造後のサスペンション部材の質量の10〜20%であることを特徴とする。
Further, the forged suspension member according to the fifth invention is the forged suspension member according to the first invention.
The mass of the portion removed by the machining is 10 to 20% of the mass of the suspension member after the hot forging.

また、第6発明に係る鍛造サスペンション部材は、第1〜第5発明の内のいずれか1つに係る鍛造サスペンション部材において、
前記金属素材は、アルミニウム合金であることを特徴とする。
Further, the forged suspension member according to the sixth invention is the forged suspension member according to any one of the first to fifth inventions.
The metal material is an aluminum alloy.

また、第7発明に係る鍛造サスペンション部材は、第6発明に係る鍛造サスペンション部材において、
前記アルミニウム合金の0.2%耐力が380MPa以上であることを特徴とする。
Further, the forged suspension member according to the seventh invention is the forged suspension member according to the sixth invention.
The aluminum alloy is characterized by having a 0.2% proof stress of 380 MPa or more.

以上のように、本発明の鍛造サスペンション部材は、
金属素材から熱間鍛造によって製造されたサスペンション部材であって、このサスペンション部材の一部の箇所は機械加工によって除去されており、前記機械加工によって除去された箇所は前記熱間鍛造に際して抜き勾配が設定された箇所を含む、ことを特徴とする。
As described above, the forged suspension member of the present invention is
A suspension member manufactured from a metal material by hot forging, and a part of the suspension member is removed by machining, and the part removed by the machining has a draft during the hot forging. It is characterized in that it includes a set part.

これにより、指定の設計領域と所定の機械強度を確保しながらも、熱間鍛造の鍛造型(上下金型)に設定された抜き勾配に基づく形状制約による質量増加や熱間鍛造によるバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害等を解消し、軽量化を可能にする鍛造サスペンション部材を実現することができる。 As a result, while ensuring the specified design area and the specified mechanical strength, the mass increases due to the shape constraint based on the draft set in the hot forging forging die (upper and lower dies) and the burr remains due to the hot forging. It is possible to realize a forged suspension member that enables weight reduction by eliminating the hindrance to weight reduction due to a narrowing of a substantial design area.

本発明の鍛造サスペンション部材の実施形態1であり、熱間鍛造後のサスペンション部材(機械加工を行う前の形状)とこの熱間鍛造後のサスペンション部材の他部材と結合する部位以外の箇所(例えば、リブ外側のバリを含む外周部)に機械加工を行う領域とともに示した鍛造サスペンション部材の平面図である。The first embodiment of the forged suspension member of the present invention is a portion other than the suspension member after hot forging (shape before machining) and a portion other than the portion where the suspension member after hot forging is connected to other members (for example). , The outer peripheral portion including the burr on the outside of the rib) is a plan view of the forged suspension member shown together with the region to be machined. 図1のAA断面図である。It is a cross-sectional view of AA of FIG. 図1に示した機械加工を行う領域に加えて、さらに追加して機械加工を行う領域(例えば、ボールジョイント支持部周囲やブッシュ支持部周囲)とともに示した鍛造サスペンション部材の平面図である。It is a top view of the forged suspension member shown together with the region to be further machined (for example, the circumference of the ball joint support portion and the circumference of the bush support portion) in addition to the region to be machined shown in FIG. 図3に示した機械加工を行う領域に加えて、さらに追加して機械加工を行う領域(例えば、ウエブ)とともに示した鍛造サスペンション部材の平面図である。It is a top view of the forged suspension member shown together with the region (for example, a web) to be additionally machined in addition to the region to be machined shown in FIG. 図4のAA断面図であり、図2に示した機械加工を行う領域の変形例1を示した断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 4, which is a cross-sectional view showing a modified example 1 of the region to be machined shown in FIG. 図5に示した機械加工を行う領域の変形例2を示した断面図である。It is sectional drawing which showed the modification 2 of the region to perform the machining shown in FIG. 図6に示した機械加工を行う領域の変形例3を示した断面図である。It is sectional drawing which showed the modification 3 of the region to perform the machining shown in FIG. 図5に示した機械加工を行う領域の変形例4を示した断面図である。It is sectional drawing which showed the modification 4 of the region to perform the machining shown in FIG. 図2に示した機械加工を行う領域の変形例5を示した断面図である。It is sectional drawing which showed the modification 5 of the region to perform the machining shown in FIG. 図5に示した機械加工を行う領域の変形例6を示した断面図である。It is sectional drawing which showed the modification 6 of the region to perform the machining shown in FIG. 図2に示した機械加工を行う領域の変形例7を示した断面図である。It is sectional drawing which showed the modification 7 of the region to perform the machining shown in FIG. 本発明の鍛造サスペンション部材の実施形態2であり、図2に示した断面形状と異なる断面形状を有した熱間鍛造後のサスペンション部材に機械加工を行う領域とともに示した断面図である。It is a second embodiment of the forged suspension member of the present invention, and is a cross-sectional view showing a region for machining a suspension member after hot forging having a cross-sectional shape different from the cross-sectional shape shown in FIG. 図12に示した機械加工を行う領域の変形例8を示した断面図である。It is sectional drawing which showed the modification 8 of the region to perform the machining shown in FIG. 図12に示した機械加工を行う領域の変形例9を示した断面図である。It is sectional drawing which showed the modification 9 of the region to perform the machining shown in FIG. 本発明の鍛造サスペンション部材の実施形態3であり、図2や図12に示した断面形状とさらに異なる断面形状を有した熱間鍛造後のサスペンション部材に機械加工を行う領域とともに示した断面図である。In the third embodiment of the forged suspension member of the present invention, the cross-sectional view shown together with the region for machining the suspension member after hot forging having a cross-sectional shape further different from the cross-sectional shape shown in FIGS. 2 and 12. is there. 図15に示した機械加工を行う領域の変形例10を示した断面図である。It is sectional drawing which showed the modification 10 of the region to perform the machining shown in FIG. 本発明に係る鍛造サスペンション部材の軽量化効果を検証するための各種断面図である。It is various cross-sectional views for verifying the weight reduction effect of the forged suspension member which concerns on this invention.

本発明者らは、如何にすれば、指定の設計領域と所定の機械強度を確保しながらも、熱間鍛造の鍛造型(上下金型)に設定された抜き勾配に基づく形状制約による質量増加や熱間鍛造によるバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害等を解消し、軽量化を可能にする鍛造サスペンション部材を実現できるのか鋭意検討した。その結果、予め指定の設計領域よりも大きな形状となるように、金属素材から熱間鍛造によってサスペンション部材を製造しておき、そこから前記設計領域以内に収まるように、「前記サスペンション部材の一部の箇所を機械加工によって除去し、前記機械加工によって除去された箇所が前記熱間鍛造に際して抜き勾配が設定された箇所を含む」ように構成すれば目的とする鍛造サスペンション部材を実現できることを初めて見出した。ここで、上記指定の設計領域とは、「熱間鍛造後の鍛造サスペンション部材が他部材の可動域と干渉しない設計領域」を言う。また、上記抜き勾配とは、「型からの製品の離型を容易にするために、型表面および/または製品外周部に設けられた、型の離型方向に対する傾き」を言う。以下、本発明について、実施形態を例示しつつ、詳細に説明する。 How can the inventors increase the mass due to shape constraints based on the draft set in the hot forging forging die (upper and lower dies) while ensuring the specified design area and the specified mechanical strength? We enthusiastically investigated whether a forged suspension member that enables weight reduction could be realized by eliminating the hindrance to weight reduction due to the narrowing of the actual design area due to residual burrs due to hot forging. As a result, a suspension member is manufactured from a metal material by hot forging so that the shape becomes larger than the design area specified in advance, and "a part of the suspension member" is set so as to be within the design area. For the first time, it was found that the desired forged suspension member can be realized by configuring such that the portion removed by machining is removed by machining and the portion removed by machining includes a portion where a draft is set during hot forging. It was. Here, the designated design area means "a design area in which the forged suspension member after hot forging does not interfere with the range of motion of other members". Further, the draft means "an inclination of the mold with respect to the mold release direction provided on the mold surface and / or the outer peripheral portion of the product in order to facilitate the mold release of the product from the mold". Hereinafter, the present invention will be described in detail with reference to embodiments.

(実施形態1)
図1は本発明の鍛造サスペンション部材の実施形態1であり、熱間鍛造後のサスペンション部材(機械加工を行う前の形状)とこの熱間鍛造後のサスペンション部材の他部材と結合する部位以外の箇所(例えば、リブ外側のバリを含む外周部)に機械加工を行う領域とともに示した鍛造サスペンション部材の平面図、図2は図1のAA断面図である。また、図1の紙面に直交する方向が自動車の上下方向を指す。
(Embodiment 1)
FIG. 1 shows the first embodiment of the forged suspension member of the present invention, other than the suspension member after hot forging (shape before machining) and the portion to be connected to other members of the suspension member after hot forging. A plan view of the forged suspension member shown together with a region to be machined at a portion (for example, an outer peripheral portion including a burr on the outside of the rib), FIG. 2 is a sectional view taken along the line AA of FIG. Further, the direction orthogonal to the paper surface of FIG. 1 refers to the vertical direction of the automobile.

図1において、1は金属素材から熱間鍛造によって製造されたサスペンション部材(機械加工を行う前の形状)、2は自動車の車軸側に取り付けられるボールジョイント支持部、3は車体側に取り付けられる車体側係合部としてのブッシュ支持部、4は車体側に取り付けられる車体側係合部としてのブッシュ支持部、5はアーム部9におけるボールジョイント支持部2(一端側)からブッシュ支持部4(他端側)に繋がる周縁部としてのリブ、6はボールジョイント支持部2(一端側)からブッシュ支持部3(中間側)に繋がる周縁部としてのリブ、7はブッシュ支持部3(中間側)からブッシュ支持部4(他端側)に繋がる周縁部としてのリブ、8はリブ5とリブ6とそれぞれ直交する中央部としてのウエブおよびリブ5とリブ7とそれぞれ直交する中央部としてのウエブである。なお、アーム部9は、リブ5、6、7とウエブ8から構成されている。また、サスペンション部材1は、アーム部9、ボールジョイント支持部2とブッシュ支持部3、4とから構成されている。また、このサスペンション部材1は、ボールジョイント支持部2、ブッシュ支持部3、4を頂点とし、これらをリブ5、6、7やウエブ8を有するアーム部9にてつなぐ、平面視で略三角形の一体形状(全体形状)に構成されている。 In FIG. 1, 1 is a suspension member manufactured by hot forging from a metal material (shape before machining), 2 is a ball joint support portion attached to the axle side of an automobile, and 3 is a vehicle body attached to the vehicle body side. Bush support portion 4 as a side engaging portion, 4 is a bush support portion as a vehicle body side engaging portion attached to the vehicle body side, and 5 is a bush support portion 4 (others) from a ball joint support portion 2 (one end side) in the arm portion 9. Ribs as peripheral edges connected to (end side), 6 is ribs as peripheral edges connected from ball joint support 2 (one end side) to bush support 3 (intermediate side), 7 is from bush support 3 (intermediate side) The rib as a peripheral edge connected to the bush support portion 4 (the other end side), 8 is a web as a central portion orthogonal to the rib 5 and the rib 6, and a web as a central portion orthogonal to the rib 5 and the rib 7, respectively. .. The arm portion 9 is composed of ribs 5, 6, 7 and a web 8. Further, the suspension member 1 is composed of an arm portion 9, a ball joint support portion 2, and bush support portions 3 and 4. Further, the suspension member 1 has a ball joint support portion 2 and bush support portions 3 and 4 as vertices, and these are connected by an arm portion 9 having ribs 5, 6 and 7 and a web 8 to form a substantially triangular shape in a plan view. It is configured in an integrated shape (overall shape).

また、上記熱間鍛造では、上下金型を用いて製造され、鍛造サスペンション部材の断面形状は、後記図2で説明するように略H字状である。ただし、断面形状は、略H字状以外に、略U字状、または略T字状とすることも多い。ここで、上記熱間鍛造におけるプレス方向と略平行な辺を上述したリブ、プレス方向と略直交する辺を上述したウエブと呼称する。 Further, in the hot forging, the upper and lower dies are used to manufacture the forged suspension member, and the cross-sectional shape of the forged suspension member is substantially H-shaped as described in FIG. 2 below. However, the cross-sectional shape is often substantially U-shaped or substantially T-shaped in addition to the substantially H-shape. Here, the side substantially parallel to the press direction in the hot forging is referred to as the above-mentioned rib, and the side substantially orthogonal to the press direction is referred to as the above-mentioned web.

上記金属素材としては、例えば、アルミニウム、鉄、マグネシウム、およびこれらを主成分とする合金を挙げることができる。また、ここで、アルミニウム合金であれば、要求される、高強度、耐応力腐食割れ性などの高い耐食性乃至耐久性を前提として保証する必要がある。このため、アルミニウム合金の中でも、JISあるいはAAに規格される6000系アルミニウム合金からなることが好ましい。この6000系Al合金の具体的な化学成分組成は、質量%で、主要元素を、Si:0.8〜1.3%、Mg:0.70〜1.3%を含有し、これに必要により、Cu、Zn、Fe、Mn、Cr、Zr、Tiなどを加え、残部Alおよび不可避的不純物からなるものとする。また、鍛造サスペンション部材をアルミニウム合金化した場合は、ボールジョイント支持部やブッシュ支持部等の支持部を一体で製造できるようになるため、鉄鋼材料製のサスペンション部材で必要であった支持部とアーム部との接合コストが不要となるため、素材費の増加分を吸収でき、部品を軽くするために必要なコストが低減できる。また、このような支持部との一体製造化が図られることで、他の金属素材に比べて、アルミニウム合金化がより進みやすい。 Examples of the metal material include aluminum, iron, magnesium, and alloys containing these as main components. Further, here, if it is an aluminum alloy, it is necessary to guarantee it on the premise of high corrosion resistance or durability such as high strength and stress corrosion cracking resistance required. Therefore, among the aluminum alloys, it is preferable to use a 6000 series aluminum alloy specified by JIS or AA. The specific chemical composition of this 6000 series Al alloy is mass% and contains the main elements Si: 0.8 to 1.3% and Mg: 0.70 to 1.3%, which are necessary for this. Therefore, Cu, Zn, Fe, Mn, Cr, Zr, Ti and the like are added, and the balance is composed of Al and unavoidable impurities. Further, when the forged suspension member is made of aluminum alloy, the support part such as the ball joint support part and the bush support part can be manufactured integrally, so that the support part and the arm required for the suspension member made of steel material are required. Since the cost of joining the parts is not required, the increase in material cost can be absorbed and the cost required to lighten the parts can be reduced. Further, by integrally manufacturing with such a support portion, aluminum alloying is more likely to proceed as compared with other metal materials.

このような組成を有するアルミニウム合金鋳塊素材を均質化熱処理後に、各実施形態(後記図面参照)に示す断面形状を有したサスペンション部材1に、上下金型を用いた熱間鍛造を行って安価に製造でき、量産化も可能である。そして、この熱間鍛造によって製造されたサスペンション部材1に、溶体化および焼入れ処理や、その後の人工時効処理(T6またはT7などの調質)を施し、所定の強度(0.2%耐力が380MPa以上)を満足させることで、より一層の軽量化が図られる。 After homogenizing and heat-treating an aluminum alloy ingot material having such a composition, hot forging using upper and lower dies is performed on the suspension member 1 having the cross-sectional shape shown in each embodiment (see the drawings below) at low cost. It can be manufactured and mass-produced. Then, the suspension member 1 manufactured by this hot forging is subjected to solution hardening and quenching treatment and subsequent artificial aging treatment (tempering such as T6 or T7) to have a predetermined strength (0.2% proof stress is 380 MPa). By satisfying the above), the weight can be further reduced.

図2は図1のAA断面図であり、熱間鍛造後のサスペンション部材1の断面形状Mが上述した略H字状である。また、図2に符号Bで示す一点鎖線は、サスペンション部材1における曲げ中心軸である。また、図2に示すように、熱間鍛造後のサスペンション部材1の他部材と結合する部位以外の箇所(例えば、リブ5、6の抜き勾配に沿う外側面5a、5b、6a、6bとバリ5c、6cを含む外周部の領域10、11)を機械加工で除去することにより、指定の設計領域(以下、単に設計領域とも言う)N以内に収まる鍛造サスペンション部材を実現できる。なお、図2に示すように、この機械加工によって除去された後の前記サスペンション部材の表面の勾配は、前記抜き勾配の角度よりも小さいことを特徴とする。 FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and the cross-sectional shape M of the suspension member 1 after hot forging is substantially H-shaped as described above. The alternate long and short dash line indicated by reference numeral B in FIG. 2 is the bending center axis of the suspension member 1. Further, as shown in FIG. 2, burrs are formed on the outer surfaces 5a, 5b, 6a, 6b along the draft of the ribs 5 and 6 other than the portion where the suspension member 1 after hot forging is connected to other members (for example, ribs 5 and 6). By removing the outer peripheral regions 10 and 11) including 5c and 6c by machining, a forged suspension member that fits within a designated design region (hereinafter, also simply referred to as a design region) N can be realized. As shown in FIG. 2, the slope of the surface of the suspension member after being removed by this machining is characterized in that it is smaller than the angle of the draft.

このような機械加工が施されたことにより、指定の設計領域と所定の機械強度を確保しながらも、熱間鍛造の鍛造型(上下金型)に設定された抜き勾配に基づく形状制約による質量増加やバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害を解消し、大幅な軽量化が可能となる。これは、図2に示す断面形状Mの断面積を可能な限り小さくしながらも、曲げ中心軸Bまわりの所定の断面2次モーメントIや断面係数Zを確保するには、熱間鍛造後のサスペンション部材1の断面形状Mにおけるハッチングを施した領域10、11に対して機械加工を施し、設計領域N以内に収め、かつ、曲げ中心軸Bからできるだけ遠方に(すなわち、Iでは3乗、Zでは2乗で寄与する曲げ中心軸Bからできるだけ離れた距離に)、材料を効率的に配置することが重要であるという本発明のメカニズムに立脚しているからに他ならない。すなわち、バリ5c、6cやリブ5、6の抜き勾配に基づく外周部の領域10、11は、曲げ中心軸Bから最も遠方であり、上記IやZへの寄与が最も大きい位置に材料を効率的に配置することを阻害しており、かつ、断面積増加の要因ともなっている。例えば、図2に示すように、設計領域N以内に収まるように機械加工を施し、機械加工後のリブ5、6の左右両端までの余肉のない有効な距離Wを10%増やすことができれば、前記Iが一定であれば断面積は、熱間鍛造後の断面形状Mを有したサスペンション部材1の約0.83倍、前記Zが一定であれば断面積は、熱間鍛造後の断面形状Mを有したサスペンション部材1の約0.91倍にでき、大幅に軽量化を図ることが可能である。また、後述するウエブ8の過剰な肉厚やリブ5、6等のコーナーRや隅Rの肉が曲げ中心軸Bからの距離の短い位置に多く配置されることも、上記IやZへの寄与が最も大きい位置に材料を効率的に配置することを阻害しており、かつ、断面積増加の要因ともなっている。この解消に関しては、後述する。 By performing such machining, the mass due to the shape constraint based on the draft set in the hot forging forging die (upper and lower dies) while ensuring the specified design area and the specified mechanical strength. It is possible to significantly reduce the weight by eliminating the hindrance to weight reduction due to the substantial design area being narrowed due to the increase and residual burrs. This is after hot forging in order to secure a predetermined geometrical moment of inertia I and cross-sectional coefficient Z around the bending central axis B while making the cross-sectional area of the cross-sectional shape M shown in FIG. 2 as small as possible. The hatched regions 10 and 11 in the cross-sectional shape M of the suspension member 1 are machined so as to be within the design region N and as far as possible from the bending central axis B (that is, I is cubed, Z). This is because it is based on the mechanism of the present invention that it is important to efficiently arrange the materials (at a distance as far as possible from the bending center axis B that contributes by the square). That is, the outer peripheral regions 10 and 11 based on the drafts of the burrs 5c and 6c and the ribs 5 and 6 are farthest from the bending center axis B, and the material is efficiently placed at the position where the contribution to I and Z is the largest. It hinders the placement of the target and also causes an increase in the cross-sectional area. For example, as shown in FIG. 2, if machining is performed so as to be within the design area N, and the effective distance W with no margin to the left and right ends of the ribs 5 and 6 after machining can be increased by 10%. If the I is constant, the cross-sectional area is about 0.83 times that of the suspension member 1 having the cross-sectional shape M after the hot forging, and if the Z is constant, the cross-sectional area is the cross section after the hot forging. It can be made about 0.91 times as large as the suspension member 1 having the shape M, and the weight can be significantly reduced. Further, it is also possible that the excessive thickness of the web 8 and the thickness of the corners R and the corners R such as the ribs 5 and 6, which will be described later, are often arranged at positions short in the distance from the bending central axis B. It hinders the efficient placement of the material at the position where the contribution is the largest, and also causes an increase in the cross-sectional area. This solution will be described later.

ここで、抜き勾配は3〜5°であり、機械加工は3軸のエンドミルを備えたNC加工機で行った。なお、機械加工は複雑な3次元形状である場合は、5軸のエンドミルを備えたNC加工機が望ましく、機械加工で除去する部位が狭い場合や図2に示すような比較的単純な場合は、3軸のエンドミルを備えたNC加工機も可能である。また、本発明で言う機械加工とは、ワークと加工工具(例えば、エンドミル)が直接接触する加工、レーザービームや電子ビームのようなワークと非接触なエネルギービーム加工等の総称である。
また、機械加工プロセスのタイミングは、ゴムブッシュやボールジョイントなど他部材との結合部へ機械加工を施すときに同時に行うのが最も合理的であるが、熱間鍛造後のバリのトリム加工直後や熱処理前後とすることも可能である。また、機械加工時間は、工具の送り速度と加工距離によって決まるが、一般にアルミニウム合金は、工具メーカ推奨の送り速度が鋼材に比べて1桁近く早く分速500〜2000mm程度であり、機械加工時間を短縮できる。例えば、代表的な略L字扁平形状の鍛造サスペンション部材の外周長約1200mmの全周を機械加工する場合、36秒〜144秒で加工できると試算できる。
Here, the draft was 3 to 5 °, and the machining was performed by an NC processing machine equipped with a 3-axis end mill. When machining is a complicated three-dimensional shape, an NC machining machine equipped with a 5-axis end mill is desirable, and when the part to be removed by machining is narrow or relatively simple as shown in FIG. An NC processing machine equipped with a 3-axis end mill is also possible. Further, the machining referred to in the present invention is a general term for machining in which a work and a machining tool (for example, an end mill) are in direct contact with each other, and energy beam machining in which a work such as a laser beam or an electron beam is not in contact with the work.
In addition, it is most rational to perform the machining process timing at the same time as machining the joints with other members such as rubber bushes and ball joints, but immediately after hot forging and burr trimming. It is also possible before and after the heat treatment. The machining time is determined by the feed rate and machining distance of the tool, but in general, the feed rate recommended by the tool manufacturer for aluminum alloys is about an order of magnitude faster than that of steel materials, and the machining speed is about 500 to 2000 mm per minute. Can be shortened. For example, when machining the entire circumference of a typical substantially L-shaped flat forged suspension member having an outer peripheral length of about 1200 mm, it can be estimated that the machining can be performed in 36 seconds to 144 seconds.

また、上記構成を採用した本発明の鍛造サスペンション部材は、設計自由度の向上(任意の肉厚、高さの形状が可能になる)および他部材の可動範囲との干渉クリアランスの限界まで材料を配置できることによって、従来の鍛造サスペンション部材よりも最大約20%の軽量化を実現できる。 In addition, the forged suspension member of the present invention adopting the above configuration can improve the degree of freedom in design (a shape of arbitrary wall thickness and height is possible) and use materials up to the limit of interference clearance with the movable range of other members. By being able to arrange it, it is possible to realize a weight reduction of up to about 20% as compared with the conventional forged suspension member.

また、機械加工を組合せることで、これまで応力集中によって金型割れが生じやすかった、例えばリブの形状を応力集中の少ない形状とすることが可能になり、型応力低減による金型の長寿命化も可能となる(すなわち、金型コストの低減になる)。 In addition, by combining machining, it has become possible to make the shape of the rib, for example, a shape with less stress concentration, which has been prone to mold cracking due to stress concentration, and the mold life is extended by reducing the mold stress. It is also possible (that is, the mold cost is reduced).

また、従来の鍛造サスペンション部材では、欠肉やしわなどの鍛造欠陥が直接不良率増加の要因となるが、本発明の鍛造サスペンション部材では、機械加工で除去される上記箇所に存在する鍛造欠陥自体は不良率増加の問題とならないという利点もある。また、従来ならば熱間鍛造による変形量の大きい場所は、材料表面で焼付きが生じやすくなり、これにより焼付きが生じた製品は、不良品として処分されるかあるいは表面の仕上げ加工を施す必要があるが、本発明の鍛造サスペンション部材では、機械加工で除去される上記箇所であれば問題にならないという利点もある(すなわち、不良率の低減になる)。 Further, in the conventional forged suspension member, forging defects such as lack of meat and wrinkles directly cause an increase in the defect rate, but in the forged suspension member of the present invention, the forging defects themselves existing in the above-mentioned locations removed by machining are used. Has the advantage that it does not pose a problem of increased defect rate. In addition, conventionally, in places where the amount of deformation due to hot forging is large, seizure is likely to occur on the surface of the material, and the product that has seized due to this is disposed of as a defective product or the surface is finished. Although it is necessary, the forged suspension member of the present invention has an advantage that it does not matter if it is the above-mentioned portion that is removed by machining (that is, the defective rate is reduced).

また、本発明の鍛造サスペンション部材では、機械加工で除去される上記箇所の表面に仮に割れや焼付き、欠肉などといった欠陥が存在しても、機械加工で除去されてしまうため、割れや焼付き、欠肉などといった欠陥を検査することが不要となる(すなわち、検査コストの削減になる)。また、機械加工で除去される上記箇所ならば、微小な欠陥を仕上げ直すことも不要となる。 Further, in the forged suspension member of the present invention, even if there are defects such as cracks, seizures, and deficiencies on the surface of the above-mentioned portions that are removed by machining, they are removed by machining, so that they are cracked or burned. It is no longer necessary to inspect for defects such as sticking and missing meat (that is, the inspection cost is reduced). Further, if the portion is removed by machining, it is not necessary to refinish a minute defect.

図3は図1に示した機械加工を行う領域に加えて、さらに追加して機械加工を行う領域(例えば、ボールジョイント支持部2の周囲やブッシュ支持部3、4の周囲)とともに示した鍛造サスペンション部材の平面図である。このようにすることで、図1に示す鍛造サスペンション部材に比べてさらに軽量化に貢献する。 FIG. 3 shows the forging shown together with the area for further machining (for example, the circumference of the ball joint support portion 2 and the circumference of the bush support portions 3 and 4) in addition to the region for machining shown in FIG. It is a top view of the suspension member. By doing so, it contributes to further weight reduction as compared with the forged suspension member shown in FIG.

以下、本実施形態の変形例、本発明の別の実施形態やそれらの変形例について、説明する。これらは、いずれも上述した本発明のメカニズムに立脚したものである。 Hereinafter, modified examples of the present embodiment, other embodiments of the present invention, and modified examples thereof will be described. All of these are based on the mechanism of the present invention described above.

(変形例1)
図4は図3に示した機械加工を行う領域に加えて、さらに追加して機械加工を行う領域(例えば、ウエブ8)とともに示した鍛造サスペンション部材の平面図である。このようにすることで、図3に示す鍛造サスペンション部材に比べて一層の軽量化に貢献する(詳細は、後記図5を参照)。
(Modification example 1)
FIG. 4 is a plan view of the forged suspension member shown together with the region to be further machined (for example, the web 8) in addition to the region to be machined shown in FIG. By doing so, it contributes to further weight reduction as compared with the forged suspension member shown in FIG. 3 (see FIG. 5 below for details).

図5は図4のAA断面図であり、図2に示した機械加工を行う領域の変形例1を示した断面図である。本変形例1に関しては、図2に示す機械加工を行う領域との差異についてのみ説明する。図5において、ウエブ8の紙面上端側の領域12を機械加工で除去し、ウエブ8を薄肉化することで、設計領域N以内に収まるばかりでなく、図2に示す鍛造サスペンション部材に比べて軽量化率がさらに高くなる鍛造サスペンション部材を実現できる。これは、機械加工を行う領域として、曲げ中心軸Bから近い距離にあるウエブ8も加え、断面積の減少効果を高めたものである。 5 is a cross-sectional view taken along the line AA of FIG. 4, and is a cross-sectional view showing a modified example 1 of the region to be machined shown in FIG. Regarding the present modification 1, only the difference from the area where the machining is performed shown in FIG. 2 will be described. In FIG. 5, the region 12 on the upper end side of the paper surface of the web 8 is removed by machining to make the web 8 thinner, so that the web 8 is not only within the design region N but also lighter than the forged suspension member shown in FIG. It is possible to realize a forged suspension member with an even higher conversion rate. This is to enhance the effect of reducing the cross-sectional area by adding a web 8 located at a short distance from the bending central axis B as a region for machining.

(変形例2)
図6は図5に示した機械加工を行う領域の変形例2を示した断面図である。本変形例2に関しては、図5に示す機械加工を行う領域との差異についてのみ説明する。図6において、ウエブ8の紙面上端側の領域に加えてリブ5、6の各上部内側の領域を合わせた領域13を機械加工で除去し、ウエブ8を薄肉化すると同時にリブ5、6の各上部を薄肉化する(すなわち、リブ5、6の各上部においては、曲げ中心軸Bからより遠方に集中的に材料を配置する)ことで、設計領域N以内に収まるばかりでなく、図5に示す鍛造サスペンション部材に比べて軽量化率がさらに高い鍛造サスペンション部材を実現できる。
(Modification 2)
FIG. 6 is a cross-sectional view showing a modified example 2 of the region to be machined shown in FIG. Regarding the second modification, only the difference from the region to be machined shown in FIG. 5 will be described. In FIG. 6, in addition to the region on the upper end side of the paper surface of the web 8, the region 13 in which the upper inner regions of the ribs 5 and 6 are combined is removed by machining to thin the web 8 and at the same time, the ribs 5 and 6 are each thinned. By thinning the upper part (that is, in each upper part of the ribs 5 and 6, the material is concentrated farther from the bending central axis B), not only the material fits within the design area N, but also in FIG. It is possible to realize a forged suspension member having a higher weight reduction rate than the forged suspension member shown.

(変形例3)
図7は図6に示した機械加工を行う領域の変形例3を示した断面図である。本変形例3に関しては、図6に示す機械加工を行う領域との差異についてのみ説明する。図7においては、機械加工を行う領域として、ウエブ8を中心に紙面の上下対称となるように、ウエブ8の紙面下端側の領域に加えてリブ5、6の各下部内側の領域を合わせた領域14も対象にしているので、設計領域N以内に収まるばかりでなく、図6に示す鍛造サスペンション部材に比べて軽量化率がさらに高い鍛造サスペンション部材を実現できる。これは、鍛造サスペンション部材の断面形状として、理想形に近いものである。
(Modification 3)
FIG. 7 is a cross-sectional view showing a modified example 3 of the region to be machined shown in FIG. Regarding the present modification 3, only the difference from the area where the machining is performed shown in FIG. 6 will be described. In FIG. 7, as the area for machining, the area inside each lower part of the ribs 5 and 6 is combined with the area on the lower end side of the paper surface of the web 8 so as to be vertically symmetrical with respect to the web 8. Since the region 14 is also targeted, it is possible to realize a forged suspension member that not only fits within the design region N but also has a higher weight reduction rate than the forged suspension member shown in FIG. This is close to the ideal shape as the cross-sectional shape of the forged suspension member.

(変形例4)
図8は図5に示した機械加工を行う領域の変形例4を示した断面図である。本変形例4に関しては、図5に示す機械加工を行う領域との差異についてのみ説明する。図8においては、機械加工を行う領域として、図5に示す領域14に加えて、紙面上端側のウエブ8の左右両端から上部リブ5、6の各内側の根元に食い込むような領域も合わせた領域15も対象にしているので、設計領域N以内に収まるばかりでなく、図5に示す鍛造サスペンション部材に比べて軽量化率が少し高い鍛造サスペンション部材を実現できる。これも、当然上述した本発明のメカニズムに立脚したものである。
(Modification example 4)
FIG. 8 is a cross-sectional view showing a modified example 4 of the region to be machined shown in FIG. Regarding the present modification 4, only the difference from the region to be machined shown in FIG. 5 will be described. In FIG. 8, in addition to the region 14 shown in FIG. 5, the region to be machined includes a region that bites into the inner roots of the upper ribs 5 and 6 from the left and right ends of the web 8 on the upper end side of the paper surface. Since the region 15 is also targeted, it is possible to realize a forged suspension member that not only fits within the design region N but also has a slightly higher weight reduction rate than the forged suspension member shown in FIG. This, of course, is also based on the mechanism of the present invention described above.

(変形例5)
図9は図2に示した機械加工を行う領域の変形例5を示した断面図である。本変形例5に関しては、図2に示す機械加工を行う領域との差異についてのみ説明する。図9においては、図2に示す機械加工を行う領域10、11に比べて、外側面5a、5b、6a、6bにおけるバリ5c、6cに近い側の領域16、17を集中的に機械加工で除去することにより、設計領域N以内に収まるばかりでなく、軽量化率の高い鍛造サスペンション部材を実現している。
(Modification 5)
FIG. 9 is a cross-sectional view showing a modified example 5 of the region to be machined shown in FIG. Regarding the present modification 5, only the difference from the area where the machining is performed shown in FIG. 2 will be described. In FIG. 9, as compared with the areas 10 and 11 for machining shown in FIG. 2, the areas 16 and 17 on the outer surfaces 5a, 5b, 6a and 6b closer to the burrs 5c and 6c are intensively machined. By removing it, not only is it within the design area N, but also a forged suspension member with a high weight reduction rate is realized.

(変形例6)
図10は図5に示した機械加工を行う領域の変形例6を示した断面図である。本変形例6に関しては、図5に示す機械加工を行う領域との差異についてのみ説明する。図10においては、図5に示す機械加工を行う領域10に比べて大きな面積となる、外側面5a、5b、バリ5cを含む外周部の領域18を集中的に機械加工で除去し、逆に図5に示す機械加工を行う領域11に相当する箇所の機械加工による除去は実施せずに、設計領域N以内に収めると同時に、軽量化率の高い鍛造サスペンション部材を実現している。
(Modification 6)
FIG. 10 is a cross-sectional view showing a modified example 6 of the region to be machined shown in FIG. Regarding the present modification 6, only the difference from the area where the machining is performed shown in FIG. 5 will be described. In FIG. 10, the outer peripheral region 18 including the outer surfaces 5a and 5b and the burr 5c, which is a larger area than the machining region 10 shown in FIG. 5, is intensively removed by machining, and vice versa. A forged suspension member having a high weight reduction rate is realized while keeping the portion corresponding to the region 11 to be machined shown in FIG. 5 within the design region N without performing the removal by machining.

(変形例7)
図11は図2に示した機械加工を行う領域の変形例7を示した断面図である。本変形例7に関しては、図2に示す機械加工を行う領域との差異についてのみ説明する。図11に示す設計領域Oは、図2に示す設計領域Nに比べて、左側の領域が狭くなり、逆に右側の領域が拡張された異形を呈した形状の設計領域となっている。これに対応するように、図11に示す機械加工を行う領域18は、図2に示す機械加工を行う領域10に比べて大きな面積となっている。これにより、設計領域O以内に収めると同時に、軽量化率の高い鍛造サスペンション部材を実現している。
(Modification 7)
FIG. 11 is a cross-sectional view showing a modified example 7 of the region to be machined shown in FIG. Regarding the present modification 7, only the difference from the area where the machining is performed shown in FIG. 2 will be described. The design area O shown in FIG. 11 is a design area having a deformed shape in which the area on the left side is narrower than the design area N shown in FIG. 2 and the area on the right side is expanded. Corresponding to this, the area 18 for machining shown in FIG. 11 has a larger area than the area 10 for machining shown in FIG. As a result, a forged suspension member having a high weight reduction rate is realized while keeping it within the design area O.

(実施形態2)
図12は本発明の鍛造サスペンション部材の実施形態2であり、図2に示した断面形状と異なる断面形状を有した熱間鍛造後のサスペンション部材に機械加工を行う領域とともに示した断面図である。図12においては、熱間鍛造後のサスペンション部材1の断面形状Pが略U字状である。また、図12に符号Cで示す一点鎖線は、サスペンション部材1における曲げ中心軸である。また、図12に示すように、熱間鍛造後のサスペンション部材1の他部材と結合する部位以外(例えば、リブ5、6の抜き勾配に沿う外側面5a、5b、6a、6bとバリ5c、6cを含む外周部の領域20、21)を機械加工で除去することにより、設計領域Q以内に収まる鍛造サスペンション部材を実現できる。
(Embodiment 2)
FIG. 12 is a second embodiment of the forged suspension member of the present invention, and is a cross-sectional view showing a region for machining a suspension member after hot forging having a cross-sectional shape different from the cross-sectional shape shown in FIG. .. In FIG. 12, the cross-sectional shape P of the suspension member 1 after hot forging is substantially U-shaped. The alternate long and short dash line indicated by reference numeral C in FIG. 12 is the bending center axis of the suspension member 1. Further, as shown in FIG. 12, other than the portion of the suspension member 1 after hot forging that is connected to other members (for example, the outer surfaces 5a, 5b, 6a, 6b and burrs 5c along the draft of the ribs 5 and 6). By removing the outer peripheral regions 20 and 21) including 6c by machining, a forged suspension member that fits within the design region Q can be realized.

このような機械加工が施されたことにより、熱間鍛造の上下金型(鍛造型)に設定された抜き勾配に基づく形状制約による質量増加やバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害を解消し、大幅な軽量化が可能となる。これは、図12に示す断面形状Pの断面積を可能な限り小さくしながらも、曲げ中心軸Cまわりの所定の断面2次モーメントIや断面係数Zを確保するには、熱間鍛造後のサスペンション部材1の断面形状Pにおけるハッチングを施した領域20、21に対して機械加工を施し、設計領域Q以内に収め、かつ、曲げ中心軸Cからできるだけ遠方に(すなわち、Iでは3乗、Zでは2乗で寄与する曲げ中心軸Cからできるだけ離れた距離に)、材料を効率的に配置することが重要であるという上述した本発明のメカニズムに立脚しているからに他ならない。 Due to such machining, the actual design area is narrowed due to the mass increase due to the shape constraint based on the draft set in the upper and lower dies (forging dies) for hot forging and the residual burrs. It eliminates the hindrance to weight reduction and enables significant weight reduction. This is after hot forging in order to secure a predetermined geometrical moment of inertia I and cross-sectional coefficient Z around the bending central axis C while making the cross-sectional area of the cross-sectional shape P shown in FIG. 12 as small as possible. The hatched regions 20 and 21 in the cross-sectional shape P of the suspension member 1 are machined so as to be within the design region Q and as far as possible from the bending central axis C (that is, I is cubed, Z). This is because it is based on the mechanism of the present invention described above that it is important to efficiently arrange the material (at a distance as far as possible from the bending center axis C that contributes by the square).

(変形例8)
図13は図12に示した機械加工を行う領域の変形例8を示した断面図である。本変形例8に関しては、図12に示す機械加工を行う領域との差異についてのみ説明する。図13において、ウエブ8の紙面上端側の領域に加えてリブ5、6の各上部内側の領域を合わせた領域22を機械加工で除去し、ウエブ8を薄肉化すると同時にリブ5、6の各上部を薄肉化する(すなわち、リブ5、6の各上部においては、曲げ中心軸C(図示せず)からより遠方に集中的に材料を配置する)ことで、設計領域Q以内に収まるばかりでなく、図12に示す鍛造サスペンション部材に比べて軽量化率がさらに高い鍛造サスペンション部材を実現できる。
(Modification 8)
FIG. 13 is a cross-sectional view showing a modified example 8 of the region to be machined shown in FIG. Regarding the present modification 8, only the difference from the region to be machined shown in FIG. 12 will be described. In FIG. 13, in addition to the region on the upper end side of the paper surface of the web 8, the region 22 in which the upper inner regions of the ribs 5 and 6 are combined is removed by machining to thin the web 8 and at the same time, the ribs 5 and 6 are each thinned. By thinning the upper part (that is, in each upper part of the ribs 5 and 6, the material is concentrated farther from the bending center axis C (not shown)), the material is only within the design area Q. However, it is possible to realize a forged suspension member having a higher weight reduction rate than the forged suspension member shown in FIG.

(変形例9)
図14は図12に示した機械加工を行う領域の変形例9を示した断面図である。本変形例9に関しては、図12に示す機械加工を行う領域との差異についてのみ説明する。図14に示す設計領域Rは、図12に示す設計領域Qに比べて、右側の領域のみが狭くなった異形を呈した形状の設計領域となっている。これに対応するように、図14に示す機械加工を行う領域24は、図12に示す機械加工を行う領域21に比べて大きな面積となっている。ただし、図14に示す機械加工を行う領域23は、図12に示す機械加工を行う領域20と略同じ面積の機械加工を行う領域である。これにより、設計領域R以内に収めると同時に、軽量化率の高い鍛造サスペンション部材を実現している。
(Modification 9)
FIG. 14 is a cross-sectional view showing a modified example 9 of the region to be machined shown in FIG. Regarding the present modification 9, only the difference from the region to be machined shown in FIG. 12 will be described. The design area R shown in FIG. 14 is a design area having a deformed shape in which only the right area is narrower than the design area Q shown in FIG. Corresponding to this, the area 24 for machining shown in FIG. 14 has a larger area than the area 21 for machining shown in FIG. However, the region 23 for machining shown in FIG. 14 is a region for machining having substantially the same area as the region 20 for machining shown in FIG. As a result, a forged suspension member having a high weight reduction rate is realized while keeping it within the design area R.

(実施形態3)
図15は本発明の鍛造サスペンション部材の実施形態3であり、図2や図12に示した断面形状とさらに異なる断面形状を有した熱間鍛造後のサスペンション部材に機械加工を行う領域とともに示した断面図である。図15においては、熱間鍛造後のサスペンション部材1の断面形状Sが略逆T字状である。また、図15に符号Dで示す一点鎖線は、サスペンション部材1における曲げ中心軸である。また、図15に示すように、熱間鍛造後のサスペンション部材1の他部材と結合する部位以外(例えば、ウエブ30の抜き勾配に沿う外側面30a、30b、30d、30eとバリ30c、30fを含む外周部の領域32、33)を機械加工で除去することにより、設計領域T以内に収まる鍛造サスペンション部材を実現できる。
(Embodiment 3)
FIG. 15 is the third embodiment of the forged suspension member of the present invention, and is shown together with a region for machining the suspension member after hot forging having a cross-sectional shape further different from the cross-sectional shape shown in FIGS. 2 and 12. It is a sectional view. In FIG. 15, the cross-sectional shape S of the suspension member 1 after hot forging is substantially an inverted T shape. The alternate long and short dash line indicated by reference numeral D in FIG. 15 is the bending center axis of the suspension member 1. Further, as shown in FIG. 15, the outer surfaces 30a, 30b, 30d, 30e and the burrs 30c, 30f along the draft of the web 30 other than the portion to be bonded to the other member of the suspension member 1 after hot forging (for example, By removing the including outer peripheral regions 32 and 33) by machining, a forged suspension member that fits within the design region T can be realized.

このような機械加工が施されたことにより、熱間鍛造の上下金型(鍛造型)に設定された抜き勾配に基づく形状制約による質量増加やバリ残存によって実質的な設計領域が狭くなることによる軽量化の阻害を解消し、大幅な軽量化が可能となる。これは、図15に示す断面形状Sの断面積を可能な限り小さくしながらも、曲げ中心軸Dまわりの所定の断面2次モーメントIや断面係数Zを確保するには、熱間鍛造後のサスペンション部材1の断面形状Sにおけるハッチングを施した領域32、33に対して機械加工を施し、設計領域T以内に収め、かつ、曲げ中心軸Dからできるだけ遠方に(すなわち、Iでは3乗、Zでは2乗で寄与する曲げ中心軸Dからできるだけ離れた距離に)、材料を効率的に配置することが重要であるという上述した本発明のメカニズムに立脚しているからに他ならない。 Due to such machining, the actual design area is narrowed due to the mass increase due to the shape constraint based on the draft set in the upper and lower dies (forging dies) for hot forging and the residual burrs. It eliminates the hindrance to weight reduction and enables significant weight reduction. This is after hot forging in order to secure a predetermined geometrical moment of inertia I and cross-sectional coefficient Z around the bending central axis D while making the cross-sectional area of the cross-sectional shape S shown in FIG. 15 as small as possible. The hatched regions 32 and 33 in the cross-sectional shape S of the suspension member 1 are machined so as to be within the design region T and as far as possible from the bending central axis D (that is, I is cubed, Z). This is because it is based on the mechanism of the present invention described above that it is important to efficiently arrange the materials (at a distance as far as possible from the bending center axis D that contributes by the square).

(変形例10)
図16は図15に示した機械加工を行う領域の変形例10を示した断面図である。本変形例10に関しては、図15に示す機械加工を行う領域との差異についてのみ説明する。図16においては、機械加工を行う領域として、図15に示す領域32、33における各バリ30c、30f部分に相当する領域34、35に加えて、ウエブ30の紙面上端側とリブ31が交わる部分のリブ31の根元において左右から食い込むような領域36、37も合わせた領域も対象にしているので、設計領域U以内に収まるばかりでなく、図5に示す鍛造サスペンション部材に近い軽量化率の鍛造サスペンション部材を実現できる。
(Modification example 10)
FIG. 16 is a cross-sectional view showing a modified example 10 of the region to be machined shown in FIG. Regarding the present modification 10, only the difference from the region to be machined shown in FIG. 15 will be described. In FIG. 16, as the region for machining, in addition to the regions 34 and 35 corresponding to the burrs 30c and 30f in the regions 32 and 33 shown in FIG. 15, the portion where the upper end side of the paper surface of the web 30 and the rib 31 intersect. Since the area 36 and 37 that bite from the left and right at the base of the rib 31 are also targeted, not only the area is within the design area U, but also the forging with a weight reduction rate close to that of the forged suspension member shown in FIG. Suspension members can be realized.

以下、図17(a)〜(i)に示すアルミニウム合金製鍛造サスペンション部材の断面形状を用いて、本発明の軽量化効果を検証した。図17においては、上述した図2に示すような略H字状の断面形状をした一般的な断面3パターン(A、B、C)を対象とした。この3つの断面形状パターンは、下記表1および図17に示すように、それぞれ断面形状パターンA{図17(a)、(b)、(c)参照}が幅W=63.74mm、断面形状パターンB{図17(d)、(e)、(f)参照}が幅W=85.74mm、断面形状パターンC{図17(g)、(h)、(i)参照}が幅W=121.74mmに設計されている。また、図17(a)〜(i)に示す鍛造サスペンション部材は、いずれも抜き勾配=5°、コーナーR=5mm、隅R=8mm、ウエブ8の最小肉厚=6mm、リブ5、6の最小肉厚10mmを形状制約としている。また、図17(a)〜(i)に示す鍛造サスペンション部材でも、熱間鍛造後のサスペンション部材(機械加工を行う前の形状)1の時点においては、バリ厚3mmを含んでいる。 Hereinafter, the weight reduction effect of the present invention was verified using the cross-sectional shapes of the aluminum alloy forged suspension members shown in FIGS. 17 (a) to 17 (i). In FIG. 17, three general cross-sectional patterns (A, B, C) having a substantially H-shaped cross-sectional shape as shown in FIG. 2 described above were targeted. As shown in Table 1 and FIG. 17 below, the three cross-sectional shape patterns A {see FIGS. 17 (a), (b), and (c)} have a width W = 63.74 mm and a cross-sectional shape. Pattern B {see FIGS. 17 (d), (e), (f)} has a width W = 85.74 mm, and cross-sectional shape pattern C {see FIGS. 17 (g), (h), (i)} has a width W = It is designed to be 121.74 mm. Further, the forged suspension members shown in FIGS. 17 (a) to 17 (i) all have a draft = 5 °, a corner R = 5 mm, a corner R = 8 mm, a minimum wall thickness of the web 8 = 6 mm, and ribs 5 and 6. The minimum wall thickness of 10 mm is a shape constraint. Further, the forged suspension members shown in FIGS. 17 (a) to 17 (i) also include a burr thickness of 3 mm at the time of the suspension member (shape before machining) 1 after hot forging.

Figure 0006753652
Figure 0006753652

上記表1および図17(a)、(b)、(c)に示すように、図17(a)が断面形状パターンAにおける基準断面(バリ付;比較例)で従来のようにバリを含む外周部へ機械加工を施してない熱間鍛造後のままの断面形状を有した鍛造サスペンション部材であり、図17(b)、(c)が本発明例であり、バリを含むリブ5、6の外周部へそれぞれ機械加工を行った断面形状を有した鍛造サスペンション部材であり、図17(b)と(c)ではリブ5、6の高さを変えてある。また、図17(a)〜(c)においては、図2に示す位置と同じ位置に設けられる曲げ中心軸(図示せず)まわりの面内曲げの断面係数Zが一致するよう断面設計され、本発明の軽量化率を検証できるように設定してある(上記表1参照)。 As shown in Table 1 and FIGS. 17 (a), 17 (b), and (c), FIG. 17 (a) is a reference cross section (with burrs; comparative example) in the cross-sectional shape pattern A and includes burrs as in the conventional case. A forged suspension member having a cross-sectional shape as it is after hot forging without machining the outer peripheral portion. FIGS. 17 (b) and 17 (c) are examples of the present invention, and ribs 5 and 6 including burrs are shown. It is a forged suspension member having a cross-sectional shape obtained by machining the outer peripheral portion of the above, and the heights of the ribs 5 and 6 are changed in FIGS. 17 (b) and 17 (c). Further, in FIGS. 17 (a) to 17 (c), the cross-section is designed so that the cross-sectional coefficients Z of the in-plane bending around the bending center axis (not shown) provided at the same position as shown in FIG. 2 match. It is set so that the weight reduction rate of the present invention can be verified (see Table 1 above).

同様に、上記表1および図17(d)、(e)、(f)に示すように、図17(d)が断面形状パターンBにおける基準断面(バリ付;比較例)で従来のようにバリを含む外周部へ機械加工を施してない熱間鍛造後のままの断面形状を有した鍛造サスペンション部材であり、図17(e)、(f)が本発明例であり、バリを含むリブ5、6の外周部へそれぞれ機械加工を行った断面形状を有した鍛造サスペンション部材であり、図17(e)と(f)ではリブ5、6の高さを変えてある。また、図17(d)〜(f)においては、図2に示す位置と同じ位置に設けられる曲げ中心軸(図示せず)まわりの面内曲げの断面係数Zが一致するよう断面設計され、本発明の軽量化率を検証できるように設定してある(上記表1参照)。 Similarly, as shown in Table 1 and FIGS. 17 (d), (e), and (f), FIG. 17 (d) is a reference cross section (with burrs; comparative example) in the cross-sectional shape pattern B as in the conventional case. A forged suspension member having a cross-sectional shape as it is after hot forging without machining the outer peripheral portion including burrs. FIGS. 17 (e) and 17 (f) are examples of the present invention, and ribs containing burrs. It is a forged suspension member having a cross-sectional shape obtained by machining the outer peripheral portions of 5 and 6, respectively, and the heights of the ribs 5 and 6 are changed in FIGS. 17 (e) and 17 (f). Further, in FIGS. 17 (d) to 17 (f), the cross-section is designed so that the cross-sectional coefficients Z of the in-plane bending around the bending center axis (not shown) provided at the same position as shown in FIG. 2 match. It is set so that the weight reduction rate of the present invention can be verified (see Table 1 above).

同様に、上記表1および図17(g)、(h)、(i)に示すように、図17(g)が断面形状パターンCにおける基準断面(バリ付;比較例)で従来のようにバリを含む外周部へ機械加工を施してない熱間鍛造後のままの断面形状を有した鍛造サスペンション部材であり、図17(h)、(i)が本発明例であり、バリを含むリブ5、6の外周部へそれぞれ機械加工を行った断面形状を有した鍛造サスペンション部材であり、図17(h)と(i)ではリブ5、6の高さを変えてある。また、図17(g)〜(i)においては、図2に示す位置と同じ位置に設けられる曲げ中心軸(図示せず)まわりの面内曲げの断面係数Zが一致するよう断面設計され、本発明の軽量化率を検証できるように設定してある(上記表1参照)。 Similarly, as shown in Table 1 and FIGS. 17 (g), (h), and (i), FIG. 17 (g) is a reference cross section (with burrs; comparative example) in the cross-sectional shape pattern C as in the conventional case. A forged suspension member having a cross-sectional shape as it is after hot forging without machining the outer peripheral portion including burrs. FIGS. 17 (h) and 17 (i) are examples of the present invention, and ribs containing burrs. It is a forged suspension member having a cross-sectional shape obtained by machining the outer peripheral portions of 5 and 6, respectively, and the heights of the ribs 5 and 6 are changed in FIGS. 17 (h) and 17 (i). Further, in FIGS. 17 (g) to 17 (i), the cross-section is designed so that the cross-sectional coefficients Z of the in-plane bending around the bending center axis (not shown) provided at the same position as shown in FIG. 2 match. It is set so that the weight reduction rate of the present invention can be verified (see Table 1 above).

また、3つの断面形状パターン(A、B、C)に関して、それぞれ上記表1内に示す(1){リブ高さ一定;それぞれ、図17(b)、(e)、(h)に対応}は、高い軽量化率を重視するために、リブ5、6の高さをそれぞれ比較例である図17(a)、(d)、(g)と同一にした例である。また、同(2){リブ高さ可変;それぞれ、図17(c)、(f)、(i)に対応}は、熱間鍛造しやすい形状に近づけることで不良率低減や金型の長寿命化、機械加工の速度を重視するために、リブ5、6の高さをそれぞれ図17(b)、(e)、(h)に比べて低くした例である。 Further, regarding the three cross-sectional shape patterns (A, B, C), (1) {constant rib height; corresponding to FIGS. 17 (b), (e), and (h), respectively} shown in Table 1 above. Is an example in which the heights of the ribs 5 and 6 are the same as those of FIGS. 17A, 17D, and 17G, which are comparative examples, in order to emphasize a high weight reduction rate. Further, in the same (2) {variable rib height; corresponding to FIGS. 17 (c), (f), and (i), respectively}, the defect rate can be reduced and the die length can be reduced by making the shape closer to a shape that is easy to hot forge. This is an example in which the heights of the ribs 5 and 6 are made lower than those in FIGS. 17 (b), (e), and (h), respectively, in order to emphasize the life and the speed of machining.

上記表1の(1)(すなわち、それぞれ図17(b)、(e)、(h)に示すように、機械加工が行なわれた断面形状をなす)の場合は、それぞれ約26%、約16%、約9%の軽量化率(断面積Sは、それぞれ約20%、約10%、約10%の減少率)が可能であった。また、上記表1の(2)(すなわち、それぞれ図17(c)、(f)、(i)に示すように、機械加工が行なわれた断面形状をなす)の場合は、それぞれ約17%、約11%、約7%の軽量化率(断面積Sは、それぞれ約10%、約10%、約10%の減少率)が可能であった。なお、上記表1の(1)、(2)ともに、鍛造サスペンション部材の断面の幅Wが狭いほど、それぞれ軽量化率は高くなった。このように、本発明を適用することによって、従来のアルミニウム合金製鍛造サスペンション部材から約10〜20%前後の軽量化を実現できることが判明した。 In the case of (1) in Table 1 above (that is, it has a cross-sectional shape that has been machined as shown in FIGS. 17B, 17E, and 17H, respectively), about 26% and about 26%, respectively. It was possible to reduce the weight by 16% and about 9% (the cross-sectional area S was reduced by about 20%, about 10%, and about 10%, respectively). Further, in the case of (2) in Table 1 above (that is, it has a cross-sectional shape that has been machined as shown in FIGS. 17 (c), (f), and (i), respectively), about 17% each. It was possible to reduce the weight by about 11% and about 7% (the cross-sectional area S was reduced by about 10%, about 10%, and about 10%, respectively). In both (1) and (2) of Table 1 above, the narrower the width W of the cross section of the forged suspension member, the higher the weight reduction rate. As described above, it has been found that by applying the present invention, it is possible to realize a weight reduction of about 10 to 20% from the conventional aluminum alloy forged suspension member.

なお、本実施例においては、バリを含むリブ5、6の外周部へそれぞれ機械加工を行った場合について説明したが、必ずしもこれに限定されるものではない。上述したように、ウエブ8に対しても機械加工を施し薄肉化することで、軽量化率はさらに高くできる。例えば、3つの断面形状パターン(A、B、C)の(1)において、ウエブ8の肉厚を6mmから4mmに薄くすることで、強度上への影響は小さいにも拘らず、約6%、約10%、約14%のさらなる軽量化がそれぞれ可能となる。この場合は、鍛造サスペンション部材の断面の幅Wが広いほど、それぞれ軽量化率は高くなった。 In this embodiment, the case where the outer peripheral portions of the ribs 5 and 6 including burrs are machined has been described, but the present invention is not necessarily limited to this. As described above, the weight reduction rate can be further increased by machining the web 8 to make it thinner. For example, in (1) of the three cross-sectional shape patterns (A, B, C), by reducing the wall thickness of the web 8 from 6 mm to 4 mm, the effect on the strength is small, but about 6%. , About 10% and about 14%, respectively, can be further reduced in weight. In this case, the wider the cross-sectional width W of the forged suspension member, the higher the weight reduction rate.

1 熱間鍛造によって製造されたサスペンション部材(機械加工を行う前の形状)
2 ボールジョイント支持部
3、4 ブッシュ支持部
5、6、7、31 リブ
5a、5b、6a、6b、30a、30b、30d、30e 外側面
5c、6c、30c、30f バリ
8、30 ウエブ
9 アーム部
10、11、12、13、14、15、16、17,18、19、20、21、22、23、24、32、33、34、35、36、37 機械加工を行う領域
1 Suspension member manufactured by hot forging (shape before machining)
2 Ball joint support 3, 4 Bush support 5, 6, 7, 31 Rib 5a, 5b, 6a, 6b, 30a, 30b, 30d, 30e Outer side surface 5c, 6c, 30c, 30f Bali 8, 30 Web 9 arm Parts 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32, 33, 34, 35, 36, 37 Areas to be machined

Claims (5)

動車に取り付けられ、中心軸を含む貫通孔を有する円柱状で、それぞれの前記中心軸が平行である複数の支持部と、
前記複数の支持部それぞれの外周を連結して周縁を形成するリブと
を備える鍛造サスペンション部材の製造方法であって、
前記中心軸方向に分割される金型を用いて金属素材を熱間鍛造する工程と、
前記鍛造後に機械加工する工程と
を有し、
前記鍛造工程で、前記鍛造後の前記リブの外周部分を、前記自動車に取り付けられる他の部材の可動域と干渉する領域を超えるように前記金型の抜き勾配を大きくして形成し、
前記加工工程で、前記領域以内、かつ前記中心軸方向の断面における断面積が小さくなるように前記領域を超えたリブの外周部分を除去することを特徴とする鍛造サスペンション部材の製造方法。
Mounted on automobiles, a cylindrical shape having a through-hole including the central axis, a plurality of support portions Ru parallel der each of said central axis,
A method of manufacturing a forged suspension member Ru and a rib to form a peripheral by connecting a periphery of each of the plurality of support portions,
The process of hot forging a metal material using the mold divided in the central axis direction,
With the process of machining after the forging
Have,
In the forging step, the outer peripheral portion of the rib after forging is formed by increasing the draft of the die so as to exceed the region that interferes with the range of motion of other members attached to the automobile.
A method for manufacturing a forged suspension member, which comprises removing an outer peripheral portion of a rib that is within the region and exceeds the region so that the cross-sectional area in the cross section in the central axis direction becomes small in the processing step.
前記リブと直交する中央部としてのウエブをさらに備え、
前記加工工程で除去された箇所には、前記サスペンション部材のウエブを含むことを特徴とする請求項1に記載の鍛造サスペンション部材の製造方法
Further provided with a web as a central portion orthogonal to the rib
The method for manufacturing a forged suspension member according to claim 1, wherein the portion removed in the processing step includes a web of the suspension member.
前記加工工程で除去された箇所の質量は、前記熱間鍛造後のサスペンション部材の質量の10〜20%であることを特徴とする請求項1又は請求項2に記載の鍛造サスペンション部材の製造方法The method for manufacturing a forged suspension member according to claim 1 or 2, wherein the mass of the portion removed in the processing step is 10 to 20% of the mass of the suspension member after the hot forging. .. 前記金属素材は、アルミニウム合金であることを特徴とする請求項1、請求項2又は請求項3に記載の鍛造サスペンション部材の製造方法The method for manufacturing a forged suspension member according to claim 1, claim 2 or claim 3, wherein the metal material is an aluminum alloy. 前記アルミニウム合金の0.2%耐力が380MPa以上であることを特徴とする請求項4に記載の鍛造サスペンション部材の製造方法
The method for manufacturing a forged suspension member according to claim 4, wherein the 0.2% proof stress of the aluminum alloy is 380 MPa or more.
JP2015073017A 2015-03-31 2015-03-31 Manufacturing method of forged suspension member Active JP6753652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073017A JP6753652B2 (en) 2015-03-31 2015-03-31 Manufacturing method of forged suspension member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073017A JP6753652B2 (en) 2015-03-31 2015-03-31 Manufacturing method of forged suspension member

Publications (2)

Publication Number Publication Date
JP2016190267A JP2016190267A (en) 2016-11-10
JP6753652B2 true JP6753652B2 (en) 2020-09-09

Family

ID=57245126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073017A Active JP6753652B2 (en) 2015-03-31 2015-03-31 Manufacturing method of forged suspension member

Country Status (1)

Country Link
JP (1) JP6753652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243589A (en) * 2017-07-13 2017-10-13 安徽众鑫科技股份有限公司 A kind of rotor field spider Forging Technology

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220241A (en) * 1983-05-31 1984-12-11 Komatsu Ltd Two step trimming of hot forged product
JPH0919736A (en) * 1995-07-07 1997-01-21 Toyota Motor Corp Forged arm, forging die for forged arm and design of forged arm
JPH11138232A (en) * 1997-11-06 1999-05-25 Toyota Motor Corp Forging method of gear and gear forging method for correcting phase shift
JP2002046030A (en) * 2000-08-04 2002-02-12 Yutaka Seimitsu Kogyo Ltd Manufacturing method for bevel gear, bevel gear material, and bevel gear
JP2004074978A (en) * 2002-08-21 2004-03-11 Kobe Steel Ltd Suspension part for automobile and manufacturing method for the same
JP2005082140A (en) * 2003-09-09 2005-03-31 Kobe Steel Ltd Forged suspension member and suspension arm
JP5416624B2 (en) * 2010-03-15 2014-02-12 株式会社神戸製鋼所 Automotive undercarriage parts and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016190267A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP5771320B2 (en) Automobile undercarriage parts
RU2735604C1 (en) Methods for making a rim of a wheel, a disc and a steel wheel and a steel wheel which is made using these methods
JP5850910B2 (en) Process for producing forged products made of light alloys and incorporating solid or thinned parts
JP6412496B2 (en) Manufacturing method of cutting material
JP2018505806A (en) Method for manufacturing light alloy hybrid wheel including front flange and rim
JP2015066572A (en) Apparatus and method for manufacturing suspension arm for motor vehicle
JP2008173687A (en) Forged product and manufacturing method therefor
CN107206469A (en) The manufacture method of ring-type formed body
JP6561576B2 (en) Manufacturing method of forged crankshaft
JP6753652B2 (en) Manufacturing method of forged suspension member
JP2006177466A (en) Outer ring of third generation hub bearing unit for supporting wheel of automobile and method of manufacturing the same
JP6561577B2 (en) Manufacturing method of forged crankshaft
JP6561575B2 (en) Manufacturing method of forged crankshaft
JP6287631B2 (en) Manufacturing method of forged crankshaft
JP2009274135A (en) Forged wheel made of light alloy and method for producing the same
JP6439863B2 (en) Manufacturing method of forged crankshaft
JP6371468B2 (en) Forging method
CN110899605B (en) Integral cold forging and stretching method for automobile chassis shock absorber shell
JP5363861B2 (en) Forged materials for automobile suspension arms
KR101182588B1 (en) Ball stud fastener
JP2007160318A (en) Press die, and method for forming metallic plate using the same
JP2003103330A (en) Manufacturing method for forging, manufacturing device for forging, and preform forging material
JP3130956U (en) Cast wheel mold for vehicle
TR2023013870A2 (en) A CONTROL SIDE METHOD OF MANUFACTURING METHOD
JP2004042079A (en) Suspension part and method for manufacturing it

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190820

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150