JP6753577B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP6753577B2
JP6753577B2 JP2017016670A JP2017016670A JP6753577B2 JP 6753577 B2 JP6753577 B2 JP 6753577B2 JP 2017016670 A JP2017016670 A JP 2017016670A JP 2017016670 A JP2017016670 A JP 2017016670A JP 6753577 B2 JP6753577 B2 JP 6753577B2
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
heated
medium
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016670A
Other languages
Japanese (ja)
Other versions
JP2017166804A (en
Inventor
與四郎 竹村
與四郎 竹村
宏幸 山田
宏幸 山田
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to CN201710135489.7A priority Critical patent/CN107192173B/en
Publication of JP2017166804A publication Critical patent/JP2017166804A/en
Application granted granted Critical
Publication of JP6753577B2 publication Critical patent/JP6753577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収ヒートポンプに関し、特に被加熱媒体への伝熱効率の低下を抑制する吸収ヒートポンプに関する。 The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump that suppresses a decrease in heat transfer efficiency to a medium to be heated.

蒸発器で発生させた冷媒蒸気を吸収器に導き、吸収器において冷媒蒸気を吸収液に吸収させた際に発生した吸収熱で被加熱媒体の液体を加熱して被加熱媒体の蒸気を生成する吸収ヒートポンプは公知である。被加熱媒体の液体が蒸気に変わる際に、体積の増加が妨げられることにより被加熱媒体の流れが不安定になることを回避するために、吸収器を以下のように構成したものがある。その吸収器には、被加熱媒体を内部に流すチューブが、複数本水平に配置されている。複数のチューブの両端には、それぞれ水室が設置されている。水室は、複数の仕切板によって複数に区画されている。仕切板で区画された各水室には、複数のチューブが接続されている。また、仕切板は、各チューブ及び水室を全体として1つの流れとして流れる被加熱媒体が、全体として下方から上方に向かう流れとなるように水室を区画するべく設置されている。また、仕切板は、ある水室から導出する被加熱媒体を流すチューブの集合の流路断面積の合計面積が、その水室に導入する被加熱媒体を流すチューブの集合の流路断面積の合計面積以上となるように設置されている(例えば、特許文献1参照)。 The refrigerant vapor generated by the evaporator is guided to the absorber, and the liquid of the heated medium is heated by the absorption heat generated when the refrigerant vapor is absorbed by the absorption liquid in the absorber to generate the vapor of the heated medium. Absorption heat pumps are known. In order to prevent the flow of the medium to be heated from becoming unstable due to the hindrance of the increase in volume when the liquid of the medium to be heated is changed to vapor, some absorbers are configured as follows. A plurality of tubes through which the medium to be heated flows are horizontally arranged in the absorber. Water chambers are installed at both ends of the plurality of tubes. The water chamber is divided into a plurality of sections by a plurality of partition plates. A plurality of tubes are connected to each water chamber partitioned by a partition plate. Further, the partition plate is installed so as to partition the water chamber so that the heated medium flowing through each tube and the water chamber as a whole flows from the lower side to the upper side as a whole. Further, in the partition plate, the total area of the flow path cross-sectional area of the set of tubes for flowing the heated medium led out from a certain water chamber is the flow path cross-sectional area of the set of tubes for flowing the heated medium to be introduced into the water chamber. It is installed so as to have a total area or more (see, for example, Patent Document 1).

特開2010−164248号公報(段落0034−0037等)Japanese Unexamined Patent Publication No. 2010-164248 (paragraph 0034-0037, etc.)

チューブを流れる被加熱媒体は、吸収熱で加熱されることによって液体の一部が蒸発し、気体を伴って流れることになる。このとき、例えば被加熱媒体が水の場合、蒸発した気体の体積は液体の体積の数百倍大きいことから、ある水室において被加熱媒体が下方のチューブ群から流出して次の上方のチューブ群に流入する際、流れの状況により気体だけが流入して液体が流入しないチューブが現れることがあった。気体だけが流入したチューブでは、吸収熱が被加熱媒体に効率よく伝達されないこととなる。 When the medium to be heated flowing through the tube is heated by the absorbed heat, a part of the liquid evaporates and flows with a gas. At this time, for example, when the medium to be heated is water, the volume of the evaporated gas is several hundred times larger than the volume of the liquid, so that the medium to be heated flows out from the lower tube group in a certain water chamber and the next upper tube. When flowing into the group, depending on the flow conditions, some tubes may appear in which only gas flows in and liquid does not flow in. In a tube into which only gas has flowed in, the absorbed heat is not efficiently transferred to the medium to be heated.

本発明は上述の課題に鑑み、被加熱媒体の液体が流入せずに被加熱媒体の蒸気が流入してしまう蒸発管が生じることを防いで、被加熱媒体への伝熱効率の低下を抑制した、伝熱効率が優れた吸収ヒートポンプを提供することを目的とする。 In view of the above-mentioned problems, the present invention prevents an evaporation tube from which the vapor of the heated medium flows in without the liquid of the heated medium flowing in, and suppresses a decrease in the heat transfer efficiency to the heated medium. An object of the present invention is to provide an absorption heat pump having excellent heat transfer efficiency.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1及び図2に示すように、被加熱媒体の液体Wqを導入して内部に流す伝熱管12を複数有し、伝熱管12の外側で吸収液Saが冷媒の蒸気Veを吸収したときに生じた吸収熱で被加熱媒体Wqを加熱して被加熱媒体の液体Wqを蒸発させる吸収器10と;吸収器10で加熱された被加熱媒体Wmを導入して被加熱媒体の液体Wqと蒸気Wvとに分離する気液分離器80と;吸収器10で加熱された被加熱媒体Wmを気液分離器80に導く第1の流路84と;気液分離器80で分離された被加熱媒体の液体Wqを吸収器10に導く第2の流路81、82とを備え;吸収器10は、被加熱媒体の液体Wqを複数の伝熱管12に分配する分配部14と、複数の伝熱管12から被加熱媒体Wを収集する収集部15とを有し、複数の伝熱管12のそれぞれの一端が分配部14に接続されると共に複数の伝熱管12のそれぞれの他端が15収集部に接続され、複数の伝熱管12のそれぞれの内部を流れる被加熱媒体Wが分配部14から収集部15に至る間に合流も分流もしないように構成され、収集部15の容積が分配部14の容積よりも大きく形成され;収集部15は、第1の流路84に連通する被加熱媒体流出口15hが上部に形成され;気液分離器80は、分離された被加熱媒体の液体Wqが貯留される部分80cが、収集部15よりも上方になるように配置されている。 In order to achieve the above object, the absorption heat pump according to the first aspect of the present invention has a plurality of heat transfer tubes 12 in which the liquid Wq of the medium to be heated is introduced and flows into the inside, for example, as shown in FIGS. 1 and 2. With an absorber 10 that heats the heated medium Wq with the absorbed heat generated when the absorbing liquid Sa absorbs the vapor vapor Ve of the refrigerant outside the heat transfer tube 12 to evaporate the liquid Wq of the heated medium; A gas-liquid separator 80 that introduces the heated medium Wm heated by the vessel 10 and separates the liquid Wq and the vapor Wv of the heated medium; and the gas-liquid separator that separates the heated medium Wm heated by the absorber 10. It includes a first flow path 84 leading to 80; and second flow paths 81 and 82 leading the liquid Wq of the heated medium separated by the gas-liquid separator 80 to the absorber 10; the absorber 10 is covered. It has a distribution unit 14 that distributes the liquid Wq of the heating medium to the plurality of heat transfer tubes 12, and a collection unit 15 that collects the heated medium W from the plurality of heat transfer tubes 12, and one end of each of the plurality of heat transfer tubes 12 The other end of each of the plurality of heat transfer tubes 12 is connected to the 15 collection unit while being connected to the distribution unit 14, and the heated medium W flowing inside each of the plurality of heat transfer tubes 12 is transferred from the distribution unit 14 to the collection unit 15. It is configured so that it does not merge or split in the meantime, and the volume of the collecting unit 15 is formed to be larger than the volume of the distributing unit 14. The collecting unit 15 is a heated medium outlet 15h communicating with the first flow path 84. Is formed on the upper part; the gas-liquid separator 80 is arranged so that the portion 80c in which the liquid Wq of the separated heated medium is stored is located above the collecting portion 15.

このように構成すると、分配部が被加熱媒体の液体で満たされて、各伝熱管に被加熱媒体の液体が流入することとなり、複数本の伝熱管のうち被加熱媒体の液体が流入せずに被加熱媒体の蒸気が流入してしまう伝熱管が生じることを防ぐことができて、被加熱媒体への吸収熱の伝熱効率の低下を抑制することができる。 With this configuration, the distribution section is filled with the liquid of the heated medium, and the liquid of the heated medium flows into each heat transfer tube, so that the liquid of the heated medium does not flow out of the plurality of heat transfer tubes. It is possible to prevent a heat transfer tube from which the vapor of the medium to be heated flows into the medium, and it is possible to suppress a decrease in the heat transfer efficiency of the absorbed heat to the medium to be heated.

上記目的を達成するために、本発明の第2の態様に係る吸収ヒートポンプは、例えば図1及び図2に示すように、被加熱媒体の液体Wqを導入して内部に流す伝熱管12を複数有し、伝熱管12の外側で吸収液Saが冷媒の蒸気Veを吸収したときに生じた吸収熱で被加熱媒体Wqを加熱して被加熱媒体の液体Wqを蒸発させる吸収器10と;吸収器10で加熱された被加熱媒体Wmを導入して被加熱媒体の液体Wqと蒸気Wvとに分離する気液分離器80と;吸収器10で加熱された被加熱媒体Wmを気液分離器80に導く第1の流路84と;気液分離器80で分離された被加熱媒体の液体Wqを吸収器10に導く第2の流路81、82とを備え;吸収器10は、被加熱媒体の液体Wqを複数の伝熱管12に分配する分配部14と、複数の伝熱管12から被加熱媒体Wを収集する収集部15とを有し、複数の伝熱管12のそれぞれの一端が分配部14に接続されると共に複数の伝熱管12のそれぞれの他端が15収集部に接続され、複数の伝熱管12のそれぞれの内部を流れる被加熱媒体Wが分配部14から収集部15に至る間に合流も分流もしないように構成され、収集部15の容積が分配部14の容積よりも大きく形成され;収集部15は、第1の流路84に連通する被加熱媒体流出口15hが上部に形成され;気液分離器80は、分離された被加熱媒体の液体Wqが貯留される部分80cが、分配部14よりも上方になるように配置されている。 In order to achieve the above object, the absorption heat pump according to the second aspect of the present invention has a plurality of heat transfer tubes 12 in which the liquid Wq of the medium to be heated is introduced and flows into the inside, for example, as shown in FIGS. 1 and 2. With an absorber 10 that heats the heated medium Wq with the absorbed heat generated when the absorbing liquid Sa absorbs the vapor vapor Ve of the refrigerant outside the heat transfer tube 12 to evaporate the liquid Wq of the heated medium; A gas-liquid separator 80 that introduces the heated medium Wm heated by the vessel 10 and separates the liquid Wq and the vapor Wv of the heated medium; and the gas-liquid separator that separates the heated medium Wm heated by the absorber 10. It includes a first flow path 84 leading to 80; and second flow paths 81 and 82 leading the liquid Wq of the heated medium separated by the gas-liquid separator 80 to the absorber 10; the absorber 10 is covered. It has a distribution unit 14 that distributes the liquid Wq of the heating medium to the plurality of heat transfer tubes 12, and a collection unit 15 that collects the heated medium W from the plurality of heat transfer tubes 12, and one end of each of the plurality of heat transfer tubes 12 The other end of each of the plurality of heat transfer tubes 12 is connected to the 15 collection unit while being connected to the distribution unit 14, and the heated medium W flowing inside each of the plurality of heat transfer tubes 12 is transferred from the distribution unit 14 to the collection unit 15. It is configured so that it does not merge or split in the meantime, and the volume of the collecting unit 15 is formed to be larger than the volume of the distributing unit 14. The collecting unit 15 is a heated medium outlet 15h communicating with the first flow path 84. Is formed on the upper part; the gas-liquid separator 80 is arranged so that the portion 80c in which the liquid Wq of the separated heated medium is stored is located above the distribution portion 14.

このように構成すると、分配部が被加熱媒体の液体で満たされて、各伝熱管に被加熱媒体の液体が流入することとなり、複数本の伝熱管のうち被加熱媒体の液体が流入せずに被加熱媒体の蒸気が流入してしまう伝熱管が生じることを防ぐことができて、被加熱媒体への吸収熱の伝熱効率の低下を抑制することができる。 With this configuration, the distribution section is filled with the liquid of the heated medium, and the liquid of the heated medium flows into each heat transfer tube, so that the liquid of the heated medium does not flow out of the plurality of heat transfer tubes. It is possible to prevent a heat transfer tube from which the vapor of the medium to be heated flows into the medium, and it is possible to suppress a decrease in the heat transfer efficiency of the absorbed heat to the medium to be heated.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図3に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプにおいて、分配部14は、内部を上下に分割する区画板14dを含み;第2の流路82は区画板14dよりも上方の分配部14Aの内部に連通し;外部から被加熱媒体の液体Wsを導入する第3の流路85が区画板14dよりも下方の分配部14Bの内部に連通して構成されている。 Further, in the absorption heat pump according to the third aspect of the present invention, for example, as shown in FIG. 3, in the absorption heat pump according to the first aspect or the second aspect of the present invention, the distribution unit 14 moves up and down inside. The second flow path 82 communicates with the inside of the distribution portion 14A above the partition plate 14d; and the third flow path 85 for introducing the liquid Ws of the medium to be heated from the outside includes the partition plate 14d. It is configured to communicate with the inside of the distribution portion 14B below the partition plate 14d.

このように構成すると、外側に接触する吸収液の温度が上部よりも低くなる下部の伝熱管に、比較的温度が低い外部からの被加熱媒体の液体が流入することとなり、吸収熱を効率よく被加熱媒体に伝達することができる。 With this configuration, the liquid of the medium to be heated from the outside, which has a relatively low temperature, flows into the lower heat transfer tube where the temperature of the absorbing liquid in contact with the outside is lower than that of the upper part, and the absorbed heat is efficiently transferred. It can be transmitted to the medium to be heated.

また、本発明の第4の態様に係る吸収ヒートポンプは、例えば図4に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、収集部15は、複数の伝熱管12が取り付けられた伝熱管取付壁15waと、伝熱管取付壁15waに対向する対向壁15wbとを有し、伝熱管取付壁15waと対向壁15wbとの間における伝熱管取付壁15waに直交する断面の面積が、上部から下部に向けて減少するように構成されている。 Further, the absorption heat pump according to the fourth aspect of the present invention is, for example, as shown in FIG. 4, in the absorption heat pump according to any one of the first to third aspects of the present invention, the collecting unit. Reference numeral 15 denotes a heat transfer tube mounting wall 15wa to which a plurality of heat transfer tubes 12 are attached, and a facing wall 15wa facing the heat transfer tube mounting wall 15wa, and the heat transfer tube between the heat transfer tube mounting wall 15wa and the facing wall 15wab. The area of the cross section orthogonal to the mounting wall 15wa is configured to decrease from the upper part to the lower part.

このように構成すると、気体よりも体積が小さい液体の含有率が大きくなる収集部の下部ほど水平断面積が小さくなり、収集部内の保有液量を少なくすることができ、ひいては被加熱媒体の加熱量を減少することができて、加熱効率を向上させることができる。 With this configuration, the horizontal cross-sectional area becomes smaller toward the lower part of the collecting part where the content of the liquid, which is smaller in volume than the gas, is larger, and the amount of liquid held in the collecting part can be reduced, which in turn heats the medium to be heated. The amount can be reduced and the heating efficiency can be improved.

また、本発明の第5の態様に係る吸収ヒートポンプは、例えば図5に示すように、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、分配部14は、外部から導入した被加熱媒体の液体Wsを分配部14の内部の下部で吹き出す被加熱媒体液吹き出し部材14pを有し;被加熱媒体液吹き出し部材14pは、複数の吹き出し孔14phが伝熱管12の端部に対向する向きで形成されて構成されている。 Further, the absorption heat pump according to the fifth aspect of the present invention is, for example, as shown in FIG. 5, in the absorption heat pump according to any one of the first to fourth aspects of the present invention, the distribution unit. Reference numeral 14 denotes a heated medium liquid blowing member 14p that blows out the liquid Ws of the heated medium introduced from the outside at the lower part inside the distribution unit 14; the heated medium liquid blowing member 14p has a plurality of blowing holes 14ph transmitted to the heated medium liquid blowing member 14p. It is formed so as to face the end of the heat tube 12.

このように構成すると、分配部の下部で被加熱媒体の液体を均一に吹き出すことが可能になり、下方に配置された伝熱管の複数に均一に被加熱媒体の液体を流入させることが可能になる。 With this configuration, it is possible to uniformly blow out the liquid of the heated medium at the lower part of the distribution unit, and it is possible to uniformly flow the liquid of the heated medium into a plurality of heat transfer tubes arranged below. Become.

また、本発明の第6の態様に係る吸収ヒートポンプは、例えば図2乃至図5に示すように、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、第2の流路82は、複数の伝熱管12の群の高さ方向の中間よりも低い位置で分配部14に接続されている。 Further, the absorption heat pump according to the sixth aspect of the present invention is, for example, as shown in FIGS. 2 to 5, in the absorption heat pump according to any one of the first to fifth aspects of the present invention. , The second flow path 82 is connected to the distribution unit 14 at a position lower than the middle in the height direction of the group of the plurality of heat transfer tubes 12.

このように構成すると、被加熱媒体の液体の吸収器への入口部分を、吸収器内の被加熱媒体の液体の液位よりも下方の液相域に存在させることができ、吸収器内の被加熱媒体の蒸気が第2の流路に逆流することを防ぐことができる。 With this configuration, the inlet portion of the liquid to be heated to the absorber can be present in the liquid phase region below the liquid level of the liquid to be heated in the absorber, and the inside of the absorber can be present. It is possible to prevent the steam of the medium to be heated from flowing back into the second flow path.

また、本発明の第7の態様に係る吸収ヒートポンプは、例えば図6(C)に示すように、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、複数の伝熱管12のそれぞれは、水平部分を複数行路有する。 Further, the absorption heat pump according to the seventh aspect of the present invention is, for example, as shown in FIG. 6C, in the absorption heat pump according to any one of the first to sixth aspects of the present invention. , Each of the plurality of heat transfer tubes 12 has a plurality of horizontal sections.

このように構成すると、吸収器の大型化を抑制しつつ伝熱管1つあたりの長さを長くすることができ、伝熱管内を流れる被加熱媒体の受熱量を増加させることができる。 With this configuration, the length of each heat transfer tube can be increased while suppressing the increase in size of the absorber, and the amount of heat received by the heated medium flowing in the heat transfer tube can be increased.

また、本発明の第8の態様に係る吸収ヒートポンプは、例えば図6(A)及び図6(B)に示すように、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る吸収ヒートポンプにおいて、複数の伝熱管12のそれぞれが傾斜して配置されている。 Further, the absorption heat pump according to the eighth aspect of the present invention is any one of the first to sixth aspects of the present invention, for example, as shown in FIGS. 6 (A) and 6 (B). In the absorption heat pump according to the embodiment, each of the plurality of heat transfer tubes 12 is arranged so as to be inclined.

このように構成すると、伝熱管の内部で生じた被加熱媒体の蒸気が伝熱管の内部に留まってしまうことを防ぐことができる。 With this configuration, it is possible to prevent the steam of the medium to be heated generated inside the heat transfer tube from staying inside the heat transfer tube.

本発明によれば、分配部が被加熱媒体の液体で満たされて、各伝熱管に被加熱媒体の液体が流入することとなり、複数本の伝熱管のうち被加熱媒体の液体が流入せずに被加熱媒体の蒸気が流入してしまう伝熱管が生じることを防ぐことができて、被加熱媒体への吸収熱の伝熱効率の低下を抑制することができる。 According to the present invention, the distribution portion is filled with the liquid of the heated medium, the liquid of the heated medium flows into each heat transfer tube, and the liquid of the heated medium does not flow out of the plurality of heat transfer tubes. It is possible to prevent a heat transfer tube from which the vapor of the medium to be heated flows into the medium, and it is possible to suppress a decrease in the heat transfer efficiency of the absorbed heat to the medium to be heated.

本発明の実施の形態に係る吸収ヒートポンプの模式的系統図である。It is a schematic system diagram of the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプの吸収器まわりの断面図である。It is sectional drawing around the absorber of the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプが備える吸収器の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the absorber provided in the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプが備える吸収器の第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the absorber provided in the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプが備える吸収器の第3の変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the absorber provided in the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収ヒートポンプの吸収器内の伝熱管の配置の変形例を示す図である。It is a figure which shows the modification of the arrangement of the heat transfer tube in the absorber of the absorption heat pump which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る二段昇温型吸収ヒートポンプの模式的系統図である。It is a schematic system diagram of the two-stage temperature raising type absorption heat pump which concerns on the modification of embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicate description will be omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1は、吸収ヒートポンプ1の模式的系統図である。最初に吸収ヒートポンプ1全体の構成及び作用を説明し、その後に吸収ヒートポンプ1の構成要素の1つである吸収器10の詳細を説明する。吸収ヒートポンプ1は、吸収液S(Sa、Sw)と冷媒V(Ve、Vg、Vf)との吸収ヒートポンプサイクルが行われる主要機器を構成する吸収器10、蒸発器20、再生器30、及び凝縮器40を備え、さらに、気液分離器80を備えている。 First, the absorption heat pump 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat pump 1. First, the configuration and operation of the entire absorption heat pump 1 will be described, and then the details of the absorber 10, which is one of the components of the absorption heat pump 1, will be described. The absorption heat pump 1 includes an absorber 10, an evaporator 20, a regenerator 30, and a condenser that constitute a main device in which an absorption heat pump cycle of an absorption liquid S (Sa, Sw) and a refrigerant V (Ve, Vg, Vf) is performed. A vessel 40 is provided, and a gas-liquid separator 80 is further provided.

本明細書においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「希溶液Sw」や「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、被加熱媒体Wは、吸収器10に供給される液体の被加熱媒体Wである被加熱媒体液Wq、気体の被加熱媒体である被加熱媒体蒸気Wv、液体と気体とが混合した状態の被加熱媒体である混合被加熱媒体Wm、吸収ヒートポンプ1外から補充された被加熱媒体である補給液体としての補給水Wsの総称である。本実施の形態では、被加熱媒体Wとして水(HO)が用いられている。 In the present specification, the absorbent is referred to as "rare solution Sw" or "concentrated solution Sa" depending on the properties and the position on the heat pump cycle in order to facilitate the distinction on the heat pump cycle. Etc. are collectively referred to as "absorbent solution S". Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, "evaporator refrigerant vapor Ve", "regenerator refrigerant vapor Vg", "refrigerant liquid Vf", etc., depending on the properties and the position on the heat pump cycle. However, when the properties and the like are unquestioned, they are collectively referred to as "refrigerant V". In the present embodiment, a LiBr aqueous solution is used as the absorbing liquid S (mixture of the absorbing agent and the refrigerant V), and water (H 2 O) is used as the refrigerant V. Further, the heated medium W is a state in which the liquid to be heated medium Wq, which is the liquid to be heated medium W supplied to the absorber 10, the heated medium vapor Wv which is the gas to be heated, and the liquid and the gas are mixed. It is a general term for the mixed heated medium Wm, which is the medium to be heated, and the make-up water Ws as the make-up liquid, which is the medium to be heated that is replenished from the outside of the absorption heat pump 1. In the present embodiment, water (H 2 O) is used as the medium to be heated W.

吸収器10は、被加熱媒体Wの流路を構成する伝熱管12と、濃溶液Saを散布する濃溶液散布ノズル13とを内部に有している。吸収器10は、濃溶液散布ノズル13から濃溶液Saが散布され、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱を発生させる。この吸収熱を、伝熱管12を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。 The absorber 10 has a heat transfer tube 12 forming a flow path of the medium W to be heated and a concentrated solution spraying nozzle 13 for spraying the concentrated solution Sa inside. In the absorber 10, the concentrated solution Sa is sprayed from the concentrated solution spray nozzle 13, and when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve, absorption heat is generated. The heat-absorbed medium W flowing through the heat transfer tube 12 receives the absorbed heat, and the heated medium W is heated.

蒸発器20は、熱源流体としての熱源温水hの流路を構成する熱源管22を、蒸発器缶胴21の内部に有している。蒸発器20は、蒸発器缶胴21の内部に冷媒液Vfを散布するノズルを有していない。このため、熱源管22は、蒸発器缶胴21内に貯留された冷媒液Vfに浸かるように配設されている(満液式蒸発器)。吸収ヒートポンプでは、吸収冷凍機よりも蒸発器内の圧力が高いので、熱源管が冷媒液に浸かる構成でも所望の冷媒蒸気を得ることが可能となる。蒸発器20は、熱源管22周辺の冷媒液Vfが熱源管22内を流れる熱源温水hの熱で蒸発して蒸発器冷媒蒸気Veが発生するように構成されている。蒸発器缶胴21の下部には、蒸発器缶胴21内に冷媒液Vfを供給する冷媒液管45が接続されている。 The evaporator 20 has a heat source pipe 22 forming a flow path of the heat source hot water h as a heat source fluid inside the evaporator can body 21. The evaporator 20 does not have a nozzle for spraying the refrigerant liquid Vf inside the evaporator can body 21. Therefore, the heat source pipe 22 is arranged so as to be immersed in the refrigerant liquid Vf stored in the evaporator can body 21 (full-liquid evaporator). Since the pressure inside the evaporator is higher in the absorption heat pump than in the absorption chiller, it is possible to obtain the desired refrigerant vapor even in a configuration in which the heat source pipe is immersed in the refrigerant liquid. The evaporator 20 is configured so that the refrigerant liquid Vf around the heat source pipe 22 evaporates with the heat of the heat source hot water h flowing in the heat source pipe 22 to generate the evaporator refrigerant vapor Ve. A refrigerant liquid pipe 45 for supplying the refrigerant liquid Vf into the evaporator can body 21 is connected to the lower part of the evaporator can body 21.

吸収器10と蒸発器20とは、相互に連通している。吸収器10と蒸発器20とが連通することにより、蒸発器20で発生した蒸発器冷媒蒸気Veを吸収器10に供給することができるように構成されている。 The absorber 10 and the evaporator 20 communicate with each other. By communicating the absorber 10 and the evaporator 20, the evaporator refrigerant vapor Ve generated in the evaporator 20 can be supplied to the absorber 10.

再生器30は、希溶液Swを加熱する熱源流体としての熱源温水hを内部に流す熱源管32と、希溶液Swを散布する希溶液散布ノズル33とを有している。熱源管32内を流れる熱源温水hは、本実施の形態では熱源管22内を流れる熱源温水hと同じ流体となっているが、異なる流体であってもよい。再生器30は、希溶液散布ノズル33から散布された希溶液Swが熱源温水hに加熱されることにより、希溶液Swから冷媒Vが蒸発して濃度が上昇した濃溶液Saが生成されるように構成されている。希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40に移動するように構成されている。 The regenerator 30 has a heat source tube 32 for flowing heat source hot water h as a heat source fluid for heating the dilute solution Sw, and a dilute solution spray nozzle 33 for spraying the dilute solution Sw. The heat source hot water h flowing in the heat source pipe 32 is the same fluid as the heat source hot water h flowing in the heat source pipe 22 in the present embodiment, but may be a different fluid. In the regenerator 30, the dilute solution Sw sprayed from the dilute solution spray nozzle 33 is heated to the heat source hot water h, so that the refrigerant V evaporates from the dilute solution Sw to generate a concentrated solution Sa having an increased concentration. It is configured in. The refrigerant V evaporated from the dilute solution Sw is configured to move to the condenser 40 as the regenerator refrigerant vapor Vg.

凝縮器40は、冷却媒体としての冷却水cが流れる冷却水管42を凝縮器缶胴41の内部に有している。凝縮器40は、再生器30で発生した再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。再生器30と凝縮器40とは、相互に連通するように、再生器の缶胴と凝縮器缶胴41とが一体に形成されている。再生器30と凝縮器40とが連通することにより、再生器30で発生した再生器冷媒蒸気Vgを凝縮器40に供給することができるように構成されている。 The condenser 40 has a cooling water pipe 42 through which the cooling water c as a cooling medium flows, inside the condenser can body 41. The condenser 40 is configured to introduce the regenerator refrigerant vapor Vg generated in the regenerator 30 and cool it with cooling water c to condense it. The regenerator 30 and the condenser 40 are integrally formed with the can body of the regenerator and the condenser can body 41 so as to communicate with each other. By communicating the regenerator 30 and the condenser 40, the regenerator refrigerant vapor Vg generated in the regenerator 30 can be supplied to the condenser 40.

再生器30の濃溶液Saが貯留される部分と吸収器10の濃溶液散布ノズル13とは、濃溶液Saを流す濃溶液管35で接続されている。濃溶液管35には、濃溶液Saを圧送する溶液ポンプ35pが配設されている。吸収器10の希溶液Swが貯留される部分と希溶液散布ノズル33とは、希溶液Swを流す希溶液管36で接続されている。濃溶液管35及び希溶液管36には、濃溶液Saと希溶液Swとの間で熱交換を行わせる溶液熱交換器38が配設されている。凝縮器40の冷媒液Vfが貯留される部分と蒸発器缶胴21の下部(典型的には底部)とは、冷媒液Vfを流す冷媒液管45で接続されている。冷媒液管45には、冷媒液Vfを圧送する冷媒ポンプ46が配設されている。 The portion of the regenerator 30 in which the concentrated solution Sa is stored and the concentrated solution spraying nozzle 13 of the absorber 10 are connected by a concentrated solution tube 35 through which the concentrated solution Sa flows. A solution pump 35p for pumping the concentrated solution Sa is provided in the concentrated solution tube 35. The portion of the absorber 10 in which the dilute solution Sw is stored and the dilute solution spray nozzle 33 are connected by a dilute solution tube 36 through which the dilute solution Sw flows. The concentrated solution tube 35 and the dilute solution tube 36 are provided with a solution heat exchanger 38 for heat exchange between the concentrated solution Sa and the dilute solution Sw. The portion of the condenser 40 in which the refrigerant liquid Vf is stored and the lower portion (typically the bottom portion) of the evaporator can body 21 are connected by a refrigerant liquid pipe 45 through which the refrigerant liquid Vf flows. The refrigerant liquid pipe 45 is provided with a refrigerant pump 46 that pumps the refrigerant liquid Vf.

蒸発器20の熱源管22の一端には、熱源温水hを熱源管22に導入する熱源温水導入管51が接続されている。熱源管22の他端と再生器の熱源管32の一端とは、熱源温水連絡管52で接続されている。熱源管32の他端には、熱源温水hを吸収ヒートポンプ1の外に導く熱源温水流出管53が接続されている。熱源温水流出管53には、内部を流れる熱源温水hの流量を調節可能な熱源温水切替弁53vが配設されている。熱源温水切替弁53vよりも下流側の熱源温水流出管53と熱源温水導入管51との間には、熱源温水バイパス管55が設けられている。熱源温水バイパス管55には、流路を開閉可能なバイパス弁55vが配設されている。 A heat source hot water introduction pipe 51 for introducing the heat source hot water h into the heat source pipe 22 is connected to one end of the heat source pipe 22 of the evaporator 20. The other end of the heat source pipe 22 and one end of the heat source pipe 32 of the regenerator are connected by a heat source hot water connecting pipe 52. A heat source hot water outflow pipe 53 that guides the heat source hot water h to the outside of the absorption heat pump 1 is connected to the other end of the heat source pipe 32. The heat source hot water outflow pipe 53 is provided with a heat source hot water switching valve 53v capable of adjusting the flow rate of the heat source hot water h flowing inside. A heat source hot water bypass pipe 55 is provided between the heat source hot water outflow pipe 53 and the heat source hot water introduction pipe 51 on the downstream side of the heat source hot water switching valve 53v. The heat source hot water bypass pipe 55 is provided with a bypass valve 55v capable of opening and closing the flow path.

気液分離器80は、吸収器10の伝熱管12を流れて加熱された被加熱媒体Wを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器80には、分離された被加熱媒体液Wqを気液分離器80から流出する分離液管81が下部(典型的には底部)に接続されている。気液分離器80の下部は、分離された被加熱媒体液Wqを貯留する貯留部80cとなっている。分離液管81の他端には、被加熱媒体液Wqを伝熱管12に導く被加熱媒体液管82が接続されている。本実施の形態では、分離液管81と被加熱媒体液管82とで第2の流路を構成している。伝熱管12の他端と気液分離器80の気相部とは、加熱された被加熱媒体Wを気液分離器80に導く加熱後被加熱媒体管84で接続されている。加熱後被加熱媒体管84は、第1の流路に相当する。また、気液分離器80には、分離された被加熱媒体蒸気Wvを需要先に向けて吸収ヒートポンプ1の外に導く被加熱媒体蒸気管89が上部(典型的には頂部)に接続されている。また、主に蒸気として吸収ヒートポンプ1の外に供給された分の被加熱媒体Wを補うための補給水Wsを吸収ヒートポンプ1の外から導入する補給水管85が設けられている。補給水管85は、本実施の形態では、分離液管81と被加熱媒体液管82との接続部に接続されており、分離液管81を流れてきた被加熱媒体液Wqに補給水Wsを合流させるように構成されている。補給水管85には、吸収器10に向けて補給水Wsを圧送する補給水ポンプ86が配設されている。また、気液分離器80には、貯留部80cの被加熱媒体液Wqの液位を検出する液位検出器87が設けられている。貯留部80cの被加熱媒体液Wqの液位は、吸収ヒートポンプ1の動作を制御する制御装置90によって、液位検出器87で検出される液位が所定の液位となるように制御される。典型的には、貯留部80cの被加熱媒体液Wqの液位は、制御装置90による補給水ポンプ86の吐出流量の制御によって所定の液位となるように制御される。気液分離器80の下部(典型的には底部)には、気液分離器80内の被加熱媒体液Wqを吸収ヒートポンプ1の外に導くブロー管95が接続されている。 The gas-liquid separator 80 is a device that introduces the heated medium W that has been heated by flowing through the heat transfer tube 12 of the absorber 10 and separates the heated medium vapor Wv and the heated medium liquid Wq. In the gas-liquid separator 80, a separation liquid pipe 81 for flowing out the separated medium liquid Wq to be heated from the gas-liquid separator 80 is connected to the lower portion (typically the bottom portion). The lower part of the gas-liquid separator 80 is a storage portion 80c for storing the separated medium liquid Wq to be heated. A heated medium liquid tube 82 that guides the heated medium liquid Wq to the heat transfer tube 12 is connected to the other end of the separation liquid tube 81. In the present embodiment, the separation liquid pipe 81 and the medium liquid pipe 82 to be heated form a second flow path. The other end of the heat transfer tube 12 and the gas phase portion of the gas-liquid separator 80 are connected by a heated medium tube 84 that guides the heated medium W to the gas-liquid separator 80. After heating, the medium to be heated tube 84 corresponds to the first flow path. Further, in the gas-liquid separator 80, a heated medium steam pipe 89 that guides the separated heated medium vapor Wv to the outside of the absorption heat pump 1 toward the demand destination is connected to the upper portion (typically the top). There is. Further, a make-up water pipe 85 is provided for introducing make-up water Ws for supplementing the heated medium W mainly supplied to the outside of the absorption heat pump 1 as steam from the outside of the absorption heat pump 1. In the present embodiment, the make-up water pipe 85 is connected to the connection portion between the separation liquid pipe 81 and the heated medium liquid pipe 82, and the make-up water Ws is added to the heated medium liquid Wq flowing through the separation liquid pipe 81. It is configured to merge. The make-up water pipe 85 is provided with a make-up water pump 86 that pumps make-up water Ws toward the absorber 10. Further, the gas-liquid separator 80 is provided with a liquid level detector 87 for detecting the liquid level of the medium liquid Wq to be heated in the storage unit 80c. The liquid level of the medium liquid Wq to be heated in the storage unit 80c is controlled by the control device 90 that controls the operation of the absorption heat pump 1 so that the liquid level detected by the liquid level detector 87 becomes a predetermined liquid level. .. Typically, the liquid level of the medium liquid Wq to be heated in the storage unit 80c is controlled to be a predetermined liquid level by controlling the discharge flow rate of the make-up water pump 86 by the control device 90. A blow pipe 95 that guides the medium liquid Wq to be heated in the gas-liquid separator 80 to the outside of the absorption heat pump 1 is connected to the lower portion (typically the bottom portion) of the gas-liquid separator 80.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。通常、熱源温水切替弁53vが開、バイパス弁55vが閉となっている。まず、冷媒側のサイクルを説明する。凝縮器40では、再生器30で蒸発した再生器冷媒蒸気Vgを受け入れて、冷却水管42を流れる冷却水cで冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、冷媒ポンプ46で蒸発器缶胴21に送られる。蒸発器缶胴21に送られた冷媒液Vfは、熱源管22内を流れる熱源温水hによって加熱され、蒸発して蒸発器冷媒蒸気Veとなる。蒸発器20で発生した蒸発器冷媒蒸気Veは、蒸発器20と連通する吸収器10へと移動する。 Subsequently, the operation of the absorption heat pump 1 will be described with reference to FIG. Normally, the heat source hot water switching valve 53v is open and the bypass valve 55v is closed. First, the cycle on the refrigerant side will be described. The condenser 40 receives the regenerator refrigerant vapor Vg evaporated by the regenerator 30, cools it with the cooling water c flowing through the cooling water pipe 42, and condenses it to obtain the refrigerant liquid Vf. The condensed refrigerant liquid Vf is sent to the evaporator can body 21 by the refrigerant pump 46. The refrigerant liquid Vf sent to the evaporator can body 21 is heated by the heat source hot water h flowing in the heat source pipe 22 and evaporates to become the evaporator refrigerant vapor Ve. The evaporator refrigerant vapor Ve generated in the evaporator 20 moves to the absorber 10 communicating with the evaporator 20.

次に溶液側のサイクルを説明する。吸収器10では、濃溶液Saが濃溶液散布ノズル13から散布され、この散布された濃溶液Saが蒸発器20から移動してきた蒸発器冷媒蒸気Veを吸収する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなる。吸収器10では、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に吸収熱が発生する。この吸収熱により、伝熱管12を流れる被加熱媒体Wが加熱される。吸収器10で蒸発器冷媒蒸気Veを吸収した濃溶液Saは、濃度が低下して希溶液Swとなり、吸収器10の下部に貯留される。貯留された希溶液Swは、吸収器10と再生器30との内圧の差により再生器30に向かって希溶液管36を流れ、溶液熱交換器38で濃溶液Saと熱交換して温度が低下して、再生器30に至る。 Next, the cycle on the solution side will be described. In the absorber 10, the concentrated solution Sa is sprayed from the concentrated solution spray nozzle 13, and the sprayed concentrated solution Sa absorbs the evaporator refrigerant vapor Ve that has moved from the evaporator 20. The concentration of the concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve decreases to become a dilute solution Sw. In the absorber 10, absorption heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve. The heat absorbed causes the heated medium W flowing through the heat transfer tube 12 to be heated. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve in the absorber 10 decreases in concentration to become a dilute solution Sw, and is stored in the lower part of the absorber 10. The stored dilute solution Sw flows through the dilute solution tube 36 toward the regenerator 30 due to the difference in internal pressure between the absorber 10 and the regenerator 30, and heats with the concentrated solution Sa in the solution heat exchanger 38 to raise the temperature. It drops to reach the regenerator 30.

再生器30に送られた希溶液Swは、希溶液散布ノズル33から散布され、熱源管32を流れる熱源温水h(本実施の形態では約80℃前後)によって加熱され、散布された希溶液Sw中の冷媒が蒸発して濃溶液Saとなり、再生器30の下部に貯留される。他方、希溶液Swから蒸発した冷媒Vは再生器冷媒蒸気Vgとして凝縮器40へと移動する。再生器30の下部に貯留された濃溶液Saは、溶液ポンプ35pにより、濃溶液管35を介して吸収器10の濃溶液散布ノズル13に圧送される。濃溶液管35を流れる濃溶液Saは、溶液熱交換器38で希溶液Swと熱交換して温度が上昇してから吸収器10に流入し、濃溶液散布ノズル13から散布される。濃溶液Saは、溶液ポンプ35pで昇圧されて吸収器10に入り、吸収器10内で蒸発器冷媒蒸気Veを吸収することに伴い温度が上昇する。吸収器10に戻った濃溶液Saは蒸発器冷媒蒸気Veを吸収し、以降、同様のサイクルを繰り返す。 The dilute solution Sw sent to the regenerator 30 is sprayed from the dilute solution spray nozzle 33, heated by the heat source hot water h (about 80 ° C. in the present embodiment) flowing through the heat source tube 32, and sprayed. The refrigerant inside evaporates to become a concentrated solution Sa, which is stored in the lower part of the regenerator 30. On the other hand, the refrigerant V evaporated from the dilute solution Sw moves to the condenser 40 as the regenerator refrigerant vapor Vg. The concentrated solution Sa stored in the lower part of the regenerator 30 is pumped by the solution pump 35p to the concentrated solution spray nozzle 13 of the absorber 10 via the concentrated solution pipe 35. The concentrated solution Sa flowing through the concentrated solution tube 35 exchanges heat with the dilute solution Sw in the solution heat exchanger 38, and after the temperature rises, flows into the absorber 10 and is sprayed from the concentrated solution spraying nozzle 13. The concentrated solution Sa is boosted by the solution pump 35p and enters the absorber 10, and the temperature rises as the evaporator refrigerant vapor Ve is absorbed in the absorber 10. The concentrated solution Sa returned to the absorber 10 absorbs the evaporator refrigerant vapor Ve, and thereafter repeats the same cycle.

吸収液S及び冷媒Vが上記のような吸収ヒートポンプサイクルを行う過程で、吸収器10において濃溶液Saが蒸発器冷媒蒸気Veを吸収する際に発生する吸収熱で被加熱媒体液Wqが加熱されて湿り蒸気(混合被加熱媒体Wm)となり、気液分離器80に導かれる。気液分離器80に流入した混合被加熱媒体Wmは、被加熱媒体蒸気Wvと被加熱媒体液Wqとに分離される。気液分離器80で分離された被加熱媒体蒸気Wvは、被加熱媒体蒸気管89に流出し、吸収ヒートポンプ1の外部の蒸気利用場所(需要先)に供給される。つまり、吸収ヒートポンプから被加熱媒体蒸気Wvが取り出される。このように、吸収ヒートポンプ1は、駆動熱源の温度以上の被加熱媒体Wを取り出すことができる第2種の吸収ヒートポンプとして構成されている。他方、気液分離器80で分離されて貯留部80cに所定の液位で貯留された被加熱媒体液Wqは、分離液管81に流出し、被加熱媒体液管82を流れ、伝熱管12内に供給される。このとき、補給水Wsが補給水管85を流れてきた場合は、分離液管81から被加熱媒体液管82に流入する被加熱媒体液Wqに補給水Wsが合流し、被加熱媒体液Wqとして伝熱管12内に供給される。典型的には、被加熱媒体蒸気Wvとして外部に供給された分及びブロー管95から排出された分の被加熱媒体Wが、補給水Wsとして吸収ヒートポンプ1の外部から供給される。なお、上述した吸収ヒートポンプ1を構成する各機器は、制御装置90で制御される。 In the process in which the absorption liquid S and the refrigerant V perform the absorption heat pump cycle as described above, the medium liquid Wq to be heated is heated by the absorption heat generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber 10. It becomes moist steam (mixed medium to be heated Wm) and is guided to the gas-liquid separator 80. The mixed medium to be heated Wm that has flowed into the gas-liquid separator 80 is separated into the vapor to be heated Wv and the medium to be heated Wq. The steam Wv of the medium to be heated separated by the gas-liquid separator 80 flows out to the steam pipe 89 of the medium to be heated and is supplied to a steam utilization place (demand destination) outside the absorption heat pump 1. That is, the medium vapor to be heated Wv is taken out from the absorption heat pump. As described above, the absorption heat pump 1 is configured as a second-class absorption heat pump capable of taking out the heated medium W having a temperature higher than the temperature of the driving heat source. On the other hand, the heated medium liquid Wq separated by the gas-liquid separator 80 and stored in the storage unit 80c at a predetermined liquid level flows out to the separation liquid pipe 81, flows through the heated medium liquid pipe 82, and flows through the heat transfer pipe 12 Supplied within. At this time, when the make-up water Ws flows through the make-up water pipe 85, the make-up water Ws joins the heated medium liquid Wq flowing from the separation liquid pipe 81 into the heated medium liquid pipe 82 to form the heated medium liquid Wq. It is supplied into the heat transfer tube 12. Typically, the amount of the medium to be heated W that is supplied to the outside as the vapor Wv of the medium to be heated and the amount of the medium W to be heated discharged from the blow pipe 95 is supplied as make-up water Ws from the outside of the absorption heat pump 1. Each device constituting the absorption heat pump 1 described above is controlled by the control device 90.

次に図2を参照して、上述の吸収ヒートポンプ1(図1参照)を構成する吸収器10の詳細を説明する。図2は、図1に示す吸収ヒートポンプ1の吸収器10まわりの断面図である。吸収器10は、伝熱管12と濃溶液散布ノズル13とが缶胴11内に収容され、缶胴11の外側に入口液室14を形成する入口液室形成部材14f及び出口液室15を形成する出口液室形成部材15fが設けられて構成されている。缶胴11は、典型的には設置されたときに横長になるように形成されている。 Next, with reference to FIG. 2, the details of the absorber 10 constituting the above-mentioned absorption heat pump 1 (see FIG. 1) will be described. FIG. 2 is a cross-sectional view of the absorption heat pump 1 shown in FIG. 1 around the absorber 10. In the absorber 10, the heat transfer tube 12 and the concentrated solution spraying nozzle 13 are housed in the can body 11, and the inlet liquid chamber forming member 14f and the outlet liquid chamber 15 forming the inlet liquid chamber 14 are formed on the outside of the can body 11. The outlet liquid chamber forming member 15f is provided and configured. The can body 11 is typically formed so as to be horizontally long when installed.

伝熱管12は、本実施の形態では、直線状に形成されたものの複数が缶胴11内に設けられている。伝熱管12は、横長の缶胴11の一端及びその反対側の他端に接合している。缶胴11の、伝熱管12が接合する面は、伝熱管12を挿通することができる孔が形成された管板(伝熱管プレート)として形成されている。缶胴11の両端の管板に接合した伝熱管12は、内部が缶胴11の内部と連通しないようになっている。換言すれば、伝熱管12内を流れる被加熱媒体Wと、缶胴11内に流出入して伝熱管12の外側に存在する流体(吸収液S及び冷媒V)とが混合しないように構成されている。伝熱管12の管板への接合態様の具体例を示すと、伝熱管12は、缶胴11の管板に形成された孔に拡管され固定されている。 In the present embodiment, a plurality of heat transfer tubes 12 formed in a straight line are provided in the can body 11. The heat transfer tube 12 is joined to one end of the horizontally long can body 11 and the other end on the opposite side thereof. The surface of the can body 11 to which the heat transfer tube 12 is joined is formed as a tube plate (heat transfer tube plate) in which a hole through which the heat transfer tube 12 can be inserted is formed. The inside of the heat transfer tube 12 joined to the tube plates at both ends of the can body 11 does not communicate with the inside of the can body 11. In other words, the heated medium W flowing in the heat transfer tube 12 and the fluid (absorbent liquid S and refrigerant V) flowing in and out of the can body 11 and existing outside the heat transfer tube 12 are not mixed. ing. To show a specific example of the mode of joining the heat transfer tube 12 to the tube plate, the heat transfer tube 12 is expanded and fixed in a hole formed in the tube plate of the can body 11.

各伝熱管12は、本実施の形態では、軸線が水平になるように配置されている。伝熱管12内で被加熱媒体液Wqを加熱沸騰させることを考慮すると、伝熱管12をその軸線が鉛直になるように配置することも考えられる。しかし、本実施の形態では、散布された吸収液Sを伝熱管12の外面に薄い液膜としてできるだけ多く接触させる観点から、伝熱管12を軸線が水平になるように配置することとしている。軸線が水平になるように配置された伝熱管12は、水平方向成分が100%、鉛直方向成分が0%であり、鉛直方向成分を持たないこととなる。また、缶胴11内に設けられた複数の伝熱管12は、相互に平行になるように配置されている。 In the present embodiment, each heat transfer tube 12 is arranged so that the axis line is horizontal. Considering that the medium liquid Wq to be heated is heated and boiled in the heat transfer tube 12, it is conceivable to arrange the heat transfer tube 12 so that its axis is vertical. However, in the present embodiment, the heat transfer tube 12 is arranged so that the axis is horizontal from the viewpoint of bringing the sprayed absorbing liquid S into contact with the outer surface of the heat transfer tube 12 as a thin liquid film as much as possible. The heat transfer tube 12 arranged so that the axes are horizontal has a horizontal component of 100% and a vertical component of 0%, and does not have a vertical component. Further, the plurality of heat transfer tubes 12 provided in the can body 11 are arranged so as to be parallel to each other.

缶胴11内に設けられる伝熱管12のうち、鉛直方向最下部に配置される伝熱管12は、その下方に希溶液Swが貯留される部分(空間)が確保される位置に配置されている。このように構成されることで、定常運転時に伝熱管12が吸収液Sに没入することがなく、伝熱管12の表面に濡れ広がった濃溶液Saに蒸発器冷媒蒸気Veが吸収されるようになるため、濃溶液Saと蒸発器冷媒蒸気Veとの接触面積を大きくできると共に、発生した吸収熱が伝熱管12を流れる被加熱媒体Wに速やかに伝わり、吸収能力の回復を早めることができる。他方、缶胴11の最上部に配置される伝熱管12は、濃溶液散布ノズル13が設置できる空間が確保される位置に配置されている。 Of the heat transfer tubes 12 provided in the can body 11, the heat transfer tube 12 arranged at the lowermost part in the vertical direction is arranged at a position where a portion (space) in which the dilute solution Sw is stored is secured below the heat transfer tube 12. .. With this configuration, the heat transfer tube 12 does not immerse in the absorption liquid S during steady operation, and the evaporator refrigerant vapor Ve is absorbed by the concentrated solution Sa that has spread wet on the surface of the heat transfer tube 12. Therefore, the contact area between the concentrated solution Sa and the evaporator refrigerant steam Ve can be increased, and the generated absorbed heat can be quickly transferred to the heated medium W flowing through the heat transfer tube 12, and the recovery of the absorbing capacity can be accelerated. On the other hand, the heat transfer tube 12 arranged at the uppermost portion of the can body 11 is arranged at a position where a space where the concentrated solution spraying nozzle 13 can be installed is secured.

入口液室形成部材14fは、各伝熱管12の一端が接合している缶胴11の面(管板)に取り付けられている。本実施の形態では、入口液室形成部材14fは、両端が開口した筒状の部材の一端に着脱可能な蓋を取り付けて構成されており、開口した面(蓋が取り付けられた面に対向する面)が、缶胴11の管板に取り付けられているすべての伝熱管12の一端を覆うように、缶胴11の管板に取り付けられている。入口液室形成部材14fが缶胴11の管板に取り付けられることにより、入口液室形成部材14fと缶胴11の管板とに囲まれた空間が入口液室14となる。入口液室14は、各伝熱管12の内部と連通している。したがって、入口液室14は、各伝熱管12に被加熱媒体液Wqを供給(分配)することができ、分配部に相当する。また、入口液室形成部材14fが着脱可能な蓋を含んで構成されていることにより、入口液室14を開放したメンテナンスを簡便に行うことができる。 The inlet liquid chamber forming member 14f is attached to the surface (tube plate) of the can body 11 to which one end of each heat transfer tube 12 is joined. In the present embodiment, the inlet liquid chamber forming member 14f is configured by attaching a removable lid to one end of a tubular member having both ends open, and faces the open surface (the surface to which the lid is attached). The surface) is attached to the tube plate of the can body 11 so as to cover one end of all the heat transfer tubes 12 attached to the tube plate of the can body 11. By attaching the inlet liquid chamber forming member 14f to the tube plate of the can body 11, the space surrounded by the inlet liquid chamber forming member 14f and the tube plate of the can body 11 becomes the inlet liquid chamber 14. The inlet liquid chamber 14 communicates with the inside of each heat transfer tube 12. Therefore, the inlet liquid chamber 14 can supply (distribute) the medium liquid to be heated Wq to each heat transfer tube 12, and corresponds to a distribution unit. Further, since the inlet liquid chamber forming member 14f is configured to include a removable lid, maintenance by opening the inlet liquid chamber 14 can be easily performed.

出口液室形成部材15fは、本実施の形態では、両端が開口した筒状の部材の一端に着脱可能な蓋を取り付け、他端が開口して構成されている。出口液室形成部材15fは、各伝熱管12の他端が接合している缶胴11の面(管板)に取り付けられている。つまり、出口液室形成部材15fは、一端が入口液室14に連通したすべての伝熱管12の他端を、開口した面(蓋が取り付けられた面に対向する面)で覆うように、缶胴11の管板に取り付けられている。出口液室形成部材15fが缶胴11の管板に取り付けられることにより、出口液室形成部材15fと缶胴11の管板とに囲まれた空間が出口液室15となる。出口液室15は、一端が入口液室14に連通した各伝熱管12の内部と連通している。したがって、出口液室15は、各伝熱管12を介して入口液室14と連絡していることとなり、各伝熱管12から被加熱媒体Wを収集することができ、収集部に相当する。また、出口液室形成部材15fが着脱可能な蓋を含んで構成されていることにより、出口液室15を開放したメンテナンスを簡便に行うことができる。 In the present embodiment, the outlet liquid chamber forming member 15f is configured by attaching a removable lid to one end of a tubular member having both ends open and opening the other end. The outlet liquid chamber forming member 15f is attached to the surface (tube plate) of the can body 11 to which the other ends of the heat transfer tubes 12 are joined. That is, the outlet liquid chamber forming member 15f can cover the other ends of all the heat transfer tubes 12 whose one end communicates with the inlet liquid chamber 14 with an open surface (a surface facing the surface to which the lid is attached). It is attached to the tube plate of the body 11. By attaching the outlet liquid chamber forming member 15f to the pipe plate of the can body 11, the space surrounded by the outlet liquid chamber forming member 15f and the pipe plate of the can body 11 becomes the outlet liquid chamber 15. The outlet liquid chamber 15 communicates with the inside of each heat transfer tube 12 whose one end communicates with the inlet liquid chamber 14. Therefore, the outlet liquid chamber 15 is in contact with the inlet liquid chamber 14 via each heat transfer tube 12, and the medium W to be heated can be collected from each heat transfer tube 12, which corresponds to a collection unit. Further, since the outlet liquid chamber forming member 15f is configured to include a removable lid, maintenance by opening the outlet liquid chamber 15 can be easily performed.

缶胴11内に配設されたすべての伝熱管12は、1パスで構成されている。ここで、「パス」とは、ある伝熱管12内を流れる流体が、他の伝熱管12内の流体と合流も分流もせずに流れる流路の単位である。したがって、1パスは、ある伝熱管12を流れて一旦出口液室15に流入した被加熱媒体Wが、さらに伝熱管12に流入することがない構成であり、流体が流れる伝熱管12の数は問わない。 All the heat transfer tubes 12 arranged in the can body 11 are composed of one pass. Here, the "path" is a unit of a flow path in which a fluid flowing in a certain heat transfer tube 12 flows without merging or splitting with a fluid in another heat transfer tube 12. Therefore, one pass has a configuration in which the heated medium W that has flowed through a certain heat transfer tube 12 and has once flowed into the outlet liquid chamber 15 does not further flow into the heat transfer tube 12, and the number of heat transfer tubes 12 through which the fluid flows is large. It doesn't matter.

入口液室形成部材14f及び出口液室形成部材15fは、出口液室15の容積が入口液室14の容積よりも大きくなるような大きさに形成されている。出口液室15の容積が入口液室14の容積よりも大きいとは、本実施の形態では、出口液室15における缶胴11の管板と出口液室形成部材15fの蓋との距離を、入口液室14における缶胴11の管板と入口液室形成部材14fの蓋との距離よりも大きくして容積を変えたものであるが、出口液室15の水平断面積を入口液室14の水平断面積よりも大きくすることで容積を変えたものであってもよい。出口液室15の容積は、典型的には、被加熱媒体液Wqが伝熱管12内で加熱され蒸発することによって生ずる体積膨張の分だけ入口液室14よりも大きくすることを基準として、出口液室15内の被加熱媒体Wの流速を加味して決定するとよい。出口液室15における被加熱媒体Wの流速は、出口液室15の容積を、小さくすると速くなり、大きくすると遅くなる。なお、定常運転時の出口液室15内の被加熱媒体Wは、典型的には被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wmであるので、定常運転時以外の状況を特に説明する場合を除き、出口液室15内の被加熱媒体Wが混合被加熱媒体Wmであるものとして説明する。 The inlet liquid chamber forming member 14f and the outlet liquid chamber forming member 15f are formed to have a size such that the volume of the outlet liquid chamber 15 is larger than the volume of the inlet liquid chamber 14. The volume of the outlet liquid chamber 15 is larger than the volume of the inlet liquid chamber 14. In the present embodiment, the distance between the tube plate of the can body 11 and the lid of the outlet liquid chamber forming member 15f in the outlet liquid chamber 15 is determined. Although the volume is changed by making it larger than the distance between the tube plate of the can body 11 and the lid of the inlet liquid chamber forming member 14f in the inlet liquid chamber 14, the horizontal cross-sectional area of the outlet liquid chamber 15 is the inlet liquid chamber 14. The volume may be changed by making it larger than the horizontal cross-sectional area of. The volume of the outlet liquid chamber 15 is typically larger than that of the inlet liquid chamber 14 by the amount of volumetric expansion caused by heating and evaporating the medium liquid Wq to be heated in the heat transfer tube 12. It may be determined in consideration of the flow velocity of the medium W to be heated in the liquid chamber 15. The flow velocity of the medium W to be heated in the outlet liquid chamber 15 increases when the volume of the outlet liquid chamber 15 is reduced, and decreases when the volume of the outlet liquid chamber 15 is increased. The heated medium W in the outlet liquid chamber 15 during steady operation is typically a mixed heated medium Wm in which the heated medium liquid Wq and the heated medium vapor Wv are mixed, so that the medium is not heated during steady operation. Unless the situation described above is particularly described, the medium W to be heated in the outlet liquid chamber 15 will be described as a mixed medium Wm to be heated.

出口液室形成部材15fの上部には、出口液室15内の混合被加熱媒体Wmを流出する被加熱媒体流出口としての流出口15hが形成されている。流出口15hが形成される出口液室形成部材15fの上部は、典型的には出口液室形成部材15fの頂部であるが、少なくとも最上部に配置された伝熱管12よりも流出口15hの最下部が高くなる位置である。流出口15hが出口液室形成部材15fの上部に形成されていることで、出口液室15内を流れる混合被加熱媒体Wmは上昇流となり、伝熱管12の出口液室15への開口端に気体溜まりが生じることを抑制することができる。仮に、伝熱管12の出口液室15への開口端に気体が溜まると、流れの状況によっては、溜まった気体が伝熱管12を介して入口液室14に逆流し、入口液室14の一部が気体に占有されて被加熱媒体液Wqが流入しない伝熱管12が出現する場合があるが、伝熱管12の出口液室15への開口端に気体溜まりが生じることを抑制することができる本実施の形態では、伝熱管12を介して入口液室14に気体が逆流することを防ぐことができる。流出口15h(出口液室15の上部)には、加熱後被加熱媒体管84が接続されている。他方、出口液室形成部材15fの下部(典型的には底部)には、被加熱媒体液Wqを排出することができるブロー排出管17が設けられている。ブロー排出管17には、ブロー排出弁17vが配設されている。被加熱媒体Wは、入口液室14から出口液室15に向けて一方向に流れるので、伝熱管12内で発生する蒸発残留物は出口液室15に溜まりやすい。出口液室15の下部(典型的には底部)にブロー排出管17を設けていることで、1個のブロー排出管17があれば溜まった蒸発残留物を排出することができる。また、出口液室15よりも上方に気液分離器80の貯留部80cが位置するように(出口液室15が貯留部80cよりも下方に位置するように)、気液分離器80が配置されている。本実施の形態では、伝熱管12が水平に配置されていることで入口液室14が出口液室15と同じ高さに配置されるため、入口液室14も貯留部80cより下方に位置することとなる。また、流出口15h及びブロー排出管17共に、出口液室15の着脱可能な蓋には設けられていないので、出口液室15を開放する際に、流出口15hに接続された加熱後被加熱媒体管84及びブロー排出管17を取り外す作業が不要となり、出口液室15の保守点検作業が容易になる。 An outlet 15h is formed above the outlet liquid chamber forming member 15f as an outlet for the medium to be heated to flow out the mixed medium Wm to be heated in the outlet liquid chamber 15. The upper portion of the outlet liquid chamber forming member 15f in which the outlet liquid chamber forming member 15h is formed is typically the top of the outlet liquid chamber forming member 15f, but is at least the most of the outlet liquid chamber 15h than the heat transfer tube 12 arranged at the uppermost portion. This is the position where the lower part is raised. Since the outflow port 15h is formed above the outlet liquid chamber forming member 15f, the mixed heated medium Wm flowing in the outlet liquid chamber 15 becomes an ascending flow, and becomes an opening end of the heat transfer tube 12 to the outlet liquid chamber 15. It is possible to suppress the formation of gas pools. If gas accumulates at the opening end of the heat transfer tube 12 to the outlet liquid chamber 15, the accumulated gas flows back to the inlet liquid chamber 14 via the heat transfer tube 12 depending on the flow condition, and one of the inlet liquid chambers 14 A heat transfer tube 12 may appear in which the portion is occupied by gas and the heated medium liquid Wq does not flow in, but it is possible to suppress the formation of gas accumulation at the opening end of the heat transfer tube 12 to the outlet liquid chamber 15. In the present embodiment, it is possible to prevent the gas from flowing back into the inlet liquid chamber 14 through the heat transfer tube 12. A medium tube 84 to be heated after heating is connected to the outlet 15h (the upper part of the outlet liquid chamber 15). On the other hand, a blow discharge pipe 17 capable of discharging the medium liquid to be heated Wq is provided in the lower portion (typically the bottom portion) of the outlet liquid chamber forming member 15f. A blow discharge valve 17v is provided in the blow discharge pipe 17. Since the medium W to be heated flows in one direction from the inlet liquid chamber 14 toward the outlet liquid chamber 15, the evaporation residue generated in the heat transfer tube 12 tends to accumulate in the outlet liquid chamber 15. By providing the blow discharge pipe 17 at the lower part (typically the bottom) of the outlet liquid chamber 15, if there is one blow discharge pipe 17, the accumulated evaporation residue can be discharged. Further, the gas-liquid separator 80 is arranged so that the storage portion 80c of the gas-liquid separator 80 is located above the outlet liquid chamber 15 (so that the outlet liquid chamber 15 is located below the storage portion 80c). Has been done. In the present embodiment, since the heat transfer tube 12 is arranged horizontally, the inlet liquid chamber 14 is arranged at the same height as the outlet liquid chamber 15, so that the inlet liquid chamber 14 is also located below the storage portion 80c. It will be. Further, since neither the outlet 15h nor the blow discharge pipe 17 is provided on the removable lid of the outlet liquid chamber 15, when the outlet liquid chamber 15 is opened, it is heated after heating connected to the outlet liquid chamber 15h. The work of removing the medium pipe 84 and the blow discharge pipe 17 becomes unnecessary, and the maintenance and inspection work of the outlet liquid chamber 15 becomes easy.

缶胴11内に収容されている濃溶液散布ノズル13は、各伝熱管12に満遍なく濃溶液Saを散布することができるように、鉛直上方から見て複数の伝熱管12を覆う広範囲に広がって配置されている。濃溶液散布ノズル13に接続される濃溶液管35は、缶胴11の一面を貫通している。なお、上述のように、複数の伝熱管12は缶胴11内に水平に配置されているが、水平に配置されているとは、厳密に水平であることを要求するものではなく、被加熱媒体Wが伝熱管12内で液体から気体(蒸気)に変化しても被加熱媒体Wの流動を阻害しない程度に水平であればよい。しかしながら、濃溶液散布ノズル13から散布された濃溶液Saが伝熱管12の外表面に接している量を増加させる観点から、水平に近づくほど好ましい。缶胴11の底部に貯留されている希溶液Swを再生器30(図1参照)に導く希溶液管36は、缶胴11の底部に接続されている。 The concentrated solution spraying nozzle 13 housed in the can body 11 spreads over a wide range covering the plurality of heat transfer tubes 12 when viewed from vertically above so that the concentrated solution Sa can be evenly sprayed on each heat transfer tube 12. Have been placed. The concentrated solution tube 35 connected to the concentrated solution spraying nozzle 13 penetrates one surface of the can body 11. As described above, the plurality of heat transfer tubes 12 are arranged horizontally in the can body 11, but the fact that they are arranged horizontally does not mean that they are strictly horizontal and are to be heated. The medium W may be horizontal enough not to hinder the flow of the medium W to be heated even if the medium W changes from a liquid to a gas (vapor) in the heat transfer tube 12. However, from the viewpoint of increasing the amount of the concentrated solution Sa sprayed from the concentrated solution spraying nozzle 13 in contact with the outer surface of the heat transfer tube 12, the closer it is to the horizontal, the more preferable. The dilute solution tube 36 that guides the dilute solution Sw stored in the bottom of the can body 11 to the regenerator 30 (see FIG. 1) is connected to the bottom of the can body 11.

気液分離器80内の被加熱媒体液Wqを吸収器10に導く被加熱媒体液管82は、入口液室形成部材14fに接続されている。被加熱媒体液管82は、複数配置された伝熱管12の群の高さ方向の中間より低い位置で入口液室形成部材14fに接続されていることが好ましく、本実施の形態では入口液室形成部材14fの下部に接続されている。換言すれば、本実施の形態では、被加熱媒体液管82から入口液室14内へ被加熱媒体液Wqが流入する流入口14hが入口液室形成部材14fの下部に形成されていることになる。このような構成により、以下のような不都合を回避することができる。その前提として、吸収ヒートポンプ1の起動時は、被加熱媒体Wが加熱され蒸発することによって生ずる体積膨張に起因する被加熱媒体蒸気Wvのキャリオーバー(液滴随伴)やその対処として行う被加熱媒体Wのブロー排液操作を回避するために、缶胴11内の被加熱媒体液Wqの液位を気液分離器80の貯留部80cよりも低い位置に設ける場合がある。このような場合であっても、吸収ヒートポンプ1の起動時の吸収器10における被加熱媒体液Wqの液位を流入口14hよりも高く設定することで、流入口14hが常に被加熱媒体液Wqの液面より下方の液相域に存在することとなり、伝熱管12内で発生した被加熱媒体蒸気Wvが被加熱媒体液管82に逆流することを防ぐことができる。仮に、被加熱媒体蒸気Wvが被加熱媒体液管82に逆流すると、被加熱媒体液Wqの伝熱管12への流入が滞るが、流入口14hが入口液室形成部材14fの下部に形成されていることで、この不都合を回避することができる。なお、起動時の被加熱媒体液Wqの液位を気液分離器80の貯留部80cよりも低い位置に設けた場合であっても、定常運転時の被加熱媒体液Wqの液位は気液分離器80の貯留部80cに設定するとよい。補給水管85は、本実施の形態では、前述のように、分離液管81と被加熱媒体液管82との接続部に接続されている。この構成により、被加熱媒体Wを入口液室14に流入させる管の接続部が1箇所で済むこととなり、構成を簡便にすることができると共に、入口液室14を開放する際の保守点検作業が容易になる。また、流入口14hが入口液室14の着脱可能な蓋には設けられていないので、入口液室14を開放する際に、流入口14hに接続された被加熱媒体液管82を取り外す作業が不要となり、入口液室14の保守点検作業が容易になる。 The heated medium liquid pipe 82 that guides the heated medium liquid Wq in the gas-liquid separator 80 to the absorber 10 is connected to the inlet liquid chamber forming member 14f. The medium liquid tube 82 to be heated is preferably connected to the inlet liquid chamber forming member 14f at a position lower than the middle in the height direction of the group of the plurality of heat transfer tubes 12, and in the present embodiment, the inlet liquid chamber is connected. It is connected to the lower part of the forming member 14f. In other words, in the present embodiment, the inflow port 14h into which the heated medium liquid Wq flows into the inlet liquid chamber 14 from the heated medium liquid pipe 82 is formed in the lower part of the inlet liquid chamber forming member 14f. Become. With such a configuration, the following inconveniences can be avoided. As a premise, when the absorption heat pump 1 is started, the carried-over (accompanied by droplets) of the vapor Wv to be heated due to the volume expansion caused by the heating and evaporation of the medium W to be heated and the medium to be heated as a countermeasure thereof. In order to avoid the blow draining operation of W, the liquid level of the medium liquid to be heated Wq in the can body 11 may be provided at a position lower than the storage portion 80c of the gas-liquid separator 80. Even in such a case, by setting the liquid level of the medium liquid Wq to be heated in the absorber 10 when the absorption heat pump 1 is started to be higher than the inflow port 14h, the inflow port 14h is always the medium liquid to be heated Wq. Since it exists in the liquid phase region below the liquid level of the above, it is possible to prevent the heated medium vapor Wv generated in the heat transfer tube 12 from flowing back into the heated medium liquid tube 82. If the heated medium vapor Wv flows back into the heated medium liquid tube 82, the inflow of the heated medium liquid Wq into the heat transfer tube 12 is delayed, but the inflow port 14h is formed in the lower part of the inlet liquid chamber forming member 14f. By doing so, this inconvenience can be avoided. Even when the liquid level of the medium liquid Wq to be heated at startup is provided at a position lower than the storage portion 80c of the gas-liquid separator 80, the liquid level of the medium liquid Wq to be heated during steady operation is gas. It is preferable to set it in the storage portion 80c of the liquid separator 80. In the present embodiment, the make-up water pipe 85 is connected to the connection portion between the separation liquid pipe 81 and the medium liquid pipe 82 to be heated, as described above. With this configuration, the connection portion of the pipe that allows the medium W to be heated to flow into the inlet liquid chamber 14 is required at one place, the configuration can be simplified, and maintenance and inspection work when opening the inlet liquid chamber 14 can be performed. Becomes easier. Further, since the inflow port 14h is not provided on the removable lid of the inlet liquid chamber 14, the work of removing the heated medium liquid pipe 82 connected to the inflow port 14h is performed when opening the inlet liquid chamber 14. It becomes unnecessary, and the maintenance and inspection work of the inlet liquid chamber 14 becomes easy.

引き続き図2を主に参照し、適宜図1を参照して、吸収器10まわりの作用を説明する。濃溶液散布ノズル13から散布される濃溶液Saは、再生器30から溶液ポンプ35pで圧送されてくる。濃溶液Saは、濃溶液散布ノズル13から散布されると、重力によって落下し、伝熱管12に降りかかる。濃溶液Saは、まず、缶胴11内で上方に配置されている伝熱管12に降りかかり、上方に配置された伝熱管12に接触しなかった分及び伝熱管12の表面を伝わって滴下してきた分が、その下方に配置された伝熱管12に降りかかるように移動しながら、各伝熱管12の表面に濡れ広がる。各伝熱管12の表面に濡れ広がった濃溶液Saは、蒸発器20から供給された蒸発器冷媒蒸気Veを吸収し、その際に発生した吸収熱で内部を流れる被加熱媒体Wを加熱する。蒸発器冷媒蒸気Veを吸収した濃溶液Saは、希溶液Swとなって缶胴11の下部に一旦貯留された後、希溶液管36を介して再生器30に導かれる。 Subsequently, FIG. 2 will be mainly referred to, and FIG. 1 will be referred to as appropriate to explain the operation around the absorber 10. The concentrated solution Sa sprayed from the concentrated solution spraying nozzle 13 is pumped from the regenerator 30 by the solution pump 35p. When the concentrated solution Sa is sprayed from the concentrated solution spraying nozzle 13, it falls due to gravity and falls on the heat transfer tube 12. The concentrated solution Sa first fell on the heat transfer tube 12 arranged above in the can body 11, and dropped along the surface of the heat transfer tube 12 and the portion that did not contact the heat transfer tube 12 arranged above. Minutes wet and spread on the surface of each heat transfer tube 12 while moving so as to fall on the heat transfer tube 12 arranged below the heat transfer tube 12. The concentrated solution Sa wet and spread on the surface of each heat transfer tube 12 absorbs the evaporator refrigerant vapor Ve supplied from the evaporator 20, and heats the heated medium W flowing inside with the absorbed heat generated at that time. The concentrated solution Sa that has absorbed the evaporator refrigerant vapor Ve becomes a dilute solution Sw, is temporarily stored in the lower part of the can body 11, and is then guided to the regenerator 30 via the dilute solution pipe 36.

その一方で、吸収器10内の入口液室14には、分離液管81及び被加熱媒体液管82を介して気液分離器80からの被加熱媒体液Wqが流入する。このとき、入口液室14が気液分離器80の貯留部80cよりも下方に配置されているので、定常運転時の液位を気液分離器80の貯留部80cに設定することにより、入口液室14が被加熱媒体液Wqで満たされる。また、入口液室14に流入する被加熱媒体液Wqには、入口液室14に流入する前に、適宜、補給水ポンプ86の稼働により補給水Wsが混合される。なお、補給水管85及び気液分離器80から入口液室14に流入する被加熱媒体液Wqの合計質量流量は、典型的には、吸収器10で生成される被加熱媒体蒸気Wvの質量流量の2〜10倍程度である。入口液室14に流入した被加熱媒体液Wqは伝熱管12を流れて出口液室15に流入する。このとき、入口液室14が被加熱媒体液Wqで満たされているので、各伝熱管12に被加熱媒体液Wqが流入することとなる。換言すれば、被加熱媒体液Wqが流入せずに気体が流入してしまう伝熱管12が生じることを回避することができる。 On the other hand, the medium liquid Wq to be heated from the gas-liquid separator 80 flows into the inlet liquid chamber 14 in the absorber 10 via the separation liquid pipe 81 and the medium liquid pipe 82 to be heated. At this time, since the inlet liquid chamber 14 is arranged below the storage portion 80c of the gas-liquid separator 80, the liquid level during steady operation is set in the storage portion 80c of the gas-liquid separator 80 to enter the inlet. The liquid chamber 14 is filled with the medium liquid to be heated Wq. Further, the make-up medium liquid Wq flowing into the inlet liquid chamber 14 is appropriately mixed with make-up water Ws by operating the make-up water pump 86 before flowing into the inlet liquid chamber 14. The total mass flow rate of the heated medium liquid Wq flowing from the make-up water pipe 85 and the gas-liquid separator 80 into the inlet liquid chamber 14 is typically the mass flow rate of the heated medium vapor Wv generated by the absorber 10. It is about 2 to 10 times that of. The medium liquid Wq to be heated that has flowed into the inlet liquid chamber 14 flows through the heat transfer tube 12 and flows into the outlet liquid chamber 15. At this time, since the inlet liquid chamber 14 is filled with the medium liquid Wq to be heated, the medium liquid Wq to be heated flows into each heat transfer tube 12. In other words, it is possible to avoid the occurrence of the heat transfer tube 12 in which the gas flows in without the medium liquid Wq to be heated flowing in.

被加熱媒体液Wqは、伝熱管12内を流れるとき、伝熱管12の外表面に濡れ広がった濃溶液Saが蒸発器冷媒蒸気Veを吸収した際に発生した吸収熱で加熱され、出口液室15に至るまでに一部又は全部が蒸発する。本実施の形態に係る吸収ヒートポンプ1では、上述のように、すべての伝熱管12に被加熱媒体液Wqが流入する。仮に、被加熱媒体液Wqが流入せずに気体のみが流入する伝熱管12が存在する場合、当該伝熱管12では吸収熱が被加熱媒体液Wqに伝わる効率が悪化することとなってしまう。本実施の形態に係る吸収ヒートポンプ1では、すべての伝熱管12に被加熱媒体液Wqが流入することで、吸収熱が効率よく被加熱媒体液Wqに伝わり、効率的に被加熱媒体蒸気Wvを生成することができる。伝熱管12を流れる際に加熱された被加熱媒体液Wqは、混合被加熱媒体Wmとなって出口液室15に到達する。出口液室15内の混合被加熱媒体Wmは、加熱後被加熱媒体管84を流れて吸収器10から流出する。このように、1パスで構成された伝熱管12で生成された混合被加熱媒体Wmは、その後は伝熱管12を通過せずに吸収器10から流出する。 When the medium liquid Wq to be heated flows through the heat transfer tube 12, the concentrated solution Sa wet and spread on the outer surface of the heat transfer tube 12 is heated by the absorbed heat generated when the evaporator refrigerant vapor Ve is absorbed, and the outlet liquid chamber is heated. Part or all evaporate by the time it reaches 15. In the absorption heat pump 1 according to the present embodiment, as described above, the medium liquid to be heated Wq flows into all the heat transfer tubes 12. If there is a heat transfer tube 12 in which only the gas flows in without the medium liquid Wq to be heated, the efficiency of transferring the absorbed heat to the medium liquid Wq to be heated in the heat transfer tube 12 deteriorates. In the absorption heat pump 1 according to the present embodiment, the absorbed heat is efficiently transferred to the heated medium liquid Wq by flowing the heated medium liquid Wq into all the heat transfer tubes 12, and the heated medium vapor Wv is efficiently transferred. Can be generated. The medium to be heated Wq heated when flowing through the heat transfer tube 12 becomes the mixed medium to be heated Wm and reaches the outlet liquid chamber 15. After heating, the mixed medium to be heated Wm in the outlet liquid chamber 15 flows through the medium to be heated tube 84 and flows out from the absorber 10. In this way, the mixed heated medium Wm generated by the heat transfer tube 12 configured in one pass then flows out of the absorber 10 without passing through the heat transfer tube 12.

吸収器10から流出した混合被加熱媒体Wmは、加熱後被加熱媒体管84を介して気液分離器80に流入する。気液分離器80に流入した混合被加熱媒体Wmは、バッフル板80aに衝突して気液分離され、被加熱媒体液Wqと、被加熱媒体蒸気Wvとに分かれる。分離された被加熱媒体蒸気Wvは、吸収ヒートポンプ1外の蒸気利用場所に向かって被加熱媒体蒸気管89を流れる。他方、気液分離器80で分離された被加熱媒体液Wqは、気液分離器80下部の貯留部80cに貯留される。貯留部80cに貯留されている被加熱媒体液Wqは、分離液管81に流出した後に、被加熱媒体液管82を流れる。被加熱媒体液管82を流れる被加熱媒体液Wqは、補給水管85からの補給水Wsと合流して入口液室14に流入し、以降、上述の作用を繰り返す。 The mixed medium to be heated Wm flowing out of the absorber 10 flows into the gas-liquid separator 80 through the medium to be heated tube 84 after heating. The mixed medium to be heated Wm that has flowed into the gas-liquid separator 80 collides with the baffle plate 80a and is separated into gas and liquid, and is separated into the medium to be heated Wq and the vapor to be heated Wv. The separated steam Wv to be heated flows through the steam pipe 89 to be heated toward the steam utilization place outside the absorption heat pump 1. On the other hand, the medium liquid Wq to be heated separated by the gas-liquid separator 80 is stored in the storage portion 80c below the gas-liquid separator 80. The heated medium liquid Wq stored in the storage unit 80c flows out to the separation liquid pipe 81 and then flows through the heated medium liquid pipe 82. The heated medium liquid Wq flowing through the heated medium liquid pipe 82 merges with the make-up water Ws from the make-up water pipe 85 and flows into the inlet liquid chamber 14, and thereafter, the above-mentioned action is repeated.

以上で説明したように、本実施の形態に係る吸収ヒートポンプ1によれば、各伝熱管12が1パスで構成されていると共に、定常運転時の入口液室14が被加熱媒体液Wqで満たされるので、被加熱媒体液Wqが流入せずに気体が流入してしまう伝熱管12が発生することを防ぐことができ、被加熱媒体液Wqへの吸収熱の伝達効率の低下を抑制することができる。また、各伝熱管12が水平に配置されているので、蒸発器冷媒蒸気Veを吸収する濃溶液Saが濡れ広がる面積を最大化することができ、多くの吸収熱を発生させることができる。また、各伝熱管12を1パスで構成していることから、被加熱媒体Wが各伝熱管12を流動する際の流路断面積を最大にして、流動抵抗を最小にすることができる。このため、気液分離器80と各伝熱管12との間で被加熱媒体Wを循環させるための循環駆動力は小さくてよく、循環駆動力を得るためのポンプを不要にして、被加熱媒体Wの循環流路における比重量の差による気泡ポンプ作用で充分な循環駆動力を得ることができる。また、気泡ポンプ作用による循環駆動力は、吸収器10の伝熱管12に対する気液分離器80の高さに比例して増大するので、本実施の形態では、必要な循環駆動力が小さく気液分離器80の高さを抑制することができ、高さを抑制した吸収ヒートポンプ1にすることができる。 As described above, according to the absorption heat pump 1 according to the present embodiment, each heat transfer tube 12 is composed of one pass, and the inlet liquid chamber 14 during steady operation is filled with the medium liquid to be heated Wq. Therefore, it is possible to prevent the generation of the heat transfer tube 12 in which the gas flows in without the medium liquid Wq to be heated flowing in, and it is possible to suppress the decrease in the transfer efficiency of the absorbed heat to the medium liquid Wq to be heated. Can be done. Further, since each heat transfer tube 12 is arranged horizontally, the area where the concentrated solution Sa that absorbs the evaporator refrigerant vapor Ve is wet and spread can be maximized, and a large amount of absorbed heat can be generated. Further, since each heat transfer tube 12 is composed of one pass, the flow resistance can be minimized by maximizing the flow path cross-sectional area when the heat transfer medium W flows through each heat transfer tube 12. Therefore, the circulation driving force for circulating the heated medium W between the gas-liquid separator 80 and each heat transfer tube 12 may be small, eliminating the need for a pump for obtaining the circulation driving force and eliminating the heated medium. A sufficient circulation driving force can be obtained by the bubble pumping action due to the difference in specific weight in the circulation flow path of W. Further, since the circulation driving force due to the bubble pumping action increases in proportion to the height of the gas-liquid separator 80 with respect to the heat transfer tube 12 of the absorber 10, the required circulation driving force is small and the gas-liquid is small in the present embodiment. The height of the separator 80 can be suppressed, and the absorption heat pump 1 having the suppressed height can be obtained.

次に図3を参照して、第1の変形例に係る吸収器10Aを説明する。吸収器10Aは、吸収器10(図2参照)と比較して、以下の点で異なっている。吸収器10Aは、入口液室14を、上部入口液室14Aと下部入口液室14Bとに分割する区画板14dが、入口液室14内に設けられている。つまり、区画板14dは、入口液室14の内部を上下に分割する部材である。そして、被加熱媒体液管82は、上部入口液室14Aに接続されている。補給水管85は、分離液管81と被加熱媒体液管82との接続部ではなく、下部入口液室14Bに接続されており、第3の流路に相当する。区画板14dが設けられる位置は、入口液室14内の容積を、被加熱媒体液管82から入口液室14に流入する被加熱媒体液Wqの流量と、補給水管85から入口液室14に流入する補給水Wsの流量との比で分割する位置とするとよい。このようにして分割された下部入口液室14Bは、最下列の伝熱管12が水平方向の1列分全部が含まれなくとも、最下列の伝熱管12の一部が含まれるだけでもよい。吸収器10Aの、上記以外の構成は、吸収器10(図2参照)と同様である。 Next, the absorber 10A according to the first modification will be described with reference to FIG. The absorber 10A differs from the absorber 10 (see FIG. 2) in the following points. In the absorber 10A, a partition plate 14d for dividing the inlet liquid chamber 14 into an upper inlet liquid chamber 14A and a lower inlet liquid chamber 14B is provided in the inlet liquid chamber 14. That is, the partition plate 14d is a member that vertically divides the inside of the inlet liquid chamber 14. The medium liquid pipe 82 to be heated is connected to the upper inlet liquid chamber 14A. The make-up water pipe 85 is connected to the lower inlet liquid chamber 14B, not the connection portion between the separation liquid pipe 81 and the heated medium liquid pipe 82, and corresponds to a third flow path. The position where the partition plate 14d is provided is the volume in the inlet liquid chamber 14, the flow rate of the medium liquid Wq to be heated flowing into the inlet liquid chamber 14 from the heated medium liquid pipe 82, and the flow rate from the make-up water pipe 85 to the inlet liquid chamber 14. It is preferable that the position is divided by the ratio of the flow rate of the inflowing make-up water Ws. The lower inlet liquid chamber 14B divided in this way does not have to include the entire heat transfer tube 12 in the lowermost row in the horizontal direction, but may include only a part of the heat transfer tube 12 in the lowermost row. The configuration of the absorber 10A other than the above is the same as that of the absorber 10 (see FIG. 2).

上述のように構成された吸収器10Aでは、比較的温度が高い気液分離器80内の被加熱媒体液Wqが分離液管81及び被加熱媒体液管82を介して上部入口液室14Aに流入し、比較的温度が低い補給水Wsが補給水管85を介して下部入口液室14Bに流入する。上部入口液室14Aに流入した被加熱媒体液Wqは、区画板14dよりも上方に配置された伝熱管12に流入し、下部入口液室14Bに流入した補給水Ws(被加熱媒体液Wq)は、区画板14dよりも下方に配置された伝熱管12に流入する。他方、伝熱管12の外側を滴下する吸収液Sは、上方から下方に進むにつれて、順次吸収熱が被加熱媒体液Wqに奪われるため、また、吸収液Sの濃度が低下するため、温度が低下していく。本変形例に係る吸収器10Aでは、下方に配置された伝熱管12において、比較的温度が低い被加熱媒体液Wqが内部を流れるので、温度が低下した吸収液Sから被加熱媒体液Wqへの熱伝達が行われることとなり、吸収熱を効率よく被加熱媒体液Wqに伝達することができる。 In the absorber 10A configured as described above, the medium-heated medium liquid Wq in the gas-liquid separator 80 having a relatively high temperature enters the upper inlet liquid chamber 14A via the separation liquid pipe 81 and the liquid-heated medium liquid pipe 82. The make-up water Ws, which flows in and has a relatively low temperature, flows into the lower inlet liquid chamber 14B through the make-up water pipe 85. The medium liquid Wq to be heated that has flowed into the upper inlet liquid chamber 14A flows into the heat transfer tube 12 arranged above the partition plate 14d, and the make-up water Ws (heated medium liquid Wq) that has flowed into the lower inlet liquid chamber 14B. Flows into the heat transfer tube 12 arranged below the partition plate 14d. On the other hand, the temperature of the absorbing liquid S dripping on the outside of the heat transfer tube 12 rises because the absorbed heat is sequentially taken away by the medium liquid Wq to be heated and the concentration of the absorbing liquid S decreases as the heat is transferred from the upper side to the lower side. It will decrease. In the absorber 10A according to this modification, the heat transfer medium liquid Wq having a relatively low temperature flows inside in the heat transfer tube 12 arranged below, so that the absorption medium liquid S having a lowered temperature changes to the heat medium liquid Wq. The heat transfer is performed, and the absorbed heat can be efficiently transferred to the medium liquid Wq to be heated.

次に図4を参照して、第2の変形例に係る吸収器10Bを説明する。吸収器10Bは、吸収器10(図2参照)と比較して、以下の点で異なっている。吸収器10Bは、出口液室15を区画する対向壁15wbが斜めに設けられている。対向壁15wbは、取付壁15waに対向する壁であり、本実施の形態では着脱可能な蓋として構成されている。取付壁15waは、各伝熱管12が取り付けられた管板として構成されている。出口液室15を形成する取付壁15waと対向壁15wbとの間の筒状の部材は、鉛直断面が矩形(長方形又は正方形)に形成されている。取付壁15waは、垂直に(法線が水平になるように)設けられている。対向壁15wbは、取付壁15waとの間における出口液室15の水平断面積が、上部から下部に向けて漸減するような傾きで設置されている。吸収器10Bの、上記以外の構成は、吸収器10(図2参照)と同様である。 Next, the absorber 10B according to the second modification will be described with reference to FIG. The absorber 10B differs from the absorber 10 (see FIG. 2) in the following points. The absorber 10B is provided with an opposing wall 15wb that partitions the outlet liquid chamber 15 at an angle. The facing wall 15wb is a wall facing the mounting wall 15wa, and is configured as a removable lid in the present embodiment. The mounting wall 15wa is configured as a tube plate to which each heat transfer tube 12 is mounted. The tubular member between the mounting wall 15wa and the facing wall 15wb forming the outlet liquid chamber 15 has a rectangular (rectangular or square) vertical cross section. The mounting wall 15wa is provided vertically (so that the normals are horizontal). The facing wall 15wb is installed at an inclination such that the horizontal cross-sectional area of the outlet liquid chamber 15 with the mounting wall 15wa gradually decreases from the upper part to the lower part. The configuration of the absorber 10B other than the above is the same as that of the absorber 10 (see FIG. 2).

上述のように構成された吸収器10Bでは、出口液室15の下部ほど水平断面積が小さくなり、吸収器10Bの保有液量(保有する被加熱媒体Wの量)を少なくすることができる。出口液室15では、混合被加熱媒体Wmが、下部から上部の流出口15hに向けて流れる上昇流であり、下部から上部に至るほど各伝熱管12から流出する混合被加熱媒体Wmが混合して混合被加熱媒体Wmの流量が増大するので、混合被加熱媒体Wmの流量が少ない下部側ほど水平断面積を小さくすることができる。吸収器10Bの保有液量を少なくすることができると、被加熱媒体Wの加熱量を少なくすることができ、加熱効率を向上させることができる。 In the absorber 10B configured as described above, the horizontal cross-sectional area becomes smaller toward the lower part of the outlet liquid chamber 15, and the amount of liquid retained in the absorber 10B (the amount of medium W to be heated) can be reduced. In the outlet liquid chamber 15, the mixed heated medium Wm is an upward flow flowing from the lower part to the upper outlet 15h, and the mixed heated medium Wm flowing out from each heat transfer tube 12 is mixed from the lower part to the upper part. Since the flow rate of the mixed medium to be heated Wm increases, the horizontal cross-sectional area can be reduced toward the lower side where the flow rate of the mixed medium to be heated Wm is small. If the amount of liquid retained in the absorber 10B can be reduced, the amount of heating of the medium W to be heated can be reduced, and the heating efficiency can be improved.

次に図5を参照して、第3の変形例に係る吸収器10Cを説明する。吸収器10Cは、吸収器10(図2参照)と比較して、以下の点で異なっている。吸収器10Cは、補給水管85が、分離液管81と被加熱媒体液管82との接続部に接続されておらず、入口液室14内に配置された補給水内管14pに接続されている。補給水管85は、入口液室形成部材14fの蓋部でないところを貫通している。補給水内管14pは、被加熱媒体液吹き出し部材に相当する。補給水内管14pは、入口液室14内の下部に、水平に延びるように配置されている。補給水内管14pは、補給水Wsを吹き出す吹き出し孔14phが、長手方向に沿って、適宜の間隔で複数形成されている。補給水内管14pは、吹き出し孔14phが伝熱管12の開口端に対向する向きで、入口液室14内に配置されている。なお、本変形例では、補給水内管14pは水平に延びるように形成されているが、入口液室14が正方形に近いのであれば補給水内管14pも正方形に近いリング状にするとよい。吸収器10Cの、上記以外の構成は、吸収器10(図2参照)と同様である。 Next, the absorber 10C according to the third modification will be described with reference to FIG. The absorber 10C differs from the absorber 10 (see FIG. 2) in the following points. In the absorber 10C, the make-up water pipe 85 is not connected to the connection portion between the separation liquid pipe 81 and the heated medium liquid pipe 82, but is connected to the make-up water inner pipe 14p arranged in the inlet liquid chamber 14. There is. The make-up water pipe 85 penetrates a portion of the inlet liquid chamber forming member 14f that is not the lid portion. The make-up water inner pipe 14p corresponds to a member for blowing out the medium to be heated. The make-up water inner pipe 14p is arranged so as to extend horizontally in the lower part of the inlet liquid chamber 14. In the make-up water inner pipe 14p, a plurality of blowout holes 14ph for blowing out make-up water Ws are formed at appropriate intervals along the longitudinal direction. The make-up water inner pipe 14p is arranged in the inlet liquid chamber 14 with the blowout hole 14ph facing the open end of the heat transfer tube 12. In this modification, the make-up water inner pipe 14p is formed so as to extend horizontally, but if the inlet liquid chamber 14 is close to a square, the make-up water inner pipe 14p may also have a ring shape close to a square. The configuration of the absorber 10C other than the above is the same as that of the absorber 10 (see FIG. 2).

上述のように構成された吸収器10Cでは、比較的温度が低い補給水Wsが、入口液室14の下部において、補給水内管14pの吹き出し孔14phから、下部に配置された伝熱管12に向けて吹き出され、その多くが当該下部に配置された伝熱管12内に流入する。気液分離器80の貯留部80cにある比較的温度が高い被加熱媒体液Wqは、被加熱媒体液管82を介して入口液室14に流入し、概ね補給水内管14pよりも上方の入口液室14に行き渡り、補給水Wsが専ら流入した伝熱管12以外の伝熱管12内に流入する。本変形例では、区画板14d(図3参照)を設けなくても、缶胴11内の下部に配置された伝熱管12に比較的温度が低い補給水Wsを流入させ、上部に配置された伝熱管12に気液分離器80からの比較的温度が高い被加熱媒体液Wqを流入させることができる。したがって、下部に配置された伝熱管12において、比較的温度が低い被加熱媒体液Wqが内部を流れるので、上部に配置された伝熱管12から滴下してきた温度が低下した吸収液Sからも被加熱媒体液Wqへの熱伝達が行われることとなり、吸収熱を効率よく被加熱媒体液Wqに伝達することができる。 In the absorber 10C configured as described above, the make-up water Ws having a relatively low temperature is sent from the blow-out hole 14ph of the make-up water inner pipe 14p to the heat transfer tube 12 arranged in the lower part of the inlet liquid chamber 14. Most of them flow into the heat transfer tube 12 arranged at the lower part. The relatively high temperature of the medium to be heated Wq in the storage portion 80c of the gas-liquid separator 80 flows into the inlet liquid chamber 14 through the medium to be heated pipe 82, and is generally above the make-up water inner pipe 14p. It spreads to the inlet liquid chamber 14, and the make-up water Ws flows into the heat transfer tube 12 other than the heat transfer tube 12 into which the make-up water Ws has exclusively flowed. In this modification, even if the partition plate 14d (see FIG. 3) is not provided, the make-up water Ws having a relatively low temperature is allowed to flow into the heat transfer tube 12 arranged at the lower part in the can body 11 and arranged at the upper part. The medium temperature to be heated Wq from the gas-liquid separator 80 can flow into the heat transfer tube 12. Therefore, in the heat transfer tube 12 arranged at the lower part, the medium temperature to be heated Wq having a relatively low temperature flows inside, so that the absorption liquid S having a reduced temperature dropped from the heat transfer tube 12 arranged at the upper part is also covered. The heat is transferred to the heating medium liquid Wq, and the absorbed heat can be efficiently transferred to the heating medium liquid Wq.

なお、補給水内管14pに代えて、缶胴11内の下部に配置された伝熱管12に対向する入口液室形成部材14fの壁面に吹き出し孔14phに相当する孔を形成すると共に、当該孔が形成された壁面の外側に補給水Wsのヘッダーを設けた構成を、被加熱媒体液吹き出し部材としてもよい。つまり、被加熱媒体液吹き出し部材は、液体(本変形例では補給水Ws)を下部に配置された伝熱管12に概ね均等に流入させることができる構成であればよい。 Instead of the make-up water inner pipe 14p, a hole corresponding to the blowout hole 14ph is formed on the wall surface of the inlet liquid chamber forming member 14f facing the heat transfer tube 12 arranged at the lower part in the can body 11, and the hole is also formed. The structure in which the header of the make-up water Ws is provided on the outside of the wall surface on which the surface is formed may be used as the heated medium liquid blowing member. That is, the heated medium liquid blowing member may have a configuration in which the liquid (makeup water Ws in this modification) can flow into the heat transfer tube 12 arranged at the lower part substantially evenly.

以上の説明では、伝熱管12が水平に配置されていることで入口液室14が出口液室15と同じ高さに配置されるため、出口液室15よりも上方に気液分離器80の貯留部80cが位置するように気液分離器80が配置されたときに、入口液室14も貯留部80cより下方に位置することとなるとしたが、入口液室14が出口液室15と同じ高さに配置されていない場合であっても(入口液室14が出口液室15よりも低い場合であっても高い場合であっても)、入口液室14よりも上方に気液分離器80の貯留部80cが位置するように気液分離器80が配置されているとよい。ここで、入口液室14、出口液室15、貯留部80cのそれぞれの高さは、入口液室14及び出口液室15についてはその最上部を基準とし、貯留部80cについてはその最下部を基準とする。貯留部80cの最下部は気液分離器80の最下部でもあり、常用液位(定常運転時の液位)を貯留部80c内に所定の液位で制御すると、常用液面高さは、少なくとも入口液室14より上方になり(出口液室15より上方になることを妨げるものではない)、入口液室14が出口液室15よりも高い場合は入口液室14及び出口液室15より上方になる。なお、運転中の負荷変動等により液位が貯留部80cより下方に低下する場合や起動時に貯留部80cより低い液位に制御する場合があるが、いずれも常用液位とは言わない。入口液室14が出口液室15よりも低い場合として、以下の例が挙げられる。出口液室15に接続される加熱後被加熱媒体管84は、発生した被加熱媒体蒸気Wvを含む混合被加熱媒体Wmを流通させるために大口径となっている。大口径の加熱後被加熱媒体管84を取り付けるための取り付け部を出口液室15に用意するために、出口液室15を入口液室14よりも上方に延長することで、入口液室14が出口液室15よりも低くなる場合がある。また、吸収器10(以下、この段落において、変形例の吸収器10A、10B、10Cを含む。)とその周辺の機器の配置の都合上、入口液室14が出口液室15よりも低くなる場合がある。他方、入口液室14が出口液室15よりも高い場合として、吸収器10とその周辺の機器の配置の都合上、入口液室14が出口液室15よりも高くなる場合がある。このように、気液分離器80の貯留部80cが入口液室14よりも上方になるように気液分離器80が配置されている場合に、あるいは気液分離器80の貯留部80cが出口液室15よりも上方になるように気液分離器80が配置されている場合であっても、入口液室14の高さと出口液室15の高さとが異なることとしてもよい。入口液室14が出口液室15よりも低い場合であっても高い場合であっても、入口液室14よりも上方に気液分離器80の貯留部80cが位置するように気液分離器80を配置すると、入口液室14は被加熱媒体液Wqで満たされて各伝熱管12に被加熱媒体液Wqが流入することとなり、被加熱媒体液Wqが流入せずに被加熱媒体Wの蒸気が流入してしまう伝熱管12が生じることを防ぐことができる。 In the above description, since the heat transfer tube 12 is arranged horizontally, the inlet liquid chamber 14 is arranged at the same height as the outlet liquid chamber 15, so that the gas-liquid separator 80 is located above the outlet liquid chamber 15. When the gas-liquid separator 80 was arranged so that the storage unit 80c was located, the inlet liquid chamber 14 was also located below the storage unit 80c, but the inlet liquid chamber 14 was the same as the outlet liquid chamber 15. A gas-liquid separator above the inlet liquid chamber 14, even if it is not located at a height (whether the inlet liquid chamber 14 is lower or higher than the outlet liquid chamber 15). It is preferable that the gas-liquid separator 80 is arranged so that the storage portion 80c of the 80 is located. Here, the heights of the inlet liquid chamber 14, the outlet liquid chamber 15, and the storage portion 80c are based on the uppermost portion of the inlet liquid chamber 14 and the outlet liquid chamber 15, and the lowermost portion of the storage portion 80c. Use as a reference. The lowermost part of the storage part 80c is also the lowermost part of the gas-liquid separator 80, and when the normal liquid level (the liquid level during steady operation) is controlled at a predetermined liquid level in the storage part 80c, the normal liquid level becomes. At least above the inlet liquid chamber 14 (does not prevent it from being above the outlet liquid chamber 15), and when the inlet liquid chamber 14 is higher than the outlet liquid chamber 15, it is above the inlet liquid chamber 14 and the outlet liquid chamber 15. It will be upward. The liquid level may drop below the storage unit 80c due to load fluctuations during operation, or may be controlled to a liquid level lower than the storage unit 80c at startup, but neither is called a normal liquid level. Examples of cases where the inlet liquid chamber 14 is lower than the outlet liquid chamber 15 include the following examples. The heated medium tube 84 connected to the outlet liquid chamber 15 has a large diameter for circulating the mixed heated medium Wm containing the generated medium vapor Wv. By extending the outlet liquid chamber 15 above the inlet liquid chamber 14 in order to prepare a mounting portion for mounting the large-diameter heated medium tube 84 after heating in the outlet liquid chamber 15, the inlet liquid chamber 14 is formed. It may be lower than the outlet liquid chamber 15. Further, the inlet liquid chamber 14 is lower than the outlet liquid chamber 15 due to the arrangement of the absorber 10 (hereinafter, including the absorbers 10A, 10B, and 10C of the modified examples in this paragraph) and the surrounding equipment. In some cases. On the other hand, when the inlet liquid chamber 14 is higher than the outlet liquid chamber 15, the inlet liquid chamber 14 may be higher than the outlet liquid chamber 15 due to the arrangement of the absorber 10 and the equipment around it. In this way, when the gas-liquid separator 80 is arranged so that the storage portion 80c of the gas-liquid separator 80 is above the inlet liquid chamber 14, or the storage portion 80c of the gas-liquid separator 80 is the outlet. Even when the gas-liquid separator 80 is arranged so as to be above the liquid chamber 15, the height of the inlet liquid chamber 14 and the height of the outlet liquid chamber 15 may be different. Regardless of whether the inlet liquid chamber 14 is lower or higher than the outlet liquid chamber 15, the gas-liquid separator is located so that the storage portion 80c of the gas-liquid separator 80 is located above the inlet liquid chamber 14. When 80 is arranged, the inlet liquid chamber 14 is filled with the heated medium liquid Wq, and the heated medium liquid Wq flows into each heat transfer tube 12, so that the heated medium liquid Wq does not flow into the heated medium W. It is possible to prevent the heat transfer tube 12 from which steam flows in.

以上の説明では、各伝熱管12が水平に配置されているとしたが、傾いていてもよい。この場合、各伝熱管12は、濃溶液Saを伝熱管12の外表面に確実に接触させる観点から水平方向成分を有する(換言すれば軸線が鉛直ではない)ように配置することが好ましく、濃溶液Saが伝熱管12の外表面にできるだけ広がった状態で蒸発器冷媒蒸気Veを吸収させる観点から水平方向成分が鉛直方向成分よりも多いほど好ましい。 In the above description, it is assumed that the heat transfer tubes 12 are arranged horizontally, but they may be tilted. In this case, each heat transfer tube 12 is preferably arranged so as to have a horizontal component (in other words, the axis is not vertical) from the viewpoint of ensuring that the concentrated solution Sa is in contact with the outer surface of the heat transfer tube 12. From the viewpoint of absorbing the evaporator refrigerant vapor Ve in a state where the solution Sa spreads as much as possible on the outer surface of the heat transfer tube 12, it is preferable that the horizontal component is larger than the vertical component.

図6に、各伝熱管12を傾けて配置した例を示す。図6(A)のように、管板を垂直に配置した状態で伝熱管12が傾斜配置されるようにしてもよく、図6(B)に示すように管板の面と伝熱管12の軸線とを直角に保ったまま管板ごと各伝熱管12を傾斜させてもよい。いずれの場合も、伝熱管12で発生した被加熱媒体蒸気Vwが出口液室15に流入するように、先上りの勾配で配置するとよい。伝熱管12の上り勾配は、伝熱管12の外表面に濡れ広がる吸収液Sの範囲を考慮して、所望の吸収熱を得ることができる範囲内で決定するとよい。伝熱管12に上り勾配がついていると、伝熱管12内で生じた被加熱媒体蒸気Wvが出口液室15に抜けやすくなる。他方、伝熱管12を水平に配置した場合は、外表面に濡れ広がる吸収液Sの範囲を広くすることができる。あるいは、図6(C)に示すように、各伝熱管12をU字状に形成して曲部以外の大部分が水平になるように配置してもよい。この場合も、下流側が上方に配置されるようにするとよい。この例の伝熱管12は、水平管部を2行路備え、入口液室14の反対側端部をU字状の反転で接続して、一続きにしたものである。この構成のほか、伝熱管12は、水平管部を3行路備えて、3行路の水平管部を流れの向きに沿って、入口液室14の反対側端部、次に入口液室14側端部と交互にU字状の反転で接続して一続きにしたS字状としてもよい。又は、伝熱管12は、水平管部を4行路備えてその端部をU字状の反転で交互に次々と接続して一続きにしたM字状、あるいは、さらに多くの水平管部の行路を備えてその端部をU字状の反転で交互に次々と接続して一続きにした蛇行状としてもよい。いずれの場合も、水平管部の端部をU字状の反転部で次々と接続して、ある伝熱管12内を流れる流体が他の伝熱管12内の流体と合流も分流もせず、他の伝熱管12と交わることがない一続きの伝熱管12複数個から構成され、入口液室14及び出口液室15は、これらの伝熱管12の入口及び出口に各々接続される。なお、図6(A)、図6(B)、図6(C)に示す例では、いずれも、入口液室14が出口液室15よりも低くなっており、これらの場合でも、入口液室14よりも上方に気液分離器80の貯留部80cが位置するように気液分離器80を配置することで、入口液室14は被加熱媒体液Wqで満たされて各伝熱管12に被加熱媒体液Wqが流入することとなり、被加熱媒体液Wqが流入せずに被加熱媒体Wの蒸気が流入してしまう伝熱管12が生じることを防ぐことができる。 FIG. 6 shows an example in which each heat transfer tube 12 is arranged at an angle. As shown in FIG. 6 (A), the heat transfer tubes 12 may be arranged in an inclined manner with the tube plates arranged vertically, and as shown in FIG. 6 (B), the surface of the tube plate and the heat transfer tube 12 Each heat transfer tube 12 may be tilted together with the tube plate while keeping the axis at a right angle. In either case, the medium vapor Vw to be heated generated in the heat transfer tube 12 may be arranged with an upward gradient so as to flow into the outlet liquid chamber 15. The upslope of the heat transfer tube 12 may be determined within a range in which the desired absorbed heat can be obtained in consideration of the range of the absorbing liquid S that wets and spreads on the outer surface of the heat transfer tube 12. When the heat transfer tube 12 has an upward gradient, the vapor to be heated medium vapor Wv generated in the heat transfer tube 12 easily escapes to the outlet liquid chamber 15. On the other hand, when the heat transfer tube 12 is arranged horizontally, the range of the absorbing liquid S that wets and spreads on the outer surface can be widened. Alternatively, as shown in FIG. 6C, each heat transfer tube 12 may be formed in a U shape and arranged so that most of the heat transfer tubes other than the curved portion are horizontal. In this case as well, the downstream side should be arranged upward. The heat transfer tube 12 of this example is provided with two horizontal pipe portions, and the opposite end portions of the inlet liquid chamber 14 are connected by a U-shaped inversion to form a series. In addition to this configuration, the heat transfer tube 12 is provided with three horizontal pipe portions, and the horizontal pipe portion of the three rows is provided along the direction of flow at the opposite end of the inlet liquid chamber 14, and then on the inlet liquid chamber 14 side. It may be connected to the end alternately by U-shaped inversion to form a continuous S-shape. Alternatively, the heat transfer tube 12 is provided with four horizontal tube portions, and the ends thereof are alternately connected one after another by U-shaped inversion to form a continuous M-shape, or more horizontal tube portions. The ends thereof may be connected one after another in a U-shaped inversion to form a continuous meandering shape. In either case, the ends of the horizontal pipes are connected one after another by U-shaped reversing parts, and the fluid flowing in one heat transfer tube 12 does not merge or split with the fluid in another heat transfer tube 12, and the other It is composed of a plurality of continuous heat transfer tubes 12 that do not intersect with the heat transfer tubes 12, and the inlet fluid chamber 14 and the outlet fluid chamber 15 are connected to the inlet and outlet of these heat transfer tubes 12, respectively. In the examples shown in FIGS. 6 (A), 6 (B), and 6 (C), the inlet liquid chamber 14 is lower than the outlet liquid chamber 15, and even in these cases, the inlet liquid is lower. By arranging the gas-liquid separator 80 so that the storage portion 80c of the gas-liquid separator 80 is located above the chamber 14, the inlet liquid chamber 14 is filled with the medium liquid to be heated Wq and is connected to each heat transfer tube 12. It is possible to prevent the heat transfer tube 12 from which the heated medium liquid Wq flows in and the vapor of the heated medium W flows in without the heated medium liquid Wq flowing in.

以上の説明では、典型的には補給水管85が分離液管81と被加熱媒体液管82との接続部に接続されて補給水Wsが被加熱媒体液導入流路に供給されることで補給水Wsが間接的に気液分離器80に供給されることとしたが、補給水管85が気液分離器80に接続されて補給水Wsが直接気液分離器80に供給されることとしてもよく、補給水管85が吸収器10の伝熱管12あるいは加熱後被加熱媒体管84等の被加熱媒体Wが存在する部分に接続されて補給水Wsが間接的に気液分離器80に供給されることとしてもよい。また、気液分離器80と各伝熱管12との間で被加熱媒体Wを循環させるためのポンプは不要であるとしたが、被加熱媒体Wを循環させるためのポンプを、気液分離器80内の被加熱媒体液Wqを入口液室14に導く配管に設けることとしてもよい。 In the above description, the make-up water pipe 85 is typically connected to the connection portion between the separation liquid pipe 81 and the heated medium liquid pipe 82, and the make-up water Ws is supplied to the heated medium liquid introduction flow path for replenishment. Although it was decided that the water Ws was indirectly supplied to the gas-liquid separator 80, it is also possible that the make-up water pipe 85 is connected to the gas-liquid separator 80 and the make-up water Ws is directly supplied to the gas-liquid separator 80. Often, the make-up water pipe 85 is connected to a portion where the heated medium W exists, such as the heat transfer pipe 12 of the absorber 10 or the heated medium pipe 84 after heating, and the make-up water Ws is indirectly supplied to the gas-liquid separator 80. You may do it. Further, although it is said that a pump for circulating the heated medium W between the gas-liquid separator 80 and each heat transfer tube 12 is unnecessary, the gas-liquid separator is used as a pump for circulating the heated medium W. The medium liquid Wq to be heated in 80 may be provided in the pipe leading to the inlet liquid chamber 14.

以上の説明では、蒸発器20が満液式であるとしたが、散布式であってもよい。蒸発器を散布式とする場合は、蒸発器缶胴の上部に冷媒液Vfを散布する冷媒液散布ノズルを設け、満液式の場合に蒸発器缶胴21の下部に接続することとしていた冷媒液管45の端部を、冷媒液散布ノズルに接続すればよい。また、蒸発器缶胴の下部の冷媒液Vfを冷媒液散布ノズルに供給する配管及びポンプを設けてもよい。 In the above description, the evaporator 20 is a full-liquid type, but it may be a spray type. When the evaporator is a spray type, a refrigerant liquid spray nozzle for spraying the refrigerant liquid Vf is provided on the upper part of the evaporator can body, and in the case of the full liquid type, the refrigerant is connected to the lower part of the evaporator can body 21. The end of the liquid pipe 45 may be connected to the refrigerant liquid spraying nozzle. Further, a pipe and a pump for supplying the refrigerant liquid Vf at the lower part of the evaporator can body to the refrigerant liquid spray nozzle may be provided.

以上の説明では、吸収ヒートポンプ1が単段であるとして説明したが、多段でもよい。
図7に、二段昇温型の吸収ヒートポンプ1Aの構成を例示する。吸収ヒートポンプ1Aは、図1に示されている吸収ヒートポンプ1における吸収器10及び蒸発器20が、高温側の高温吸収器10H及び高温蒸発器20Hと、低温側の低温吸収器10L及び低温蒸発器20Lとに分かれている。高温吸収器10Hは低温吸収器10Lよりも内圧が高く、高温蒸発器20Hは低温蒸発器20Lよりも内圧が高い。高温吸収器10Hと高温蒸発器20Hとは、高温蒸発器20Hの冷媒Vの蒸気を高温吸収器10Hに移動させることができるように上部で連通している。低温吸収器10Lと低温蒸発器20Lとは、低温蒸発器20Lの冷媒Vの蒸気を低温吸収器10Lに移動させることができるように上部で連通している。被加熱媒体液Wqは、高温吸収器10Hで加熱される。熱源温水hは、低温蒸発器20Lに導入される。低温吸収器10Lは低温蒸発器20Lから移動してきた冷媒Vの蒸気を吸収液Sが吸収する際の吸収熱で高温蒸発器20H内の冷媒液Vfを加熱して高温蒸発器20H内に冷媒Vの蒸気を発生させ、発生した高温蒸発器20H内の冷媒Vの蒸気は高温吸収器10Hに移動して高温吸収器10H内の吸収液Sに吸収される際の吸収熱で被加熱媒体液Wqを加熱するように構成されている。吸収ヒートポンプ1Aでは、被加熱媒体Wのほか、低温吸収器10L内の伝熱管内を流れる冷媒Vも、被加熱媒体に相当する。低温吸収器10Lは、伝熱管内を流れる被加熱媒体が冷媒Vであるので、被加熱媒体(冷媒V)のブロー排出管の設置やブロー排液操作を行わなくてよい。
In the above description, the absorption heat pump 1 has been described as having a single stage, but a multi-stage may be used.
FIG. 7 illustrates the configuration of the two-stage temperature rise type absorption heat pump 1A. In the absorption heat pump 1A, the absorber 10 and the evaporator 20 in the absorption heat pump 1 shown in FIG. 1 are the high temperature absorber 10H and the high temperature evaporator 20H on the high temperature side, and the low temperature absorber 10L and the low temperature evaporator on the low temperature side. It is divided into 20L. The high temperature absorber 10H has a higher internal pressure than the low temperature absorber 10L, and the high temperature evaporator 20H has a higher internal pressure than the low temperature evaporator 20L. The high temperature absorber 10H and the high temperature evaporator 20H communicate with each other at the upper part so that the vapor of the refrigerant V of the high temperature evaporator 20H can be moved to the high temperature absorber 10H. The low temperature absorber 10L and the low temperature evaporator 20L communicate with each other at the upper part so that the vapor of the refrigerant V of the low temperature evaporator 20L can be moved to the low temperature absorber 10L. The medium liquid to be heated Wq is heated by the high temperature absorber 10H. The heat source hot water h is introduced into the low temperature evaporator 20L. The low temperature absorber 10L heats the refrigerant liquid Vf in the high temperature evaporator 20H with the absorbed heat when the absorption liquid S absorbs the vapor of the refrigerant V moved from the low temperature evaporator 20L, and the refrigerant V in the high temperature evaporator 20H. The vapor of the refrigerant V in the high temperature evaporator 20H is moved to the high temperature absorber 10H and absorbed by the absorption liquid S in the high temperature absorber 10H. Is configured to heat. In the absorption heat pump 1A, in addition to the medium W to be heated, the refrigerant V flowing in the heat transfer tube in the low temperature absorber 10L also corresponds to the medium to be heated. In the low temperature absorber 10L, since the medium to be heated flowing in the heat transfer tube is the refrigerant V, it is not necessary to install the blow discharge pipe of the medium to be heated (refrigerant V) or perform the blow drain operation.

10 吸収器
12 伝熱管
14 入口液室
14d 区画板
14p 補給水内管
14ph 吹き出し孔
15 出口液室
15h 流出口
15wa 取付壁
15wb 対向壁
80 気液分離器
80c 貯留部
81 分離液管
82 被加熱媒体液管
84 加熱後被加熱媒体管
85 補給水管
Sa 濃溶液
Ve 蒸発器冷媒蒸気
Wm 混合被加熱媒体
Wq 被加熱媒体液
Wv 被加熱媒体蒸気
10 Absorber 12 Heat transfer tube 14 Inlet liquid chamber 14d Partition plate 14p Make-up water inner pipe 14ph Outlet hole 15 Outlet liquid chamber 15h Outlet 15wa Mounting wall 15wb Opposite wall 80 Vapor-liquid separator 80c Reservoir 81 Separation liquid pipe 82 Heated medium Liquid pipe 84 Heated medium pipe 85 After heating Replenishment water pipe Sa Concentrated solution Ve Evaporator refrigerant vapor Wm Mixed heated medium Wq Heated medium liquid Wv Heated medium vapor

Claims (8)

被加熱媒体の液体を導入して内部に流す伝熱管を複数有し、前記伝熱管の外側で吸収液が冷媒の蒸気を吸収したときに生じた吸収熱で前記被加熱媒体を加熱して前記被加熱媒体の液体を蒸発させる吸収器と;
前記吸収器で加熱された前記被加熱媒体を導入して前記被加熱媒体の液体と蒸気とに分離する気液分離器と;
前記吸収器で加熱された前記被加熱媒体を前記気液分離器に導く第1の流路と;
前記気液分離器で分離された前記被加熱媒体の液体を前記吸収器に導く第2の流路とを備え;
前記吸収器は、前記被加熱媒体の液体を複数の前記伝熱管に分配する分配部と、複数の前記伝熱管から前記被加熱媒体を収集する収集部とを有し、複数の前記伝熱管のそれぞれの一端が前記分配部に接続されると共に複数の前記伝熱管のそれぞれの他端が前記収集部に接続され、複数の前記伝熱管のそれぞれの内部を流れる前記被加熱媒体が前記分配部から前記収集部に至る間に合流も分流もしないように構成され、前記収集部の容積が前記分配部の容積よりも大きく形成され;
前記収集部は、前記第1の流路に連通する被加熱媒体流出口が上部に形成され;
前記気液分離器は、分離された前記被加熱媒体の液体が貯留される部分が、前記収集部よりも上方になるように配置されている;
吸収ヒートポンプ。
It has a plurality of heat transfer tubes that introduce the liquid of the heat transfer medium and flow it inside, and heats the heat transfer medium with the absorbed heat generated when the absorption liquid absorbs the vapor of the refrigerant outside the heat transfer tube. With an absorber that evaporates the liquid in the medium to be heated;
A gas-liquid separator that introduces the heated medium heated by the absorber and separates the liquid and vapor of the heated medium;
With the first flow path that guides the heated medium heated by the absorber to the gas-liquid separator;
It is provided with a second flow path that guides the liquid of the medium to be heated separated by the gas-liquid separator to the absorber;
The absorber has a distribution unit that distributes the liquid of the heat transfer medium to the plurality of heat transfer tubes, and a collection unit that collects the heat transfer medium from the plurality of heat transfer tubes, and has a plurality of heat transfer tubes. One end of each is connected to the distribution section, the other end of each of the plurality of heat transfer tubes is connected to the collection section, and the heated medium flowing inside each of the plurality of heat transfer tubes is transmitted from the distribution section. It is configured so that it does not merge or diverge before reaching the collecting section, and the volume of the collecting section is formed to be larger than the volume of the distributing section;
The collector has an outlet for the medium to be heated that communicates with the first flow path formed at the top;
The gas-liquid separator is arranged so that the separated portion of the heated medium in which the liquid is stored is located above the collecting portion;
Absorption heat pump.
被加熱媒体の液体を導入して内部に流す伝熱管を複数有し、前記伝熱管の外側で吸収液が冷媒の蒸気を吸収したときに生じた吸収熱で前記被加熱媒体を加熱して前記被加熱媒体の液体を蒸発させる吸収器と;
前記吸収器で加熱された前記被加熱媒体を導入して前記被加熱媒体の液体と蒸気とに分離する気液分離器と;
前記吸収器で加熱された前記被加熱媒体を前記気液分離器に導く第1の流路と;
前記気液分離器で分離された前記被加熱媒体の液体を前記吸収器に導く第2の流路とを備え;
前記吸収器は、前記被加熱媒体の液体を複数の前記伝熱管に分配する分配部と、複数の前記伝熱管から前記被加熱媒体を収集する収集部とを有し、複数の前記伝熱管のそれぞれの一端が前記分配部に接続されると共に複数の前記伝熱管のそれぞれの他端が前記収集部に接続され、複数の前記伝熱管のそれぞれの内部を流れる前記被加熱媒体が前記分配部から前記収集部に至る間に合流も分流もしないように構成され、前記収集部の容積が前記分配部の容積よりも大きく形成され;
前記収集部は、前記第1の流路に連通する被加熱媒体流出口が上部に形成され;
前記気液分離器は、分離された前記被加熱媒体の液体が貯留される部分が、前記分配部よりも上方になるように配置されている;
吸収ヒートポンプ。
It has a plurality of heat transfer tubes that introduce the liquid of the heat transfer medium and flow it inside, and heats the heat transfer medium with the absorbed heat generated when the absorption liquid absorbs the vapor of the refrigerant outside the heat transfer tube. With an absorber that evaporates the liquid in the medium to be heated;
A gas-liquid separator that introduces the heated medium heated by the absorber and separates the liquid and vapor of the heated medium;
With the first flow path that guides the heated medium heated by the absorber to the gas-liquid separator;
It is provided with a second flow path that guides the liquid of the medium to be heated separated by the gas-liquid separator to the absorber;
The absorber has a distribution unit that distributes the liquid of the heat transfer medium to the plurality of heat transfer tubes, and a collection unit that collects the heat transfer medium from the plurality of heat transfer tubes, and has a plurality of heat transfer tubes. One end of each is connected to the distribution section, the other end of each of the plurality of heat transfer tubes is connected to the collection section, and the heated medium flowing inside each of the plurality of heat transfer tubes is transmitted from the distribution section. It is configured so that it does not merge or diverge before reaching the collecting section, and the volume of the collecting section is formed to be larger than the volume of the distributing section;
The collector has an outlet for the medium to be heated that communicates with the first flow path formed at the top;
The gas-liquid separator is arranged so that the separated portion of the medium to be heated in which the liquid is stored is located above the distribution portion;
Absorption heat pump.
前記分配部は、内部を上下に分割する区画板を含み;
前記第2の流路は前記区画板よりも上方の前記分配部の内部に連通し;
外部から前記被加熱媒体の液体を導入する第3の流路が前記区画板よりも下方の前記分配部の内部に連通して構成された;
請求項1又は請求項2に記載の吸収ヒートポンプ。
The distribution section includes a partition plate that divides the inside into upper and lower parts;
The second flow path communicates with the inside of the distribution section above the partition plate;
A third flow path for introducing the liquid of the medium to be heated from the outside is configured to communicate with the inside of the distribution portion below the partition plate;
The absorption heat pump according to claim 1 or 2.
前記収集部は、複数の前記伝熱管が取り付けられた伝熱管取付壁と、前記伝熱管取付壁に対向する対向壁とを有し、前記伝熱管取付壁と前記対向壁との間における前記伝熱管取付壁に直交する断面の面積が、上部から下部に向けて減少するように構成された;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
The collecting unit has a heat transfer tube mounting wall to which a plurality of the heat transfer tubes are attached and a facing wall facing the heat transfer tube mounting wall, and the heat transfer between the heat transfer tube mounting wall and the facing wall. The area of the cross section orthogonal to the heat pipe mounting wall was configured to decrease from top to bottom;
The absorption heat pump according to any one of claims 1 to 3.
前記分配部は、外部から導入した前記被加熱媒体の液体を前記分配部の内部の下部で吹き出す被加熱媒体液吹き出し部材を有し;
前記被加熱媒体液吹き出し部材は、複数の吹き出し孔が前記伝熱管の端部に対向する向きで形成されて構成された;
請求項1乃至請求項4のいずれか1項に記載の吸収ヒートポンプ。
The distribution unit has a heated medium liquid blowing member that blows out the liquid of the heating medium introduced from the outside at the lower part inside the distribution unit;
The medium liquid blowing member to be heated is configured such that a plurality of blowing holes are formed so as to face the end of the heat transfer tube;
The absorption heat pump according to any one of claims 1 to 4.
前記第2の流路は、複数の前記伝熱管の群の高さ方向の中間よりも低い位置で前記分配部に接続された;
請求項1乃至請求項5のいずれか1項に記載の吸収ヒートポンプ。
The second flow path was connected to the distribution section at a position lower than the middle in the height direction of the group of the plurality of heat transfer tubes;
The absorption heat pump according to any one of claims 1 to 5.
複数の前記伝熱管のそれぞれは、水平部分を複数行路有する;
請求項1乃至請求項6のいずれか1項に記載の吸収ヒートポンプ。
Each of the plurality of heat transfer tubes has a plurality of horizontal sections;
The absorption heat pump according to any one of claims 1 to 6.
複数の前記伝熱管のそれぞれが傾斜して配置された;
請求項1乃至請求項6のいずれか1項に記載の吸収ヒートポンプ。
Each of the plurality of heat transfer tubes was arranged at an angle;
The absorption heat pump according to any one of claims 1 to 6.
JP2017016670A 2016-03-15 2017-02-01 Absorption heat pump Active JP6753577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710135489.7A CN107192173B (en) 2016-03-15 2017-03-08 Absorption heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051568 2016-03-15
JP2016051568 2016-03-15

Publications (2)

Publication Number Publication Date
JP2017166804A JP2017166804A (en) 2017-09-21
JP6753577B2 true JP6753577B2 (en) 2020-09-09

Family

ID=59908928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016670A Active JP6753577B2 (en) 2016-03-15 2017-02-01 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP6753577B2 (en)

Also Published As

Publication number Publication date
JP2017166804A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6002316B2 (en) Heat exchanger
JP6701372B2 (en) Heat exchanger
CN105745508B (en) Heat exchanger
JP7364930B2 (en) Heat exchanger
CN105683695A (en) Heat exchanger
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
JP2010164248A (en) Absorption heat pump
EP3899398B1 (en) Heat exchanger
JP4701147B2 (en) 2-stage absorption refrigerator
JP2017072343A (en) Evaporator and turbo refrigerator having evaporator
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
JP6753577B2 (en) Absorption heat pump
JP6429550B2 (en) Absorption heat pump
CN212006306U (en) Siphon evaporator
JP6805473B2 (en) Absorption chiller
ES2949036T3 (en) Heat exchanger
CN107192173B (en) Absorption heat pump
JP2018080907A (en) Absorber and absorption heat pump
JP2009068723A (en) Absorption refrigerator
JP4519744B2 (en) High temperature regenerator and absorption refrigerator
JP6337055B2 (en) Absorption heat pump
JP2008304082A (en) Absorption type refrigerating device
KR0147749B1 (en) Regenerator for absorptive airconditioner
US2316821A (en) Refrigeration
JP2008008608A (en) High temperature regenerator and absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6753577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250