JP6753538B2 - 発光層の形成方法および発光素子の製造方法 - Google Patents

発光層の形成方法および発光素子の製造方法 Download PDF

Info

Publication number
JP6753538B2
JP6753538B2 JP2019546637A JP2019546637A JP6753538B2 JP 6753538 B2 JP6753538 B2 JP 6753538B2 JP 2019546637 A JP2019546637 A JP 2019546637A JP 2019546637 A JP2019546637 A JP 2019546637A JP 6753538 B2 JP6753538 B2 JP 6753538B2
Authority
JP
Japan
Prior art keywords
light emitting
nanocrystals
emitting layer
pressure
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019546637A
Other languages
English (en)
Other versions
JPWO2019069738A1 (ja
Inventor
徹 鶴田
徹 鶴田
秋山 英也
英也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2019069738A1 publication Critical patent/JPWO2019069738A1/ja
Application granted granted Critical
Publication of JP6753538B2 publication Critical patent/JP6753538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、発光層の形成方法および発光素子の製造方法に関する。
LEDや有機EL素子などの電界発光を利用した素子は、各種表示装置等の光源として広く利用されている。近年では、発光材料に量子ドットや量子ロッドなどの発光性を有する半導体ナノ結晶を用いた発光素子が注目されている。半導体ナノ結晶から得られる発光は、有機EL素子よりスペクトル幅が小さく、色域が広がるため、色再現性に優れる。また、かかる発光素子の発光層は、半導体ナノ結晶を分散媒に分散させたインクを塗布して塗膜を形成し、この塗膜を乾燥することにより得られる。
発光層(発光素子)の良好な発光特性を得るためには、発光層中において半導体ナノ結晶が均一かつ緻密に存在することが重要となる。例えば、特許文献1には、ドライポンプとターボ分子ポンプとを用いることにより、2段階での減圧で塗膜を乾燥している。しかしながら、特許文献1に記載の乾燥方法では、ドライポンプによる比較的低い減圧度で塗膜を乾燥する時間が短過ぎる。
そのため、ターボ分子ポンプによる高度の減圧により、塗膜中から分散媒が急激に除去され、その平滑性が損なわれる。そのため、塗膜中で半導体ナノ結晶が凝集して、十分な発光特性を有する発光層(発光素子)を得ることができない。
特開2010−80167号公報
本発明の目的は、発光特性に優れる発光層および発光素子を製造する方法を提供することにある。
このような目的は、下記の(1)〜(6)の本発明により達成される。
(1) 発光性を有する半導体ナノ結晶と、該半導体ナノ結晶に担持された分散剤とから構成された粒子と、大気圧下における沸点が200℃以上である分散媒とを含むインクを用意する工程と、
前記インクを支持体に供給して、前記支持体上に塗膜を形成する工程と、
前記塗膜が形成された前記支持体をチャンバ内に収容し、前記チャンバ内を1〜500Paの第1の圧力に減圧するとともに、該第1の圧力に2分間以上保持して、前記塗膜から前記分散媒を除去する工程と、
前記チャンバ内を前記第1の圧力より低い第2の圧力に減圧するとともに、該第2の圧力に所定の時間保持して、前記塗膜から前記分散媒をさらに除去する工程とを有することを特徴とする発光層の形成方法。
(2) 前記第1の圧力に保持する際の温度は、室温〜60℃である上記(1)に記載の発光層の形成方法。
(3) 前記第2の圧力は、5×10−2Pa以下である上記(1)または(2)に記載の発光層の形成方法。
(4) 前記第2の圧力に保持する際の温度は、室温〜150℃である上記(1)から(3)のいずれかに記載の発光層の形成方法。
(5) 前記所定の時間は、2〜30分間である上記(1)から(4)のいずれかに記載の発光層の形成方法。
(6) 上記(1)から(5)のいずれかの発光層の形成方法により発光層を形成する工程と、
該発光層を形成する工程の前または後に、陽極または陰極を形成する工程とを有することを特徴とする発光素子の製造方法。
本発明によれば、発光特性に優れる発光層および発光素子を製造することができる。
本発明の発光素子の製造方法により製造される発光素子の一実施形態を示す断面図である。
以下、本発明の発光層の製造方法および発光素子の製造方法について、添付図面に示す好適実施形態に基づいて詳細に説明する。
<インク>
本発明で用いられるインクは、発光性を有する半導体ナノ結晶と、該半導体ナノ結晶に担持された分散剤とから構成された粒子と、この粒子を分散する分散媒とを含有する。
なお、インクは、必要に応じて、例えば、電荷輸送材料、界面活性剤等を含有してもよい。
<<粒子>>
粒子は、半導体ナノ結晶と、この半導体ナノ結晶に担持された分散剤とから構成されている。半導体ナノ結晶(以下、単に「ナノ結晶」と言うこともある。)は、励起光を吸収して蛍光または燐光を発光するナノサイズの結晶体(ナノ結晶粒子)であり、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
ナノ結晶は、例えば、所定の波長の光エネルギーや電気エネルギーにより励起され、蛍光または燐光を発することができる。
ナノ結晶は、605〜665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500〜560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420〜480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、インクは、これらのナノ結晶のうちの少なくとも1種を含むことが好ましい。
なお、ナノ結晶の発光ピークの波長は、例えば、紫外可視分光光度計を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することできる。
赤色発光性のナノ結晶は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。
これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
緑色発光性のナノ結晶は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。
青色発光性のナノ結晶は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。
ナノ結晶が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、ナノ結晶のサイズ(例えば、粒子径)に依存するが、ナノ結晶が有するエネルギーギャップにも依存する。そのため、構成材料およびサイズを変更することにより、ナノ結晶の発光色を選択(調節)することができる。
ナノ結晶は、半導体材料で構成されていればよく、各種構造とすることができる。例えば、ナノ結晶は、第1の半導体材料で構成されるコアのみから構成されてもよく、第1の半導体材料で構成されるコアと、このコアの少なくとも一部を被覆し、第1の半導体材料と異なる第2の半導体材料で構成されるシェルとを有する構成でもよい。換言すれば、ナノ結晶の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルとからなる構造(コア/シェル構造)であってもよい。
また、ナノ結晶は、第2の半導体材料で構成されるシェル(第1のシェル)の他に、このシェルの少なくとも一部を被覆し、第1および第2の半導体材料と異なる第3の半導体材料で構成されるシェル(第2のシェル)をさらに有していてもよい。換言すれば、ナノ結晶の構造は、コアと第1のシェルと第2のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。
さらに、コアおよびシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)で構成されてもよい。
ナノ結晶は、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体およびI−II−IV−VI族半導体からなる群より選択される少なくとも1種の半導体材料で構成されることが好ましい。
具体的な半導体材料としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe、Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgGaSe、AgGaSおよびC等が挙げられる。
半導体材料は、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、GeおよびCuZnSnSからなる群より選択される少なくとも1種を含むことが好ましい。
これらの半導体材料で構成されるナノ結晶は、発光スペクトルの制御が容易であり、信頼性を確保しつつ、生産コストを低減し、量産性を向上させることができる。
赤色発光性のナノ結晶としては、例えば、CdSeのナノ結晶;CdSeのロッド状のナノ結晶;CdSのシェルとCdSeのコアとを備えるロッド状のナノ結晶;CdSのシェルとZnSeのコアとを備えるロッド状のナノ結晶;CdSのシェルとCdSeのコアとを備えるナノ結晶;CdSのシェルとZnSeのコアとを備えるナノ結晶;ZnSのシェルとInPのコアとを備えるナノ結晶;ZnSのシェルとCdSeのコアとを備えるナノ結晶;CdSeとZnSとの混晶のナノ結晶;CdSeとZnSとの混晶のロッド状のナノ結晶;InPのナノ結晶;InPのロッド状のナノ結晶;CdSeとCdSとの混晶のナノ結晶;CdSeとCdSとの混晶のロッド状のナノ結晶;ZnSeとCdSとの混晶のナノ結晶;ZnSeとCdSとの混晶のロッド状のナノ結晶等が挙げられる。
緑色発光性のナノ結晶としては、例えば、CdSeのナノ結晶;CdSeのロッド状のナノ結晶;ZnSのシェルとInPのコアとを備えるナノ結晶;ZnSのシェルとCdSeのコアとを備えるナノ結晶;CdSeとZnSとの混晶のナノ結晶;CdSeとZnSとの混晶のロッド状のナノ結晶等が挙げられる。
青色発光性のナノ結晶としては、例えば、ZnSeのナノ結晶;ZnSeのロッド状のナノ結晶;ZnSのナノ結晶;ZnSのロッド状のナノ結晶;ZnSeのシェルとZnSのコアとを備えるナノ結晶;ZnSeのシェルとZnSのコアとを備えるロッド状のナノ結晶;CdSのナノ結晶;CdSのロッド状のナノ結晶等が挙げられる。
なお、ナノ結晶は、同一の化学組成であっても、それ自体の平均粒子径を設計することにより、ナノ結晶から発光させるべき色を赤色にも緑色にも変更することができる。
また、ナノ結晶は、それ自体として、人体等に対する悪影響が極力低いことが好ましい。したがって、カドミウム、セレン等が極力含まれないナノ結晶を選択して単独で用いるか、上記元素(カドミウム、セレン等)を含有するナノ結晶を用いる場合には、上記元素が極力少なくなるようにその他のナノ結晶と組み合わせて用いることが好ましい。
ナノ結晶の形状は、特に限定されず、任意の幾何学的形状であってもよく任意の不規則な形状であってもよい。ナノ結晶の形状としては、例えば、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。しかしながら、ナノ結晶の形状としては、方向性の少ない形状(例えば、球状、正四面体状等)が好ましい。かかる形状のナノ結晶を用いることにより、インクの均一性および流動性をより高めることができる。
ナノ結晶の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。かかる平均粒子径を有するナノ結晶は、所望の波長の光を発し易いことから好ましい。
また、ナノ結晶の平均粒子径(体積平均径)は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有するナノ結晶は、所望の波長の光を発し易いのみならず、インクへの分散性および保存安定性を向上させ得ることからも好ましい。
なお、ナノ結晶の平均粒子径(体積平均径)は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
ところで、ナノ結晶は、配位サイトとなりうる表面原子を有するため、高い反応性を有している。ナノ結晶は、このような高い反応性を有することや、一般の顔料に比べ大きい表面積を有することから、凝集を起こし易い。
ナノ結晶は、量子サイズ効果によって発光を生じる。このため、ナノ結晶は、凝集すると消光現象が生じ、蛍光量子収率の低下を招き、輝度および色再現性が低下する。すなわち、本発明のようなナノ結晶を分散媒に分散してなるインクは、有機発光材料を溶媒に溶解してなるインクと異なり、凝集による発光特性の低下を生じ易い。このため、本発明のインクでは、ナノ結晶の分散安定性を確保する観点からの調製が重要となる。
<<分散剤>>
このようなことから、本発明では、ナノ結晶の表面に分散媒と相溶性のある分散剤(有機リガンド)が担持(保持)されて、換言すれば、ナノ結晶の表面が分散剤によって不活性化されている。この分散剤の存在により、ナノ結晶のインク中での分散安定性を向上させることができる。
なお、分散剤は、ナノ結晶の表面に、例えば、共有結合、配位結合、イオン結合、水素結合、ファンデルワールス結合等により担持されている。本明細書中において、「担持」とは、分散剤がナノ結晶の表面に吸着、付着または結合された状態を総称する用語である。また、分散剤は、ナノ結晶の表面から脱離することができ、ナノ結晶による担持とナノ結晶からの脱離とが平衡状態となり、これらを繰り返すことができる。
分散剤は、ナノ結晶のインク中での分散安定性を向上させ得る化合物であれば、特に限定されない。分散剤は、低分子分散剤と高分子分散剤とに分類される。本明細書中において、「低分子」とは、重量平均分子量(Mw)が5,000以下の分子を意味し、「高分子」とは、重量平均分子量(Mw)が5,000超の分子を意味する。
なお、本明細書中において、「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用するものとする。
低分子分散剤としては、例えば、オレイン酸;リン酸トリエチル、TOP(トリオクチルフォスフィン)、TOPO(トリオクチルフォスフィンオキサイド)、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、オクチルホスフィン酸(OPA)のようなリン原子含有化合物;オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミンのような窒素原子含有化合物;1−デカンチオール、オクタンチオール、ドデカンチオール、アミルスルフィドのような硫黄原子含有化合物等が挙げられる。
高分子分散剤としては、例えば、ナノ結晶の表面に担持し得る官能基を有する高分子化合物を用いることができる。
このような官能基としては、1級アミノ基、2級アミノ基、3級アミノ基、リン酸基、リン酸エステル基、ホスホン酸基、ホスホン酸エステル基、ホスフィン酸基、ホスフィン酸エステル基、チオール基、チオエーテル基、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、ヒドロキシル基、エーテル基、イミダゾリル基、トリアジニル基、ピロリドニル基、イソシアヌル酸基、ホウ酸エステル基、ボロン酸基等が挙げられる。
これらの中でも、複数の官能基を組み合わせ、ナノ結晶への担持能力を高めた高分子化合物を合成し易い点から、1級アミノ基、2級アミノ基、3級アミノ基、カルボン酸エステル基、ヒドロキシル基、エーテル基が、単独であっても十分なナノ結晶への担持能力を有する点から、リン酸基、リン酸エステル基、ホスホン酸基、ホスホン酸エステル基、カルボン酸基が好ましい。
さらに、インク中で適切にナノ結晶への高い担持能力を有する点から、1級アミノ基、2級アミノ基、3級アミノ基、リン酸基、ホスホン酸基、カルボン酸基がより好ましい。
1級アミノ基を有する高分子分散剤としては、例えば、ポリアルキレングリコールアミン、ポリエステルアミン、ウレタン変性ポリエステルアミン、ポリアルキレングリコールジアミン、ポリエステルジアミン、ウレタン変性ポリエステルジアミンのような直鎖型アミン、(メタ)アクリル系重合体の側鎖にアミノ基を有する櫛型ポリアミン等が挙げられる。
2級アミノ基を有する高分子分散剤としては、例えば、多数の2級アミノ基を有する直鎖型ポリエチレンイミン骨格を含む主鎖と、ポリエステル、アクリル樹脂、ポリウレタン等の側鎖とを有する櫛型ブロックコポリマー等が挙げられる。
3級アミノ基を有する高分子分散剤としては、例えば、トリ(ポリアルキレングリコール)アミンのような星型アミン等が挙げられる。
また、1級アミノ基、2級アミノ基および3級アミノ基を有する高分子分散剤としては、例えば、特開2008−037884号公報、特開2008−037949号公報、特開2008−03818号公報、特開2010−007124号公報に記載された直鎖型または多分岐型ポリエチレンイミンブロックとポリエチレングリコールブロックとを有する高分子化合物等が挙げられる。
リン酸基を有する高分子分散剤としては、例えば、ポリアルキレングリコールモノリン酸エステル、ポリアルキレングリコールモノアルキルエーテルモノリン酸エステル、パーフルオロアルキルポリオキシアルキレンリン酸エステル、パーフルオロアルキルスルホンアミドポリオキシアルキレンリン酸エステル、アシッドホスホキシエチルモノ(メタ)アクリレート、アシッドホスホキシプロピルモノ(メタ)アクリレート、アシッドホスホキシポリオキシアルキレングリコールモノ(メタ)アクリレートのようなモノマーから得られるホモポリマーまたはこのモノマーとその他のコモノマーとから得られるコポリマー;特許4697356号公報に記載された方法で得られるリン酸基を有する(メタ)アクリル重合体等が挙げられる。
なお、リン酸基を有する高分子分散剤は、アルカリ金属水酸化物やアルカリ土類金属水酸化物を反応させることで塩を形成させ、pHを調整することも可能である。
ホスホン酸基を有する高分子分散剤としては、例えば、ポリアルキレングリコールモノアルキルホスホン酸エステル、ポリアルキレングリコールモノアルキルエーテルモノアルキルホスホン酸エステル、パーフルオロアルキルポリオキシアルキレンアルキルホスホン酸エステル、パーフルオロアルキルスルホンアミドポリオキシアルキレンアルキルホスホン酸エステル、ポリエチレンホスホン酸;ビニルホスホン酸、(メタ)アクリロイルオキシエチルホスホン酸、(メタ)アクリロイルオキシプロピルホスホン酸、(メタ)アクリロイルオキシポリオキシアルキレングリコールホスホン酸のようなモノマーから得られるホモポリマーまたはこのモノマーとその他のコモノマーとから得られるコポリマー等が挙げられる。
なお、ホスホン酸基を有する高分子分散剤は、アルカリ金属水酸化物やアルカリ土類金属水酸化物を反応させることで塩を形成させ、pHを調整することも可能である。
ホスフィン酸基を有する高分子分散剤としては、例えば、ポリアルキレングリコールジアルキルホスフィン酸エステル、パーフルオロアルキルポリオキシアルキレンジアルキルホスフィン酸エステル、パーフルオロアルキルスルホンアミドポリオキシアルキレンジアルキルホスフィン酸エステル、ポリエチレンホスフィン酸;ビニルホスフィン酸、(メタ)アクリロイルオキシジアルキルホスフィン酸、(メタ)アクリロイルオキシポリオキシアルキレングリコールジアルキルホスフィン酸のようなモノマーから得られるホモポリマーまたはこのモノマーとその他のコモノマーとから得られるコポリマー等が挙げられる。 なお、ホスフィン酸基を有する高分子分散剤は、アルカリ金属水酸化物やアルカリ土類金属水酸化物を反応させることで塩を形成させ、pHを調整することも可能である。
チオール基を有する高分子分散剤としては、例えば、ポリビニルチオール、ポリアルキレングリコールエチレンチオール等が挙げられる。
チオエーテル基を有する高分子分散剤としては、例えば、特開2013−60637号公報に記載されたメルカプトプロピオン酸とグリシジル変性ポリアルキレングリコールとを反応させて得られるポリアルキレングリコールチオエーテル等が挙げられる。
スルホン酸基を有する高分子分散剤としては、例えば、ポリアルキレングリコールモノアルキルスルホン酸エステル、ポリアルキレングリコールモノアルキルエーテルモノアルキルスルホン酸エステル、パーフルオロアルキルポリオキシアルキレンアルキルスルホン酸エステル、パーフルオロアルキルスルホンアミドポリオキシアルキレンアルキルスルホン酸エステル、ポリエチレンスルホン酸;ビニルスルホン酸、(メタ)アクリロイルオキシアルキルスルホン酸、(メタ)アクリロイルオキシポリオキシアルキレングリコールスルホン酸、ポリスチレンスルホン酸のようなモノマーから得られるホモポリマーまたはこのモノマーとその他のコモノマーとから得られるコポリマー等が挙げられる。
なお、スルホン酸基を有する高分子分散剤は、アルカリ金属水酸化物やアルカリ土類金属水酸化物を反応させることで塩を形成させ、pHを調整することも可能である。
カルボン酸基を有する高分子分散剤としては、例えば、ポリアルキレングリコールカルボン酸、パーフルオロアルキルポリオキシアルキレンカルボン酸、ポリエチレンカルボン酸、ポリエステルモノカルボン酸、ポリエステルジカルボン酸、ウレタン変性ポリエステルモノカルボン酸、ウレタン変性ポリエステルジカルボン酸;ビニルカルボン酸、(メタ)アクリロイルオキシアルキルカルボン酸、(メタ)アクリロイルオキシポリオキシアルキレングリコールカルボン酸のようなモノマーから得られるホモポリマーまたはこのモノマーとその他のコモノマーとから得られるコポリマー等が挙げられる。
なお、カルボン酸基を有する高分子分散剤は、アルカリ金属水酸化物やアルカリ土類金属水酸化物を反応させることで塩を形成させ、pHを調整することも可能である。
エステル基を有する高分子分散剤は、前記カルボン酸基を有する高分子分散剤に、例えばモノアルキルアルコールを脱水縮合させることにより得ることができる。
ピロリドニル基を有する高分子分散剤としては、例えば、ポリビニルピロリドン等が挙げられる。
なお、特定の官能基を有する高分子分散剤は、合成品であっても市販品であってもよい。
市販品としては、例えば、ビックケミー社製のDISPERBYKシリーズに含まれるDISPERBYK−102、DISPERBYK−103、DISPERBYK−108、DISPERBYK−109、DISPERBYK−110、DISPERBYK−111、DISPERBYK−118、DISPERBYK−140、DISPERBYK−145、DISPERBYK−161、DISPERBYK−164、DISPERBYK−168、DISPERBYK−168、DISPERBYK−180、DISPERBYK−182、DISPERBYK−184、DISPERBYK−185、DISPERBYK−190、DISPERBYK−191、DISPERBYK−2000、DISPERBYK−2001、DISPERBYK−2008、DISPERBYK−2009、DISPERBYK−2010、DISPERBYK−2012、DISPERBYK−2013、DISPERBYK−2022、DISPERBYK−2025、DISPERBYK−2050、DISPERBYK−2060、DISPERBYK−9070、DISPERBYK−9077;エボニック社製のTEGO Dispersシリーズに含まれるTEGO Dispers 610、TEGO Dispers 630、TEGO Dispers 650、TEGO Dispers 651、TEGO Dispers 652、TEGO Dispers 655、TEGO Dispers 660C、TEGO Dispers 662C、TEGO Dispers 670、TEGO Dispers 685、TEGO Dispers 700、TEGO Dispers 710、TEGO Dispers 715W、TEGO Dispers 740W、TEGO Dispers 750W、TEGO Dispers 752W、TEGO Dispers 755W、TEGO Dispers 760W;BASF社製のEFKAシリーズに含まれるEFKA−44、EFKA−46、EFKA−47、EFKA−48、EFKA−4010、EFKA−4050、EFKA−4055、EFKA−4020、EFKA−4015、EFKA−4060、EFKA−4300、EFKA−4330、EFKA−4400、EFKA−4406、EFKA−4510、EFKA−4800;日本ルーブリゾール社製のSOLSPERSEシリーズに含まれるSOLSPERS−3000、SOLSPERS−9000、SOLSPERS−16000、SOLSPERS−17000、SOLSPERS−18000、SOLSPERS−13940、SOLSPERS−20000、SOLSPERS−24000、SOLSPERS−32550、SOLSPERS−71000;味の素ファインテクノ社製のアジスパーシリーズに含まれるアジスパー(AJISPUR)PB−821、アジスパーPB−822、アジスパーPB−823;楠本化成製のDISPARLONシリーズに含まれるDISPARLON DA325、DISPARLON DA375、DISPARLON DA1800、DISPARLON DA7301;共栄社化学社製のフローレンシリーズに含まれるフローレン(FLORENE)DOPA−17HF、フローレンDOPA−15BHF、フローレンDOPA−33、フローレンDOPA−44等が挙げられる。
なお、これら高分子分散剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
以上のような分散剤は、その分子のほぼ全体がナノ結晶に接触した状態で担持されていてもよいし、その分子の一部のみがナノ結晶に接触した状態で担持されていてもよい。いずれの状態であっても、分散剤は、ナノ結晶を安定的に分散媒に分散させる分散機能を好適に発揮する。
かかる観点から、分散剤の重量平均分子量(Mw)は、50,000以下であることが好ましく、100〜50,000程度であることがより好ましい。なお、低分子分散剤のうち重合体でない化合物の質量を表す場合には、「重量平均分子量」に代えて「分子量」を用いる。
前記下限値以上の重量平均分子量を有する分散剤は、ナノ結晶に対する担持能力に優れるため、インク中におけるナノ結晶の分散安定性を十分に確保することができる。一方、前記上限値以下の重量平均分子量を有する分散剤は、その単位重量あたりの官能基数が十分であり、結晶性が高くなり過ぎないため、インク中におけるナノ結晶の分散安定性を高めることができる。また、分散剤の重量平均分子量が高か過ぎないため、得られる発光層において電荷移動が阻害されることも防止または抑制することができる。
ナノ結晶に対する分散剤(特に、高分子分散剤)の量は、ナノ結晶100質量%に対して50質量%以下であることが好ましい。これにより、ナノ結晶に分散剤を担持させる際に、ナノ結晶の表面に不要な有機物が残留または析出し難い。このため、分散剤による層が電荷の移動を阻害する絶縁層となり難く、発光特性の悪化を防止することができる。
一方、ナノ結晶に対する分散剤の量は、ナノ結晶100質量%に対して1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。これにより、インク中におけるナノ結晶の十分な分散安定性を保持することができる。
<<電荷輸送材料>>
電荷輸送材料は、通常、発光層に注入された正孔および電子を輸送する機能を有する。
電荷輸送材料は、正孔および電子を輸送する機能を有するものであれば、特に限定されない。電荷輸送材料は、高分子電荷輸送材料と低分子電荷輸送材料とに分類される。
高分子電荷輸送材料としては、特に限定されないが、例えば、ポリ(9−ビニルカルバゾール)(PVK)のようなビニル重合体;ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン](poly−TPA)、ポリフルオレン(PF)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン(Poly−TPD)、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−コ−(4,4’−(N−(−sec−ブチルフェニル)ジフェニルアミン)](TFB)、ポリフェニレンビニレン(PPV)のような共役系化合物重合体、これらのモノマー単位を含む共重合体等が挙げられる。
低分子電荷輸送材料としては、特に限定されないが、例えば、4,4’−ビス(9H−カルバゾール−9−イル)ビフェニル(CBP)、9,9’−(p−tert−ブチルフェニル)−3,3−ビスカルバゾール、1,3−ジカルバゾリルベンゼン(mCP)、4,4’−ビス(9−カルバゾリル)−2,2’−ジメチルビフェニル(CDBP)、N,N’−ジカルバゾリル−1,4−ジメチルベンゼン(DCB)、5,11−ジフェニル−5,11−ジハイドロインドロ[3,2−b]カルバゾールのようなカルバゾール誘導体;ビス(2−メチル−8−キノリノレート)−4−(フェニルフェノラト)アルミニウム(BAlq)のようなアルミニウム錯体、2,7−ビス(ジフェニルホスフィンオキシド)−9,9−ジメチルフルオレン(P06)のようなホスフィンオキシド誘導体;3,5−ビス(9−カルバゾリル)テトラフェニルシラン(SimCP)、1,3−ビス(トリフェニルシリル)ベンゼン(UGH3)のようなシラン誘導体;4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α―NPD)のようなトリフェニルアミン誘導体、9−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−9H−カルバゾール、9−(2,6−ジフェニルピリミジン−4−イル)−9H−カルバゾールのような複素環誘導体、これらの化合物の誘導体等が挙げられる。
<<界面活性剤>>
界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、炭化水素系界面活性剤等のうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、電荷をトラップし難いことから、シリコーン系界面活性剤および/または炭化水素系界面活性剤が好ましい。
シリコーン系界面活性剤および炭化水素系界面活性剤としては、低分子型または高分子型の界面活性剤を用いることができる。
これらの具体例としては、例えば、ビックケミー社製のBYKシリーズ、日信化学工業株式会社製のサーフィノール等が挙げられる。これらの中でも、インクを塗布した際に平滑性の高い塗膜が得られることから、有機変性シロキサンからなるシリコーン系界面活性剤を好適に用いることができる。
<<分散媒>>
このような分散剤を担持したナノ結晶からなる粒子が分散媒に分散されている。
分散媒としては、特に限定されないが、例えば、芳香族炭化水素化合物、芳香族エステル化合物、芳香族エーテル化合物、芳香族ケトン化合物、脂肪族炭化水素化合物、脂肪族エステル化合物、脂肪族エーテル化合物、脂肪族ケトン化合物、アルコール化合物、アミド化合物、他の化合物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
芳香族炭化水素化合物としては、トルエン、キシレン、エチルベンゼン、クメン、メシチレン、tert−ブチルベンゼン、インダン、ジエチルベンゼン、ペンチルベンゼン、1、2、3、4−テトラヒドロナフタレン、ナフタレン、ヘキシルベンゼン、ヘプチルベンゼン、シクロヘキシルベンゼン、1−メチルナフタレン、ビフェニル、2−エチルナフタレン、1−エチルナフタレン、オクチルベンゼン、ジフェニルメタン、1,4−ジメチルナフタレン、ノニルベンゼン、イソプロピルビフェニル、3−エチルビフェニル、ドデシルベンゼン等が挙げられる。
芳香族エステル化合物としては、酢酸フェニル、安息香酸メチル、安息香酸エチル、プロピオン酸フェニル、安息香酸イソプロピル、4−メチル安息香酸メチル、安息香酸プロピル、安息香酸ブチル、安息香酸イソペンチル、エチル p−アニセート、フタル酸ジメチル等が挙げられる。
芳香族エーテル化合物としては、ジメトキシベンゼン、メトキシトルエン、エチルフェニルエーテル、ジベンジルエーテル、4−メチルアニソール、2,6−ジメチルアニソール、エチルフェニルエーテル、プロピルフェニルエーテル、2,5−ジメチルアニソール、3,5−ジメチルアニソール、4−エチルアニソール、2,3−ジメチルアニソール、ブチルフェニルエーテル、p−ジメトキシベンゼン、p−プロピルアニソール、m−ジメトキシベンゼン、2−メトキシ安息香酸メチル、1,3−ジプロポキシベンゼン、ジフェニルエーテル、1−メトキシナフタレン、3−フェノキシトルエン、2−エトキシナフタレン、1−エトキシナフタレン等が挙げられる。
芳香族ケトン化合物としては、アセトフェノン、プロピオフェノン、4’−メチルアセトフェノン、4’−エチルアセトフェノン、ブチルフェニルケトン等が挙げられる。
脂肪族炭化水素化合物としては、ペンタン、ヘキサン、オクタン、シクロヘキサン等が挙げられる。
脂肪族エステル化合物としては、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸ヘキシル、乳酸ブチル、乳酸イソアミル、アミルバレラート、エチルレブリレート、γ−バレロラクトン、オクタン酸エチル、γ−ヘキサラクトン、イソアミルヘキサネート、アミルヘキサネート、酢酸ノニル、デカン酸メチル、グルタル酸ジエチル、γ−ヘプタラクトン、ε−カプロラクトン、オクタラクトン、炭酸プロピレン、γ−ノナノラクトン、ヘキサン酸ヘキシル、アジピン酸ジイソプロピル、δ−ノナノラクトン、グリセロール三酢酸、δ−デカノラクトン、アジピン酸ジプロピル、δ−ウンデカラクトン、プロピレングリコール−1−モノメチルエーテルアセテート、プロピレングリコールジアセテート、ジエチレングリコールジアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,3−ブタンジオールジアセテート、1,4−ブタンジオールジアセテート、ジエチレングリコールモノブチルエーテルアセテート等が挙げられる。
脂肪族エーテル化合物としては、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、ジヘキシルエーテル、ジエチレングリコールジブチルエーテル、ジヘプチルエーテル、ジオクチルエーテル等が挙げられる。
脂肪族ケトン化合物としては、ジイソブチルケトン、シクロヘプタノン、イソホロン、6−ウンデカノン等が挙げられる。
アルコール化合物としては、メタノール、エタノール、イソプロピルアルコール、1−ヘプタノール、2−エチル−1−ヘキサノール、プロピレングリコ−ル、エチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチル 3−ヒドロキシヘキサネート、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコール、シクロヘキサノール、2−ブトキシエタノール等が挙げられる。
アミド化合物としてはN,N−ジメチルアセトアミド、2−ピロリドン、N−メチルピロリドン、N,N−ジメチルアセトアミド等が挙げられる。
他の化合物としては、水、ジメチルスルホキシド、アセトン、クロロホルム、塩化メチレン等が挙げられる。
以上のような分散媒の25℃における粘度は、1〜20mPa・s程度であることが好ましく、1.5〜15mPa・s程度であることがより好ましく、2〜10mPa・s程度であることがさらに好ましい。分散媒の常温下における粘度が前記範囲であれば、インクを液滴吐出法により吐出する場合には、液滴吐出ヘッドのノズル孔から吐出された液滴が主滴と小液滴とに分離される現象(サテライト現象)の発生を防止または抑制することができる。このため、液滴の被着体に対する着弾精度を向上させることができる。
本発明のインクにおいて、ナノ結晶を含む粒子が酸素や水等により失活して、安定的に機能しない可能性がある場合、当該インクを調製する際に、溶存気体や水分を出来るだけ除去した分散媒を用いたり、インクを調製した後に、インク中から溶存酸素や水分を出来るだけ除去する後処理を行うことが好ましい。この後処理としては、例えば、脱気処理、不活性ガスを飽和または過飽和させる処理、加熱処理、乾燥剤を通過させて行う脱水処理等が挙げられる。
なお、インク中の溶存酸素や水分は、200ppm以下にすることが好ましく、100ppm以下にすることがより好ましく、10ppm以下にすることがさらに好ましい。
インク中に含まれる粒子の量は、50質量%以下であることが好ましく、0.01〜30質量%程度であることがより好ましく、0.1〜10質量%程度であることがさらに好ましい。インク中に含まれる粒子の量を前記範囲に設定することにより、インクを液滴吐出法により吐出する場合には、その吐出安定性をより向上させることができる。また、粒子(ナノ結晶)同士が凝集し難くなり、得られる発光層の発光効率を高めることもできる。
ここで、粒子の質量は、ナノ結晶の質量とこのナノ結晶に担持された分散剤の質量との合計値を指す。
なお、本明細書中において、「インク中に含まれる粒子の量」とは、インクが粒子と分散媒とから構成される場合、粒子と分散媒との合計を100質量%としたときの、粒子の質量%を指し、インクが粒子、粒子以外の不揮発成分および分散媒で構成される場合、粒子と不揮発成分と分散媒との合計を100質量%としたときの、粒子の質量%を指す。
本発明では、大気圧(1気圧)下における沸点(以下、単に「沸点」とも言う。)が200℃以上の分散剤を用いる。このような温度範囲の沸点を有する分散媒は蒸発(気化)し難い。このため、かかる分散媒を含有するインクを用いることにより、インクを液滴吐出法により吐出する場合には、インクが液滴吐出ヘッドのノズル孔付近で乾燥することが好適に防止され、ノズル孔が目詰まりしない。その結果、インクの吐出安定性が長期にわたって維持され、発光層の形成効率を向上させることができる。
分散媒の沸点は、200℃以上であればよいが、200〜340℃程度であることが好ましく、210〜320℃程度であることがより好ましい。このような温度範囲の沸点を有する分散媒を用いることにより、前記効果をより向上させることができる。
特に、極性基を有する極性化合物を含む分散媒を用いることが好ましい。極性化合物は、極性基においてナノ結晶への高い吸着力を示す。このため、極性化合物は、ナノ結晶の表面に吸着(溶媒和)し、インク中でのナノ結晶の分散性を高める機能、すなわち、一種の分散剤としての機能を発揮する。したがって、極性化合物を用いることにより、インクの保存安定性を向上させることができる。
分散媒中に含まれる極性化合物の量は、20〜80質量%程度であることが好ましく、30〜70質量%程度であることがより好ましい。これにより、インク中に含まれる極性化合物の量を適度に設定することができる。このため、発光層を形成する際に塗膜を乾燥すると、極性化合物が発光層中から十分に除去される。このため、発光層(発光素子)の発光寿命を向上させることができる。特に、インク中に含まれる粒子の量との関係を適切に調整することで、その効果がより顕著となる。
極性化合物が有する極性基としては、例えば、水酸基、カルボニル基、チオール基、アミノ基、ニトロ基、シアノ基等が挙げられる。これらの中でも、極性基は、水酸基およびカルボニル基からなる群より選択される少なくとも1種であることが好ましい。これらの極性基は、ナノ結晶に対する親和性が特に高いことから好ましい。
したがって、極性化合物は、安息香酸メチル、安息香酸エチル、プロピオン酸フェニル、安息香酸イソプロピル、4−メチル安息香酸メチル、安息香酸プロピル、安息香酸ブチル、安息香酸イソペンチル、エチル p−アニセート、フタル酸ジメチルのような芳香族エステル化合物;アセトフェノン、プロピオフェノン、4’−メチルアセトフェノン、4’−エチルアセトフェノン、ブチルフェニルケトンのような芳香族ケトン化合物;酢酸ヘキシル、乳酸イソアミル、アミルバレラート、エチルレブリレート、γ−バレロラクトン、オクタン酸エチル、γ−ヘキサラクトン、イソアミルヘキサネート、アミルヘキサネート、酢酸ノニル、デカン酸メチル、グルタル酸ジエチル、γ−ヘプタラクトン、ε−カプロラクトン、オクタラクトン、炭酸プロピレン、γ−ノナノラクトン、ヘキサン酸ヘキシル、アジピン酸ジイソプロピル、δ−ノナノラクトン、グリセロール三酢酸、δ−デカノラクトン、δ−ウンデカラクトン、ジエチレングリコールモノエチルエーテルアセテート、1,3−ブタンジオールジアセテート、1,4−ブタンジオールジアセテート、ジエチレングリコールモノブチルエーテルアセテートのような脂肪族エステル化合物;イソホロン、6−ウンデカノンのような脂肪族ケトン化合物;ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、エチル 3−ヒドロキシヘキサネート、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールのようなアルコール化合物からなる群より選択される少なくとも1種の化合物であることが好ましい。これらの極性化合物を用いることにより、発光層(発光素子)の発光寿命をさらに向上させることができる。
なお、ナノ結晶に担持させる分散剤の重量平均分子量は、100〜10,000程度であることが好ましく、250〜5,000程度であることが好ましい。このような重量平均分子量の分散剤は、ナノ結晶から脱離し易いため、一般に、分散剤として使用可能な化合物の種類が限られる。極性化合物を含む分散媒を用いれば、仮に、インク中でナノ結晶から分散剤が脱離した場合でも、それを補完するように極性化合物がナノ結晶に吸着して、分散剤様に振る舞う。したがって、インクの保存安定性を確保することができる。一方で、発光層を形成する際には、塗膜中から確実に分散剤が除去されるため、発光層(発光素子)の発光寿命を延長させることができる。
<発光素子>
本発明の発光素子は、陽極および陰極(一対の電極)と、これらの間に設けられ、本発明のインクの乾燥物で構成された発光層と、発光層と陽極および陰極の少なくとも一方の電極との間に設けられた電荷輸送層とを備えている。
なお、電荷輸送層は、正孔注入層、正孔輸送層、電子輸送層および電子注入層からなる群より選択される少なくとも1層を含むことが好ましい。また、本発明の発光素子は、さらに、封止部材等を備えてもよい。
図1は、本発明の発光素子の一実施形態を示す断面図である。
なお、図1では、便宜上、各部の寸法およびそれらの比率を誇張して示し、実際とは異なる場合がある。また、以下に示す材料、寸法等は一例であって、本発明は、それらに限定されず、その要旨を変更しない範囲で適宜変更することが可能である。
以下では、説明の都合上、図1の上側を「上側」または「上方」と、上側を「下側」または「下方」と言う。また、図1では、図面が煩雑になることを避けるため、断面を示すハッチングの記載を省略している。
図1に示す発光素子1は、陽極2と、陰極3と、陽極2と陰極3との間に、陽極2側から順次積層された正孔注入層4、正孔輸送層5、発光層6、電子輸送層7および電子注入層8とを有している。
以下、各層について順次説明する。
[陽極2]
陽極2は、外部電源から発光層6に向かって正孔を供給する機能を有する。
陽極2の構成材料(陽極材料)としては、特に限定されないが、例えば、金(Au)のような金属、ヨウ化銅(CuI)のようなハロゲン化金属、インジウムスズ酸化物(ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)のような金属酸化物等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
陽極2の厚さは、特に制限されないが、10〜1,000nm程度であることが好ましく、10〜200nm程度であることがより好ましい。
陽極2は、例えば、真空蒸着法やスパッタリング法のような乾式成膜法により形成することができる。この際、フォトリソグラフィー法やマスクを用いた方法により、所定のパターンを有する陽極2を形成してもよい。
[陰極3]
陰極3は、外部電源から発光層6に向かって電子を供給する機能を有する。
陰極3の構成材料(陰極材料)としては、特に限定されないが、例えば、リチウム、ナトリウム、マグネシウム、アルミニウム、銀、ナトリウム−カリウム合金、マグネシウム/アルミニウム混合物、マグネシウム/銀混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、希土類金属等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
陰極3の厚さは、特に限定されないが、0.1〜1,000nm程度であることが好ましく、1〜200nm程度であることがより好ましい。
陰極3は、例えば、蒸着法やスパッタリング法のような乾式成膜法により形成することができる。
[正孔注入層4]
正孔注入層4は、陽極2から供給された正孔を受け取り、正孔輸送層5に注入する機能を有する。なお、正孔注入層4は、必要に応じて設けるようにすればよく、省略することもできる。
正孔注入層4の構成材料(正孔注入材料)としては、特に限定されないが、例えば、銅フタロシアニンのようなフタロシアニン化合物;4,4’,4’’−トリス[フェニル(m−トリル)アミノ]トリフェニルアミンのようなトリフェニルアミン誘導体;1,4,5,8,9,12−ヘキサアザトリフェニレンヘキサカルボニトリル、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノ−キノジメタンのようなシアノ化合物;酸化バナジウム、酸化モリブデンのような金属酸化物;アモルファスカーボン;ポリアニリン(エメラルディン)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)(PEDOT−PSS)、ポリピロールのような高分子等が挙げられる。
これらの中でも、正孔注入材料としては、高分子であることが好ましく、PEDOT−PSSであることがより好ましい。
また、上述の正孔注入材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
正孔注入層4の厚さは、特に限定されないが、0.1〜500mm程度であることが好ましく、1〜300nm程度であることがより好ましく、2〜200nm程度であることがさらに好ましい。
正孔注入層4は、単層構成であっても、2層以上が積層された積層構成であってもよい。
このような正孔注入層4は、湿式成膜法または乾式成膜法により形成することができる。
正孔注入層4を湿式成膜法で形成する場合には、通常、上述の正孔注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
一方、正孔注入層4を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。
[正孔輸送層5]
正孔輸送層5は、正孔注入層4から正孔を受け取り、発光層6まで効率的に輸送する機能を有する。また、正孔輸送層4は、電子の輸送を防止する機能を有していてもよい。なお、正孔輸送層5は、必要に応じて設けるようにすればよく、省略することもできる。
正孔輸送層5の構成材料(正孔輸送材料)としては、特に限定されないが、例えば、TPD(N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−1,1’−ビフェニル−4,4’ジアミン)、α−NPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル)、m−MTDATA(4、4’,4’’−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)のような低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン](poly−TPA)、ポリフルオレン(PF)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン(Poly−TPD)、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−コー(4,4’−(N−(sec−ブチルフェニル)ジフェニルアミン))(TFB)、ポリフェニレンビニレン(PPV)のような共役系化合物重合体;およびこれらのモノマー単位を含む共重合体等が挙げられる。
これらの中でも、正孔輸送材料としては、トリフェニルアミン誘導体、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることが好ましく、置換基が導入されたトリフェニルアミン誘導体を重合することにより得られた高分子化合物であることがより好ましい。
また、上述の正孔輸送材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
正孔輸送層5の厚さは、特に限定されないが、1〜500nm程度であることが好ましく、5〜300nm程度であることがより好ましく、10〜200nm程度であることがさらに好ましい。
正孔輸送層5は、単層構成であっても、2層以上が積層された積層構成であってもよい。
このような正孔輸送層5は、湿式成膜法または乾式成膜法により形成することができる。
正孔輸送層5を湿式成膜法で形成する場合には、通常、上述の正孔輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
一方、正孔輸送層5を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等を好適に用いることができる。
[電子注入層8]
電子注入層8は、陰極3から供給された電子を受け取り、電子輸送層7に注入する機能を有する。なお、電子注入層8は、必要に応じて設けるようにすればよく、省略することもできる。
電子注入層8の構成材料(電子注入材料)としては、特に制限されないが、例えば、LiO、LiO、NaS、NaSe、NaOのようなアルカリ金属カルコゲナイド;CaO、BaO、SrO、BeO、BaS、MgO、CaSeのようなアルカリ土類金属カルコゲナイド;CsF、LiF、NaF、KF、LiCl、KCl、NaClのようなアルカリ金属ハライド;8−ヒドロキシキノリノラトリチウム(Liq)のようなアルカリ金属塩;CaF、BaF、SrF、MgF、BeFのようなアルカリ土類金属ハライド等が挙げられる。
これらの中でも、アルカリ金属カルコゲナイド、アルカリ土類金属ハライド、アルカリ金属塩であることが好ましい。
また、上述の電子注入材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
電子注入層8の厚さは、特に限定されないが、0.1〜100nm程度であることが好ましく、0.2〜50nm程度であることがより好ましく、0.5〜10nm程度であることがさらに好ましい。
電子注入層8は、単層構成であっても、2層以上が積層された積層構成であってもよい。
このような電子注入層8は、湿式成膜法または乾式成膜法により形成することができる。
電子注入層8を湿式成膜法で形成する場合には、通常、上述の電子注入材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
一方、電子注入層8を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用されうる。
[電子輸送層7]
電子輸送層7は、電子注入層8から電子を受け取り、発光層6まで効率的に輸送する機能を有する。また、電子輸送層7は、正孔の輸送を防止する機能を有していてもよい。なお、電子輸送層7は、必要に応じて設けるようにすればよく、省略することもできる。
電子輸送層7の構成材料(電子輸送材料)としては、特に制限されないが、例えば、トリス(8−キノリラート)アルミニウム(Alq3)、トリス(4−メチル−8−キノリノラート)アルミニウム(Almq3)、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム(BeBq2)、ビス(2−メチル−8−キノリノラート)(p−フェニルフェノラート)アルミニウム(BAlq)、ビス(8−キノリノラート)亜鉛(Znq)のようなキノリン骨格またはベンゾキノリン骨格を有する金属錯体;ビス[2−(2’−ヒドロキシフェニル)ベンズオキサゾラート]亜鉛(Zn(BOX)2)のようなベンズオキサゾリン骨格を有する金属錯体;ビス[2−(2’−ヒドロキシフェニル)ベンゾチアゾラート]亜鉛(Zn(BTZ)2)のようなベンゾチアゾリン骨格を有する金属錯体;2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]カルバゾール(CO11)のようなトリまたはジアゾール誘導体;2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(mDBTBIm−II)のようなイミダゾール誘導体;キノリン誘導体;ペリレン誘導体;4,7−ジフェニル−1,10−フェナントロリン(BPhen)のようなピリジン誘導体;ピリミジン誘導体;トリアジン誘導体;キノキサリン誘導体;ジフェニルキノン誘導体;ニトロ置換フルオレン誘導体;酸化亜鉛(ZnO)、酸化チタン(TiO)のような金属酸化物等が挙げられる。
これらの中でも、電子輸送材料としては、イミダゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、金属酸化物(無機酸化物)であることが好ましい。
また、上述の電子輸送材料は、単独で用いても、2種以上を組み合わせて用いてもよい。
電子輸送層7の厚さは、特に限定されないが、5〜500nm程度であることが好ましく、5〜200nm程度であることがより好ましい。
電子輸送層7は、単層であっても、2以上が積層されたものであってもよい。
このような電子輸送層7は、湿式成膜法または乾式成膜法により形成することができる。
電子輸送層7を湿式成膜法で形成する場合には、通常、上述の電子輸送材料を含有するインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット法(液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
一方、電子輸送層7を乾式成膜法で形成する場合には、真空蒸着法、スパッタリング法等が適用されうる。
[発光層6]
発光層6は、発光層6に注入された正孔および電子の再結合により生じるエネルギーを利用して発光を生じさせる機能を有する。
発光層6は、本発明のインクの乾燥物で構成される。したがって、発光層6中には、ナノ結晶が均一に分散して存在するため、発光層6は、優れた発光効率を有する。
発光層6の厚さは、特に限定されないが、1〜100nm程度であることが好ましく、1〜50nm程度であることがより好ましい。
発光層8は、本発明のインクを各種塗布法により塗布し、得られた塗膜を乾燥する。塗布法としては、特に限定されないが、例えば、インクジェット印刷法(ピエゾ方式またはサーマル方式の液滴吐出法)、スピンコート法、キャスト法、LB法、凸版印刷法、グラビア印刷法、スクリーン印刷法、ノズルプリント印刷法等が挙げられる。
ここで、ノズルプリント印刷法とは、インクをノズル孔から液柱としてストライプ状に塗布する方法である。
本発明のインクは、インクジェット印刷法により好適に塗布することができる。特に、本発明のインクは、ピエゾ方式のインクジェット印刷法により塗布することが好ましい。これにより、インクを吐出する際の熱負荷を小さくすることができ、粒子(ナノ結晶)自体に不具合が発生し難い。したがって、本発明のインクの塗布に用いる好適な装置は、ピエゾ方式のインクジェットヘッドを有するインクジェットプリンターである。
なお、発光素子1は、さらに、例えば、正孔注入層4、正孔輸送層5および発光層6を区画するバンク(隔壁)を有していてもよい。
バンクの高さは、特に限定されないが、0.1〜5μm程度であることが好ましく、0.2〜4μm程度であることがより好ましく、0.2〜3μm程度であることがさらに好ましい。
バンクの開口の幅は、10〜200μm程度であることが好ましく、30〜200μm程度であることがより好ましく、50〜100μm程度であることがさらに好ましい。
バンクの開口の長さは、10〜400μm程度であることが好ましく、20〜200μm程度であることがより好ましく、50〜200μm程度であることがさらに好ましい。
また、バンクの傾斜角度は、10〜100°程度であることが好ましく、10〜90°程度であることがより好ましく、10〜80°程度であることがさらに好ましい。
<発光素子の製造方法>
発光素子の製造方法は、前述したようなインクを支持体上に供給して塗膜を形成し、塗膜を乾燥することにより発光層を形成する工程(以下、「発光層形成工程」とも称する)を有している。
支持体は、図1に示す構成では、正孔輸送層5または電子輸送層7であるが、製造目的の発光素子によって異なる。
例えば、陽極、正孔輸送層、発光層および陰極で構成される発光素子を製造する場合には、支持体は、正孔輸送層または陰極である。また、陽極、正孔注入層、発光層、電子注入層および陰極で構成される発光素子を製造する場合には、支持体は、正孔注入層または電子注入層である。
このように、支持体としては、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層または陰極であり得る。なお、支持体は、好ましくは陽極、正孔注入層または正孔輸送層であり、より好ましくは正孔注入層または正孔輸送層であり、さらに好ましくは正孔輸送層である。
発光層形成工程では、本発明の発光層の形成方法に従って、発光層6が形成される。
この発光層の形成方法は、[1]前述したようなインクを用意する第1の工程と、[2]支持体上にインクの塗膜を形成する第2の工程と、[3]第1の圧力で塗膜から分散媒を除去する第3の工程と、[4]第2の圧力で塗膜から分散媒をさらに除去する第4の工程とを有している。
[1] 第1の工程
まず、分散剤を担持したナノ結晶からなる粒子を分散媒に分散させることにより、インクを調製する。なお、かかる構成の市販のインクを購入するようにしてもよい。
[2] 第2の工程
この第2の工程に先立って、支持体を用意する。本実施形態では、前述したような方法で、陽極2、正孔注入層4および正孔輸送層5(支持体)を順に、または陰極3、電子注入層8および電子輸送層7(支持体)を順に積層する。
なお、支持体には、前述したようなバンクを形成してもよい。バンクを形成することにより、支持体上の所望の箇所にのみ発光層6を形成することができる。
次に、前述したような各種塗布法により、インクを支持体(正孔輸送層5または電子輸送層7)に供給して、支持体上に塗膜を形成する。
例えば、液滴吐出法では、インクを液滴吐出ヘッドのノズル孔から間欠的に支持体上に所定のパターンで吐出する。液滴吐出法によれば、高い自由度で描画パターニングを行うことができる。中でも、ピエゾ方式の液滴吐出法によれば、分散媒の選択性を高めることができるとともに、インクに対する熱負荷を低減することができる。
この際、インクの吐出量は、特に限定されないが、1〜50pL/回であることが好ましく、1〜30pL/回であることがより好ましく、1〜20pL/回であることがさらに好ましい。
また、ノズル孔の開口径は、5〜50μm程度であることが好ましく、10〜30μm程度であることがより好ましい。これにより、ノズル孔の目詰まりを防止しつつ、吐出精度を高めることができる。
塗膜を形成する際の温度は、特に限定されないが、10〜50℃程度であることが好ましく、15〜40℃程度であることがより好ましく、15〜30℃程度であることがさらに好ましい。かかる温度で液滴を吐出するようにすれば、インク中に含まれる各種成分((ナノ結晶、分散剤、電荷輸送材料等)の結晶化を抑制することができる。
また、塗膜を形成する際の相対湿度も、特に限定されないが、0.01ppm〜80%程度であることが好ましく、0.05ppm〜60%程度であることがより好ましく、0.1ppm〜15%程度であることがさらに好ましく、1ppm〜1%程度であることが特に好ましく、5〜100ppm程度であることが最も好ましい。
相対湿度が前記下限値以上であると、塗膜を形成する際の条件の制御が容易となることから好ましい。一方、相対湿度が前記上限値以下であると、得られる発光層6に悪影響を及ぼし得る塗膜に吸着する水分量を低減することができることから好ましい。
[3] 第3の工程(第1の乾燥工程)
次に、塗膜が形成された支持体をチャンバ(図示せず)内に収容し、チャンバ内を1〜500Paの第1の圧力に減圧するとともに、この第1の圧力に2分間以上保持して、塗膜から分散媒を除去(塗膜を乾燥)する。
第1の圧力は、穏和な圧力であるので、塗膜の乾燥温度を調整することにより、塗膜から緩徐に分散媒を除去することができる。このため、得られる発光層6の平滑性を維持することができる。平滑性の高い発光層6中では、粒子(ナノ結晶)が均一かつ緻密に存在する。このため、発光層(発光素子)の発光特性(低電圧駆動、長い輝度半減寿命)を向上させることができる。
なお、第1の圧力は、1〜500Pa程度であればよいが、1〜350Pa程度であることが好ましく、1〜200Pa程度であることがより好ましい。
また、本工程[3]における減圧レートは、1.7×10〜1.7×10Pa程度であることが好ましく、2×10〜1.5×10Pa程度であることがより好ましい。これにより、塗膜をより緩徐に乾燥することができる。
特に、本発明では、チャンバ内を第1の圧力に維持する時間を、2分間以上、好ましくは3〜30分間程度、より好ましくは5〜20分間程度に設定する。このように、十分な時間をかければ、塗膜の乾燥温度が低くとも、塗膜を緩徐かつ確実に乾燥すること、すなわち分散媒を除去することができる。また、塗膜を緩徐に乾燥すれば、発光層6の平滑性をより向上させることができる。
第1の圧力に保持する際の温度(乾燥温度)は、特に限定されないが、室温(25℃)〜60℃程度であることが好ましく、30〜50℃程度であることがより好ましい。このような乾燥温度に設定することにより、温和な第1の圧力による効果と相俟って、塗膜をより緩徐に乾燥することができる。
なお、本工程[3]は、1〜500Paの範囲の所定の第1の圧力に減圧した後、一定の第1の圧力で2分間以上保持するようにしてもよいし、1〜500Paの範囲で第1の圧力を低下させつつ2分間以上保持するようにしてもよい。
[4]第4の工程(第2の乾燥工程)
その後、チャンバ内を第1の圧力より低い第2の圧力に減圧するとともに。この第2の圧力に所定の時間保持して、塗膜から分散媒をさらに除去する。これにより、塗膜中に残存する分散媒をより確実に除去することができる。
第2の圧力は、第1の圧力より低ければよいが、5×10−2Pa以下であることが好ましく、1×10−3〜8×10−3Pa以下であることがより好ましい。
また、所定の時間(乾燥時間)も、特に限定されないが、2〜30分間程度であることが好ましく、3〜20分間程度であることがより好ましい。
このような条件で第2の乾燥工程を行うことにより、発光層6中に残存する分散媒の量を極めて少なくすることができる。
第2の圧力に保持する際の温度(乾燥温度)は、特に限定されないが、室温(25℃)〜150℃程度であることが好ましく、30〜100℃程度であることがより好ましい。このような乾燥温度に設定することにより、第1の圧力より低い第2の圧力による効果と相俟って、塗膜をより確実に乾燥することができる。
本工程[4]も前記工程[3]と同様に、一定の第2の圧力で所定の時間保持するようにしてもよいし、特定の温度範囲で第2の圧力を低下させつつ所定の時間保持するようにしてもよい。
第1の乾燥工程および第2の乾燥工程を、以上のような乾燥条件で行うことにより、得られる発光層6中において粒子(ナノ結晶)を均一かつ緻密に分布させることができる。結果として、発光素子の低電圧駆動を実現することができる。また、分散媒のみならず、分散剤も確実に塗膜中から除去され、得られる発光層6は、実質的にナノ結晶のみから構成されるようになる。かかる発光層6は、その発光寿命を向上させることができる。
以上、本発明の発光層の形成方法および発光素子の製造方法について説明したが、本発明は、前述した実施形態の構成に限定されるものではない。
例えば、本発明の発光層の形成方法および発光素子の製造方法には、それぞれ任意の目的の1つ以上の工程が追加されてもよい。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
1.粒子の取出し
粒子を含有するトルエン溶液(5mg/mL、Aldrich社製;製品番号776785−5ML)に、ヘキサンを加え、遠心分離した後、粒子を含む沈殿物を濾取した。なお、粒子は、ZnSのシェルとInPのコアとを備えるナノ結晶と、それに担持されたオレイルアミンとからなる。
なお、沈殿物から複数のサンプルを取り出し、各サンプルを熱分解質量計で燃焼させ、その際の重量減少量を求めた。その結果、オレイルアミンの担持量は、ナノ結晶100質量%に対して10〜30質量%程度であった。
2.インクの調製
1.0質量%になるように、得られた粒子を、δ−デカノラクトン(沸点267℃)に分散させることにより、インクを調製した。
3.発光素子の製造
(実施例1)
まず、ITOがストライプ状にパターニングされたガラス基板(40mm×70mm)上に、フッ素界面活性剤を添加したポジ型フォトレジストをスピンコートした。その後、ポジ型フォトレジストに対して、フォトリソグラフィーによるパターニングにより、縦300μm、横100μm(縦ピッチ350μm、横ピッチ150μm)のピクセルを区画するバンクを形成した。これにより、バンク付き支持体を得た。
なお、バンクの厚さを光干渉表面形状計測装置(株式会社菱化システム製)を用いて測定し、厚さ2.0μmのバンクが形成されていることを確認した。
次に、インクジェットプリンター(DMP2831、カートリッジボックスDMC−11610、富士フイルム株式会社製)を用いて、バンク付き支持体のピクセル内に、45nmの正孔注入層と、30nmの正孔輸送層と、30nmの発光層とを順次を形成した。
なお、正孔注入層は、PEDOT/PSS(CLEVIOUS P JET)を、正孔輸送層は、1.0質量%のTFBのテトラリン溶液を、発光層は、上記で得られたインクをそれぞれ用いて形成した。
なお、発光層は、次のように、第1の乾燥工程および第2の乾燥工程を経て形成した。
まず、インクを用いて、正孔輸送層上に塗膜を形成した。
この塗膜が形成されたバンク付き支持体をチャンバ内に収容し、チャンバ内を500Pa(第1の圧力)に減圧した。なお、チャンバ内を減圧する際の減圧レートを1×10Pa/secとした。
その後、チャンバ内を室温(25℃)、500Paにて5分間保持した。これにより、塗膜からδ−デカノラクトンを除去した。
次いで、チャンバ内を8×10−3Pa(第2の圧力)に減圧した。なお、チャンバ内を減圧する際の減圧レートを1×10Pa/secとした。
その後、チャンバ内を40℃、8×10−3Paにて10分間保持した。これにより、塗膜からδ−デカノラクトンをさらに除去した。
次に、発光層まで形成された支持体を真空蒸着機に搬送し、40nmの電子輸送層と、0.5nmの電子注入層と、100nmの陰極とを蒸着により順次形成した。
なお、電子輸送層は、TPBIを、電子注入層は、フッ化リチウムを、陰極は、アルミニウムをそれぞれ用いて形成した。
さらに、陰極まで形成された支持体をグローブボックスに搬送し、エポキシ樹脂を塗布した封止ガラスを支持体に貼りあわせた。これにより、発光素子を製造した。
(実施例2〜実施例20、比較例1〜比較例3)
第1の乾燥工程および第2の乾燥工程の条件(圧力、保持時間)を表1〜表4に示すように変更したこと以外は、前記実施例1と同様にして、発光素子を製造した。
(比較例4)
第2の乾燥工程を省略したこと以外は、前記実施例1と同様にして、発光素子を製造した。
4.測定
4−1.駆動電圧の評価
各実施例および各比較例で得られた発光素子に電流を印加し、この際の駆動電圧を測定した。比較例1で得られた発光素子の駆動電圧を100%とし、比較例1以外で得られた発光素子の駆動電圧を相対値として求めた。なお、数値が小さいほど良好な結果であり、低電圧駆動が可能であることを示す。
4−2.発光寿命の評価
各実施例および各比較例で得られた発光素子に、フォトダイオード式寿命測定装置(システム技研株式会社製)を用いて、初期輝度が100cd/mとなるように電流を印加し、連続駆動させた。初期輝度が半減するまでの時間(輝度半減寿命)を測定し、比較例1で得られた発光素子の輝度半減寿命を100%とし、比較例1以外で得られた発光素子の輝度半減寿命を相対値として求めた。なお、数値が大きいほど良好な結果であり、耐久性に優れることを示す。
これらの評価結果を表1〜表4に示す。
Figure 0006753538
表1に示すように、各実施例で得られた発光素子は、駆動電圧を低下させ、輝度半減寿命を向上させることができた。これは、第1の乾燥工程の第1の圧力を1〜500Paに設定することで、塗膜中から分散媒が緩徐かつ十分に除去されることで、発光層が平滑性を保持することができ、その結果、発光層中において粒子(ナノ結晶)が均一かつ緻密に分布するためであると考えられる。
一方、比較例2のように、第1の乾燥工程の第1の圧力を1Pa未満に設定すると、発光素子の駆動電圧を低下させ、輝度半減寿命を向上させることができなかった。
Figure 0006753538
表2に示すように、第1の乾燥工程において第1の圧力に保持する時間を長くすることにより、発光素子の駆動電圧をより低減させ、輝度半減寿命をより向上させることができた。
一方、比較例3で得られた発光素子では、第1の乾燥工程が短過ぎ、第2の乾燥工程で塗膜が急激に乾燥される結果、駆動電圧を低下させ、輝度半減寿命を向上させることができなかった。
Figure 0006753538
表3に示すように、発光素子の駆動電圧を低下させ、輝度半減寿命を向上させるためには、第2の乾燥工程が必須であり、また、第2の圧力をより低下させることでその効果を向上させることができた。
Figure 0006753538
表4に示すように、題2の乾燥工程において第2の圧力に保持する時間を長くすれば、発光素子の駆動電圧をより低下させ、輝度半減寿命をより向上させることができた。ただし、第2の圧力が7×10−3Paでは、保持時間を30分間以上としても、それ以上の効果の増大が期待できないようであった。
5.分散媒の種類の違いによる影響
(実施例21〜実施例25)
分散媒を表5に示すように変更したこと以外は、前記実施例15と同様にして、インクを調製し、発光素子を製造した。
また、得られた発光素子について、前記と同様にして、駆動電圧および発光寿命の評価を行った。
これらの評価結果を表5に示す。
Figure 0006753538
表5に示すように、分散媒を変更して得られた発光素子も、比較例1で得られた発光素子よりも駆動電圧および発光寿命が良好であった。特に、ジフェニルエーテルのような低極性化合物よりも極性化合物を分散媒に用いることにより、ナノ結晶の凝集が抑制され、より良好な結果が得られたものと推測される。
本発明は、発光性を有する半導体ナノ結晶と、該半導体ナノ結晶に担持された分散剤とから構成された粒子と、大気圧下における沸点が200℃以上である分散媒とを含むインクを用意する工程と、前記インクを支持体に供給して、前記支持体上に塗膜を形成する工程と、前記塗膜が形成された前記支持体をチャンバ内に収容し、前記チャンバ内を1〜500Paの第1の圧力に減圧するとともに、該第1の圧力に2分間以上保持して、前記塗膜から前記分散媒を除去する工程と、前記チャンバ内を前記第1の圧力より低い第2の圧力に減圧するとともに、該第2の圧力に所定の時間保持して、前記塗膜から前記分散媒をさらに除去する工程とを有することを特徴とする発光層の形成方法であるから、発光特性に優れる発光層および発光素子を製造する方法を提供することができる。
1 発光素子
2 陽極
3 陰極
4 正孔注入層
5 正孔輸送層
6 発光層
7 電子輸送層
8 電子注入層

Claims (5)

  1. 発光性を有する半導体ナノ結晶と、該半導体ナノ結晶に担持された分散剤とから構成された粒子と、大気圧下における沸点が200℃以上である分散媒とを含むインクを用意する工程と、
    前記インクを支持体に供給して、前記支持体上に塗膜を形成する工程と、
    前記塗膜が形成された前記支持体をチャンバ内に収容し、前記チャンバ内を1〜500Paの第1の圧力に減圧するとともに、該第1の圧力に室温〜60℃で2分間以上保持して、前記塗膜から前記分散媒を除去する工程と、
    前記チャンバ内を前記第1の圧力より低い第2の圧力に減圧するとともに、該第2の圧力に所定の時間保持して、前記塗膜から前記分散媒をさらに除去する工程とを有することを特徴とする発光層の形成方法。
  2. 前記第2の圧力は、5×10−2Pa以下である請求項に記載の発光層の形成方法。
  3. 前記第2の圧力に保持する際の温度は、室温〜150℃である請求項1又は2記載の発光層の形成方法。
  4. 前記所定の時間は、2〜30分間である請求項1からのいずれかに記載の発光層の形成方法。
  5. 請求項1からのいずれかの発光層の形成方法により発光層を形成する工程と、
    該発光層を形成する工程の前または後に、陽極または陰極を形成する工程とを有することを特徴とする発光素子の製造方法。
JP2019546637A 2017-10-04 2018-09-25 発光層の形成方法および発光素子の製造方法 Active JP6753538B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017194106 2017-10-04
JP2017194106 2017-10-04
PCT/JP2018/035306 WO2019069738A1 (ja) 2017-10-04 2018-09-25 発光層の形成方法および発光素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019069738A1 JPWO2019069738A1 (ja) 2020-07-27
JP6753538B2 true JP6753538B2 (ja) 2020-09-09

Family

ID=65994619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546637A Active JP6753538B2 (ja) 2017-10-04 2018-09-25 発光層の形成方法および発光素子の製造方法

Country Status (5)

Country Link
US (1) US20200303646A1 (ja)
JP (1) JP6753538B2 (ja)
KR (1) KR20200062237A (ja)
CN (1) CN111373842A (ja)
WO (1) WO2019069738A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739404B (zh) * 2018-07-18 2021-04-02 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080167A (ja) 2008-09-25 2010-04-08 Seiko Epson Corp 乾燥方法、機能膜の製造方法、電気光学装置の製造方法、及び有機el装置の製造方法
JP2011034751A (ja) * 2009-07-31 2011-02-17 Seiko Epson Corp 電気光学装置の製造方法
US9331295B2 (en) * 2011-12-20 2016-05-03 Seiko Epson Corporation Film-forming ink, film-forming method, method of manufacturing light emitting element, light emitting element, light emitting device, and electronic apparatus
CN105153811B (zh) * 2015-08-14 2019-12-10 广州华睿光电材料有限公司 一种用于印刷电子的油墨
JP6807647B2 (ja) * 2016-03-02 2021-01-06 株式会社半導体エネルギー研究所 発光装置、静脈認証システム、および透過型静脈認証システム

Also Published As

Publication number Publication date
US20200303646A1 (en) 2020-09-24
JPWO2019069738A1 (ja) 2020-07-27
WO2019069738A1 (ja) 2019-04-11
KR20200062237A (ko) 2020-06-03
CN111373842A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
US20220194969A1 (en) Metal halide perovskite light emitting device and method for manufacturing same
JP6849091B2 (ja) 粒子、インクおよび発光素子
JP7199922B2 (ja) 量子ドット素子及び電子装置
US20220102660A1 (en) Defect suppressed metal halide perovskite light-emitting material and light-emitting diode comprising the same
EP3540807A1 (en) Electroluminescent device, manufacturing method thereof, and display device comprising the same
CN110828681B (zh) 量子点发光器件及包括其的显示设备
KR20190112420A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR20200008976A (ko) 발광 소자와 이를 포함한 표시 장치
KR20200122933A (ko) 발광 소자 및 이를 포함하는 표시 장치
JP7172238B2 (ja) インクおよび発光素子
JP6753538B2 (ja) 発光層の形成方法および発光素子の製造方法
JP6849089B2 (ja) インクおよび発光素子
KR20190108504A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
JP6973494B2 (ja) インク、発光素子の製造方法および発光素子
JP6930597B2 (ja) インクおよび発光素子
JP2021008526A (ja) インクおよび発光素子
JP2021008525A (ja) インクおよび発光素子
JP2021116345A (ja) インク組成物および発光素子
JP2020181888A (ja) 金属酸化物粒子、インク組成物および発光素子
US20230257607A1 (en) Quantum dot ink composition, and quantum dot electroluminescent device
CN118057942A (zh) 复合材料的制备方法、发光器件及其制备方法与电子设备
CN118076183A (zh) 发光器件的制备方法、发光器件与电子设备
JP2023131322A (ja) 量子ドットインク組成物
KR20190110046A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R151 Written notification of patent or utility model registration

Ref document number: 6753538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250