JP6752086B2 - Implementation management device - Google Patents

Implementation management device Download PDF

Info

Publication number
JP6752086B2
JP6752086B2 JP2016171360A JP2016171360A JP6752086B2 JP 6752086 B2 JP6752086 B2 JP 6752086B2 JP 2016171360 A JP2016171360 A JP 2016171360A JP 2016171360 A JP2016171360 A JP 2016171360A JP 6752086 B2 JP6752086 B2 JP 6752086B2
Authority
JP
Japan
Prior art keywords
production
jobs
mounting
job
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171360A
Other languages
Japanese (ja)
Other versions
JP2018037592A (en
Inventor
近藤弘規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016171360A priority Critical patent/JP6752086B2/en
Publication of JP2018037592A publication Critical patent/JP2018037592A/en
Application granted granted Critical
Publication of JP6752086B2 publication Critical patent/JP6752086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、実装管理装置に関する。 The present invention relates to a mounting management device.

従来より、部品供給位置に送り出された部品供給テープからヘッドのノズルにより部品をピックアップして基板上に装着する部品実装装置が知られている。ここで、部品供給テープは、テープフィーダによって部品供給位置へ供給される。テープフィーダは、部品実装装置のパレット上のスロットに差し込まれた状態で保持される。こうした部品実装装置を複数台並べて実装ラインを構築し、多品種少量生産の種々の基板を製造することも知られている。また、多品種少量生産の場合、グルーピングの手法を用いることも提案されている。例えば、特許文献1には、ロット数(生産枚数)の大小のオーダー(生産ジョブ)を組み合わせるグルーピングを行う点が記載されている。 Conventionally, there has been known a component mounting device that picks up a component from a component supply tape sent to a component supply position by a nozzle of a head and mounts the component on a substrate. Here, the component supply tape is supplied to the component supply position by the tape feeder. The tape feeder is held in a slot on the pallet of the component mounting device. It is also known that a plurality of such component mounting devices are arranged side by side to construct a mounting line to manufacture various substrates for high-mix low-volume production. It has also been proposed to use a grouping method for high-mix low-volume production. For example, Patent Document 1 describes that grouping is performed by combining large and small orders (production jobs) of the number of lots (production number).

:特開平7−256532号公報: JP-A-7-256532

しかしながら、特許文献1には、ロット数の大小のオーダーを組み合わせるグルーピングについて記載はあるものの、その場合にロット数の大きなオーダーについて1枚の基板を生産するのに要する時間をどのようにするかは考慮されていなかった。ロット数の大きなオーダーについて1枚の基板を生産するのに要する時間が少し長くなると、ロット数が大きい分、結果的にそのグループ内のオーダーの処理に要するトータル時間は著しく長くなってしまう。そのため、生産効率が低くなるという問題が生じる。 However, although Patent Document 1 describes grouping in which orders of large and small lots are combined, in that case, how much time is required to produce one substrate for orders of large lots is determined. It was not considered. If the time required to produce one substrate for an order with a large number of lots becomes a little longer, the total time required for processing the order within the group becomes significantly longer as a result of the large number of lots. Therefore, there arises a problem that the production efficiency becomes low.

本発明は、上記課題を解決するためになされたものであり、グループ内の生産ジョブの処理に要するトータル時間を短くすることを主目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to shorten the total time required for processing a production job in a group.

本発明の実装管理装置は、パレットに複数保持されたテープフィーダによって順次送り出される部品供給テープから部品をノズルによりピックアップして基板上に実装する部品実装装置を少なくとも1つ含む実装ラインを管理する実装管理装置であって、基板にどの種類の部品を実装するかの情報及び生産ボリュームの情報を含む複数の生産ジョブを記憶する記憶手段と、 グループ数をN個(Nは自然数)に設定するグループ数設定手段と、前記複数の生産ジョブの内、生産ボリュームの大きいN個を各グループの基準ジョブとし、前記基準ジョブの処理に要する生産時間が短くなるように該基準ジョブで使用する前記テープフィーダの配置位置を決定すると共に、前記複数の生産ジョブから前記基準ジョブを除いた残りの生産ジョブを前記N個のグループのいずれかに割り振るグルーピングを行い、前記残りの生産ジョブで使用する前記テープフィーダの配置位置を、同じグループの前記基準ジョブで使用する前記テープフィーダの配置位置に基づいて決定するフィーダ位置決定手段とを備えたものである。 The mounting management device of the present invention manages a mounting line including at least one component mounting device that picks up components from component supply tapes sequentially sent out by a plurality of tape feeders held on a pallet by a nozzle and mounts them on a substrate. A management device, which is a storage means for storing a plurality of production jobs including information on what kind of parts are mounted on a board and information on a production volume, and a group in which the number of groups is set to N (N is a natural number). The tape feeder used in the reference job so that the number setting means and N of the plurality of production jobs having a large production volume are set as the reference jobs of each group and the production time required for processing the reference jobs is shortened. The tape feeder used in the remaining production jobs is grouped by allocating the remaining production jobs excluding the reference job from the plurality of production jobs to any of the N groups. It is provided with a feeder position determining means for determining the arrangement position of the tape feeder based on the arrangement position of the tape feeder used in the reference job of the same group.

本発明の実装管理装置では、グループ内の生産ジョブのうち生産ボリュームの最も大きいものの生産時間が短くなるようにパレットでのテープフィーダの配置位置を決定する。生産ボリュームの大きい生産ジョブの生産時間は、そのグループ内の生産ジョブの処理に要するトータルの生産時間に占める割合が高いため、結果的にそのトータルの生産時間を短くすることができる。 In the mounting management device of the present invention, the position of the tape feeder on the pallet is determined so that the production time of the production job having the largest production volume in the group is shortened. Since the production time of a production job having a large production volume accounts for a large proportion of the total production time required for processing the production jobs in the group, the total production time can be shortened as a result.

なお、フィーダ位置決定手段は、基準ジョブに基づいてテープフィーダの配置位置を決定する処理と残りの生産ジョブのグルーピングを行う処理につき、どちらを先に行ってもよいし同時並行で行ってもよい。 The feeder position determining means may perform either the process of determining the arrangement position of the tape feeder based on the reference job or the process of grouping the remaining production jobs first or in parallel. ..

本発明の実装管理装置において、前記フィーダ位置設定手段は、前記複数の生産ジョブに含まれる部品種類の総数と前記実装ラインに含まれる前記テープフィーダを保持するスロットの総数とに基づいて前記グループ数をN個に設定してもよい。こうすれば、グループ数を自動設定することができる。但し、設定手段は、オペレータが入力装置を用いて入力した値をグループ数に設定しても構わない。 In the mounting management device of the present invention, the feeder position setting means has the number of groups based on the total number of component types included in the plurality of production jobs and the total number of slots for holding the tape feeder included in the mounting line. May be set to N. In this way, the number of groups can be set automatically. However, the setting means may set the value input by the operator using the input device to the number of groups.

本発明の実装管理装置において、前記フィーダ位置決定手段は、前記残りの生産ジョブにつき部品の種類が前記基準ジョブと共通度の高いものを優先して同じグループとなるようにグルーピングを行ってもよい。こうすれば、部品の種類の共通度の高いものが同じグループになるため、テープフィーダの数を減らすことができ、テープフィーダの配置作業数が少なくなり、生産の準備時間を削減することができる。 In the mounting management device of the present invention, the feeder position determining means may group the remaining production jobs so that the parts having a high degree of commonality with the reference job are prioritized and belong to the same group. .. In this way, parts with a high degree of commonality are in the same group, so the number of tape feeders can be reduced, the number of tape feeder placement operations can be reduced, and production preparation time can be reduced. ..

本発明の実装管理装置において、前記フィーダ位置決定は、最終的に前記複数の生産ジョブのすべてをグルーピングできなかった場合には、Nの数を1インクリメントして前記グルーピングを再度行ってもよい。こうすれば、設定されたグループ数では足らなかった場合、自動的にグループ数を増やしてグルーピングを終了することができる。 In the mounting management device of the present invention, when the feeder position determination cannot finally group all of the plurality of production jobs, the number of N may be incremented by 1 and the grouping may be performed again. In this way, if the set number of groups is not enough, the number of groups can be automatically increased and the grouping can be ended.

本発明の実装管理装置において、前記生産ボリュームとして、前記部品実装後の基板の生産枚数を用いてもよい。生産枚数が多いほど生産時間が長くなることから、生産枚数を生産ボリュームとして採用すればトータルの生産時間を短くすることができる。あるいは、前記生産ボリュームとして、前記生産ジョブの処理に要する生産時間を用いてもよい。生産時間を生産ボリュームとして採用すればトータルの生産時間を短くすることができる。なお、生産時間は、例えば基板1枚あたりの生産時間を求めておき、それと生産枚数とを乗じた値として求めることができる。 In the mounting management device of the present invention, the number of boards produced after mounting the components may be used as the production volume. Since the production time becomes longer as the number of production sheets increases, the total production time can be shortened by adopting the production number as the production volume. Alternatively, the production time required for processing the production job may be used as the production volume. If the production time is adopted as the production volume, the total production time can be shortened. The production time can be obtained, for example, as a value obtained by obtaining the production time per substrate and multiplying it by the number of production sheets.

部品実装システム1の概略説明図。The schematic explanatory view of the component mounting system 1. 部品実装装置10の斜視図。The perspective view of the component mounting apparatus 10. デバイスパレット42の斜視図。The perspective view of the device palette 42. リールユニット40の概略説明図。The schematic explanatory view of the reel unit 40. リール60の斜視図。Perspective view of the reel 60. セットアップルーチンのフローチャート。Flowchart of setup routine. 本実施形態の生産ジョブのグルーピングの様子を表す説明図。Explanatory drawing which shows the state of grouping of the production job of this embodiment. 比較形態の生産ジョブのグルーピングの様子を表す説明図。Explanatory drawing which shows the state of grouping of the production job of a comparative form.

本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は部品実装システム1の概略説明図、図2は部品実装装置10の斜視図、図3はデバイスパレット42の斜視図、図4はリールユニット40の概略説明図、図5はリール60の斜視図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1〜3に示した通りとする。 Preferred embodiments of the present invention will be described below with reference to the drawings. 1 is a schematic explanatory view of the component mounting system 1, FIG. 2 is a perspective view of the component mounting device 10, FIG. 3 is a perspective view of the device pallet 42, FIG. 4 is a schematic explanatory view of the reel unit 40, and FIG. 5 is a schematic view of the reel 60. It is a perspective view. In this embodiment, the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.

部品実装システム1は、図1に示すように、実装ライン11を形成する複数の部品実装装置10と、各部品実装装置10へ部品を供給するリールユニット40と、基板Sの生産を管理する管理コンピュータ80とを備えている。実装ライン11は、上流側から送られてきた基板Sに、各リールユニット40から供給される部品を各部品実装装置10が順次実装していき、実装終了後に下流側へ送り出すものである。 As shown in FIG. 1, the component mounting system 1 manages the production of a plurality of component mounting devices 10 forming a mounting line 11, a reel unit 40 for supplying components to each component mounting device 10, and a substrate S. It is equipped with a computer 80. In the mounting line 11, each component mounting device 10 sequentially mounts the components supplied from the reel units 40 on the substrate S sent from the upstream side, and sends the components to the downstream side after the mounting is completed.

部品実装装置10は、図2に示すように、基板搬送装置12と、ヘッド18と、ノズル28と、パーツカメラ36と、各種制御を実行する実装コントローラ38とを備えている。 As shown in FIG. 2, the component mounting device 10 includes a board transfer device 12, a head 18, a nozzle 28, a parts camera 36, and a mounting controller 38 that executes various controls.

基板搬送装置12は、左右一対の支持板14,14にそれぞれ取り付けられたコンベアベルト16,16(図2では片方のみ図示)により基板Sを左から右へと搬送する。 The substrate transfer device 12 conveys the substrate S from left to right by conveyor belts 16 and 16 (only one of which is shown in FIG. 2) attached to a pair of left and right support plates 14 and 14, respectively.

ヘッド18は、XY平面を移動可能である。具体的には、ヘッド18は、X軸スライダ20がガイドレール22,22に沿って左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ24がガイドレール26,26に沿って前後方向に移動するのに伴って前後方向に移動する。 The head 18 is movable in the XY plane. Specifically, the head 18 moves in the left-right direction as the X-axis slider 20 moves in the left-right direction along the guide rails 22 and 22, and the Y-axis slider 24 moves in the left-right direction along the guide rails 26 and 26. It moves in the front-back direction as it moves in the front-back direction.

ノズル28は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を離したりするものである。そのために、ノズル28には圧力調整装置(図示せず)が接続されている。ノズル28は、ヘッド18に内蔵されたZ軸モータ30とZ軸に沿って延びるボールネジ32によって高さが調整される。 The nozzle 28 uses pressure to attract parts to the tip of the nozzle and release the parts attracted to the tip of the nozzle. Therefore, a pressure adjusting device (not shown) is connected to the nozzle 28. The height of the nozzle 28 is adjusted by a Z-axis motor 30 built in the head 18 and a ball screw 32 extending along the Z-axis.

パーツカメラ36は、リールユニット40と基板搬送装置12との間であって左右方向の長さの略中央にて、撮像方向が上向きとなるように設置されている。このパーツカメラ36は、その上方を通過するノズル28に吸着された部品を撮像し、撮像により得られた画像を実装コントローラ38へ出力する。 The parts camera 36 is installed between the reel unit 40 and the substrate transfer device 12 at substantially the center of the length in the left-right direction so that the imaging direction faces upward. The parts camera 36 images the parts attracted to the nozzle 28 passing above the parts camera 36, and outputs the image obtained by the imaging to the mounting controller 38.

実装コントローラ38は、CPUを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM、各種データを記憶するHDD、作業領域として用いられるRAMなどを備える。これらは、図示しないバスを介して電気的に接続されている。この実装コントローラ38は、テープフィーダ50(以下、「フィーダ50」という)のフィーダコントローラ58や管理コンピュータ80と双方向通信可能なように接続されている。また、実装コントローラ38は、基板搬送装置12やX軸スライダ20、Y軸スライダ24、Z軸モータ30、ノズル28の圧力調整装置(図示せず)などへ制御信号を出力可能なように接続されると共に、パーツカメラ36から画像を受信可能に接続されている。 The mounting controller 38 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, an HDD for storing various data, a RAM used as a work area, and the like. These are electrically connected via a bus (not shown). The mounting controller 38 is connected to the feeder controller 58 of the tape feeder 50 (hereinafter referred to as “feeder 50”) and the management computer 80 so as to be capable of bidirectional communication. Further, the mounting controller 38 is connected so as to be able to output a control signal to a board transfer device 12, an X-axis slider 20, a Y-axis slider 24, a Z-axis motor 30, a pressure adjusting device (not shown) of the nozzle 28, and the like. At the same time, it is connected so that an image can be received from the parts camera 36.

リールユニット40は、デバイスパレット42と、フィーダ50と、リール60とを備えており、部品実装装置10に取り外し可能に取り付けられている。デバイスパレット42は、図3に示すように、平板上のパレット本体43と、パレット本体43の後端に設けられた立壁45とを備えている。パレット本体43には、前後方向に延びる溝として形成されたスロット44が左右方向に複数並設されている。立壁45の前面には、各スロット44に対応してパレット側コネクタ46が左右方向に複数並設されている。フィーダ50は、スロット44に差し込まれた状態でデバイスパレット42に保持される。フィーダ50がスロット44の前方から後方へ差し込まれると、フィーダ50の後端面に設けられたフィーダ側コネクタ52がパレット側コネクタ46と電気的に接続する。これにより、図4に示すように、フィーダ50に内蔵されたフィーダコントローラ58は実装コントローラ38と双方向通信可能となる。フィーダ50は、フィーダモータ56によって回転駆動されるスプロケット54を有している。リール60は、フィーダ50の前方部分に回転可能に取り付けられている。このリール60には、テープ62が巻き付けられている。テープ62は、フィーダ50に内蔵されたスプロケット54によって後方へ送り出される。テープ62には、図5に示すように、複数の凹部64がテープ62の長手方向に沿って並ぶように形成されている。各凹部64には、部品Pが収容されている。これらの部品Pは、テープ62の表面を覆うフィルム65によって保護されている。フィーダ50には、部品吸着位置(図4の白抜き矢印で示した位置)が定められている。部品吸着位置は、ノズル28が部品Pを吸着する設計上定められた位置である。フィーダモータ56がスプロケット54を図4にて時計方向に回転させると、テープ62のスプロケット孔67がスプロケット54によって後方へ送られ、テープ62に収容された部品Pは順次、部品吸着位置へ繰り出される。部品吸着位置に至った部品Pはノズル28によって基板S上の所定の位置へ実装されるため、部品吸着位置よりも後方の凹部64には部品Pは収容されていない。なお、部品Pは、部品吸着位置へ到達すると、表面を覆うフィルム65が剥がされるように構成されている。また、テープ62は空になった凹部64よりも後方位置で切断され、切断された部分は廃棄される。 The reel unit 40 includes a device pallet 42, a feeder 50, and a reel 60, and is detachably attached to the component mounting device 10. As shown in FIG. 3, the device pallet 42 includes a pallet body 43 on a flat plate and a vertical wall 45 provided at the rear end of the pallet body 43. A plurality of slots 44 formed as grooves extending in the front-rear direction are arranged side by side in the pallet body 43 in the left-right direction. On the front surface of the vertical wall 45, a plurality of pallet-side connectors 46 are arranged side by side in the left-right direction corresponding to each slot 44. The feeder 50 is held in the device pallet 42 in a state of being inserted into the slot 44. When the feeder 50 is inserted from the front to the rear of the slot 44, the feeder-side connector 52 provided on the rear end surface of the feeder 50 is electrically connected to the pallet-side connector 46. As a result, as shown in FIG. 4, the feeder controller 58 built in the feeder 50 can bidirectionally communicate with the mounting controller 38. The feeder 50 has a sprocket 54 that is rotationally driven by the feeder motor 56. The reel 60 is rotatably attached to the front portion of the feeder 50. A tape 62 is wound around the reel 60. The tape 62 is fed backward by the sprocket 54 built in the feeder 50. As shown in FIG. 5, the tape 62 is formed so that a plurality of recesses 64 are arranged along the longitudinal direction of the tape 62. A component P is housed in each recess 64. These parts P are protected by a film 65 that covers the surface of the tape 62. The feeder 50 is defined with a component suction position (position indicated by a white arrow in FIG. 4). The component suction position is a design-defined position in which the nozzle 28 sucks the component P. When the feeder motor 56 rotates the sprocket 54 clockwise in FIG. 4, the sprocket hole 67 of the tape 62 is fed backward by the sprocket 54, and the component P housed in the tape 62 is sequentially fed to the component suction position. .. Since the component P that has reached the component suction position is mounted at a predetermined position on the substrate S by the nozzle 28, the component P is not housed in the recess 64 behind the component suction position. The component P is configured so that the film 65 covering the surface is peeled off when the component P reaches the component suction position. Further, the tape 62 is cut at a position behind the empty recess 64, and the cut portion is discarded.

管理コンピュータ80は、図1に示すように、CPU81を中心とするマイクロプロセッサであって、処理プログラムを記憶するROM82、基板の生産プログラムなどを記憶するHDD83、作業領域として用いられるRAM84などを備える。これらは、図示しないバスを介して電気的に接続されている。管理コンピュータ80には、マウスやキーボード等の入力デバイス85から入力信号が入力され、管理コンピュータ80からは、ディスプレイ86への画像信号が出力される。この管理コンピュータ80は、実装ライン11を構成する各部品実装装置10の実装コントローラ38と双方向通信可能に接続されている。管理コンピュータ80のHDD83には、生産ジョブが記憶されている。そのため、HDD83が本発明の記憶手段に相当する。ここで、「生産ジョブ」とは、基板にどの種類の部品をどういう順番で基板Sへ実装するかの部品関連情報やそのように実装した基板Sを何枚作製するかの生産枚数情報などを含むものであり、以下単に「ジョブ」と称する。 As shown in FIG. 1, the management computer 80 is a microprocessor centered on a CPU 81, and includes a ROM 82 for storing a processing program, an HDD 83 for storing a production program of a substrate, a RAM 84 used as a work area, and the like. These are electrically connected via a bus (not shown). An input signal is input to the management computer 80 from an input device 85 such as a mouse or a keyboard, and an image signal to the display 86 is output from the management computer 80. The management computer 80 is bidirectionally connected to the mounting controller 38 of each component mounting device 10 that constitutes the mounting line 11. The production job is stored in the HDD 83 of the management computer 80. Therefore, the HDD 83 corresponds to the storage means of the present invention. Here, the "production job" refers to component-related information on what kind of parts are mounted on the board and in what order on the board S, and information on the number of production sheets of how many boards S mounted in this way. It includes, and is hereinafter simply referred to as a "job".

次に、部品実装装置10の実装コントローラ38がジョブに基づいて基板Sへ部品を実装する動作について説明する。まず、実装コントローラ38は、上流側から基板Sを搬入する。次に、実装コントローラ38は、ヘッド18のノズル28にリールユニット40のフィーダ50から供給される部品を吸着させる。具体的には、実装コントローラ38は、X軸スライダ20及びY軸スライダ24を制御してノズル28を所望の部品の部品吸着位置の真上に移動させる。次に、実装コントローラ38は、Z軸モータ30及びノズル28の圧力調整装置(図示せず)を制御し、ノズル28を下降させると共にそのノズル28へ負圧が供給されるようにする。これにより、ノズル28の先端に所望の部品が吸着される。その後、実装コントローラ38は、ノズル28を上昇させ、X軸スライダ20及びY軸スライダ24を制御して、先端に部品を吸着したノズル28を基板Sの所定の位置の上方へ移動させる。部品を吸着したノズル28は、移動の途中でパーツカメラ36の上方を通過してパーツカメラ36によって撮像される。実装コントローラ38は、パーツカメラ36で撮像された画像に基づいてノズル28に部品が吸着されているか否かの判断やその部品の形状、大きさ、吸着位置などを判定する。さて、部品を吸着したノズルが基板Sの所定の位置に到着すると、実装コントローラ38は、ノズル28を下降させ、そのノズル28へ大気圧が供給されるように制御する。これにより、ノズル28に吸着されていた部品が離間して基板Sの所定の位置に実装される。基板Sに実装すべき他の部品についても、同様にして基板S上に実装していき、すべての部品の実装が完了したら基板Sを下流側へ送り出す。実装ライン11において、上流側の部品実装装置10で基板Sへの部品実装が終了すると、その基板Sは下流側の部品実装装置10へ送られ、その部品実装装置10で基板Sへの部品実装が行われる。実装ライン11の最上流から最下流までのすべての部品実装装置10を通過してきた基板Sは、予め定められたすべての部品の実装が終了したものとなる。 Next, an operation in which the mounting controller 38 of the component mounting device 10 mounts components on the substrate S based on a job will be described. First, the mounting controller 38 carries in the substrate S from the upstream side. Next, the mounting controller 38 attracts the components supplied from the feeder 50 of the reel unit 40 to the nozzle 28 of the head 18. Specifically, the mounting controller 38 controls the X-axis slider 20 and the Y-axis slider 24 to move the nozzle 28 directly above the component suction position of the desired component. Next, the mounting controller 38 controls the pressure adjusting device (not shown) of the Z-axis motor 30 and the nozzle 28 so that the nozzle 28 is lowered and negative pressure is supplied to the nozzle 28. As a result, the desired component is attracted to the tip of the nozzle 28. After that, the mounting controller 38 raises the nozzle 28 and controls the X-axis slider 20 and the Y-axis slider 24 to move the nozzle 28 having the component sucked to the tip above the predetermined position on the substrate S. The nozzle 28 that has attracted the parts passes above the parts camera 36 in the middle of movement and is imaged by the parts camera 36. The mounting controller 38 determines whether or not a component is attracted to the nozzle 28 based on the image captured by the parts camera 36, and determines the shape, size, suction position, and the like of the component. When the nozzle that has attracted the parts arrives at a predetermined position on the substrate S, the mounting controller 38 lowers the nozzle 28 and controls the nozzle 28 so that atmospheric pressure is supplied to the nozzle 28. As a result, the parts attracted to the nozzle 28 are separated from each other and mounted at a predetermined position on the substrate S. Other components to be mounted on the board S are also mounted on the board S in the same manner, and when the mounting of all the components is completed, the board S is sent to the downstream side. When the component mounting device 10 on the upstream side finishes mounting the components on the board S in the mounting line 11, the board S is sent to the component mounting device 10 on the downstream side, and the component mounting device 10 mounts the components on the board S. Is done. The substrate S that has passed through all the component mounting devices 10 from the most upstream to the most downstream of the mounting line 11 has all the predetermined components mounted.

次に、管理コンピュータ80が実装ライン11を構成するすべての部品実装装置10のデバイスパレット42のどのスロット44に、複数のジョブに必要なフィーダ50をどのように配置するかを決定する手順について説明する。 Next, a procedure will be described in which the management computer 80 determines in which slot 44 of the device palette 42 of all the component mounting devices 10 constituting the mounting line 11 the feeders 50 required for a plurality of jobs are arranged. To do.

その説明に先立ち、フィーダ50の配置を決定する際の基本的な考え方について説明する。ノズル28は、フィーダ50から供給される部品を吸着した後パーツカメラ36の上方を通過してから基板Sへ向かう。このことを考慮すると、ノズル移動距離はフィーダ50がパーツカメラ36に近いほど短くなる。また、ノズル移動距離が短いほどノズル移動時間が短くなる。そのため、スロット44に配置されたフィーダ50のうちパーツカメラ36に近いものほど(部品実装装置10の左右長さの中央に近いものほど)、部品を1つ実装するのに要する時間が短くなる。ここで、ジョブAの生産枚数の方がジョブBに比べて格段に多い場合を考える。その場合、2つの配置手順が考えられる。1つは、ジョブBに使用する複数のフィーダ50をパーツカメラ36の近くのスロット44に配置し、次にジョブAに使用する複数のフィーダ50を残ったスロット44に配置する手順である(第1の手順)。もう1つは、ジョブAに使用する複数のフィーダ50をパーツカメラ36の近くのスロット44に配置し、次にジョブBに使用する複数のフィーダ50を残ったスロット44に配置する手順である(第2の手順)。ジョブBの基板1枚あたりの生産時間は、第1の手順の方が第2の手順より短くなり、ジョブAの基板1枚あたりの生産時間は、第2の手順の方が第1の手順より短くなる。しかし、ジョブAの生産枚数の方がジョブBに比べて格段に多いのだから、全体の生産時間を考慮すると、第2の手順を選択するのが有利になる。 Prior to the explanation, the basic idea when deciding the arrangement of the feeder 50 will be described. The nozzle 28 attracts the parts supplied from the feeder 50, passes above the parts camera 36, and then heads for the substrate S. Considering this, the nozzle movement distance becomes shorter as the feeder 50 is closer to the parts camera 36. Further, the shorter the nozzle movement distance, the shorter the nozzle movement time. Therefore, among the feeders 50 arranged in the slot 44, the closer to the parts camera 36 (the closer to the center of the left-right length of the component mounting device 10), the shorter the time required to mount one component. Here, consider the case where the number of production sheets of job A is much larger than that of job B. In that case, two placement procedures can be considered. One is a procedure in which a plurality of feeders 50 used for job B are arranged in slots 44 near the parts camera 36, and then a plurality of feeders 50 used for job A are arranged in the remaining slots 44 (first). Step 1). The other is a procedure in which the plurality of feeders 50 used for job A are arranged in the slots 44 near the parts camera 36, and then the plurality of feeders 50 used for job B are arranged in the remaining slots 44 (). Second step). The production time per board of job B is shorter in the first procedure than in the second procedure, and the production time per board of job A is shorter in the second procedure in the first procedure. It will be shorter. However, since the number of production sheets of job A is much larger than that of job B, it is advantageous to select the second procedure in consideration of the total production time.

次に、「段取り替え」について以下に説明する。例えば、k種類(kは2以上の整数)の部品を基板Sへ実装するジョブAと、m種類(mは2以上の整数)の部品を基板Sへ実装するジョブBと、n種類(nは2以上の整数)の部品を基板Sへ実装するジョブCを処理する場合を考える。その場合、実装ライン11を構成するすべての部品実装装置10のデバイスパレット42(便宜上、1セットのデバイスパレット42という)に(k+m+n)種類のフィーダ50を搭載することが可能であれば、1セットのデバイスパレット42に多種類のフィーダ50を一度セットアップするだけで、ジョブA〜Cを処理することができる。しかし、1セットのデバイスパレット42を使っても(k+m+n)種類のフィーダ50を搭載することができなければ、セットアップを途中で切り替える作業が必要になる。この作業を「段取り替え」という。例えば、1セットのデバイスパレット42にk種類のフィーダ50を搭載すること、1セットのデバイスパレット42にm種類のフィーダ50を搭載すること、及び、1セットのデバイスパレット42にn種類のフィーダ50を搭載することが可能だとする。その場合、まず1セットのデバイスパレット42にk種類のフィーダ50をセットアップしてジョブAを処理し、次に1セットのデバイスパレット42にm種類のフィーダ50をセットアップし直してジョブBを処理し、次に1セットのデバイスパレット42にn種類のフィーダ50をセットアップし直してジョブCを処理することが考えられる。途中で行う段取り替えの回数は2回である。一方、1セットのデバイスパレット42に(k+m)種類のフィーダ50を搭載すること、及び、1セットのデバイスパレット42にn種類のフィーダ50を搭載することも可能だったとする。その場合、まず1セットのデバイスパレット42に(k+m)種類のフィーダ50をセットアップしてジョブA,Bを処理し、次に1セットのデバイスパレット42にn種類のフィーダ50をセットアップし直してジョブCを処理する。途中で行う段取り替えの回数は1回ですむ。段取り替えに要する時間は比較的長い。そのため、途中で行う段取り替えの回数が少ないほど、すべてのジョブを処理するのに要する時間は短くなる。近年、多品種少量生産の傾向にあるため、一度のセットアップだけですべてのジョブを処理できることは少ない。その場合、できるだけ段取り替えの回数を減らすことが生産効率上有利である。 Next, "setup change" will be described below. For example, job A for mounting k types of parts (k is an integer of 2 or more) on the board S, job B for mounting m types of parts (m is an integer of 2 or more) on the board S, and n types (n). Is an integer of 2 or more) Consider a case of processing a job C for mounting a component on a board S. In that case, if it is possible to mount (k + m + n) types of feeders 50 on the device pallets 42 (referred to as one set of device pallets 42 for convenience) of all the component mounting devices 10 constituting the mounting line 11, one set Jobs A to C can be processed by setting up various types of feeders 50 once on the device palette 42 of the above. However, if it is not possible to mount the (k + m + n) type of feeder 50 even if one set of device palettes 42 is used, it is necessary to switch the setup in the middle. This work is called "setup change". For example, one set of device pallets 42 is equipped with k types of feeders 50, one set of device pallets 42 is equipped with m types of feeders 50, and one set of device pallets 42 is equipped with n types of feeders 50. It is possible to install. In that case, first, k types of feeders 50 are set up on one set of device palettes 42 to process job A, and then m types of feeders 50 are set up again on one set of device palettes 42 to process job B. Next, it is conceivable to re-set up n types of feeders 50 on one set of device palettes 42 to process job C. The number of setup changes performed on the way is two. On the other hand, it is also possible to mount (k + m) types of feeders 50 on one set of device pallets 42, and to mount n types of feeders 50 on one set of device pallets 42. In that case, first set up (k + m) types of feeders 50 in one set of device palettes 42 to process jobs A and B, and then set up n types of feeders 50 in one set of device palettes 42 again to perform jobs. Process C. Only one setup change can be performed on the way. The time required for setup change is relatively long. Therefore, the smaller the number of setup changes performed in the middle, the shorter the time required to process all the jobs. In recent years, there has been a tendency for high-mix low-volume production, so it is rare that all jobs can be processed with a single setup. In that case, it is advantageous in terms of production efficiency to reduce the number of setup changes as much as possible.

以上の点を踏まえて、管理コンピュータ80が実装ライン11を構成するすべての部品実装装置10のデバイスパレット42のどのスロット44に、複数のジョブに必要なフィーダ50をどのように配置するかを決定する手順について、図6のセットアップルーチンのフローチャートを参照しつつ以下に説明する。また、適宜、図7も参照する。図7は生産ジョブのグルーピングの様子を表す説明図である。 Based on the above points, the management computer 80 determines in which slot 44 of the device palette 42 of all the component mounting devices 10 constituting the mounting line 11 how to arrange the feeders 50 required for a plurality of jobs. The procedure to be performed will be described below with reference to the flowchart of the setup routine of FIG. See also FIG. 7 as appropriate. FIG. 7 is an explanatory diagram showing a state of grouping of production jobs.

管理コンピュータ80のCPU81は、入力デバイス85を介してセットアップルーチンの開始が入力されると、セットアップルーチンを開始する。CPU81は、セットアップルーチンを開始すると、まず、今回処理すべきすべてのジョブをHDD83から読み込む(ステップS110)。ここでは、図7の左側に示すジョブ1〜7を読み込んだとする。各ジョブには、基板にどの種類の部品をどういう順番で基板Sへ実装するかの部品関連情報やそのように実装した基板Sを何枚作製するかの生産枚数情報などが含まれているが、図7にはそのうち生産枚数のみ示した。 The CPU 81 of the management computer 80 starts the setup routine when the start of the setup routine is input via the input device 85. When the CPU 81 starts the setup routine, it first reads all the jobs to be processed this time from the HDD 83 (step S110). Here, it is assumed that jobs 1 to 7 shown on the left side of FIG. 7 are read. Each job includes component-related information on what kind of components are mounted on the board and in what order on the board S, and information on the number of production sheets of how many boards S mounted in this way. , FIG. 7 shows only the number of production sheets.

次に、管理コンピュータ80のCPU81は、グループ数を設定する(ステップS120)。グループとは、同じセットのデバイスパレット42にセットアップされるジョブ群をいう。ここでは、CPU81は、グループ数を演算により予測した数に設定する。例えば、CPU81は、読み込んだすべてのジョブに含まれる部品の種類の総数を、1セットのデバイスパレット42に含まれるスロット44の総数で除した値の小数点以下を切り上げた整数値を、グループ数に設定する。以下では、説明の便宜上、グループ数はN個(Nは自然数、図7の例では2個)に設定されたとする。 Next, the CPU 81 of the management computer 80 sets the number of groups (step S120). The group refers to a group of jobs set up on the device palette 42 of the same set. Here, the CPU 81 sets the number of groups to the number predicted by calculation. For example, the CPU 81 divides the total number of parts types included in all the read jobs by the total number of slots 44 included in one set of device palettes 42, and rounds up the decimal point to the number of groups. Set. In the following, for convenience of explanation, it is assumed that the number of groups is set to N (N is a natural number and 2 in the example of FIG. 7).

次に、管理コンピュータ80のCPU81は、各グループの基準ジョブを設定する(ステップS130)。ここでは、CPU81は、読み込んだすべてのジョブのうち、生産枚数の最も大きいものからN番目に大きいものまでを1番目のグループ、2番目のグループ、…、N番目のグループのそれぞれの基準ジョブに設定する。図7の例では、生産枚数1000枚のジョブ1がグループ1の基準ジョブに設定され、生産枚数500枚のジョブ2がグループ2の基準ジョブに設定される。 Next, the CPU 81 of the management computer 80 sets a reference job for each group (step S130). Here, the CPU 81 assigns the jobs from the largest to the Nth largest number of produced jobs to the reference jobs of the first group, the second group, ..., And the Nth group among all the read jobs. Set. In the example of FIG. 7, the job 1 having 1000 production sheets is set as the reference job of group 1, and the job 2 having 500 production sheets is set as the reference job of group 2.

次に、管理コンピュータ80のCPU81は、各基準ジョブの最適化を行う(ステップS140)。ここでは、CPU81は、各基準ジョブに使用する複数種類のフィーダ50の配置位置を順次決定するが、その際、基準ジョブの生産時間ができるだけ短くなるように、1セットのデバイスパレット42でのフィーダ50の配置位置を決定する。例えば、CPU81は、基準ジョブに使用する複数種類のフィーダ50をパーツカメラ36の近くのスロット44に配置する。その理由は、フィーダ50の配置を決定する際の基本的な考え方で既に述べたとおりである。その際、同じ種類の部品であって基板に実装する個数の多いものほど、パーツカメラ36に近くなるように配置する。そうした部品は何度もノズル28によって基板Sまで運ばれるため、その部品のノズル移動距離を短くしておくことが生産時間の短縮に大きく寄与することになる。図7の例では、グループ1においてジョブ1の最適化を行い、グループ2においてジョブ2の最適化を行う。 Next, the CPU 81 of the management computer 80 optimizes each reference job (step S140). Here, the CPU 81 sequentially determines the arrangement positions of the plurality of types of feeders 50 used for each reference job, and at that time, the feeders in one set of device palettes 42 so as to shorten the production time of the reference jobs as much as possible. The placement position of 50 is determined. For example, the CPU 81 arranges a plurality of types of feeders 50 used for the reference job in the slot 44 near the parts camera 36. The reason is as already described in the basic idea when deciding the arrangement of the feeder 50. At that time, the parts of the same type that are mounted on the board in a large number are arranged so as to be closer to the parts camera 36. Since such a component is carried to the substrate S by the nozzle 28 many times, shortening the nozzle moving distance of the component greatly contributes to shortening the production time. In the example of FIG. 7, job 1 is optimized in group 1, and job 2 is optimized in group 2.

次に、管理コンピュータ80のCPU81は、残りのジョブのグルーピングを行う(ステップS150)。ここでは、CPU81は、残りのジョブにつき、部品の種類が基準ジョブと共通する度合い(共通度)の高いものを優先して同じグループとなるようにグルーピングを行う。図7の例では、部品の種類について説明されていないが、ジョブに使用する部品の種類をみたときに、ジョブ3,4はジョブ1と部品の種類の共通度が高く、ジョブ5〜7はジョブ2と部品の種類の共通度が高かったため、ジョブ3,4がグループ
1、ジョブ5〜7がグループ2に分けられている。
Next, the CPU 81 of the management computer 80 groups the remaining jobs (step S150). Here, the CPU 81 groups the remaining jobs so that those having a high degree of commonality (commonality) with the reference job are prioritized and belong to the same group. In the example of FIG. 7, the types of parts are not described, but when looking at the types of parts used for the job, jobs 3 and 4 have a high degree of commonality with job 1 and the types of parts, and jobs 5 to 7 have a high degree of commonality. Jobs 3 and 4 are divided into group 1 and jobs 5 to 7 are divided into group 2 because the types of parts are highly common to job 2.

次に、管理コンピュータ80のCPU81は、グルーピング後のジョブのうち基準ジョブ以外のジョブの最適化を行う(ステップS160)。各グループの基準ジョブで使用する複数種類のフィーダ50については既に配置位置を決定済みである。そのため、CPU81は、空いたスロット44の中で、残りのジョブで使用する複数種類のフィーダ50の配置位置を決定する。但し、基準ジョブで使用するフィーダ50と同じ種類の(つまり共通の)フィーダ50は、既に配置位置を決定済みのため、ここでは対象外となる。このとき、CPU81は、実装ライン11を構成する各部品実装装置10の生産時間ができるだけ均等になるように、これらのジョブの最適化を行う。あるいは、残りのジョブのうち生産ボリューム(例えば生産枚数)の多いジョブから順に、そのジョブに使用するフィーダ50の配置を行っていくようにしてもよい。 Next, the CPU 81 of the management computer 80 optimizes the jobs other than the reference job among the jobs after grouping (step S160). The placement positions of the plurality of types of feeders 50 used in the reference jobs of each group have already been determined. Therefore, the CPU 81 determines the placement positions of the plurality of types of feeders 50 used in the remaining jobs in the vacant slots 44. However, the feeder 50 of the same type (that is, common) as the feeder 50 used in the reference job is out of scope here because the placement position has already been determined. At this time, the CPU 81 optimizes these jobs so that the production times of the component mounting devices 10 constituting the mounting line 11 are as uniform as possible. Alternatively, the feeders 50 used for the remaining jobs may be arranged in order from the job having the largest production volume (for example, the number of production sheets).

次に、管理コンピュータ80のCPU81は、セットアップの結果を出力する(ステップS170)。例えば、CPU81は、セットアップの結果として図7の右側に示すように、グループ1,2,…,Nのそれぞれにどのジョブがグルーピングされたかがわかるような情報やどのジョブが基準ジョブかがわかる情報をディスプレイ86に表示したり、各実装コントローラ38へ出力したりする。このステップS170を実行した後、CPU81はセットアップルーチンを終了する。 Next, the CPU 81 of the management computer 80 outputs the setup result (step S170). For example, as a result of the setup, the CPU 81 provides information such as which jobs are grouped in each of the groups 1, 2, ..., N and information which shows which job is the reference job, as shown on the right side of FIG. It is displayed on the display 86 or output to each mounting controller 38. After executing this step S170, the CPU 81 ends the setup routine.

ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の管理コンピュータ80が本発明の実装管理装置に相当し、HDD83が記憶手段に相当し、CPU81がグループ数設定手段及びフィーダ位置決定手段に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The management computer 80 of the present embodiment corresponds to the mounting management device of the present invention, the HDD 83 corresponds to the storage means, and the CPU 81 corresponds to the group number setting means and the feeder position determining means.

以上説明した管理コンピュータ80では、グループ内のジョブのうち生産ボリューム(本実施形態では生産枚数)の最も大きいものの生産時間が短くなるように1セットのデバイスパレット42でのフィーダ50の配置位置を決定する。生産ボリュームの大きなジョブの生産時間は、そのグループ内のジョブの処理に要するトータルの生産時間に占める割合が高いため、結果的にそのトータルの生産時間を短くすることができる。その一例が図7である。一方、図7と同様のジョブ1〜7を図8のようにグルーピングした場合、生産効率が低下する。すなわち、図8のグループ1では、生産枚数が最大のジョブ1の生産時間が短くなるように1セットのデバイスパレット42でのフィーダ50の配置位置が決定されるとする。すると、生産枚数が2番目に大きいジョブ2のフィーダ50の配置位置が制限されてしまう。そのため、ジョブ2は、全ジョブ中、2番目に生産枚数が大きいにもかかわらず生産時間が長くなる。これに対して、図7では、ジョブ2はグループ2であり、グループ2で生産枚数が最大のジョブ2の生産時間が短くなるように1セットのデバイスパレット42でのフィーダ50の配置位置が決定される。そのため、図8の場合に比べてジョブ2の生産時間は短くなり、全ジョブの生産効率が高くなる。 In the management computer 80 described above, the position of the feeder 50 on one set of device pallets 42 is determined so that the production time of the job having the largest production volume (production number in this embodiment) among the jobs in the group is shortened. To do. Since the production time of a job having a large production volume accounts for a large proportion of the total production time required for processing the jobs in the group, the total production time can be shortened as a result. An example thereof is shown in FIG. On the other hand, when jobs 1 to 7 similar to FIG. 7 are grouped as shown in FIG. 8, the production efficiency is lowered. That is, in group 1 of FIG. 8, it is assumed that the arrangement position of the feeder 50 on one set of device pallets 42 is determined so that the production time of job 1 having the maximum number of production sheets is shortened. Then, the arrangement position of the feeder 50 of the job 2 having the second largest number of production sheets is limited. Therefore, the production time of the job 2 is long even though the number of production is the second largest among all the jobs. On the other hand, in FIG. 7, the job 2 is the group 2, and the position of the feeder 50 on the device pallet 42 of one set is determined so that the production time of the job 2 having the maximum number of production in the group 2 is shortened. Will be done. Therefore, the production time of the job 2 is shorter than that in the case of FIG. 8, and the production efficiency of all the jobs is increased.

また、管理コンピュータ80は、複数のジョブに含まれる部品種類の総数と実装ライン11に含まれるスロット44の総数とに基づいてグループ数を設定するため、グループ数を自動設定することができる。 Further, since the management computer 80 sets the number of groups based on the total number of component types included in the plurality of jobs and the total number of slots 44 included in the mounting line 11, the number of groups can be automatically set.

更に、管理コンピュータ80は、すべてのジョブのうち基準ジョブ以外の残ったジョブにつき、部品の種類が基準ジョブと共通度の高いものを優先して同じグループとなるようにグルーピングを行う。そのため、フィーダ50の延べ数を減らすことができ、フィーダ50の配置作業数が少なくなり、生産の準備時間を削減することができる。また、フィーダ50の延べ数が減ると、同じグループ数の場合には実装ライン11の構成をコンパクトにすることができ、同じ構成の実装ライン11の場合にはグループ数を減らすことができる。グループ数が減ると、段取り替えの回数が少なくなるため、トータルの生産時間が短くなる。 Further, the management computer 80 groups the remaining jobs other than the reference job among all the jobs so that the parts having a high degree of commonality with the reference job are prioritized and grouped in the same group. Therefore, the total number of feeders 50 can be reduced, the number of operations for arranging the feeders 50 can be reduced, and the preparation time for production can be reduced. Further, when the total number of feeders 50 is reduced, the configuration of the mounting line 11 can be made compact when the number of groups is the same, and the number of groups can be reduced when the mounting lines 11 have the same configuration. As the number of groups decreases, the number of setup changes decreases, and the total production time shortens.

更にまた、生産ボリュームとして部品実装後の基板の生産枚数を用いたが、生産枚数が多いほど生産時間が長くなることから、生産枚数を生産ボリュームとして採用すればトータルの生産時間を短くすることができる。 Furthermore, the number of boards produced after mounting parts was used as the production volume, but the larger the number of production, the longer the production time. Therefore, if the number of production is adopted as the production volume, the total production time can be shortened. it can.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiments, and can be implemented in various embodiments as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、ステップS120において、CPU81はグループ数を設定するにあたり、演算により予測した数をグループ数に設定したが、特にこれに限定されない。例えば、部品の種類の総数とグループ数との関係を予めテーブルにしてHDD83に記憶しておき、CPU81は、今回の部品の種類の総数に対応するグループ数をそのテーブルから読み込んでそれをグループ数に設定してもよい。このようにしても、グループ数を自動設定することができる。あるいは、CPU81は、オペレータが入力デバイス85を介して管理コンピュータ80に入力した数をグループ数に設定してもよい。この場合は、グループ数を手動設定することになるが、オペレータが任意のグループ数に設定することができる。 For example, in the above-described embodiment, in step S120, when setting the number of groups, the CPU 81 sets the number predicted by calculation as the number of groups, but the number is not particularly limited to this. For example, the relationship between the total number of component types and the number of groups is stored in the HDD 83 as a table in advance, and the CPU 81 reads the number of groups corresponding to the total number of component types this time from the table and reads the number of groups. May be set to. Even in this way, the number of groups can be automatically set. Alternatively, the CPU 81 may set the number input by the operator to the management computer 80 via the input device 85 as the number of groups. In this case, the number of groups is set manually, but the operator can set any number of groups.

上述した実施形態において、ステップS150のあとグループ数が足りず最終的に残りのジョブのすべてをグルーピングできなかった場合には、グループ数を1つ増やして(つまりNの数を1インクリメントして)、ステップS130以降の処理を再度行ってもよい。こうすれば、設定されたグループ数では足らなかった場合、自動的にグループ数を増やすため、すべてのジョブをグルーピングすることができる。 In the above-described embodiment, if the number of groups is insufficient after step S150 and all the remaining jobs cannot be finally grouped, the number of groups is increased by one (that is, the number of N is incremented by one). , The processing after step S130 may be performed again. In this way, if the set number of groups is not enough, the number of groups is automatically increased, and all jobs can be grouped.

上述した実施形態では、生産ボリュームとして生産枚数を採用したが、生産ボリュームを表すパラメータであれば生産枚数に限定されない。例えば、生産ボリュームとしてジョブの処理に要する生産時間を採用してもよい。ジョブの処理に要する生産時間を生産ボリュームとして採用すれば、トータルの生産時間を短くすることができる。ジョブの処理に要する生産時間は、例えば、基板1枚あたりの生産時間をシミュレーション(机上計算)により求め、基板1枚あたりの生産時間と生産枚数とを乗じて求めることができる。1枚あたりの生産時間をシミュレーションにより求める場合、予め決められた部品配置でそのジョブの複数種類の部品を配置したと仮定して求めてもよい。また、ジョブの処理に要する生産時間は、簡易計算により求めてもよい。例えば、部品を1点実装するのに要する時間(例えばカタログ値などの仕様によって決まる値)にジョブの実装点数を乗じるという簡易計算により、ジョブの処理に要する生産時間を求めてもよい。 In the above-described embodiment, the number of production sheets is adopted as the production volume, but the number of production sheets is not limited as long as it is a parameter representing the production volume. For example, the production time required for job processing may be adopted as the production volume. If the production time required for job processing is adopted as the production volume, the total production time can be shortened. The production time required for job processing can be obtained, for example, by calculating the production time per substrate by simulation (desk calculation) and multiplying the production time per substrate by the number of sheets produced. When the production time per sheet is calculated by simulation, it may be calculated on the assumption that a plurality of types of parts for the job are arranged in a predetermined component arrangement. Further, the production time required for job processing may be obtained by a simple calculation. For example, the production time required for job processing may be obtained by a simple calculation of multiplying the time required for mounting one component (for example, a value determined by specifications such as a catalog value) by the number of job mounting points.

上述した実施形態では、図6に示すように、管理コンピュータ80のCPU81は基準ジョブの設定(S130)、基準ジョブの最適化(S140)、残りのジョブのグルーピング(S150)、残りのジョブの最適化(S160)という順序で処理を行ったが、S140とS150の順序を入れ替えてもよい。このようにしても、上述した実施形態と同様の効果が得られる。 In the above-described embodiment, as shown in FIG. 6, the CPU 81 of the management computer 80 sets the reference job (S130), optimizes the reference job (S140), groups the remaining jobs (S150), and optimizes the remaining jobs. Although the processing was performed in the order of conversion (S160), the order of S140 and S150 may be exchanged. Even in this way, the same effect as that of the above-described embodiment can be obtained.

上述した実施形態では、複数台の部品実装装置10で実装ライン11を構成したが、1台の部品実装装置10で実装ライン11を構成してもよい。 In the above-described embodiment, the mounting line 11 is configured by a plurality of component mounting devices 10, but the mounting line 11 may be configured by one component mounting device 10.

本発明は、テープフィーダによって順次送り出される部品供給テープから
部品をノズルによりピックアップして基板上に実装する部品実装装置の管理
に利用可能である。
INDUSTRIAL APPLICABILITY The present invention can be used for managing a component mounting device that picks up components from component supply tapes sequentially sent out by a tape feeder by a nozzle and mounts them on a substrate.

1 部品実装システム、10 部品実装装置、11 実装ライン、12 基板搬送装置、14 支持板、16 コンベアベルト、18 ヘッド、20X軸スライダ、22 ガイドレール、24 Y軸スライダ、26 ガイドレール、28 ノズル、30 Z軸モータ、32 ボールネジ、36 パーツカメラ、38 実装コントローラ、40 リールユニット、42 デバイスパレット、43 パレット本体、44 スロット、45 立壁、46 パレット側コネクタ、50 テープフィーダ(フィーダ)、52 フィーダ側コネクタ、54 スプロケット、56 フィーダモータ、58 フィーダコントローラ、60 リール、62 テープ、64 凹部、65 フィルム、67 スプロケット孔、80 管理コンピュータ、81 CPU、82 ROM、83 HDD、84 RAM、85 入力デバイス、86 ディスプレイ。

1 component mounting system, 10 component mounting device, 11 mounting line, 12 board transfer device, 14 support plate, 16 conveyor belt, 18 heads, 20 X-axis slider, 22 guide rail, 24 Y-axis slider, 26 guide rail, 28 nozzles, 30 Z-axis motor, 32 ball screw, 36 parts camera, 38 mounting controller, 40 reel unit, 42 device pallet, 43 pallet body, 44 slot, 45 standing wall, 46 pallet side connector, 50 tape feeder (feeder), 52 feeder side connector , 54 Sprocket, 56 Sprocket Motor, 58 Feeder Controller, 60 Reel, 62 Tape, 64 Recess, 65 Film, 67 Sprocket Hole, 80 Management Computer, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 Input Device, 86 Display ..

Claims (6)

パレットに複数保持されたテープフィーダによって順次送り出される部品供給テープから部品をノズルによりピックアップして基板上に実装する部品実装装置を少なくとも1つ含む実装ラインを管理する実装管理装置であって、
基板にどの種類の部品を実装するかの情報及び生産ボリュームの情報を含む複数の生産ジョブを記憶する記憶手段と、
グループ数をN個(Nは自然数)に設定するグループ数設定手段と、
前記複数の生産ジョブの内、生産ボリュームの大きいN個を各グループの基準ジョブとし、前記基準ジョブの処理に要する生産時間が短くなるように該基準ジョブで使用する前記テープフィーダの配置位置を決定すると共に、前記複数の生産ジョブから前記基準ジョブを除いた残りの生産ジョブを前記N個のグループのいずれかに割り振るグルーピングを行い、前記残りの生産ジョブで使用する前記テープフィーダの配置位置を、同じグループの前記基準ジョブで使用する前記テープフィーダの配置位置に基づいて決定するフィーダ位置決定手段と、
を備えた実装管理装置。
It is a mounting management device that manages a mounting line including at least one component mounting device that picks up components from component supply tapes sequentially sent out by a plurality of tape feeders held on a pallet by a nozzle and mounts them on a board.
A storage means for storing a plurality of production jobs including information on what kind of component is mounted on the board and information on the production volume.
A group number setting means for setting the number of groups to N (N is a natural number),
Of the plurality of production jobs, N with a large production volume are set as reference jobs for each group, and the placement position of the tape feeder used in the reference job is determined so that the production time required for processing the reference job is shortened. At the same time, grouping is performed to allocate the remaining production jobs excluding the reference job from the plurality of production jobs to any of the N groups, and the arrangement position of the tape feeder used in the remaining production jobs is determined. A feeder position determining means for determining based on the placement position of the tape feeder used in the reference job of the same group,
Implementation management device equipped with.
前記グループ数設定手段は、前記複数の生産ジョブに含まれる部品種類の総数と前記実装ラインに含まれる前記テープフィーダを保持するスロットの総数とに基づいて前記グループ数をN個に設定する、
請求項1に記載の実装管理装置。
The group number setting means sets the number of groups to N based on the total number of component types included in the plurality of production jobs and the total number of slots for holding the tape feeder included in the mounting line.
The mounting management device according to claim 1.
前記フィーダ位置決定手段は、前記残りの生産ジョブにつき部品の種類が前記基準ジョブと共通度の高いものを優先して同じグループとなるようにグルーピングを行う、
請求項1又は2に記載の実装管理装置。
The feeder position determining means groups the remaining production jobs so that the parts having a high degree of commonality with the reference job are prioritized and belong to the same group.
The mounting management device according to claim 1 or 2.
前記フィーダ位置決定手段は、最終的に前記複数の生産ジョブのすべてをグルーピングできなかった場合には、Nの数を1インクリメントして前記グルーピングを再度行う、
請求項1〜3のいずれか1項に記載の実装管理装置。
When the feeder position determining means cannot finally group all of the plurality of production jobs, the number of N is incremented by 1 and the grouping is performed again.
The mounting management device according to any one of claims 1 to 3.
前記生産ボリュームとして、前記部品実装後の基板の生産枚数を用いる、
請求項1〜4のいずれか1項に記載の実装管理装置。
As the production volume, the number of boards produced after the component mounting is used.
The mounting management device according to any one of claims 1 to 4.
前記生産ボリュームとして、前記生産ジョブの処理に要する生産時間を用いる、
請求項1〜4のいずれか1項に記載の実装管理装置。
As the production volume, the production time required for processing the production job is used.
The mounting management device according to any one of claims 1 to 4.
JP2016171360A 2016-09-02 2016-09-02 Implementation management device Active JP6752086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171360A JP6752086B2 (en) 2016-09-02 2016-09-02 Implementation management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171360A JP6752086B2 (en) 2016-09-02 2016-09-02 Implementation management device

Publications (2)

Publication Number Publication Date
JP2018037592A JP2018037592A (en) 2018-03-08
JP6752086B2 true JP6752086B2 (en) 2020-09-09

Family

ID=61566052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171360A Active JP6752086B2 (en) 2016-09-02 2016-09-02 Implementation management device

Country Status (1)

Country Link
JP (1) JP6752086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366933B (en) * 2019-03-05 2022-11-22 株式会社富士 Component mounting system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260893A (en) * 1996-03-19 1997-10-03 Toshiba Mechatronics Kk Method for deciding work plan of part mounting
JP4393850B2 (en) * 2003-11-27 2010-01-06 ヤマハ発動機株式会社 Surface mount machine
US8151449B2 (en) * 2007-01-05 2012-04-10 Universal Instruments Corporation Component placement machine
JP2010073958A (en) * 2008-09-19 2010-04-02 Juki Corp Feeder arrangement optimizing method of component mounting device
WO2016139793A1 (en) * 2015-03-05 2016-09-09 富士機械製造株式会社 Mounting management device

Also Published As

Publication number Publication date
JP2018037592A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6445132B2 (en) Mounting management device
JP6057359B2 (en) Production control system for component mounters
WO2017208325A1 (en) Component supply system
WO2015079497A1 (en) Assisting device
US10765048B2 (en) Component mounting system, component sorting method, and component mounter
JP6752086B2 (en) Implementation management device
WO2019176033A1 (en) Production job processing method and production job processing device
JP6653640B2 (en) Setup navigation device, component mounting system, setup navigation method, setup navigation program
US11586169B2 (en) Production management device
JP2008159855A (en) Apparatus for mounting electronic component
CN107926152B (en) Job distribution device
JP6526808B2 (en) Mounting management device
JP7133021B2 (en) MOVEMENT WORK MANAGEMENT DEVICE, MOUNTING SYSTEM AND MANAGEMENT METHOD
JP7220238B2 (en) Management device, mobile work device, mounting device, mounting system, and management method
JP6556071B2 (en) Suction nozzle setup method for surface mounting system and surface mounting system
JP6424236B2 (en) Anti-substrate work management device
WO2021059457A1 (en) Component mounting system
CN107926151B (en) Required precision setting device
JP6760790B2 (en) Surface mounter
CN113366933B (en) Component mounting system
JP6016683B2 (en) Method for detecting height of mounting head in electronic component mounting apparatus and electronic component mounting apparatus
JP6866250B2 (en) Determining device, determining method, surface mounter
JP7429306B2 (en) Component placement equipment, 3D modeling machines, and component placement systems
JP6947931B2 (en) Parts supply unit placement determination method and parts mounting system
JPWO2020157845A1 (en) Component mounting system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250