JP6749631B2 - Large aperture wide angle zoom lens - Google Patents

Large aperture wide angle zoom lens Download PDF

Info

Publication number
JP6749631B2
JP6749631B2 JP2016132016A JP2016132016A JP6749631B2 JP 6749631 B2 JP6749631 B2 JP 6749631B2 JP 2016132016 A JP2016132016 A JP 2016132016A JP 2016132016 A JP2016132016 A JP 2016132016A JP 6749631 B2 JP6749631 B2 JP 6749631B2
Authority
JP
Japan
Prior art keywords
lens group
lens
wide
refractive power
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132016A
Other languages
Japanese (ja)
Other versions
JP2018004963A5 (en
JP2018004963A (en
Inventor
武久 小山
武久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2016132016A priority Critical patent/JP6749631B2/en
Publication of JP2018004963A publication Critical patent/JP2018004963A/en
Publication of JP2018004963A5 publication Critical patent/JP2018004963A5/ja
Application granted granted Critical
Publication of JP6749631B2 publication Critical patent/JP6749631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明はスチルカメラ、ビデオカメラ等の撮像装置に用いる撮影レンズに好適な光学系に関し、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿う方向へ微少に振動(ウオブリング)させた際の像高変化率が小さく、大口径な広角ズームレンズに関するものである。 The present invention relates to an optical system suitable for a photographing lens used in an image pickup apparatus such as a still camera and a video camera, adopts an inner focus method suitable for an autofocus camera, and slightly vibrates the focus lens group in a direction along the optical axis. The present invention relates to a large-angle wide-angle zoom lens that has a small image height change rate when (wowling).

ズームレンズのフォーカス方式は、オートフォーカス化への要求から、レンズ光学系の最も物体側に配置された第1レンズ群以外の、比較的軽量なレンズ群によりフォーカシングを行うインナーフォーカス方式が望まれていた。 As for the focus method of the zoom lens, an inner focus method in which focusing is performed by a relatively lightweight lens group other than the first lens group disposed on the most object side of the lens optical system is desired due to the demand for autofocusing. It was

このインナーフォーカス方式のレンズ光学系については、近年、数多く提案されているが、有限距離における変倍時のピントずれを防ぐための補正カムが必要とされており、このためレンズ鏡筒の機構が複雑になるという問題を抱えていた。 Although many proposals have been made in recent years for this inner focus type lens optical system, a correction cam is required to prevent focus shift during zooming at a finite distance, and therefore the lens barrel mechanism is required. I had the problem of becoming complicated.

インナーフォーカス方式を採用した従来技術として、特許文献1乃至4が開示されている。 Patent Documents 1 to 4 are disclosed as prior arts that employ the inner focus method.

特許文献1には、負の屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レンズ群と、負の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群を有し、所定の条件を満足することを特徴とし、最大画角が80°以上の広画角であり、2.7倍程度の変倍比を達成し、さらにFナンバーが2.8程度の大口径ズームレンズが開示されている。 Patent Document 1 discloses a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. It has a lens group and a fifth lens group having a positive refractive power, and is characterized by satisfying a predetermined condition. The maximum angle of view is a wide angle of view of 80° or more, and the change of about 2.7 times. A large-aperture zoom lens which achieves a double ratio and has an F number of about 2.8 is disclosed.

さらに、第2レンズ群を、物体側から順に、正の屈折力を持つ前群と、正の屈折力を持つ後群から構成し、無限遠物体から近距離物体へのフォーカシングの際に、前記前群を光軸に沿って移動させることとしている。 Further, the second lens group is composed of, in order from the object side, a front group having a positive refractive power and a rear group having a positive refractive power, and at the time of focusing from an infinite object to a short-distance object, The front group is supposed to move along the optical axis.

特許文献2には、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、複数のレンズ群を含み全体として正の屈折力を有する後群を有し、ズーミングに際して、隣り合うレンズ群の間隔が変化するズームレンズにおいて、前記第2レンズ群は、最も物体側から像側へ順に、負レンズ、負レンズと正レンズの接合レンズを含み、前記第2レンズ群は5枚以上のレンズを有し、前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2、前記接合レンズを構成する正レンズの屈折率をNdp、前記接合レンズを構成する負レンズの屈折率をNdnとし、所定の条件を満足することを特徴とし、大口径かつ広画角であるズームレンズが開示されている。 Patent Document 2 has a first lens group having a positive refracting power, a second lens group having a negative refracting power, and a rear group having a positive refracting power as a whole including a plurality of lens groups. In the zoom lens in which the distance between adjacent lens groups changes, the second lens group includes a negative lens and a cemented lens of a negative lens and a positive lens in order from the object side to the image side, and the second lens group is It has five or more lenses, the focal length of the first lens group is f1, the focal length of the second lens group is f2, the refractive index of the positive lens constituting the cemented lens is Ndp, and the cemented lens is constituted. There is disclosed a zoom lens having a large aperture and a wide angle of view, which is characterized in that the negative lens has a refractive index of Ndn and a predetermined condition is satisfied.

さらに、第2レンズ群L2を、フォーカシングの際に光軸方向に移動させることとしている。なお、フォーカシングはズームレンズ全体又は任意の1つのレンズ群を移動させて行っても良いとしている。 Further, the second lens unit L2 is moved in the optical axis direction during focusing. Focusing may be performed by moving the entire zoom lens or any one lens group.

特許文献3には、物体側から順に負負正正の4群で構成し、物体距離無限遠から近距離物体へフォーカシングする際に、第3レンズ群L3が像面方向へ移動させ、第3レンズ群の屈折力、および第3、4レンズ群の倍率を適切に設定することを特徴とし、インナーフォーカスに最適で広画角のズームレンズが開示されている。 In Patent Document 3, it is composed of four groups of negative, negative, positive, positive in order from the object side, and when focusing from an infinite object distance to a short-distance object, the third lens group L3 is moved in the image plane direction, and the third lens A zoom lens having a wide angle of view, which is suitable for inner focusing, is disclosed, which is characterized by appropriately setting the refractive power of the group and the magnifications of the third and fourth lens groups.

特許文献4には、物体側より順に負の屈折力の第1レンズ群G1、正の屈折力の単レンズからなる第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、負の屈折力の第5レンズ群G5で構成され、物体側無限遠から近距離物体へフォーカシングする際に、前記第2レンズ群G2を像面方向へ移動させ、所定の条件を満足することを特徴とし、フォーカスレンズ群が軽量で、像高変化率が小さく、インナーフォーカスに最適な、画角が120度を超える広画角の超広角ズームレンズが開示されている。 In Patent Document 4, in order from the object side, a first lens group G1 having a negative refracting power, a second lens group G2 including a single lens having a positive refracting power, a third lens group G3 having a positive refracting power, and a positive refracting power. It is composed of a fourth lens group G4 having a power and a fifth lens group G5 having a negative refractive power, and when focusing from an object-side infinity to a short-distance object, the second lens group G2 is moved in the image plane direction to a predetermined distance. There is disclosed a super wide-angle zoom lens having a wide angle of view of more than 120 degrees, which is suitable for inner focusing and which has a lightweight focus lens group and a small image height change rate. ..

特開2007−93976号公報JP-A-2007-93976 特開2013−160944号公報JP, 2013-160944, A 特開2001−188171号公報JP 2001-188171 A 特開2015−203734号公報JP, 2005-203734, A

上述のとおり、オートフォーカス化の要求から、ズームレンズのフォーカス形式には第1レンズ群以外の比較的軽量なレンズ群によりフォーカシングを行うインナーフォーカス方式が望まれている。このインナーフォーカス方式のレンズ光学系については、近年、数多く提案されている一方で、有限距離における変倍時のピントずれを防ぐための補正カムが必要となり機構が複雑になるという問題を抱えている。 As described above, due to the demand for auto-focusing, an inner focus method for performing focusing by a relatively lightweight lens group other than the first lens group is desired for the focus type of the zoom lens. While many lens optical systems of this inner focus type have been proposed in recent years, they have a problem that a correction cam is required to prevent a focus shift during zooming at a finite distance and the mechanism becomes complicated. ..

また、近年台頭してきたミラーレス一眼カメラでは、フォーカスレンズ群を光軸に沿う方向へ微少な振動(ウオブリング)をさせ続けることで、常にフォーカス駆動方向を判断し続ける方式のインナーフォーカス方式が開発されてきた。このようなインナーフォーカス方式では、ウオブリング時の像高変化率が大きいと、鑑賞者が画面に映る被写体の倍率変動を認識して目障りに感じてしまう問題が生じるおそれがある。したがって、ウオブリング時のフォーカスレンズ群の振動に対して像高変化率が小さいインナーフォーカス形式が望まれていた。 In addition, in the mirrorless interchangeable-lens camera that has recently emerged, an inner focus method has been developed that continuously determines the focus drive direction by keeping the focus lens group vibrating in a direction along the optical axis. Came. In such an inner focus method, if the rate of change in image height during wobbling is large, there is a possibility that the viewer may recognize the change in magnification of the subject on the screen and feel uncomfortable. Therefore, an inner focus type in which the image height change rate is small with respect to the vibration of the focus lens group during the wobbling has been desired.

特許文献1で開示されているズームレンズでは、第2レンズ群を2つに分け、軽量な第2レンズ群の前群でインナーフォーカスしているものの、変倍時に同一物体距離へ合焦するためのフォーカスレンズ群の繰り出し量が変化することにより、有限距離における変倍時のピントずれを防ぐための補正カムを必要とし、機構が複雑になる問題を抱えている。さらに、ウオブリング時の像高変化率が大きい問題は解決できていない。 In the zoom lens disclosed in Patent Document 1, the second lens group is divided into two, and the inner group is focused by the front group of the lightweight second lens group, but it is focused on the same object distance during zooming. Since the amount of extension of the focus lens group changes, a correction cam is required to prevent a focus shift at the time of zooming at a finite distance, and the mechanism is complicated. Furthermore, the problem that the image height change rate during wobbling is large has not been solved.

特許文献2で開示されているズームレンズでは、変倍にも寄与する第2レンズ群L2を光軸方向に移動させてインナーフォーカスしているため、変倍時に同一物体距離へ合焦するためのフォーカスレンズ群の繰り出し量が変化することにより、有限距離における変倍時のピントずれを防ぐために補正カムを必要とし、機構が複雑になる問題を抱えている。さらに、ウオブリング時の像高変化率が大きい問題は解決できていない。また、フォーカシングはズームレンズ全体又は任意の1つのレンズ群を移動させて行っても良い、との記載はあるもののウオブリング時の像高変化率を小さくする具体的な解決方法は開示されていない。 In the zoom lens disclosed in Patent Document 2, the second lens unit L2, which also contributes to zooming, is moved in the optical axis direction for inner focusing, so that the same object distance is focused during zooming. There is a problem that a mechanism is complicated because a correction cam is required to prevent a focus shift during zooming at a finite distance due to a change in the amount of extension of the focus lens group. Furthermore, the problem that the image height change rate during wobbling is large has not been solved. Although it is described that focusing may be performed by moving the entire zoom lens or any one lens group, no specific solution for reducing the image height change rate during wobbling is disclosed.

特許文献3で開示されているズームレンズでは、変倍時に同一物体距離へ合焦するためのフォーカスレンズ群の繰り出し量を一定とするインナーフォーカスが構成されているものの、Fナンバーが、広角端で3程度、望遠端で4程度しかなく大口径化が十分ではない。 The zoom lens disclosed in Patent Document 3 is configured with an inner focus that makes the amount of extension of the focus lens group constant for focusing on the same object distance during zooming, but the F number is wide-angle end. There is only about 3 and about 4 at the telephoto end, and it is not enough to increase the aperture.

特許文献4で開示されている超広角ズームレンズでは、変倍時に同一物体距離へ合焦するためのフォーカスレンズ群の繰り出し量を一定とするインナーフォーカスが構成されており、さらに、像倍率変動が抑えられているが、Fナンバーが、広角端で4.5程度、望遠端で5.6程度しかなく大口径化が十分ではない。 The ultra-wide-angle zoom lens disclosed in Patent Document 4 is configured with an inner focus in which the amount of extension of the focus lens group for focusing on the same object distance during zooming is constant, and further, variation in image magnification Although it has been suppressed, the F number is only about 4.5 at the wide-angle end and about 5.6 at the telephoto end, and the increase in aperture is not sufficient.

上記の課題を解決するため、第1の発明は、物体側より順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成され、広角端から望遠端への変倍の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔は変化せず、前記第2レンズ群G2と前記第3レンズ群G3との間隔が変化し、前記第3レンズ群G3と前記第4レンズ群G4との間隔が変化し、前記第4レンズ群G4と前記第5レンズ群G5との間隔が変化し、前記第5レンズ群G5と前記第6レンズ群G6との間隔が変化し、物体距離無限遠から近距離へフォーカシングする際、前記第2レンズ群G2が像面方向へ移動し、以下の条件を満足することを特徴とする大口径広角ズームレンズとした。
(1)1.5<f2/ft<5.0
(2)−2.8<MRT^2×(1−M2T^2)<−0.5
ただし、
ft:望遠端状態における物体距離無限遠時の焦点距離
f2:第2レンズ群G2の焦点距離
M2T:望遠端状態における物体距離無限遠時の第2レンズ群G2の横倍率
MRT:望遠端状態における物体距離無限遠時の第3レンズ群G3から第6レンズ群G6までの合成横倍率
In order to solve the above problems, the first invention is, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. G3, an aperture stop, a fourth lens group G4 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power , and zooming from the wide-angle end to the telephoto end. In this case, the distance between the first lens group G1 and the second lens group G2 does not change, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group The distance between G3 and the fourth lens group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the distance between the fifth lens group G5 and the sixth lens group G6 changes. A large-diameter wide-angle zoom lens is characterized in that the second lens group G2 moves in the image plane direction when focusing from an infinite object distance to a short distance due to a change in the distance, and the following conditions are satisfied.
(1) 1.5<f2/ft<5.0
(2)-2.8<MRT^2*(1-M2T^2)<-0.5
However,
ft: Object distance in the telephoto end state, focal length at infinity f2: Focal length of the second lens group G2 M2T: Object distance in telephoto end state Lateral magnification of the second lens group G2 at infinity MRT: In telephoto end state Composite lateral magnification from the third lens group G3 to the sixth lens group G6 when the object distance is infinity

第2の発明は、さらに、以下の条件を満足することを特徴とする大口径広角ズームレンズとした。
(3)0.3<FcEntp/f2<2.5
(4)2.5<FcEntp/fw
ただし、
FcEntp:第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置
fw:広角端状態における物体距離無限遠時の焦点距離
A second aspect of the invention is a large-diameter wide-angle zoom lens characterized by satisfying the following conditions.
(3) 0.3<FcEntp/f2<2.5
(4) 2.5<FcEntp/fw
However,
FcEntp: Image formation position of the aperture stop by the synthetic optical system from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state with reference to the object-side lens surface of the second lens group G2 fw: focal length when the object distance is infinity in the wide-angle end state

第3の発明は、さらに、前記第2レンズ群G2は、物体側から順に正の屈折力を有するG2Fレンズと負の屈折力を有するG2Rレンズからなり、以下の条件を満足することを特徴とする大口径広角ズームレンズとした。
(5)−0.9<f2F/f2R<−0.4
ただし、
f2F:第2レンズ群G2を構成する物体側のレンズG2Fの焦点距離
f2R:第2レンズ群G2を構成する像側のレンズG2Rの焦点距離
A third invention is characterized in that the second lens group G2 is composed of a G2F lens having a positive refractive power and a G2R lens having a negative refractive power in order from the object side, and satisfies the following condition. It is a large-diameter wide-angle zoom lens.
(5) -0.9<f2F/f2R<-0.4
However,
f2F: Focal length of the object-side lens G2F forming the second lens group G2 f2R: Focal length of the image-side lens G2R forming the second lens group G2

第4の発明は、さらに、変倍時において、前記第レンズ群Gが広角端と望遠端で像面に対し固定であることを特徴とする大口径広角ズームレンズとした。
A fourth aspect of the invention is a large aperture wide-angle zoom lens characterized in that the sixth lens group G 6 is fixed to the image surface at the wide-angle end and the telephoto end during zooming.

本発明によれば、各レンズ群の屈折力配置を適切に設定することにより、フォーカスレンズ群が軽量化され、有限距離における変倍時のピントずれを防ぐために補正カムを不要とし、ウオブリング時の像高変化率が小さく、インナーフォーカス方式に最適で、ズーム全域でFナンバーが2.8程度と明るく、広角端の焦点距離が24mm程度を有し、全ズーム範囲において良好な光学性能を有する大口径広角ズームレンズを提供することができる。 According to the present invention, by properly setting the refractive power arrangement of each lens group, the weight of the focus lens group is reduced, and a correction cam is unnecessary to prevent focus shift during zooming at a finite distance. It has a small image height change rate, is most suitable for the inner focus method, has a bright F number of about 2.8 over the entire zoom range, has a focal length of about 24 mm at the wide-angle end, and has good optical performance over the entire zoom range. A wide-angle wide-angle zoom lens can be provided.

本発明の実施例1の大口径広角ズームレンズの広角端における無限遠合焦時でのレンズ構成図である。FIG. 3 is a lens configuration diagram of the large-diameter wide-angle zoom lens of Embodiment 1 of the present invention when focusing on infinity at a wide-angle end. 本発明の実施例1の無限遠物体における縦収差図であり、aが広角端、bが中間焦点距離(52.18mm)、cが望遠端のものである。FIG. 4A is a longitudinal aberration diagram of an object at infinity according to Example 1 of the present invention, in which a is a wide-angle end, b is an intermediate focal length (52.18 mm), and c is a telephoto end. 本発明の実施例1の無限遠物体における横収差図であり、aが広角端、bが中間焦点距離(52.18mm)、cが望遠端のものである。FIG. 6 is a lateral aberration diagram of an object at infinity according to Example 1 of the present invention, in which a is a wide-angle end, b is an intermediate focal length (52.18 mm), and c is a telephoto end. 本発明の実施例1の物体距離500mmにおける縦収差図であり、aが広角端、bが中間焦点距離(52.18mm)、cが望遠端のものである。FIG. 6 is a longitudinal aberration diagram of Example 1 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (52.18 mm), and c is a telephoto end. 本発明の実施例1の物体距離500mmにおける横収差図であり、aが広角端、bが中間焦点距離(52.18mm)、cが望遠端のものである。FIG. 4A is a lateral aberration diagram of Example 1 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (52.18 mm), and c is a telephoto end. 本発明の実施例2の大口径広角ズームレンズの広角端における無限遠合焦時でのレンズ構成図である。FIG. 9 is a lens configuration diagram of the large-diameter wide-angle zoom lens of Embodiment 2 of the present invention at the wide-angle end at the time of focusing at infinity. 本発明の実施例2の無限遠物体における縦収差図であり、aが広角端、bが中間焦点距離(42.52mm)、cが望遠端のものである。FIG. 8 is a longitudinal aberration diagram of an object at infinity according to Example 2 of the present invention, where a is a wide-angle end, b is an intermediate focal length (42.52 mm), and c is a telephoto end. 本発明の実施例2の無限遠物体における横収差図であり、aが広角端、bが中間焦点距離(42.52mm)、cが望遠端のものである。FIG. 9 is a lateral aberration diagram of an object at infinity according to Example 2 of the present invention, where a is a wide-angle end, b is an intermediate focal length (42.52 mm), and c is a telephoto end. 本発明の実施例2の物体距離500mmにおける縦収差図であり、aが広角端、bが中間焦点距離(42.52mm)、cが望遠端のものである。FIG. 7 is a longitudinal aberration diagram for Example 2 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (42.52 mm), and c is a telephoto end. 本発明の実施例2の物体距離500mmにおける横収差図であり、aが広角端、bが中間焦点距離(42.52mm)、cが望遠端のものである。FIG. 8 is a lateral aberration diagram for Example 2 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (42.52 mm), and c is a telephoto end. 本発明の実施例3の大口径広角ズームレンズの広角端における無限遠合焦時でのレンズ構成図である。FIG. 9 is a lens configuration diagram of the large-diameter wide-angle zoom lens of Embodiment 3 of the present invention at the wide-angle end at the time of focusing at infinity. 本発明の実施例3の無限遠物体における縦収差図であり、aが広角端、bが中間焦点距離(42.40mm)、cが望遠端のものである。FIG. 9 is a longitudinal aberration diagram of an object at infinity according to Example 3 of the present invention, where a is a wide-angle end, b is an intermediate focal length (42.40 mm), and c is a telephoto end. 本発明の実施例3の無限遠物体における横収差図であり、aが広角端、bが中間焦点距離(42.40mm)、cが望遠端のものである。FIG. 9A is a lateral aberration diagram of an object at infinity according to Example 3 of the present invention, in which a is a wide-angle end, b is an intermediate focal length (42.40 mm), and c is a telephoto end. 本発明の実施例3の物体距離500mmにおける縦収差図であり、aが広角端、bが中間焦点距離(42.40mm)、cが望遠端のものである。FIG. 8 is a longitudinal aberration diagram of Example 3 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (42.40 mm), and c is a telephoto end. 本発明の実施例3の物体距離500mmにおける横収差図であり、aが広角端、bが中間焦点距離(42.40mm)、cが望遠端のものである。FIG. 9 is a lateral aberration diagram for Example 3 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (42.40 mm), and c is a telephoto end. 本発明の実施例4の大口径広角ズームレンズの広角端における無限遠合焦時でのレンズ構成図である。FIG. 9 is a lens configuration diagram of the large-diameter wide-angle zoom lens of Embodiment 4 of the present invention at the wide-angle end when focused on infinity. 本発明の実施例4の無限遠物体における縦収差図であり、aが広角端、bが中間焦点距離(41.99mm)、cが望遠端のものである。FIG. 9A is a longitudinal aberration diagram of an object at infinity according to Example 4 of the present invention, in which a is a wide-angle end, b is an intermediate focal length (41.99 mm), and c is a telephoto end. 本発明の実施例4の無限遠物体における横収差図であり、aが広角端、bが中間焦点距離(41.99mm)、cが望遠端のものである。FIG. 9 is a lateral aberration diagram of an object at infinity according to Example 4 of the present invention, where a is a wide-angle end, b is an intermediate focal length (41.99 mm), and c is a telephoto end. 本発明の実施例4の物体距離500mmにおける縦収差図であり、aが広角端、bが中間焦点距離(41.99mm)、cが望遠端のものである。FIG. 8 is a longitudinal aberration diagram of Example 4 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (41.99 mm), and c is a telephoto end. 本発明の実施例4の物体距離500mmにおける横収差図であり、aが広角端、bが中間焦点距離(41.99mm)、cが望遠端のものである。FIG. 9 is a lateral aberration diagram of Example 4 of the present invention at an object distance of 500 mm, where a is a wide-angle end, b is an intermediate focal length (41.99 mm), and c is a telephoto end.

以下、本発明の大口径広角ズームレンズの実施例について説明する。 Examples of the large-diameter wide-angle zoom lens according to the present invention will be described below.

本発明の大口径広角ズームレンズは、図1、6、11、16のレンズ構成図に示すとおり、物体側より順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成され、物体側無限遠から近距離物体へフォーカシングする際、第2レンズ群G2が像面方向へ移動する。 As shown in the lens configuration diagrams of FIGS. 1, 6, 11, and 16, the large-diameter wide-angle zoom lens of the present invention includes, in order from the object side, a first lens group G1 having a negative refractive power and a second lens having a positive refractive power. The group G2, the third lens group G3 having a positive refractive power, the aperture stop, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power. The second lens group G2 is configured to move in the image plane direction when focusing from an object-side infinity to a short-distance object.

本発明の大口径広角ズームレンズでは、レンズ光学系における屈折力配置について、物体側より順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成することにより、レンズ光学系全体をレトロフォーカス化して広角端の焦点距離を広画角な24mm程度を達成した。 In the large-aperture wide-angle zoom lens of the present invention, regarding the refractive power arrangement in the lens optical system, in order from the object side, the first lens group G1 having negative refractive power, the second lens group G2 having positive refractive power, and the positive refractive power. The third lens group G3, the aperture stop, the fourth lens group G4 with negative refractive power, the fifth lens group G5 with positive refractive power, and the sixth lens group G6 with negative refractive power The entire system was retrofocused to achieve a wide-angle focal length of about 24 mm at the wide-angle end.

さらに、第2レンズ群G2の屈折力を正とし、フォーカスレンズ群である第2レンズ群G2から見た開口絞りの像を遠方に形成することとし、また、フォーカスレンズ群である第2レンズ群G2の横倍率と、第2レンズ群G2以降のレンズ群の合成横倍率を規定することにより、ウオブリング時の像高変動を微小にすることを可能とした。 Further, the refractive power of the second lens group G2 is positive, and the image of the aperture stop viewed from the second lens group G2, which is the focus lens group, is formed at a distance, and the second lens group that is the focus lens group is formed. By defining the lateral magnification of G2 and the combined lateral magnification of the lens groups after the second lens group G2, it is possible to make the image height fluctuation during wobbling small.

さらに、第2レンズ群G2の変倍作用をなくすことで、変倍時に同一物体距離へ合焦するためのフォーカスレンズ群の繰り出し量を一定とすることにより、レンズ鏡筒のフォーカス機構が複雑になる問題を解消した。
さらに、第2レンズ群G2を物体側から順に正レンズと負レンズの2枚構成にすることにより、大口径化におけるフォーカシング時の収差変動を少なくした。
Furthermore, by eliminating the zooming action of the second lens group G2, the amount of extension of the focus lens group for focusing on the same object distance during zooming is made constant, thereby complicating the focus mechanism of the lens barrel. Solved the problem.
Further, the second lens group G2 is composed of two lens elements, a positive lens element and a negative lens element, arranged in order from the object side, so that aberration fluctuation during focusing in increasing the aperture is reduced.

また、変倍時において第レンズ群Gを像面に対し広角端、望遠端で固定とすることで、レンズ鏡筒のメカ構造的に信頼性の高い製品を得ることができる Further, by fixing the sixth lens group G 6 at the wide-angle end and the telephoto end with respect to the image plane during zooming, it is possible to obtain a product having a mechanically reliable lens barrel .

ここで、フォーカス群である第2レンズ群G2から見た開口絞りの像を遠方に形成すること、およびフォーカスレンズ群である第2レンズ群G2の横倍率と、それ以降のレンズ群の合成横倍率を規定することにより、ウオブリング時の像高変動を微小にすることができる理由を以下に説明する。 Here, the image of the aperture stop viewed from the second lens group G2, which is the focus group, is formed at a distant position, and the lateral magnification of the second lens group G2, which is the focus lens group, and the combined lateral magnification of the subsequent lens groups. The reason why the image height variation during wobbling can be made minute by defining the magnification will be described below.

ウオブリングによる像高変動はウオブリングによる歪曲収差の変動で表すことができる。松居吉哉著、レンズ設計法、共立出版P88によれば3次の歪曲収差係数Vは以下の式であらわされる。
V=J・IV
これを展開すると以下になり、3次の歪曲収差係数Vは近軸主光線高H’の3乗に比例する。
V=((H’・Q’)/(H・Q))・H・Δ(1/(n・s))+P・(H’・Q’)/(H・Q) 参考式(1)
The image height fluctuation due to the wobbling can be represented by the fluctuation of the distortion aberration due to the wobbling. According to Yoshiya Matsui, Lens Design Method, Kyoritsu Publishing P88, the third-order distortion aberration coefficient V is expressed by the following equation.
V=J·IV
When expanded, it becomes as follows, and the third-order distortion aberration coefficient V is proportional to the cube of the paraxial chief ray height H′.
V=((H'・Q') 3 /(H・Q))・H 2・Δ(1/(n・s))+P・(H'・Q')/(H・Q) Reference formula ( 1)

これより、ウオブリングによる歪曲収差の変動を少なくするには、ウオブリングによるフォーカスレンズ群の近軸主光線高の変動を少なくすればよい。
ここで、物体距離無限遠時の第2レンズ群G2の物体側の面を基準とした、第3レンズ群G3による開口絞りの像の位置、およびフォーカスレンズ群である第2レンズ群G2の横倍率、フォーカスレンズ群より後方のレンズ群である第3レンズ群G3から第6レンズ群G6までの合成横倍率、およびフォーカスレンズ群における主光線高から、ウオブリングによるフォーカスレンズ群の主光線高の変動Δhは以下の式で表される。
Δh=h’−h=h・Δs/(FcEntp×MR・(1−M2)) 参考式(2)
ただし、
FcEntp:第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における、物体距離無限遠時の、第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置
Δs:ウオブリング時の像面移動量
h:物体距離無限遠時のフォーカスレンズ群における主光線高
h’:ウオブリング時のフォーカスレンズ群における主光線高
M2:物体距離無限遠時の第2レンズ群G2の横倍率
MR:物体距離無限遠時の第3レンズ群G3から第6レンズ群G6までの合成横倍率
From this, in order to reduce the variation of the distortion aberration due to the wobbling, it is sufficient to reduce the variation of the paraxial chief ray height of the focus lens unit due to the wobbling.
Here, the position of the image of the aperture stop by the third lens group G3 with respect to the object side surface of the second lens group G2 when the object distance is infinity, and the lateral direction of the second lens group G2 which is the focus lens group. Variation of the chief ray height of the focus lens group due to the wobbling from the magnification, the combined lateral magnification of the third lens group G3 to the sixth lens group G6, which is the lens group behind the focus lens group, and the chief ray height of the focus lens group. Δh is represented by the following formula.
Δh=h′−h=h·Δs/(FcEntp×MR 2 ·(1−M2 2 )) Reference formula (2)
However,
FcEntp: Connection of the aperture stop by the synthetic optical system from the second lens group G2 to the object side of the aperture stop at the infinite object distance in the wide-angle end state with the object-side lens surface of the second lens group G2 as a reference. Image position Δs: amount of movement of image plane during wobbling h: height of chief ray in focus lens group at object distance infinity h′: height of chief ray in focus lens group at wobbling M2: second lens at object distance infinity Lateral magnification MR of group G2: Composite lateral magnification from the third lens group G3 to the sixth lens group G6 when the object distance is infinity

さらに、本実施例の大口径広角ズームレンズは、以下の条件式(1)を満足することを特徴とする。
(1)1.5<f2/ft<5.0
ただし、
ft:望遠端状態における物体距離無限遠時の焦点距離
f2:第2レンズ群G2の焦点距離
Furthermore, the large aperture wide-angle zoom lens of the present embodiment is characterized by satisfying the following conditional expression (1).
(1) 1.5<f2/ft<5.0
However,
ft: focal length at infinity in the telephoto end state f2: focal length of the second lens group G2

条件式(1)は、フォーカスレンズ群である第2レンズ群G2の焦点距離を規定し、合焦動作の高速化、レンズ光学系の小型化を実現するための条件である。 Conditional expression (1) defines the focal length of the second lens group G2, which is a focus lens group, and is a condition for realizing high-speed focusing operation and downsizing of the lens optical system.

条件式(1)の下限を超え第2レンズ群G2の焦点距離f2が短くなると、フォーカスのための繰出し量が短くなりすぎ、正確な合焦位置でフォーカスレンズ群を停止させることが困難になる。また、物体距離変化時の球面収差の変動、特に望遠端での変動を抑制できない。 When the lower limit of conditional expression (1) is exceeded and the focal length f2 of the second lens group G2 becomes short, the amount of extension for focusing becomes too short, and it becomes difficult to stop the focus lens group at an accurate focus position. .. Further, it is not possible to suppress the fluctuation of spherical aberration when the object distance changes, especially at the telephoto end.

一方、条件式(1)の上限を超え第2レンズ群G2の焦点距離f2が長くなると、フォーカスのための繰出し量が大きくなり、第2レンズ群G2と第3レンズ群G3との間のスペース確保が困難になりズーム比を高くすることができない。またレンズ光学系の全長の短縮化において不利となるため、広角端状態における第1レンズ群G1の周辺主光線高の抑制が困難となる。 On the other hand, if the upper limit of conditional expression (1) is exceeded and the focal length f2 of the second lens group G2 becomes long, the amount of extension for focusing becomes large, and the space between the second lens group G2 and the third lens group G3 becomes large. It becomes difficult to secure the zoom ratio and the zoom ratio cannot be increased. Further, it is disadvantageous in shortening the total length of the lens optical system, so that it becomes difficult to suppress the height of the peripheral chief ray of the first lens group G1 in the wide-angle end state.

なお、条件式(1)について、望ましくはその下限値を2.0に、また、上限値を4.0と限定することで、前述の効果をより確実にすることができる。 It is to be noted that, with regard to the conditional expression (1), it is desirable to limit the lower limit value to 2.0 and the upper limit value to 4.0, so that the above-described effect can be more reliably achieved.

また、本実施例の大口径広角ズームレンズは、以下の条件式(2)を満足することを特徴とする。
(2)−2.8<MRT×(1−M2T)<−0.5
ただし、
M2T:望遠端状態における物体距離無限遠時の第2レンズ群G2の横倍率
MRT:望遠端状態における物体距離無限遠時の第3レンズ群G3から第6レンズ群G6までの合成横倍率
The large-diameter wide-angle zoom lens of the present embodiment is characterized by satisfying the following conditional expression (2).
(2) -2.8 <MRT 2 × (1-M2T 2) <- 0.5
However,
M2T: Lateral magnification of the second lens group G2 when the object distance is infinity in the telephoto end state MRT: Composite lateral magnification from the third lens group G3 to the sixth lens group G6 when the object distance is infinity in the telephoto end state

条件式(2)は、AF時に合焦範囲内にフォーカスレンズ群である第2レンズ群G2を駆動制御するため、第2レンズ群G2、および、第2レンズ群G2以降の倍率負担を規制する条件である。 Conditional expression (2) controls the driving of the second lens group G2, which is a focus lens group, within the focusing range during AF, so that the second lens group G2 and the magnification burden after the second lens group G2 are restricted. It is a condition.

条件式(2)は、フォーカシング時に第2レンズ群G2が移動した際の結像面の敏感度を規定する。この敏感度を適切に規定することにより、AF時に合焦範囲内にフォーカスレンズ群を駆動制御することが可能となる。また、参考式(2)に示すように、この値がゼロに近づくほどウオブリングによるフォーカスレンズ群の主光線高の変動Δhが大きくなるため適切な範囲が必要となる。 Conditional expression (2) defines the sensitivity of the image plane when the second lens group G2 moves during focusing. By appropriately defining this sensitivity, it becomes possible to drive and control the focus lens group within the focusing range during AF. Further, as shown in the reference formula (2), the variation Δh of the chief ray height of the focus lens group due to the wobbling increases as this value approaches zero, so that an appropriate range is required.

条件式(2)の上限を超え結像面の敏感度が小さくなると、フォーカスレンズ群の移動量が大きくなり、ウオブリングによるフォーカスレンズ群の主光線高の変動Δhが大きくなるため、像高変動を抑制する効果は弱くなり、ウオブリング時の像高変動を抑えることが困難になる。さらに、フォーカシングのための第2レンズ群G2と第3レンズ群G3とのスペースを確保しなければならず、レンズ光学系をコンパクトにすることが困難になる。 When the upper limit of conditional expression (2) is exceeded and the sensitivity of the image formation surface decreases, the amount of movement of the focus lens group increases, and the fluctuation Δh of the chief ray height of the focus lens group due to the wobbling increases. The suppressing effect becomes weak, and it becomes difficult to suppress the image height variation during wobbling. Further, it is necessary to secure a space between the second lens group G2 and the third lens group G3 for focusing, which makes it difficult to make the lens optical system compact.

また、条件式(2)の下限を超え結像面の敏感度が大きくなると、フォーカスレンズ群の移動量が少なくなるため、フォーカスレンズ群の微少な動きで結像面が大きく動き、AF時に合焦範囲内にフォーカスレンズ群である第2レンズ群G2を駆動制御することが困難になる。 Further, when the lower limit of conditional expression (2) is exceeded and the sensitivity of the image forming surface increases, the moving amount of the focus lens group decreases. It becomes difficult to drive and control the second lens group G2, which is the focus lens group, within the focus range.

なお、条件式(2)について、望ましくはその上限値を−1.1に、また下限値を−1.8に限定することで、前述の効果をより確実にすることができる。 It is to be noted that, with regard to the conditional expression (2), it is desirable to limit the upper limit value to -1.1 and the lower limit value to -1.8, so that the above-described effect can be further ensured.

また、本実施例の大口径広角ズームレンズは、以下の条件式(3)及び(4)を満足することを特徴とする。
(3)0.3<FcEntp/f2<2.5
(4)2.5<FcEntp/fw
ただし、
FcEntp:第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置
fw:広角端状態における物体距離無限遠時の焦点距離
The large-diameter wide-angle zoom lens of the present embodiment is characterized by satisfying the following conditional expressions (3) and (4).
(3) 0.3<FcEntp/f2<2.5
(4) 2.5<FcEntp/fw
However,
FcEntp: Image formation position of the aperture stop by the synthetic optical system from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state with reference to the object-side lens surface of the second lens group G2 fw: focal length when the object distance is infinity in the wide-angle end state

条件式(3)及び(4)は、第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置と、第2レンズ群G2の焦点距離及び広角端状態における物体距離無限遠時の焦点距離との比をそれぞれ適切に規定してウオブリング時の像高変動を抑制するための条件である。 Conditional expressions (3) and (4) are combined from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state with the object-side lens surface of the second lens group G2 as a reference. The ratio of the image forming position of the aperture stop by the optical system to the focal length of the second lens group G2 and the focal length when the object distance is infinity in the wide-angle end state is appropriately regulated to suppress image height fluctuation during wobbling. It is a condition for doing.

条件式(3)の下限を超え、第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置の距離が小さくなると、ウオブリング時のフォーカスレンズ群の主光線高の変動が大きくなるため、ウオブリング時の像高変動を抑制することが困難になる。 Synthetic optics from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state in which the lower limit of conditional expression (3) is exceeded and the object-side lens surface of the second lens group G2 is used as a reference. When the distance of the image forming position of the aperture stop by the system becomes small, the fluctuation of the chief ray height of the focus lens group at the time of wobbling becomes large, so that it becomes difficult to suppress the fluctuation of the image height at the time of wobbling.

また、条件式(3)の上限を超え、第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置の距離が大きくなると、フォーカスレンズ群から開口絞りまでの距離が大きくなるため、広角端の光学全長が長くなり、フィルター径の増大や周辺光量を確保することが困難になる。また、第2レンズ群G2の焦点距離が短くなると、第1乃至第2レンズ群G2の合成光学系の負の屈折力が弱くなるため、バックフォーカスが短くなり、一眼レフレックスカメラに装着使用する際のクイックリターンミラーへの干渉抑制が困難になる。 Further, from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state in which the upper limit of the conditional expression (3) is exceeded and the object-side lens surface of the second lens group G2 is used as a reference. When the distance between the focus lens group and the aperture stop by the synthetic optical system increases, the distance from the focus lens group to the aperture stop increases, so the overall optical length at the wide-angle end becomes longer, increasing the filter diameter and securing the amount of peripheral light. Becomes difficult. Further, when the focal length of the second lens group G2 becomes shorter, the negative refracting power of the synthetic optical system of the first and second lens groups G2 becomes weaker, so that the back focus becomes shorter and the lens is used in a single-lens reflex camera. In that case, it becomes difficult to suppress interference with the quick return mirror.

なお、条件式(3)について、その下限値をさらに0.5に、また、上限値をさらに1.8に限定することで、前述の効果をより確実にすることができる。 The conditional effect (3) can be further ensured by limiting the lower limit value to 0.5 and the upper limit value to 1.8.

条件式(4)の下限を超え、第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置の距離が小さくなると、ウオブリング時のフォーカスレンズ群の主光線高の変動が大きくなるため、ウオブリング時の像高変動を抑制することが困難になる。 Synthetic optics from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state in which the lower limit of conditional expression (4) is exceeded and the object-side lens surface of the second lens group G2 is used as a reference. When the distance of the image forming position of the aperture stop by the system becomes small, the fluctuation of the chief ray height of the focus lens group at the time of wobbling becomes large, so that it becomes difficult to suppress the fluctuation of the image height at the time of wobbling.

なお、条件式(4)について、望ましくはその下限値をさらに4.0に限定することで、前述の効果をより確実にすることができる。 The conditional expression (4) is preferably further limited to a lower limit value of 4.0, so that the above-described effect can be further ensured.

また、実施例の大口径広角ズームレンズは、第2レンズ群G2は、物体側から順に正の屈折力を有するG2Fレンズと負の屈折力を有するG2Rレンズからなり、以下の条件を満足することを特徴とする。
(5)−0.9<f2F/f2R<−0.4
ただし、
f2F:第2レンズ群G2を構成する物体側のレンズG2Fの焦点距離
f2R:第2レンズ群G2を構成する像側のレンズG2Rの焦点距離
In the large-diameter wide-angle zoom lens of the embodiment, the second lens group G2 is composed of a G2F lens having a positive refractive power and a G2R lens having a negative refractive power in order from the object side, and the following conditions are satisfied. Is characterized by.
(5) -0.9<f2F/f2R<-0.4
However,
f2F: Focal length of the object-side lens G2F forming the second lens group G2 f2R: Focal length of the image-side lens G2R forming the second lens group G2

条件式(5)は、フォーカスレンズ群である第2レンズ群G2を構成するレンズの焦点距離を規定することで、大口径化による性能低下、およびフォーカシング時の収差変動を抑制するための条件である。 Conditional expression (5) defines the focal length of the lens that constitutes the second lens group G2, which is the focus lens group, and is a condition for suppressing the performance deterioration due to the large aperture and the aberration fluctuation during focusing. is there.

条件式(5)の下限を超え第2レンズ群G2を構成するレンズG2Fの正の屈折力が小さくなる、あるいは第2レンズ群G2を構成するレンズG2Rの負の屈折力が大きくなると、望遠端状態でオーバーな球面収差を補正することが困難になる。さらに、至近距離になるほどその影響は顕著になり、フォーカシング時の球面収差の変動を抑制できない。 If the lower limit of conditional expression (5) is exceeded and the positive refractive power of the lens G2F constituting the second lens group G2 becomes smaller, or the negative refractive power of the lens G2R constituting the second lens group G2 becomes larger, the telephoto end It becomes difficult to correct excessive spherical aberration in this state. Further, the influence becomes more remarkable as the distance becomes closer, and the fluctuation of spherical aberration during focusing cannot be suppressed.

条件式(5)の上限を超え前記G2Fの正の屈折力が大きく、あるいは前記G2Rの負の屈折力が小さくなると、望遠端状態でアンダーな球面収差を補正することが困難になる。さらに至近距離になるほどその影響は顕著になり、フォーカシング時の球面収差の変動を抑制できない。 When the upper limit of the conditional expression (5) is exceeded and the positive refractive power of the G2F is large or the negative refractive power of the G2R is small, it becomes difficult to correct the under spherical aberration in the telephoto end state. Further, the closer the distance is, the more remarkable the effect is, and the fluctuation of spherical aberration during focusing cannot be suppressed.

なお、第2レンズ群G2を構成するレンズの屈折力を物体側から順に正、負の屈折力とすることにより、特に大口径化による望遠側の球面収差の補正を容易にしている。 By making the refracting powers of the lenses constituting the second lens group G2 to be positive and negative refracting powers in order from the object side, it is easy to correct spherical aberration on the telephoto side due to a large aperture.

本発明では第1レンズ群G1が負の屈折力を有するため、第1レンズ群G1通過後の軸上マージナル光線は発散傾向にある。また、フォーカスレンズ群である第2レンズ群G2は物体距離無限遠から近距離物体へフォーカシングする際、像面方向へ移動するため、より発散傾向の影響を受けうる。そのため、第1レンズ群G1直後に正の屈折力を配置することにより、発散傾向を緩和しなければならない。 In the present invention, since the first lens group G1 has a negative refractive power, the axial marginal ray after passing through the first lens group G1 tends to diverge. Further, the second lens group G2, which is a focus lens group, moves toward the image plane when focusing from an infinite object distance to a short-distance object, so that the second lens group G2 may be more affected by the divergence tendency. Therefore, it is necessary to reduce the divergence tendency by disposing a positive refractive power immediately after the first lens group G1.

なお、条件式(5)について、その下限値をさらに−0.7に、また、上限値をさらに−0.6とすることで、前述の効果をより確実にすることができる。 In conditional expression (5), if the lower limit value is further set to −0.7 and the upper limit value is further set to −0.6, the above-described effect can be more ensured.

次に、本発明の大口径広角ズームレンズに係る各実施例のレンズ構成と具体的な数値データについて説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, the lens configuration and specific numerical data of each embodiment relating to the large-diameter wide-angle zoom lens of the present invention will be described. In the following description, the lens configurations will be described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数を示している。 In [Surface data], the surface number is the lens surface or aperture stop number counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, and nd is the refractive index for the d line (wavelength 587.56 nm). , Vd represent Abbe numbers for the d line.

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。また、BFはバックフォーカスを表している。 The * (asterisk) attached to the surface number indicates that the lens surface shape is an aspherical surface. In addition, BF represents the back focus.

面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面又は開口絞りに対する曲率半径には∞(無限大)を記入している。 The (diaphragm) attached to the surface number indicates that the aperture diaphragm is located at that position. ∞ (infinity) is entered in the radius of curvature for a plane or an aperture stop.

[非球面データ]には、[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、非球面の形状は、光軸に直交する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をK、4、6、8、10、12次の非球面係数をそれぞれA4、A6、A8、A10、A12と置くとき、非球面の座標が以下の式で表されるものとする。 In [Aspherical surface data], each coefficient value giving the aspherical surface shape of the lens surface marked with * in [Surface data] is shown. As for the shape of the aspherical surface, the shape of the aspherical surface is y, the displacement from the optical axis in the direction orthogonal to the optical axis, and z is the displacement (sag amount) from the intersection of the aspherical surface and the optical axis in the optical axis direction. When the radius of curvature of the spherical surface is r, the conic coefficient is K, the aspherical coefficients of orders 4, 6, 8, 10, and 12 are A4, A6, A8, A10, and A12, respectively, the coordinates of the aspherical surface are given by Shall be represented.

Figure 0006749631
Figure 0006749631

[各種データ]には、ズーム比及び各焦点距離状態における焦点距離等の値を示している。 [Various data] indicates values such as the zoom ratio and the focal length in each focal length state.

[可変間隔データ]には、各焦点距離状態における、無限遠及び物体距離500mmでの可変間隔及びBFの値を示している。 [Variable distance data] shows the variable distance and the value of BF at infinity and an object distance of 500 mm in each focal length state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 The [lens group data] shows the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the values of the following specifications, the units of the focal length f, the radius of curvature r, the lens surface distance d, and other lengths described are millimeters (mm) unless otherwise specified. The system is not limited to this because the same optical performance can be obtained in the proportional enlargement and the proportional reduction.

また、これらの各実施例における条件式の対応値の一覧を示す。 Further, a list of corresponding values of the conditional expressions in each of these examples is shown.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。 In the aberration diagrams corresponding to the respective examples, d, g, and C represent the d line, g line, and C line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively.

さらに図1、6、10、11,16に示すレンズ構成図において、Sは開口絞り、Iは像面、中心を通る一点鎖線は光軸である。 Further, in the lens configuration diagrams shown in FIGS. 1, 6, 10, 11, and 16, S is the aperture stop, I is the image plane, and the alternate long and short dash line passing through the center is the optical axis.

図1は、本発明の実施例1の結像光学系の広角端で無限遠合焦時のレンズ構成図である。物体側より順に負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成される。 FIG. 1 is a lens configuration diagram of an image forming optical system according to a first exemplary embodiment of the present invention when focusing on an object at infinity at a wide angle end. The first lens group G1 having negative refractive power, the second lens group G2 having positive refractive power, the third lens group G3 having positive refractive power, the aperture stop, and the fourth lens group G4 having negative refractive power in order from the object side. , A fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ、物体側の面は非球面形状で両凹レンズ、物体側に凸面を向けた正メニスカスレンズから成る。 The first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens having an aspherical surface on the object side, and a positive meniscus lens having a convex surface directed toward the object side.

また、第2レンズ群G2は、両凸レンズ、物体側に凸面を向けた負メニスカスレンズから成る。 The second lens group G2 includes a biconvex lens and a negative meniscus lens having a convex surface directed toward the object side.

また、第3レンズ群G3は、物体側の面は非球面形状で凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合の正レンズ、両凸レンズで構成される。 The third lens group G3 is composed of a biconvex lens and a positive lens in which a negative meniscus lens having an aspherical surface on the object side and having a convex surface and a positive meniscus lens having a convex surface on the object side are cemented.

また、第4レンズ群G4は、開口絞り、物体側に凹面を向けた正メニスカスレンズと両凹レンズとから成る接合の負レンズ、物体側に凹面を向けた負メニスカスレンズから成る。 The fourth lens group G4 includes an aperture stop, a negative lens cemented with a positive meniscus lens having a concave surface facing the object side and a biconcave lens, and a negative meniscus lens having a concave surface facing the object side.

また、第5レンズ群G5は、両凸レンズと物体側に凹面を向けた負メニスカスレンズとから成る接合の正レンズ、像面側の面は非球面形状で物体側に凹面を向けた正メニスカスレンズから成る。 The fifth lens group G5 is a positive lens cemented with a biconvex lens and a negative meniscus lens having a concave surface facing the object side, and a positive meniscus lens having an aspherical surface on the image side and a concave surface facing the object side. Consists of.

また、第6レンズ群G6は、両凸レンズと両凹レンズの接合からなる負レンズから成る。 The sixth lens group G6 is composed of a negative lens formed by cementing a biconvex lens and a biconcave lens.

数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 56.7807 3.2000 1.91082 35.25
2 27.9222 14.2519
3* -104.1794 2.7000 1.77250 49.62
4 59.4100 0.1500
5 47.4587 3.3893 1.92286 20.88
6 76.1948 (d6)
7 64.7639 5.9259 1.77250 49.62
8 -249.9971 0.1500
9 111.0807 1.0000 1.76182 26.61
10 46.6566 (d10)
11* 49.3167 0.8000 1.68893 31.16
12 32.9447 7.7444 1.62299 58.12
13 209.3750 1.4857
14 63.9219 8.4834 1.49700 81.60
15 -71.8376 (d15)
16(絞り) ∞ 1.6500
17 -587.7737 3.8707 1.92286 20.88
18 -39.5294 1.1500 1.54072 47.20
19 45.9206 5.0063
20 -28.4583 1.1500 1.78590 43.93
21 -125.9984 (d21)
22 51.1191 7.6209 1.49700 81.60
23 -33.5588 1.0000 1.92286 20.88
24 -34.9771 0.2000
25 -137.6231 1.3596 1.51680 64.19
26* -70.5206 (d26)
27 339.7705 6.5055 1.77250 49.62
28 -28.1740 1.2000 1.76182 26.61
29 143.4623 (BF)
像面 ∞
[非球面データ]
3面 11面 26面
K -6.6406 0.0000 -3.6506
A4 1.62584E-06 -2.83919E-06 8.14668E-06
A6 -5.23471E-11 3.13040E-10 5.13155E-09
A8 -1.69980E-12 -3.41476E-13 7.68927E-13
A10 4.31858E-15 -7.96020E-16 1.94713E-14
A12 -2.65861E-18 0.0000 0.0000
[各種データ]
ズーム比 2.67
広角 中間 望遠
焦点距離 25.21 52.18 67.27
Fナンバー 2.89 2.88 2.91
全画角2ω 83.21 44.34 34.95
像高Y 21.60 21.60 21.60
レンズ全長 194.00 187.79 194.01
[可変間隔データ]
(物体距離無限遠)
広角 中間 望遠
d0 ∞ ∞ ∞
d6 1.0000 1.0000 1.0000
d10 43.4545 15.5492 9.5442
d15 0.4614 25.0150 34.6006
d21 15.6849 5.4384 1.6000
d26 1.4000 8.7762 15.2700
BF 52.0056 52.0139 52.0041
(物体距離500mm)
広角 中間 望遠
d0 306.0000 312.2138 306.0000
d6 8.0474 7.9290 8.0474
d10 36.4071 8.6202 2.4968
d15 0.4614 25.0150 34.6006
d21 15.6849 5.4384 1.6000
d26 1.4000 8.7762 15.2700
BF 52.0056 52.0138 52.0040
[レンズ群データ]
群 始面 焦点距離
G1 1 -31.36
G2 7 166.04
G3 11 45.23
G4 16 -39.70
G5 22 38.42
G6 27 -383.62
Numerical Example 1
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 56.7807 3.2000 1.91082 35.25
2 27.9222 14.2519
3* -104.1794 2.7000 1.77250 49.62
4 59.4100 0.1500
5 47.4587 3.3893 1.92286 20.88
6 76.1948 (d6)
7 64.7639 5.9259 1.77250 49.62
8 -249.9971 0.1500
9 111.0807 1.0000 1.76182 26.61
10 46.6566 (d10)
11* 49.3167 0.8000 1.68893 31.16
12 32.9447 7.7444 1.62299 58.12
13 209.3750 1.4857
14 63.9219 8.4834 1.49700 81.60
15 -71.8376 (d15)
16 (aperture) ∞ 1.6500
17 -587.7737 3.8707 1.92286 20.88
18 -39.5294 1.1500 1.54072 47.20
19 45.9206 5.0063
20 -28.4583 1.1500 1.78590 43.93
21 -125.9984 (d21)
22 51.1191 7.6209 1.49700 81.60
23 -33.5588 1.0000 1.92286 20.88
24 -34.9771 0.2000
25 -137.6231 1.3596 1.51680 64.19
26* -70.5206 (d26)
27 339.7705 6.5055 1.77250 49.62
28 -28.1740 1.2000 1.76182 26.61
29 143.4623 (BF)
Image plane ∞
[Aspherical data]
3 sides 11 sides 26 sides
K -6.6406 0.0000 -3.6506
A4 1.62584E-06 -2.83919E-06 8.14668E-06
A6 -5.23471E-11 3.13040E-10 5.13155E-09
A8 -1.69980E-12 -3.41476E-13 7.68927E-13
A10 4.31858E-15 -7.96020E-16 1.94713E-14
A12 -2.65861E-18 0.0000 0.0000
[Various data]
Zoom ratio 2.67
Wide-angle mid-telephoto focal length 25.21 52.18 67.27
F number 2.89 2.88 2.91
Full angle of view 2ω 83.21 44.34 34.95
Image height Y 21.60 21.60 21.60
Total lens length 194.00 187.79 194.01
[Variable interval data]
(Infinite object distance)
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d6 1.0000 1.0000 1.0000
d10 43.4545 15.5492 9.5442
d15 0.4614 25.0150 34.6006
d21 15.6849 5.4384 1.6000
d26 1.4000 8.7762 15.2700
BF 52.0056 52.0139 52.0041
(Object distance 500 mm)
Wide-angle mid-telephoto
d0 306.0000 312.2138 306.0000
d6 8.0474 7.9290 8.0474
d10 36.4071 8.6202 2.4968
d15 0.4614 25.0150 34.6006
d21 15.6849 5.4384 1.6000
d26 1.4000 8.7762 15.2700
BF 52.0056 52.0138 52.0040
[Lens group data]
Focal length of front surface
G1 1 -31.36
G2 7 166.04
G3 11 45.23
G4 16 -39.70
G5 22 38.42
G6 27 -383.62

図6は、本発明の実施例2の結像光学系の広角端で無限遠合焦時のレンズ構成図である。物体側より順に負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成される。 FIG. 6 is a lens configuration diagram of the image forming optical system according to the second embodiment of the present invention when focusing on infinity at the wide-angle end. The first lens group G1 having negative refractive power, the second lens group G2 having positive refractive power, the third lens group G3 having positive refractive power, the aperture stop, and the fourth lens group G4 having negative refractive power in order from the object side. , A fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ、物体側の面は非球面形状で両凹レンズ、物体側に凸面を向けた正メニスカスレンズから成る。 The first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens having an aspherical surface on the object side, and a positive meniscus lens having a convex surface directed toward the object side.

また、第2レンズ群G2は、両凸レンズ、物体側に凸面を向けた負メニスカスレンズから成る。 The second lens group G2 includes a biconvex lens and a negative meniscus lens having a convex surface directed toward the object side.

また、第3レンズ群G3は、物体側の面は非球面形状で凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合の正レンズ、両凸レンズ、両凸レンズで構成される。 The third lens group G3 is composed of a positive lens, a biconvex lens, and a biconvex lens in which a negative meniscus lens having a convex surface on the object side and a positive meniscus lens having a convex surface on the object side are cemented. To be done.

また、第4レンズ群G4は、開口絞り、両凸レンズと両凹レンズとから成る接合の正レンズ、物体側に凹面を向けた負メニスカスレンズから成る。 The fourth lens group G4 includes an aperture stop, a positive lens cemented with a biconvex lens and a biconcave lens, and a negative meniscus lens having a concave surface facing the object side.

また、第5レンズ群G5は、両凸レンズと物体側に凹面を向けた正メニスカスレンズと像面側の面は非球面形状で物体側に凹面を向けた負メニスカスレンズとから成る接合の正レンズから成る。 The fifth lens group G5 is a cemented positive lens including a biconvex lens, a positive meniscus lens having a concave surface facing the object side, and a negative meniscus lens having an aspherical surface on the image side and a concave surface facing the object side. Consists of.

また、第6レンズ群G6は、両凸レンズと両凹レンズの接合からなる負レンズから成る。 The sixth lens group G6 is composed of a negative lens formed by cementing a biconvex lens and a biconcave lens.

数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 57.4819 3.2000 1.92286 20.88
2 32.8559 16.5839
3* -99.1776 2.7000 1.62299 58.16
4 46.9941 0.1500
5 41.8131 3.7399 1.92286 20.88
6 54.1424 (d6)
7 70.6840 6.1757 1.73077 40.50
8 -560.1041 0.1500
9 94.5421 1.0000 1.92286 20.88
10 53.6460 (d10)
11* 62.5000 0.8000 1.68893 31.16
12 47.6349 4.4557 1.49700 81.60
13 117.4268 1.6978
14 55.4422 7.0000 1.49700 81.60
15 -194.8117 0.2000
16 306.1779 3.8693 1.49700 81.60
17 -101.5608 (d17)
18(絞り) ∞ 1.6500
19 152.1478 4.5564 1.92286 20.88
20 -48.4339 1.1500 1.61772 49.81
21 50.4337 5.5969
22 -29.1611 1.1500 1.91082 35.25
23 -177.9931 (d23)
24 144.9672 5.5000 1.49700 81.60
25 -45.4414 0.3000
26 -157.3237 5.0585 1.80440 39.58
27 -34.5188 1.0000 1.92119 23.95
28* -43.0674 (d28)
29 47.7954 15.1487 1.496997 81.60
30 -37.9349 1.2000 1.92286 20.88
31 133.1914 (BF)
像面 ∞
[非球面データ]
3面 11面 28面
K -2.7225 0.0000 2.1268
A4 2.53739E-06 -2.07494E-06 4.76511E-06
A6 -2.93382E-09 4.34778E-10 5.32315E-09
A8 5.45469E-12 -6.60208E-13 -1.77872E-12
A10 -6.11676E-15 -1.62051E-16 2.07618E-14
A12 2.68392E-18 0.0000 0.0000
[各種データ]
ズーム比 2.73
広角 中間 望遠
焦点距離 24.75 42.52 67.47
Fナンバー 2.91 2.89 2.91
全画角2ω 84.26 53.32 34.85
像高Y 21.60 21.60 21.60
レンズ全長 210.00 202.59 210.00
[可変間隔データ]
(物体距離無限遠)
広角 中間 望遠
d0 ∞ ∞ ∞
d6 2.9534 2.9534 2.9534
d10 50.9901 26.6545 13.3578
d17 0.6860 20.2294 35.0206
d23 16.2976 9.1300 1.6000
d28 1.4000 5.9500 19.3900
BF 43.6418 43.6441 43.6450
(物体距離500mm)
広角 中間 望遠
d0 290.0000 297.4091 290.0000
d6 13.2790 13.0717 13.2789
d10 40.6645 16.5362 3.0323
d17 0.6860 20.2294 35.0206
d23 16.2976 9.1300 1.6000
d28 1.4000 5.9500 19.3900
BF 43.6417 43.6441 43.6450
[レンズ群データ]
群 始面 焦点距離
G1 1 -34.95
G2 7 216.04
G3 11 50.86
G4 18 -39.90
G5 24 37.92
G6 29 -171.10
Numerical Example 2
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 57.4819 3.2000 1.92286 20.88
2 32.8559 16.5839
3* -99.1776 2.7000 1.62299 58.16
4 46.9941 0.1500
5 41.8131 3.7399 1.92286 20.88
6 54.1424 (d6)
7 70.6840 6.1757 1.73077 40.50
8 -560.1041 0.1500
9 94.5421 1.0000 1.92286 20.88
10 53.6460 (d10)
11* 62.5000 0.8000 1.68893 31.16
12 47.6349 4.4557 1.49700 81.60
13 117.4268 1.6978
14 55.4422 7.0000 1.49700 81.60
15 -194.8117 0.2000
16 306.1779 3.8693 1.49700 81.60
17 -101.5608 (d17)
18 (aperture) ∞ 1.6500
19 152.1478 4.5564 1.92286 20.88
20 -48.4339 1.1500 1.61772 49.81
21 50.4337 5.5969
22 -29.1611 1.1500 1.91082 35.25
23 -177.9931 (d23)
24 144.9672 5.5000 1.49700 81.60
25 -45.4414 0.3000
26 -157.3237 5.0585 1.80440 39.58
27 -34.5188 1.0000 1.92119 23.95
28* -43.0674 (d28)
29 47.7954 15.1487 1.496997 81.60
30 -37.9349 1.2000 1.92286 20.88
31 133.1914 (BF)
Image plane ∞
[Aspherical data]
3 sides 11 sides 28 sides
K -2.7225 0.0000 2.1268
A4 2.53739E-06 -2.07494E-06 4.76511E-06
A6 -2.93382E-09 4.34778E-10 5.32315E-09
A8 5.45469E-12 -6.60208E-13 -1.77872E-12
A10 -6.11676E-15 -1.62051E-16 2.07618E-14
A12 2.68392E-18 0.0000 0.0000
[Various data]
Zoom ratio 2.73
Wide-angle mid-telephoto focal length 24.75 42.52 67.47
F number 2.91 2.89 2.91
Full angle of view 2ω 84.26 53.32 34.85
Image height Y 21.60 21.60 21.60
Total lens length 210.00 202.59 210.00
[Variable interval data]
(Infinite object distance)
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d6 2.9534 2.9534 2.9534
d10 50.9901 26.6545 13.3578
d17 0.6860 20.2294 35.0206
d23 16.2976 9.1300 1.6000
d28 1.4000 5.9500 19.3900
BF 43.6418 43.6441 43.6450
(Object distance 500 mm)
Wide-angle mid-telephoto
d0 290.0000 297.4091 290.0000
d6 13.2790 13.0717 13.2789
d10 40.6645 16.5362 3.0323
d17 0.6860 20.2294 35.0206
d23 16.2976 9.1300 1.6000
d28 1.4000 5.9500 19.3900
BF 43.6417 43.6441 43.6450
[Lens group data]
Focal length of front surface
G1 1 -34.95
G2 7 216.04
G3 11 50.86
G4 18 -39.90
G5 24 37.92
G6 29 -171.10

図11は、本発明の実施例3の結像光学系の広角端で無限遠合焦時のレンズ構成図である。物体側より順に負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成される。 FIG. 11 is a lens configuration diagram of the image forming optical system according to the third embodiment of the present invention when focused at infinity at the wide-angle end. The first lens group G1 having negative refractive power, the second lens group G2 having positive refractive power, the third lens group G3 having positive refractive power, the aperture stop, and the fourth lens group G4 having negative refractive power in order from the object side. , A fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ、物体側の面は非球面形状で両凹レンズ、物体側に凸面を向けた正メニスカスレンズから成る。 The first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens having an aspherical surface on the object side, and a positive meniscus lens having a convex surface directed toward the object side.

また、第2レンズ群G2は、両凸レンズ、物体側に凸面を向けた負メニスカスレンズから成る。 The second lens group G2 includes a biconvex lens and a negative meniscus lens having a convex surface directed toward the object side.

また、第3レンズ群G3は、物体側の面は非球面形状で凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合の正レンズ、両凸レンズ、両凸レンズで構成される。 The third lens group G3 is composed of a positive lens, a biconvex lens, and a biconvex lens in which a negative meniscus lens having a convex surface on the object side and a positive meniscus lens having a convex surface on the object side are cemented. To be done.

また、第4レンズ群G4は、開口絞り、物体両凸レンズと両凹レンズとから成る接合の負レンズ、物体側に凹面を向けた負メニスカスレンズから成る。 The fourth lens group G4 includes an aperture stop, a negative lens cemented with an object biconvex lens and a biconcave lens, and a negative meniscus lens having a concave surface facing the object side.

また、第5レンズ群G5は、両凸レンズ、両凸レンズと物体側に凹面を向け像面側の面は非球面形状である負メニスカスレンズとから成る接合の正レンズから成る。 The fifth lens group G5 is composed of a biconvex lens, a biconvex lens, and a cemented positive lens including a biconvex lens and a negative meniscus lens having a concave surface on the object side and an aspherical surface on the image side.

また、第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズと両凹レンズと像面側の面は非球面形状である両凸レンズの接合からなる負レンズから成る。 The sixth lens group G6 is composed of a positive meniscus lens having a concave surface facing the object side, a biconcave lens, and a negative lens formed by cementing a biconvex lens having an aspherical surface on the image side.

数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 82.0737 3.2000 1.88300 40.80
2 33.7828 16.6911
3* -86.3807 2.7000 1.59201 67.02
4 61.2027 0.1500
5 49.4166 4.4642 1.65412 39.68
6 78.4369 (d6)
7 70.4214 7.0370 1.88300 40.80
8 -467.4371 0.1500
9 103.1662 1.4000 1.84666 23.78
10 48.5424 (d10)
11* 59.0941 1.0000 1.68893 31.16
12 38.3341 6.5753 1.55032 75.49
13 161.9036 1.0000
14 52.1072 7.0000 1.43700 95.10
15 -1021.8501 0.2000
16 112.5189 4.9127 1.49700 81.60
17 -140.8003 (d17)
18(絞り) ∞ 1.6500
19 82.4553 5.2413 1.92286 20.88
20 -64.7073 1.1500 1.70154 41.15
21 33.4908 6.0882
22 -42.2445 1.1500 1.91082 35.25
23 -217.6580 (d23)
24 60.1843 4.9786 1.49700 81.60
25 -111.4223 0.3000
26 101.6917 5.5336 1.80611 40.73
27 -53.0210 1.0000 1.92119 23.95
28* -68.4067 (d28)
29 -209.4406 4.6308 1.43700 95.10
30 -42.0351 1.2000
31 -53.0590 1.2000 1.80518 25.46
32 41.4657 4.6414 1.43700 95.10
33* -274.8184 (BF)
像面 ∞
[非球面データ]
3面 11面 28面 33面
K -4.2192 0.0000 1.4332 2.1268
A4 9.07324E-07 -1.82876E-06 4.15709E-06 2.64191E-06
A6 8.94914E-10 -4.01863E-10 6.83879E-10 5.24090E-10
A8 -3.33733E-12 1.07429E-12 7.13829E-13 2.19746E-12
A10 4.41511E-15 -1.43129E-15 -2.50027E-16 -4.31764E-15
A12 -2.06241E-18 0.0000 0.0000 0.0000
[各種データ]
ズーム比 2.71
広角 中間 望遠
焦点距離 24.92 42.40 67.42
Fナンバー 2.91 2.90 2.92
全画角2ω 83.87 54.27 34.88
像高Y 21.60 21.60 21.60
レンズ全長 235.20 201.91 195.00
[可変間隔データ]
(物体距離無限遠)
広角 中間 望遠
d0 ∞ ∞ ∞
d6 1.0000 1.0000 1.0000
d10 73.1760 31.5320 11.2158
d17 1.3000 12.9157 26.3485
d23 17.7189 9.8879 1.6000
d28 1.4000 5.9584 14.2319
BF 45.3631 45.3692 45.3596
(物体距離500mm)
広角 中間 望遠
d0 264.7977 298.0926 305.0000
d6 9.6640 8.8579 8.7092
d10 64.5121 23.6742 3.5066
d17 1.3000 12.9157 26.3485
d23 17.7189 9.8879 1.6000
d28 1.4000 5.9584 14.2319
BF 45.3631 45.3692 45.3595
[レンズ群データ]
群 始面 焦点距離
G1 1 -33.56
G2 7 170.95
G3 11 49.86
G4 18 -43.87
G5 24 32.91
G6 29 -71.62
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 82.0737 3.2000 1.88300 40.80
2 33.7828 16.6911
3* -86.3807 2.7000 1.59201 67.02
4 61.2027 0.1500
5 49.4166 4.4642 1.65412 39.68
6 78.4369 (d6)
7 70.4214 7.0370 1.88300 40.80
8 -467.4371 0.1500
9 103.1662 1.4000 1.84666 23.78
10 48.5424 (d10)
11* 59.0941 1.0000 1.68893 31.16
12 38.3341 6.5753 1.55032 75.49
13 161.9036 1.0000
14 52.1072 7.0000 1.43700 95.10
15 -1021.8501 0.2000
16 112.5189 4.9127 1.49700 81.60
17 -140.8003 (d17)
18 (aperture) ∞ 1.6500
19 82.4553 5.2413 1.92286 20.88
20 -64.7073 1.1500 1.70154 41.15
21 33.4908 6.0882
22 -42.2445 1.1500 1.91082 35.25
23 -217.6580 (d23)
24 60.1843 4.9786 1.49700 81.60
25 -111.4223 0.3000
26 101.6917 5.5336 1.80611 40.73
27 -53.0210 1.0000 1.92119 23.95
28* -68.4067 (d28)
29 -209.4406 4.6308 1.43700 95.10
30 -42.0351 1.2000
31 -53.0590 1.2000 1.80518 25.46
32 41.4657 4.6414 1.43700 95.10
33* -274.8184 (BF)
Image plane ∞
[Aspherical data]
3 faces 11 faces 28 faces 33 faces
K -4.2192 0.0000 1.4332 2.1268
A4 9.07324E-07 -1.82876E-06 4.15709E-06 2.64191E-06
A6 8.94914E-10 -4.01863E-10 6.83879E-10 5.24090E-10
A8 -3.33733E-12 1.07429E-12 7.13829E-13 2.19746E-12
A10 4.41511E-15 -1.43129E-15 -2.50027E-16 -4.31764E-15
A12 -2.06241E-18 0.0000 0.0000 0.0000
[Various data]
Zoom ratio 2.71
Wide-angle mid-telephoto focal length 24.92 42.40 67.42
F number 2.91 2.90 2.92
Full angle of view 2ω 83.87 54.27 34.88
Image height Y 21.60 21.60 21.60
Total lens length 235.20 201.91 195.00
[Variable interval data]
(Infinite object distance)
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d6 1.0000 1.0000 1.0000
d10 73.1760 31.5320 11.2158
d17 1.3000 12.9157 26.3485
d23 17.7189 9.8879 1.6000
d28 1.4000 5.9584 14.2319
BF 45.3631 45.3692 45.3596
(Object distance 500 mm)
Wide-angle mid-telephoto
d0 264.7977 298.0926 305.0000
d6 9.6640 8.8579 8.7092
d10 64.5121 23.6742 3.5066
d17 1.3000 12.9157 26.3485
d23 17.7189 9.8879 1.6000
d28 1.4000 5.9584 14.2319
BF 45.3631 45.3692 45.3595
[Lens group data]
Focal length of front surface
G1 1 -33.56
G2 7 170.95
G3 11 49.86
G4 18 -43.87
G5 24 32.91
G6 29 -71.62

図16は、本発明の実施例4の結像光学系の広角端で無限遠合焦時のレンズ構成図である。物体側より順に負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成される。 FIG. 16 is a lens configuration diagram of the image forming optical system according to the fourth embodiment of the present invention when focused at infinity at the wide-angle end. The first lens group G1 having negative refractive power, the second lens group G2 having positive refractive power, the third lens group G3 having positive refractive power, the aperture stop, and the fourth lens group G4 having negative refractive power in order from the object side. , A fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズ、物体側の面は非球面形状で両凹レンズ、物体側に凸面を向けた正メニスカスレンズから成る。 The first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, a biconcave lens having an aspherical surface on the object side, and a positive meniscus lens having a convex surface directed toward the object side.

また、第2レンズ群G2は、両凸レンズ、物体側に凸面を向けた負メニスカスレンズから成る。 The second lens group G2 includes a biconvex lens and a negative meniscus lens having a convex surface directed toward the object side.

また、第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズ、物体側の面は非球面形状で凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合の正レンズ、両凸レンズで構成される。 The third lens group G3 is a positive meniscus lens having a convex surface directed toward the object side, and a cemented negative negative meniscus lens having an aspherical surface on the object side and a positive meniscus lens having a convex surface directed toward the object side. It consists of a positive lens and a biconvex lens.

また、第4レンズ群G4は、開口絞り、物体両凸レンズと両凹レンズとから成る接合の負レンズ、物体側に凹面を向けた負メニスカスレンズから成る。 The fourth lens group G4 includes an aperture stop, a negative lens cemented with an object biconvex lens and a biconcave lens, and a negative meniscus lens having a concave surface facing the object side.

また、第5レンズ群G5は、両凸レンズ、両凸レンズと物体側に凹面を向け像面側の面は非球面形状である負メニスカスレンズとから成る接合の正レンズから成る。 The fifth lens group G5 is composed of a biconvex lens, a biconvex lens, and a cemented positive lens including a biconvex lens and a negative meniscus lens having a concave surface on the object side and an aspherical surface on the image side.

また、第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズと両凹レンズと像面側の面は非球面形状である両凸レンズの接合からなる負レンズから成る。 The sixth lens group G6 is composed of a positive meniscus lens having a concave surface facing the object side, a biconcave lens, and a negative lens formed by cementing a biconvex lens having an aspherical surface on the image side.

数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 73.3360 3.2000 1.88300 40.80
2 32.6118 17.0562
3* -90.3547 2.7000 1.59201 67.02
4 64.1519 0.1500
5 45.9836 4.1296 1.65412 39.68
6 65.0824 (d6)
7 65.8266 6.7074 1.88300 40.80
8 -2514.8778 0.1500
9 109.0090 1.4000 1.84666 23.78
10 48.8622 (d10)
11 46.8770 6.3637 1.43700 95.10
12 310.2478 0.2000
13* 76.3664 1.0000 1.68893 31.16
14 45.7694 4.7482 1.55032 75.49
15 96.9262 1.0000
16 59.7096 7.3372 1.49700 81.60
17 -110.8784 (d17)
18(絞り) ∞ 1.6500
19 106.7505 5.5606 1.92286 20.88
20 -55.1809 1.1500 1.70154 41.15
21 36.2985 6.5490
22 -40.6051 1.1500 1.91082 35.25
23 -137.5313 (d23)
24 57.4005 5.5000 1.49700 81.60
25 -90.5599 0.3000
26 119.0976 5.2227 1.80611 40.73
27 -57.1342 1.0000 1.92119 23.95
28* -75.9073 (d28)
29 -537.8493 4.7208 1.437001 95.10
30 -46.4682 1.2000
31 -56.8487 1.2000 1.80518 25.46
32 40.1874 4.5484 1.43700 95.10
33* -455.7682 (BF)
像面 ∞
[非球面データ]
3面 13面 28面 33面
K -4.2548 0.0000 2.0040 0.0000
A4 9.31882E-07 -2.40304E-06 3.71306E-06 3.07556E-06
A6 1.06605E-09 -5.72069E-10 5.92137E-10 6.63578E-10
A8 -3.60753E-12 3.74261E-13 1.41707E-13 8.98190E-12
A10 4.59504E-15 -7.26295E-16 3.16007E-16 -1.54491E-14
A12 -2.12722E-18 0.0000 0.0000 0.0000
[各種データ]
ズーム比 2.75
広角 中間 望遠
焦点距離 24.62 41.99 67.74
Fナンバー 2.91 2.92 2.91
全画角2ω 84.56 54.79 34.72
像高Y 21.60 21.60 21.60
レンズ全長 238.12 204.44 200.00
[可変間隔データ]
(物体距離無限遠)
広角 中間 望遠
d0 ∞ ∞ ∞
d6 1.5788 1.5788 1.5788
d10 74.3259 31.8270 11.5263
d17 1.3000 12.2973 26.2606
d23 18.1512 9.9977 1.6000
d28 1.4000 7.3782 17.6764
BF 45.4653 45.4699 45.4640
(物体距離500mm)
広角 中間 望遠
d0 261.8849 295.5572 300.0000
d6 12.1927 11.2084 11.0921
d10 63.7120 22.1975 2.0131
d17 1.3000 12.2973 26.2606
d23 18.1512 9.9977 1.6000
d28 1.4000 7.3782 17.6764
BF 45.4653 45.4699 45.4638
[レンズ群データ]
群 始面 焦点距離
G1 1 -34.14
G2 7 202.36
G3 11 50.69
G4 18 -45.61
G5 24 33.86
G6 29 -73.73
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd
Object ∞ (d0)
1 73.3360 3.2000 1.88300 40.80
2 32.6118 17.0562
3* -90.3547 2.7000 1.59201 67.02
4 64.1519 0.1500
5 45.9836 4.1296 1.65412 39.68
6 65.0824 (d6)
7 65.8266 6.7074 1.88300 40.80
8 -2514.8778 0.1500
9 109.0090 1.4000 1.84666 23.78
10 48.8622 (d10)
11 46.8770 6.3637 1.43700 95.10
12 310.2478 0.2000
13* 76.3664 1.0000 1.68893 31.16
14 45.7694 4.7482 1.55032 75.49
15 96.9262 1.0000
16 59.7096 7.3372 1.49700 81.60
17 -110.8784 (d17)
18 (aperture) ∞ 1.6500
19 106.7505 5.5606 1.92286 20.88
20 -55.1809 1.1500 1.70154 41.15
21 36.2985 6.5490
22 -40.6051 1.1500 1.91082 35.25
23 -137.5313 (d23)
24 57.4005 5.5000 1.49700 81.60
25 -90.5599 0.3000
26 119.0976 5.2227 1.80611 40.73
27 -57.1342 1.0000 1.92119 23.95
28* -75.9073 (d28)
29 -537.8493 4.7208 1.437001 95.10
30 -46.4682 1.2000
31 -56.8487 1.2000 1.80518 25.46
32 40.1874 4.5484 1.43700 95.10
33* -455.7682 (BF)
Image plane ∞
[Aspherical data]
3 side 13 side 28 side 33 side
K -4.2548 0.0000 2.0040 0.0000
A4 9.31882E-07 -2.40304E-06 3.71306E-06 3.07556E-06
A6 1.06605E-09 -5.72069E-10 5.92137E-10 6.63578E-10
A8 -3.60753E-12 3.74261E-13 1.41707E-13 8.98190E-12
A10 4.59504E-15 -7.26295E-16 3.16007E-16 -1.54491E-14
A12 -2.12722E-18 0.0000 0.0000 0.0000
[Various data]
Zoom ratio 2.75
Wide-angle mid-telephoto focal length 24.62 41.99 67.74
F number 2.91 2.92 2.91
Full angle of view 2ω 84.56 54.79 34.72
Image height Y 21.60 21.60 21.60
Total lens length 238.12 204.44 200.00
[Variable interval data]
(Infinite object distance)
Wide-angle mid-telephoto
d0 ∞ ∞ ∞
d6 1.5788 1.5788 1.5788
d10 74.3259 31.8270 11.5263
d17 1.3000 12.2973 26.2606
d23 18.1512 9.9977 1.6000
d28 1.4000 7.3782 17.6764
BF 45.4653 45.4699 45.4640
(Object distance 500 mm)
Wide-angle mid-telephoto
d0 261.8849 295.5572 300.0000
d6 12.1927 11.2084 11.0921
d10 63.7120 22.1975 2.0131
d17 1.3000 12.2973 26.2606
d23 18.1512 9.9977 1.6000
d28 1.4000 7.3782 17.6764
BF 45.4653 45.4699 45.4638
[Lens group data]
Focal length of front surface
G1 1 -34.14
G2 7 202.36
G3 11 50.69
G4 18 -45.61
G5 24 33.86
G6 29 -73.73

[条件式対応値]
条件式/実施例 EX1 EX2 EX3 EX4
(1)1.5<f2/ft<5.0 2.47 3.20 2.54 2.99
(2)−2.8<MRT×(1−M2T)<−0.5 -1.76 -1.21 -1.61 -1.30
(3)0.3<FcEntp/f2<2.5 0.66 0.52 1.47 1.07
(4)2.5<FcEntp/fw 4.35 4.53 10.09 8.77
(5)−0.9<f2F/f2R<−0.4 -0.63 -0.63 -0.64 -0.69
[Value corresponding to conditional expression]
Conditional expression/Example EX1 EX2 EX3 EX4
(1) 1.5<f2/ft<5.0 2.47 3.20 2.54 2.99
(2)-2.8<MRT 2 ×(1-M2T 2 )<-0.5 -1.76 -1.21 -1.61 -1.30
(3) 0.3<FcEntp/f2<2.5 0.66 0.52 1.47 1.07
(4) 2.5<FcEntp/fw 4.35 4.53 10.09 8.77
(5) -0.9<f2F/f2R<-0.4 -0.63 -0.63 -0.64 -0.69

なお、本実施例ではフォーカスレンズ群である第2レンズ群G2を、物体側から順に正、負の屈折力を持つレンズで構成しているが、そのレンズの片面あるいは両面を非球面化して球面収差、非点収差等の補正能力を上げる、あるいは回折光学素子を付加し色収差補正能力を上げることも可能である。 In this embodiment, the second lens group G2, which is a focus lens group, is composed of lenses having positive and negative refracting powers in order from the object side. However, one surface or both surfaces of the lens is made aspherical and spherical. It is also possible to enhance the ability to correct aberrations, astigmatism, etc., or to enhance the ability to correct chromatic aberration by adding a diffractive optical element.

また、フォーカスレンズ群を変倍時に光軸方向に移動させ、収差補正に自由度を与え、より高性能化、コンパクト化を行うことも可能である。 Further, it is also possible to move the focus lens group in the optical axis direction during zooming to give a degree of freedom in aberration correction, and to achieve higher performance and compactness.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
S 開口絞り
I 像面
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group G6 Sixth lens group S Aperture stop I Image plane

Claims (4)

物体側より順に、負の屈折力の第1レンズ群G1、正の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、開口絞り、負の屈折力の第4レンズ群G4、正の屈折力の第5レンズ群G5、負の屈折力の第6レンズ群G6で構成され、広角端から望遠端への変倍の際に、前記第1レンズ群G1と前記第2レンズ群G2との間隔は変化せず、前記第2レンズ群G2と前記第3レンズ群G3との間隔が変化し、前記第3レンズ群G3と前記第4レンズ群G4との間隔が変化し、前記第4レンズ群G4と前記第5レンズ群G5との間隔が変化し、前記第5レンズ群G5と前記第6レンズ群G6との間隔が変化し、物体側無限遠から近距離物体へフォーカシングする際、第2レンズ群G2が像面方向へ移動し、以下の条件を満足することを特徴とする大口径広角ズームレンズ。
(1)1.5<f2/ft<5.0
(2)−2.8<MRT^2×(1−M2T^2)<−0.5
ただし、
ft:望遠端状態における物体距離無限遠時の焦点距離
f2:第2レンズ群G2の焦点距離
M2T:望遠端状態における物体距離無限遠時の第2レンズ群G2の横倍率
MRT:望遠端状態における物体距離無限遠時の第3レンズ群G3から第6レンズ群G6までの合成横倍率
From the object side, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a positive refractive power, an aperture stop, and a fourth lens group having a negative refractive power. G4, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power , the first lens group G1 and the second lens group G1 when zooming from the wide-angle end to the telephoto end. The distance between the lens group G2 does not change, the distance between the second lens group G2 and the third lens group G3 changes, and the distance between the third lens group G3 and the fourth lens group G4 changes. , The distance between the fourth lens group G4 and the fifth lens group G5 changes, the distance between the fifth lens group G5 and the sixth lens group G6 changes, and focusing from an object-side infinity to a short-distance object The large-aperture wide-angle zoom lens, wherein the second lens group G2 moves in the image plane direction and satisfies the following conditions.
(1) 1.5<f2/ft<5.0
(2)-2.8<MRT^2*(1-M2T^2)<-0.5
However,
ft: Object distance in the telephoto end state, focal length at infinity f2: Focal length of the second lens group G2 M2T: Object distance in telephoto end state Lateral magnification of the second lens group G2 at infinity MRT: In telephoto end state Composite lateral magnification from the third lens group G3 to the sixth lens group G6 when the object distance is infinity
以下の条件を満足することを特徴とする請求項1に記載の大口径広角ズームレンズ。
(3)0.3<FcEntp/f2<2.5
(4)2.5<FcEntp/fw
ただし、
FcEntp:第2レンズ群G2の物体側のレンズ面を基準とした広角端状態における物体距離無限遠時の第2レンズ群G2から開口絞りの物体側までの合成光学系による開口絞りの結像位置
fw:広角端状態における物体距離無限遠時の焦点距離
The large-diameter wide-angle zoom lens according to claim 1, wherein the following conditions are satisfied.
(3) 0.3<FcEntp/f2<2.5
(4) 2.5<FcEntp/fw
However,
FcEntp: Image formation position of the aperture stop by the synthetic optical system from the second lens group G2 to the object side of the aperture stop when the object distance is infinity in the wide-angle end state with reference to the object-side lens surface of the second lens group G2 fw: focal length when the object distance is infinity in the wide-angle end state
前記第2レンズ群G2は、物体側から順に正の屈折力を有するG2Fレンズと負の屈折力を有するG2Rレンズからなり、以下の条件を満足することを特徴とする請求項1または請求項2に記載の大口径広角ズームレンズ。
(5)−0.9<f2F/f2R<−0.4
ただし、
f2F:第2レンズ群G2を構成する物体側のレンズG2Fの焦点距離
f2R:第2レンズ群G2を構成する像側のレンズG2Rの焦点距離
The second lens group G2 is composed of a G2F lens having a positive refractive power and a G2R lens having a negative refractive power in order from the object side, and satisfies the following condition. Large-diameter wide-angle zoom lens described in.
(5) -0.9<f2F/f2R<-0.4
However,
f2F: Focal length of the object-side lens G2F forming the second lens group G2 f2R: Focal length of the image-side lens G2R forming the second lens group G2
変倍時において、前記第レンズ群Gが広角端と望遠端で像面に対し固定であることを特徴とする請求項1乃至請求項3のいずれかに記載の大口径広角ズームレンズ。
The large-diameter wide-angle zoom lens according to claim 1, wherein the sixth lens group G 6 is fixed to the image plane at the wide-angle end and the telephoto end during zooming.
JP2016132016A 2016-07-01 2016-07-01 Large aperture wide angle zoom lens Active JP6749631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132016A JP6749631B2 (en) 2016-07-01 2016-07-01 Large aperture wide angle zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132016A JP6749631B2 (en) 2016-07-01 2016-07-01 Large aperture wide angle zoom lens

Publications (3)

Publication Number Publication Date
JP2018004963A JP2018004963A (en) 2018-01-11
JP2018004963A5 JP2018004963A5 (en) 2019-06-20
JP6749631B2 true JP6749631B2 (en) 2020-09-02

Family

ID=60947891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132016A Active JP6749631B2 (en) 2016-07-01 2016-07-01 Large aperture wide angle zoom lens

Country Status (1)

Country Link
JP (1) JP6749631B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026874A1 (en) * 2019-08-15 2021-02-18 深圳市大疆创新科技有限公司 Imaging camera lens, imaging apparatus, and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020190A (en) * 1996-07-09 1998-01-23 Nikon Corp Wide angle zoom lens
JP4519232B2 (en) * 1999-12-28 2010-08-04 株式会社シグマ Zoom lens
JP4821237B2 (en) * 2005-09-29 2011-11-24 株式会社ニコン Zoom lens
JP2012063568A (en) * 2010-09-16 2012-03-29 Canon Inc Zoom lens
JP6199230B2 (en) * 2014-04-11 2017-09-20 株式会社シグマ Super wide-angle zoom lens

Also Published As

Publication number Publication date
JP2018004963A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US11520127B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
US9134516B2 (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
EP2360504A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US11635603B2 (en) Variable power optical system, optical apparatus and manufacturing method for variable power optical system
US20200278521A1 (en) Variable power optical system, optical device and method for manufacturing variable power optical system
US10095012B2 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP6199230B2 (en) Super wide-angle zoom lens
JP2008203471A (en) Zoom lens, optical equipment and imaging method
JP6237146B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6237147B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6108075B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
WO2021039696A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
JP6390147B2 (en) Super wide-angle zoom lens
JP2020129022A (en) Wide-angle lens system
JP6749631B2 (en) Large aperture wide angle zoom lens
JP6276634B2 (en) Super wide-angle zoom lens
JP5578412B2 (en) Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP6409361B2 (en) Inner focusing type zoom lens
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
CN107615130B (en) Variable magnification optical system and optical apparatus
JP2015191060A (en) Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JP5740965B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2018028687A (en) Variable power optical system, optical device, and manufacturing method for variable power optical system
JP5674125B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6749631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250